Human-induced shifts in habitat use and behaviour of a marine predator: the effects of bait provisioning in the blacktip reef shark

Johann Mourier, Joachim Claudet, Serge Planes

To cite this version:

HAL Id: hal-03208317
https://hal.archives-ouvertes.fr/hal-03208317
Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Human-induced shifts in habitat use and behaviour of a marine predator: the effects of bait provisioning in the blacktip reef shark

Johann Mourier1,2,3, Joachim Claudet2,4, Serge Planes1,2

1 PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, 66860 Perpignan, France
2 Laboratoire d'Excellence “CORAIL”
3 MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France
4 National Center for Scientific Research, PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Maison des Océans, 195 rue Saint-Jacques 75005 Paris, France

Corresponding author:
Johann Mourier
Email: johann.mourier@gmail.com
Address: MARBEC, Bureau 52 - 1er étage bâtiment principal, Station Ifremer de Sète, Av Jean Monnet, CS 30171 34203 Sète cedex, France
Telephone number: +33 672712157

Headings: Provisioning modifies habitat use of sharks
Abstract

While the negative effects of consumptive pressures on marine predators are well established, the effects of increasing non-consumptive activities wildlife tourism are still understudied. As such, the long-term effects of the provision of bait on shark behaviour are still unclear. Here, we assessed the effects of provisioning using a Control-Impact design on the spatial use and level of residency of the blacktip reef shark (*Carcharhinus melanopterus*) over a two-year period. We used effect sizes to model the differences relative changes in residency between provisioning and non-provisioning sites. Sharks showed a high degree of residency and significant changes in their habitat use which persisted overnight while the activity ceased. We suggest that provisioning activities can affect species with high level of residency such as the blacktip reef shark. Further research is needed to better understand how these changes behavioural modifications can alter the fitness of this species. It is important to adapt shark provisioning activities to limit the induced changes in habitat.

Keywords: wildlife provisioning; shark; coral reef; habitat use; sexual segregation
Wildlife watching is often presented as a win-win scenario for both people and nature as it can provide new sources of jobs and income to local economies and can enhance environmental awareness (Orams, 2002; Knight, 2009). However, the economic viability of commercial wildlife watching depends on the predictable and constant sightings of wild animals (Whittaker, 1997), which can be enhanced by attracting them with food. These practices have rapidly developed worldwide in different terrestrial and marine ecosystems but have also raised concerns regarding possible negative consequences to the targeted animals and their ecosystems. A number of studies have now demonstrated potential alterations of behavioural and physiological parameters in terrestrial vertebrates, cetaceans and fish, including changes in overall health and increased aggression toward humans (see Brena et al., 2015; Gallagher et al., 2015; Orams, 2002 for reviews). These can act as additional stressors on populations of megafauna that are frequently already endangered or threatened.

For sharks, one of the two taxonomic groups most concerned by marine wildlife watching together with cetaceans (Christiansen et al., 2016), the use of bait is common practice as these species are often sparse or elusive (Brena et al., 2015; Gallagher et al., 2015). An increasing number of studies over the last decade show that provisioning can have a number of impacts on individuals, including on their abundance and residency (Eric Clua et al., 2010; Juerg M. Brunnschweiler, Abrantes, & Barnett, 2014; Kiszka et al., 2016), movement patterns and activity space (Fitzpatrick et al., 2011; Huveneers et al., 2013) or physiology (Barnett et al., 2016; Huveneers et al., 2018). In their review, Brena et al. (2015) further highlighted that these most commonly described alterations of individual behaviour can have cascading effects at the group and community scales (Drew & McKeon, 2019; Meyer et al., 2020).

Alteration of the size of individual home range is one of the changes most commonly observed after provisioning sharks or rays in the same location for long periods of time (several years) (Huveneers et al., 2013). Sharks and rays tend to increase their time residency and decrease their activity space following provisioning activities, at least for subsets of the populations (Clua et al., 2010; Fitzpatrick et al., 2011; Corcoran et al., 2013; Kiszka et al., 2016). These modifications in space...
utilization question whether they promote substantive trade-offs in activity budgets and in turn alter energy budget (Barnett et al., 2016), individual fitness and overall the structuring role these top predators play in their ecosystem. While most studies have shown that provisioning unlikely affects the long-term and overall population behaviour of large species of sharks (Hammerschlag et al., 2012; Meyer et al., 2019), less evidence is available on smaller species (< 3 m total length) that are potentially more vulnerable to such activities due to restricted movements (Maljković & Côté, 2011; Kiszka et al., 2016).

Here, using a Control-Impact design, we investigated potential changes induced by provisioning in behaviour at the individual and population levels of a common reef shark species. In particular, using acoustic telemetry, we assessed how shark provisioning activities restricted to specific locations for the last two decades can affect habitat use of both females and males for a period of more than two years.

Materials and methods

Study site and species

The study was conducted at Moorea Island (17°30’S; 149°51’W), French Polynesia. The tourism industry has grown rapidly in Moorea (Clua et al., 2011; Leenhardt et al., 2017), and has offered activities including interaction with sharks and rays in the lagoon since the 1980’s (Gaspar, Chateau, & Galzin, 2008; Kiszka et al., 2016) as well as shark-feeding dives on the outer reef of the North coast (Clua et al., 2010). In 2004, Moorea authorities implemented a Management Plan for the Marine Environment (Plan de Gestion de l’Espace Maritime) that restricted these shark provisioning activities to two sites on the outer reef in the North (Fig. 1) which primarily sought to attract sicklefin lemon sharks (Negaprion acutidens) and which banned shark provisioning in the lagoon but authorized ray-feeding (Himantura fai) that also ended up attracting large numbers of blacktip reef sharks (C. melanopterus)(site A2 in Fig. 1; Kiszka et al., 2016). Despite local regulations, another former provisioning site is also used, but on a more sporadic basis (site A1 in Fig. 1). Provisioning location A2 is used during the day by both professional operators who can bring up to 50 tourists per
boat and individual users who feed pink whiprays and blacktip reef sharks with fish discards and
frozen squid in less than 1.5 m depth on sandy banks. Provisioning has been present along the entire
northern coast of Moorea since the 1980’s and here we considered it as representative of an area
potentially impacted by provisioning.

The blacktip reef shark *Carcharhinus melanopterus* (Quoy & Gaimard, 1824), the target species
for the artificial feeding, is one of the most abundant and a common shark species in the coral reefs of
the Western Indo-Pacific (Vignaud *et al.*, 2014), inhabiting shallow reefs and sand-flats of both atolls
and high islands (Papastamatiou *et al.*, 2009; Speed *et al.*, 2011; Mourier, Mills, & Planes, 2013; Chin
et al., 2016). Blacktip reef sharks demonstrate a high degree of site attachment and individual spatial
overlap (Papastamatiou *et al.*, 2009; Mourier, Vercelloni, & Planes, 2012), with individuals displaying
larger range of movements only during the reproductive period (Mourier & Planes, 2013; Speed *et al*.,
2016). These sharks have limited home ranges and are resident to specific reefs for periods of at least
several years (up to 10 years or more in Moorea; Mourier *et al.*, 2012). Genetic studies demonstrated
low connectivity at global (Vignaud *et al.*, 2014) and even local (Vignaud *et al.*, 2013) scales,
highlighting limited and likely very rare large-scale migrations. Blacktip reef sharks have recently
been found to demonstrate complex social interactions and assortment by sex at the group level
(Mourier, Vercelloni, & Planes, 2012) as well as some patterns of spatial sexual segregation (Mourier,

Control-Impact design

We used an array of 6 VR2W acoustic receivers (VEMCO Ltd., Halifax, Canada) deployed
from June 2008 to November 2010 to build a Control-Impact design; for each of the three coasts, a
pair of receivers was selected at a pass with one receiver in the lagoon and the other on the fore reef
(Fig. 1). Receivers were anchored to the substratum using cement-filled car tires with a single metal
bar (150 cm tall) through the centre, to which the receiver was attached. This design included two
‘Impact’ sites on the north coast (i.e., receivers A1 and A2) where provisioning was developed, and
two groups of ‘Control’ sites where no provisioning was developed (i.e., Control 1 on the west coast
with receivers B1 and B2; and Control 2 on the east coast with receivers C1 and C2) (Fig. 1). This
design allowed us to compare the movements of sharks between the lagoon and the outer-reef for sites affected by provisioning activities and control sites where feeding does not occur. Two controls were chosen to account for influence of spatial effects in individual variability of movements. Range testing of the acoustic receiver array was conducted to determine the distance by which most tag emissions were detected by the receivers. Detection probabilities were found to drop at 400 meters from the receiver. For each detection, the receiver recorded the time, date and transmitter number. We retrieved and downloaded receivers every 6 months, from June 2008 to November 2010, in order to back-up the data, clean them from biofouling and change batteries.

Sampling and tagging

Blacktip reef sharks were caught from a boat using a fishing rod with barbless hooks at multiple locations within and outside the lagoon in each area where acoustic receivers were deployed (Fig. 1; Table S1; Mourier et al., 2013). They were brought alongside the boat where they were inverted and controlled in tonic immobility. Each individual was sexed and total length (TL) was measured from the snout tip to the end of the upper caudal lobe. Sharks were then equipped with VEMCO V16-4H transmitters (68 mm length x 13 mm width; VEMCO, Halifax, Nova Scotia, Canada). These tags continually transmitted an individual coded pulse, randomly within 40 and 80s intervals, producing a nominal transmission around 60 s apart at a frequency of 69 kHz, with an expected battery life of more than 800 days. The tags were externally attached and secured to the dorsal fins. We analysed data from the 35 blacktip reef sharks equipped with acoustic transmitters, ranging from 102 to 157 cm TL (mean ± SD = 132.7 ± 13.0) including 21 males and 14 females (Table S1).

Data analysis

To determine the amount of connectivity between provisioning sites and control sites and to confirm independency of “impact” and “control” sites, we inferred individual daily rate of movements between receivers defined as the number of total movements between each receiver divided by the total number of days of monitoring. Mean daily movement was used to examine the level of connectivity between sites and coasts. A connectivity plot was therefore constructed based on average
daily movements between paired receivers indicating the magnitude of incoming and outgoing
movements at receivers from the different coasts (Heupel et al., 2015). The connectivity map was
constructed using R package "circlize" package (Gu et al., 2014) in R v.3.3.0 (R Development Core
Team, 2019).

We then assessed the degree of residency of sharks by calculating the proportion of hours each
shark spent within the detection range of each receiver. For this, the number of monitoring days was
inferred for each shark (i.e., the number of days a shark spent at liberty from tagging date to last
recorded detection, with both extreme dates excluded). The degree of residency was calculated for
each individual shark where diurnal and nocturnal periods were separated for each day at each
receiver. Daily sunrise and sunset hours were used to determine the number of hours of diurnal and
nocturnal periods for each day (Source - U.S. Naval Observatory:

We then used this measure of residency as the response variable in our Control-Impact analysis.
For this, the residency of sharks from impacted sites represented by a receiver on the ocean side and
one on the inside of the lagoon (A1 and A2, respectively; Fig. 1) on the north coast was compared
with the residency of sharks from inside and outside the lagoon at two sets of control sites on the west
and east coasts (Control 1: B1 on the ocean side and B2 in the lagoon; Control 2: C1 in the lagoon and
C2 on the ocean side; Fig. 1).

We used effect sizes to model the differences between impacted and control sites. This approach
has proven to be powerful in Control-Impact frameworks (see Claudet et al., 2010, 2008 as examples).
As we were interested in relative changes in residency between provisioning and non-provisioning
sites, we used R_{ijk} log–ratios as effect size (Hedges, Gurevitch, & Curtis, 1999), calculated as follows:

$$ R_{ijk} = \ln \left(\frac{\bar{X}_{I,ijk}}{\bar{X}_{C,ijk}} \right) $$

where $\bar{X}_{I,ijk}$ and $\bar{X}_{C,ijk}$ are the mean shark residency indices in habitat i (i.e., lagoon or ocean), sex j
(i.e., male or female) and diel phase k (i.e., day or night), in impact (I) or control (C) sites,
respectively.

The variance ν_{ijk} associated to each effect size was calculated as follows:
\[v_{ijk} = \frac{sd_{I,ijk}^2}{n_{I,ijk} \bar{X}_{I,ijk}} + \frac{sd_{C,ijk}^2}{n_{C,ijk} \bar{X}_{C,ijk}} \]

where \(sd_{I,ijk} \) and \(sd_{C,ijk} \), and \(n_{I,ijk} \) and \(n_{C,ijk} \) are the standard deviations and sample sizes (i.e., number of sharks detected by the receivers in habitat \(i \), of sex \(j \), during diel phase \(k \)), associated to \(\bar{X}_{I,ijk} \) and \(\bar{X}_{C,ijk} \), respectively.

We then weighted the effect sizes in our analyses by the inverse of their variance, as follows:

\[w_{ijk} = \frac{1}{v_{ijk}} \]

Weighted analyses increase the precision of the combined estimates and increase the power of tests (Gurevitch & Hedges, 1999; Osenberg et al., 1999).

For each moderator of interest (i.e., habitat, sex and diurnal phase), we calculated weighted averaged effect sizes. All analyses were done using R v.3.3.0 (R Development Core Team, 2019).

Results

The maximum hourly residency, corresponding to the proportion of hours present at the receiver where the individual had the highest detection rate, ranged from 0.05 to 83.45% of hours for a single receiver, with a mean of 15.73 (Table S1). Inter-coast connectivity (i.e., from one side of the island to the other) was low compared to intra-coast connectivity (i.e., from lagoon to open ocean) (Fig. 2) as shown by the rate of movements between receivers (maximum of 0.015 movements per day). There was no connection between the east and north coasts and only limited North-West and West-East connections (31 recorded N-W movements and only 1 W-E movement).

When considering both habitats together (lagoon or open ocean), time of the day (day or night), and sex (male and female), on average, there was no significant effect of provisioning on mean residency (i.e., the proportion of hour spent at a site) (\(R = -0.05 \pm 0.44 \), 95% CI). However, there was some heterogeneity and effect of provisioning varied by habitat, time of the day, or sex.

On provisioning sites, both male and female sharks were disproportionately more resident on the fore reef than in the lagoon, when compared to control sites. There were significant 5 to 13-fold increases in residency in the fore reef, in comparison to control sites, not only during the day (\(R = 2.32 \) ...
Impact of provisioning varied between day and night. For females, loss of lagoon use in provisioned sites, when compared to control sites, was greater at night (R = -4.04 ± 2.12, 95% CI; Fig. 3) than during the day (R = -2.73 ± 1.90, 95% CI; Fig. 3). A decrease in lagoon use by males at provisioned sites followed a similar pattern during the night (R = -2.79 ± 1.04, 95% CI; Fig. 3) but no differences in habitat use was observed between provisioned and control sites during the day (R = 0.34 ± 0.98, 95% CI; Fig. 3).

Discussion

Here, we showed that blacktip reef sharks have high levels of attachment to small areas and low extent of movements at an island scale, and that this pattern of habitat use can be significantly modified by provisioning.

Effects of provisioning were materialized by a shift in habitat use and spatio-temporal dynamics of the monitored sharks. Overall, shark residency was higher during the day at provisioning sites than at control sites, but was lower at night. This is not surprising as provisioning is believed to increase residency of sharks when the activity is conducted (Brena et al., 2015). More importantly, we show that in those provisioning sites, sharks’ habitat use was modified, with higher residency on the fore reef than in the lagoon, when compared to control sites. The presence of three main provisioning sites may have increase rate of movement between them and therefore between fore reef and lagoon (Figure 2). Even if one of the provisioning sites is located in the lagoon, the other site outside the lagoon may have attracted to the fore reef at least a portion of the population that would have remained in the lagoon under natural conditions.

Changes in habitat use induced by provisioning were different for males and females. Females lost some residency time in the lagoon at provisioning sites when compared to control sites, not only during the day (when provisioning occurs) but also at night. These patterns likely reflect a shift in habitat use via a translocation of their activity space from lagoon to fore reef habitats when under
provisioning influence. While previous studies on the effects of provisioning on sharks have shown an increased residency at provisioning sites (Clua et al., 2010), reduced activity space (Huveneers et al., 2013) or change in depth niche during provisioning (Fitzpatrick et al., 2011), no studies have shown evidence of a clear long-term shift in habitat use in any shark species. The presence of three official provisioning sites within a ~10km portion of reef both in the lagoon and fore reef in Moorea may partially explain the increase in time spent by sharks on the fore reef and a decrease in the level of residency in the lagoon. In fact, sharks likely increased movements and exchanges between these sites, simultaneously dividing their spatial use between different habitats.

On the north coast of Moorea, the effects of provisioning on habitat use may induce even larger impacts on natural population dynamics and social structure. Catch-data previously revealed that sex ratio was in favor of males in the fore reef and in favor of females in the lagoon at the island scale. While the use of the lagoon by males is only weakly affected by provisioning, female habitat preferences shifted from lagoon to fore reef in the north as a consequence of the presence of provisioning sites on the fore reef. These changes may cause patterns of competition between the sexes with a potential increase in sexual harassment by males as previously documented (Jacoby, Busawon, & Sims, 2010), or may affect natural patterns of spatial sexual segregation found at the island scale (Mourier, Mills, & Planes, 2013). In addition, data from northern locations did not show any significant differences in sex-ratios. On the north coast, this lack of spatial sexual segregation was confirmed at the group scale with mixed-sex communities, although there were some assortment preferences for same sex at the level of associations (Mourier, Vercelloni, & Planes, 2012). Increase in use of the fore reef by females may favor a stronger pattern of spatial overlap between the sexes on the north coast.

A high level of male harassment can drive spatial segregation of the sexes. In many species of elasmobranch, sexual dimorphism in body size or differential activity budget between the sexes may be sufficient to cause very different behavioural strategies and movement patterns (Jacoby, Croft, & Sims, 2012). These differences may select for male sharks to invest more time in pursuit of mates than female sharks that may themselves allocate a higher percentage of time in search of suitable environmental conditions to aid gestation (Speed et al., 2012). As a consequence of mating, females
often sustain bite marks and serious abrasions to the body and pectoral fins (Chin, Mourier, & Rummer, 2015) which may in turn favour sexual segregation. Females need to avoid energetically expensive and potentially damaging multiple mating events, a mechanism which leads to sexual segregation. More research is needed to understand whether this change in sexual segregation patterns due to provisioning negatively affects reproduction in blacktip reef shark, and in turn fitness and population dynamics.

Female mobility seems to be increased by provisioning as demonstrated by the observed decrease in residency. Despite increased shark densities during provisioning (Mourier, Vercelloni, & Planes, 2012; Kiszka et al., 2016), female sharks appear to spend shorter amount of time at provisioning sites in the lagoon, potentially moving across the seascape at higher rates. Previous findings have demonstrated that provisioning can modify activity rate and mobility of sharks (Fitzpatrick et al., 2011; Barnett et al., 2016; Huveneers et al., 2018) and can enhance competitive exclusion with increase intra- and interspecific densities (Juerg M. Brunnschweiler, Abrantes, & Barnett, 2014), but these changes tend to persist at night even if the provisioning activity has ended. This is surprising and difficult to explain, although it can have important consequences for female sharks. In fact, female reef sharks use shallow warm waters of the lagoons to optimize their gestation (Speed et al., 2012). If they are reducing the amount of time spent in the lagoon or increasing their activity, it can affect the time and energy allocated to gestation and could in turn have some implications for the fitness and survival of their pups, especially for a species with a relatively high turnover (1-year reproductive circle; 10-11 year gestation period; Mourier & Planes, 2013). Moreover, food from provisioning activities can induce trophic shifts in fed individuals and, in certain cases, can impact the health and the condition of an animal’s body (Semeniuk, Speers-Roesch, & Rothley, 2007; Semeniuk et al., 2009; Maljković & Côté, 2011; J. M. Brunnschweiler, Payne, & Barnett, 2018). Yet, no negative effects have been reported so far on the reproduction of females using provisioning areas (Mourier & Planes, 2013), although further detailed investigations are needed.

Sharks from provisioning sites may allocate less time and energy in search of food and food should therefore be easier to acquire than under natural conditions. While food quantity delivered at the provisioning site in the lagoon is non-negligible (Gaspar, Chateau, & Galzin, 2008), the quantity of
food that blacktip reef sharks may acquire at the fore reef provisioning locations may be much lower
as blacktip reef sharks also have to compete for food with larger sharks such as the sicklefin lemon
shark (Clua et al., 2010) and with higher numbers of conspecifics due to increased female’s residency.
Nothing is currently known about the quantity of food that sharks may acquire from provisioning
activities and what proportion of their diet it represents. Previous work on bull sharks in Fiji found that
the amount of provisioned food was unlikely a significant contributor to the daily food budget
(Abrantes, Brunnschweiler, & Barnett, 2018), although it can depends on the individual degree of
residency (J. M. Brunnschweiler, Payne, & Barnett, 2018). Still, the observed changes in activity
space may explain observed intraspecific variation in trophic interactions documented in blacktip reef
sharks in Moorea (Matich et al., 2019). Therefore, future research is required to better understand the
influence of provisioning activities on diet, trophic ecology, metabolism and the health of sharks in
Moorea. In particular, it may help us to understand whether food acquired easily from provisioning
can offset the loss of energy allocation for reproduction, specifically in females.

The blacktip reef shark is a highly resident shark, like most reef-associated shark species
(Papastamatiou et al., 2010; Barnett et al., 2012; Bond et al., 2012; Mourier et al., 2016). Degree of
residency may be exacerbated in remote, isolated islands such as those of the Pacific due to low
connectivity and low habitat availability in small islands and atolls (Vignaud et al., 2014; Mourier et
al., 2016). Sharks can remain within small ‘sub-habitats’ with very limited movements of individuals
between sub-habitats, possibly as a result of intra-specific competition (Brena et al., 2018;
Papastamatiou et al., 2018). The rare movements from one coast to another mostly occurred during the
mating period, likely representing reproductive migrations (Mourier & Planes, 2013). The
independence between impact and control sites also reinforces the robustness of inferences we made
about the influence of provisioning on the degree of residency. All together, these findings also
suggest that blacktip reef sharks can be highly susceptible to local changes, including provisioning, as
they tend to have restricted movements and hence low abilities to avoid these external pressures.

Wildlife tourism, including shark provisioning, has the potential to contribute significantly to
the conservation of animals. However, both tourists and management agencies have the obligation to
carefully consider the potential negative effects on health, fitness and long-term behaviour of targeted
species and to ensure a sustainable activity by guaranteeing best practice/least impact tourism. If
mobility and habitat use is modified for one sex (in our case for female sharks), this activity could
have cryptic long-term detrimental impact on the local population, potentially affecting reproduction
and population dynamics of resident, long-living fish like reef sharks. Further research is required to
determine whether the results of the present study represent an isolated case and to what extend they
apply to other localities for blacktip reef sharks and other taxa, as shark and ray provisioning is a
popular activity throughout French Polynesia involving many species. In particular, it will be
important to address provisioning management from an ecosystem perspective (Vignon et al., 2010;
Drew & McKeon, 2019; Meyer et al., 2020) as non-targeted species can also be affected, potentially
leading to cascading effects within the ecosystem.

Acknowledgements

This study was implemented thanks to the financial support of the Direction à l’Environnement
(DIREN) of French Polynesia, the Coordination Unit of the Coral Reef Initiatives for the Pacific
(CRISP Program) and Proscience in French Polynesia. We are grateful to the Centre de Recherche
Insulaire et Observatoire de l’Environnement (CRIOBE) staff for their technical support, as well as the
volunteers and students who assisted in field data collection.

References

effects of provisioning tourism on shark diets. Biol. Conserv. 224, 300–308.
Sharks of an Isolated Seamount and Its Implications for Conservation. PLOS ONE 7, e36574.

Fig. 1. Map of the study location featuring the Control-Impact design. Receivers are indicated by circles. Provisioning activities occur on the Northern coast of Moorea at three locations indicated by a “shark symbol” sign. Red and blue zones indicate the Impact and Control zones used in the analysis, respectively.
Fig. 2. Connectivity map indicating rate of movement of individual blacktip reef sharks between acoustic receiver arrays for each coast. Line thickness is proportional to average daily movements between receivers. The Impact and Control sites are indicated by red and blue sections.
Fig. 3. Effects of provisioning on shark residency, split by habitat type, diurnal activity or sex. Effect sizes and their 95% confidence intervals are shown. Statistically significant effects (95% CI not overlapping 0) are presented in red for positive effects and in blue for negative effects. Non-significant effects (95% CI overlapping 0) are presented in grey.