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Myocardial T1 mapping using an Instantaneous
Signal Loss Simulation modeling and a Bayesian

Estimation Method
Timothé Boutelier,Habib Rebbah, Kevin Tse-Ve-Koon, Pierre Croisille, Magalie Viallon,

Abstract— The Instantaneous Signal Loss Simulation
(InSiL) model is a promising alternative to the classi-
cal mono-exponential fitting of the Modified Look-Locker
Inversion-recovery (MOLLI) sequence in cardiac T1 map-
ping applications, which achieves better accuracy and is
less sensitive to heart rate (HR) variations. Classical non-
linear least squares (NLLS) estimation methods require
some parameters of the model to be fixed a priori in
order to give reliable T1 estimations and avoid outliers.
This introduces further bias in the estimation, reducing
the advantages provided by the InSiL model. In this paper,
a novel Bayesian estimation method using a hierarchical
model is proposed to fit the parameters of the InSiL model.
The hierarchical Bayesian modeling has a shrinkage effect
that works as a regularizer for the estimated values, by
pulling spurious estimated values toward the group-mean,
hence reducing greatly the number of outliers. Simulations,
physical phantoms, and in-vivo human cardiac data have
been used to show that this approach estimates accurately
all the InSiL parameters, and achieve high precision estima-
tion of the T1 compared to the classical MOLLI model and
NLLS InSiL estimation.

Index Terms— T1 mapping, MR relaxometry, myocardial
imaging, Bayesian estimation, Shrinkage prior.

I. INTRODUCTION

Q
UANTITATIVE T1 mapping is a quantitative Magnetic

Resonance Imaging (MRI) technique aiming at mea-

suring the spin-lattice magnetization relaxation time (T1) in

tissue [1]. Being sensitive to the tissue microstructure, T1 turns

out to be an important biomarker used to characterize tissue,

and differentiate between healthy and pathological regions

of an organ. It has many important clinical applications, for

neurodegenerative diseases characterization, myelin mapping,
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brain aging studies, liver fibrosis quantification, in oncology,

and in Cardiac Magnetic Resonance (CMR) [2], [3].

T1 mapping is widely used in CMR for pathologies where

myocardial tissue remodeling is characteristic of the pathology.

Native (non-contrast) T1 is sensitive to fluid accumulation in

the injured tissue, hence allowing the detection of the oedema

via an increase of the T1 [4], [5]. Because the injection of

a paramagnetic contrast agent modifies the T1 of a perfused

tissue, post-injection T1 mapping reveals differences of perme-

ability properties between tissues, and allow to compute the

extra-cellular volume (ECV) [6], [7]. This biomarker directly

derived from T1 mapping is a proxy for the detection and

quantification of diffuse myocardial fibrosis [8].

Inversion Recovery spin echo (IR) is the “gold standard”

sequence for measuring T1 values, by sampling the longitu-

dinal magnetization recovery with a conventional spin echo

(SE) sequence at different inversion times (TI) after a 180◦

inversion pulse. Although robust, this sequence has a very

long acquisition time, which prevents its application in clinical

CMR. Fast and accurate sequences have been developed since

then to allow for myocardial T1 mapping in a single breath-old

duration: inversion recovery based sequences like the modi-

fied Look-Locker inversion recovery (MOLLI) [9], saturation

recovery based sequences like the SAturation-recovery single-

SHot Acquisition (SASHA) [10], or hybrid sequences like the

SAturation Pulse Prepared Heart rate independent Inversion-

REcovery sequence (SAPPHIRE) [11].

Among them, the MOLLI sequence is the most commonly

used in the clinical practice. However, it has some limi-

tations due to bias induced by HR variation, T1 and T2

tissue properties, or imperfect inversion [3], [12]. The InSiL

model [12] was introduced in an attempt to reduce those

bias by modeling the complete evolution of the magnetization

during the sequence. Imperfect inversion, read-out losses, and

imperfect magnetization recovery are taken into account by the

model, which showed promising results [12], [13]. However

the model is ill-conditioned and NLLS optimization of the

parameters yields spurious parameter estimation. To overcome

this issue, [12] proposed to fix some parameter of the model

like the inversion efficiency to an a priori constant value for

all voxels, that would have been previously estimated with an

independent method [14]. This approach efficiently stabilizes

the estimation problem, and allows to propose realistic T1

maps. Still, this approach may not be feasible in clinical

practice since it requires a modified, longer, MOLLI sequence
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for the independent estimate of the inversion efficiency [12],

[14], which is difficult to acquire in a single breath hold.

Besides, this simplification can introduce some bias in the

estimation, which reduces the potential of the InSiL model

[15].

We present a Bayesian estimation method of the InSiL

parameters, that aims at dealing with the intrinsic limitations

of the model in order to propose voxel wise estimation of

every parameter without relying on model simplification. A

Bayesian hierarchical model [16] is used with a multivariate

Gaussian prior on the InSiL parameters. Prior parameters are

estimated directly from the data, which makes the method free

of pre-tuning of any parameters, hence particularly attractive

in clinical practice. The resulting shrinkage effect pulls the

estimates toward the group mean, thus making the proposed

method less prone to outliers. Furthermore, the Bayesian

framework naturally provides uncertainty measures of the

parameter estimates, which is a valuable information for the

quality check of the data and results.

The proposed estimation method is evaluated against clas-

sical MOLLI modeling and NLLS InSiL estimation using

numerical simulations, physical phantoms, and illustrated in a

test case of a patient with a chronic myocardial infarction (MI).

The results show that the proposed Bayesian approach is able

to give a more reliable T1 estimation and with considerably

reduced dependance of the estimates on the experimental

conditions (HR, T1, read-out sequence) compared to previous

approaches.

II. BACKGROUND

A. Classical MOLLI post processing

The MOLLI sequence for T1 mapping [9] is based on 2

or 3 successive Look-Locker (LL) [17] acquisition cycles,

separated by sufficient time laps that allow the longitudinal

magnetization to recover between each LL cycle. Each cycle

consists of an inversion pulse, followed by a succession of trig-

gered bSSFP image readout at different TI synchronized with

the heart cycle at end-diastole. Conveniently, each inversion

pulse is applied at a slightly different instant in the heart cycle,

so that different TI are sampled by each cycle. The original

MOLLI sequence consists of 11 images using a 3(3)3(3)5

scheme, where three LL cycles are acquired and each cycle

is composed of 3, 3, and 5 bSSFP readouts, respectively. Be-

tween each LL cycle, there is a resting period of 3 heartbeats

to allow for the recovery of the longitudinal magnetization

before the next inversion. This acquisition strategy allows to

sample the full longitudinal magnetization recovery curve in

one breath-hold of 17 heartbeats

The images acquired at different TI are then merged into

one single dataset. The signal of each voxel at time TI
after the inversion pulse is described by a 3 parameters

monoexponential recovery model [18]:

S(TI) = A−B exp (−TI/T ∗

1 ) (1)

where T ∗

1 < T1 represents the apparent T1 which is shortened

by the influence of imaging RF pulses and imperfect inversion.

The Look-Locker correction allows to convert the apparent T ∗

1

into T1:

T1 = T ∗

1

(
B

A
− 1

)
/δ (2)

where δ is the inversion factor that models the efficiency of

the inversion pulse (δ ≤ 1).

T ∗

1 , A, and B parameters are estimated for each voxel using

a NLLS algorithm that minimizes the sum of square errors

(SSE) between the model and the data. However, (1) is valid

only for phase sensitive inversion recovery (PSIR) acquisitions

for which the sign of the signal is known, whereas in most

clinical applications, only the magnitude is measured. Then

one needs to take the absolute value of (1) for the model to

be valid. Nonetheless, it is numerically more stable to use

the original equation (1) and rely on a polarity estimation

methods as described in [9]. For the remaining of the paper,

T1 estimation using this model and estimation method will be

referred as the classical MOLLI method.

The classical MOLLI method has some limitations that

makes it sensitive to tissue parameters T1 and T2, HR, se-

quence design, and imperfect inversion, which leads to T1

underestimation [3], [19], [20]: First, longer T1 or higher HR

does not allow for the complete magnetization recovery at the

end of each LL cycles, so that the subsequent cycles start

with an increasing bias [13], [19], [21]. Second, the Look-

Locker correction in (2) has been derived as an approximation

for continuous fast low angle shot (FLASH) gradient echo

readout with constant and short sampling time step [18].

In the MOLLI sequence, a bSSFP readout is used, and the

time step is the time between two heartbeats of the patient,

which is of the order of the T1 and may be variable. This

yields biases that are related to the tissue properties T1 and

T2, bSSFP acquisition parameters, and the patient clinical

condition [19]. Last, the classical MOLLI method does not

allow to estimate the inversion efficiency, so it requires an

independent measurement of this correction factor, that must

be made prior to the MOLLI sequence.

Several sequence optimizations have been proposed to re-

duce the dependence of T1 on those confounding factors [10],

[21], but none succeeds to solve all the issues aforementioned

[3], [22]. Modeling approaches seems a more promising

alternative in this regard, as they propose to explicitly take

into account some of those effects in the model of the MOLLI

signal [12], [15], [23], [24].

B. InSiL model

The InSiL model [12] proposes a detailed simulation of the

magnetization evolution during the MOLLI sequence, which is

governed by 3 equations. First, the imperfect inversion pulse

is modeled by a parameter δ which is assumed to be equal

for each inversion pulse in the sequence. The magnetization

immediately after an inversion is computed as:

M+
inv = −δMinv, (3)

where M+
inv is the magnetization following the inversion pulse,

and Minv is the magnetization immediately before the inver-

sion. The longitudinal magnetization loss during the bSSFP
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readout is modeled by an instantaneous loss, parametrized

with a parameter C which is assumed to be constant for each

readout:

M+ = (1− C)M, (4)

where M+ is the magnetization directly after the readout,

and M before the readout. The longitudinal magnetization

recovery between each readout is modeled by a classical

monoexponential behavior:

Mk = M0 + [M+
k−1 −M0] exp

{
−
(Tk − Tk−1)

T1

}
, (5)

where M0 is the steady state magnetization, Tk denotes the

successive times when either an inversion pulse is applied or

the k-space center point of a single shot image is acquired

during the MOLLI sequence. Mk and M+
k are the longitudinal

magnetization before and after either an inversion pulses or a

single-shot acquisitions.

Such a design model explicitly handles HR variations,

imperfect inversion and recovery of the magnetization, and

magnetization loss during the readouts. The parameter δ
models the imperfection of the inversion pulse. It is affected

by the tissue T1 and T2 values [22], but also by the hardware

quality, like B1 inhomogeneities. Blood flow can also affect

this parameter since uninverted spins can enter the acquired

slice after the inversion pulse. This parameter is supposed to be

bounded between 0 and 1. C parameter is mainly influenced by

readout acquisition parameters (flip angle) and tissue magnetic

properties. Indeed, short T2 tissues are expected to have higher

signal loss during the readout, which in turn yields higher

values for this parameter. Its values are bounded between 0

and 1.

In [12], InSiL parameters (M0, T1 and C) are estimated

for each voxel using a NLLS approach, by minimizing the

sum of square error assuming that δ is known. [12] designed

a “MOLLI+M0” sequence inspired from [14] in order to

estimate the inversion factor δ in-vivo. In [12], δ was measured

on 4 healthy volunteers, then averaged to be used in the

optimization problem.

III. METHOD

The Bayesian framework provides a method to update prior

belief on model parameters as new data are measured. This is

done using the Bayes’ theorem, that describes how to com-

bine a priori knowledge on the parameters and information

provided by the data:

p(Θ|D) =
p(Θ)p(D|Θ)∫

Θ
p(θ)p(D|Θ)dθ

(6)

where D stands for the experimental data, Θ is the set of

parameters to be estimated, and θ is a particular parameter.

p(D|Θ) is the likelihood, p(Θ) is the joint prior distribution,

and p(Θ|D) is the joint posterior distribution, from which

inference can be made on the parameters. The estimation prob-

lem casts now a problem of probability calculation. Hence,

the solution of the problem lays into correctly addressing the

likelihood and the prior distributions.

A. Likelihood

In this section, the MOLLI signal given by the InSiL model

is parametrized as:

yn = M0mn(Θ) + ǫn, (7)

where mn(Θ) is the part of the signal that depends only on

Θ = [T1, C, δ] at the nth acquisition, and ǫn is an error term

due to the noise. The noise is assumed to be independent

and identically distributed, and we chose to model it by a

zero-mean Normal distribution with variance σ2
y . Hence the

likelihood can be written as:

p(y|Θ,M0, σ
2
y) =

(
2πσ2

y

)
−N/2

exp

(
−

1

2σ2
y

(y −M0m)T (y −M0m)

)
, (8)

where y = [y1, · · · , yN ]t and m = [m1, · · · ,mN ]t are

the vectors containing the N samples of the signal yn and

the corresponding model mn respectively. M0 and σ2
y are

nuisance parameters, in the sense that they are required to

build the model, but their knowledge is of no interest in this

application. Hence, they can be marginalized to remove any

explicit dependency on them, while retaining the influence of

their estimation uncertainty on the other parameters of interest.

This is done using the Bayes’ theorem and the law of total

probabilities by assigning an a priori distribution p(M0, σ
2
y).

Hence, the marginal likelihood of the data is given by the

integral over M0 and σ2
y:

p(y|Θ) =

∫
∞

0

(∫
∞

−∞

p(M0, σ
2
y)p(y|Θ,M0, σ

2
y) dM0

)
dσ2

y

(9)

A conjugate Gaussian-Invers-Gamma g-prior [25] is used, that

is defined as:

p(M0, σ
2
y) = N (M0|0, λ

2σ2
y/(m

T
m))IG(σ2

y|α, β), (10)

where N () is the Gaussian distribution, and IG() is the

Inverse-Gamma distribution. The first term is a zero-mean

Gaussian distribution over M0, whose variance is the noise-to-

signal ratio σ2
y/(m

t
m), scaled by a factor λ2. This distribution

becomes very broad for large λ, which corresponds to a non-

informative prior that ensures that M0 will be influenced by

the data rather than by the prior. Similarly, the Inverse-Gamma

distribution on the noise variance σ2
y becomes non-informative

when α and β are small. The prior was chosen because

the marginalization can be done analytically and it can be

parametrized so that it encodes a lack of prior information. In

the limit λ ≫ 1 and α, β ≪ 1, the marginalized likelihood is

given by:

p(y|Θ) ∝

[
y
T
y −

(yT
m)2

mTm

]−N/2

, (11)

where the dependance of the right-hand side of this equa-

tion on the InSiL parameters Θ is inside the m term. The

proportionality constant depends on λ, α and β, but not on

the InSiL parameters T1, C or δ. Since the Markov Chain

Monte Carlo (MCMC) algorithm used to make inference about

the model parameters relies on the computation of ratio of
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marginal likelihood evaluated at different model parameters

value, this constant naturally cancels so its expression is not

shown here.

B. Hierarchical prior

In order to complete the Bayesian model, a prior distribution

on the model parameters must be attributed. A hierarchical

prior is used, meaning that the assumption is made that Θ
of each voxel in a given region of interest (ROI) are drawn

from the same prior distribution. In order to ensure physical

constraints on the model parameters (0 < T1, 0 < C < 1,

0 < δ), the prior is expressed on transformed parameters t =
log(T1), c = log(C/(C− 1)), and d = log(δ), which map the

domain of validity of each parameter on the entire real line.

1) 3 parameters hierarchical modeling: In a first implemen-

tation of the model, the prior is chosen as a multivariate

Gaussian distribution on the three voxel wise transformed

parameters (t, c, d):

p(θi|µ,Σ) = |2πΣ|−1/2 exp

(
−
1

2
(θi − µ)TΣ−1(θi − µ)

)
,

(12)

where θi = [ti, ci, di]
T is the vector of transformed parameters

for the voxel i, µ = [µt, µc, µd]
T is the mean of the distribu-

tion, and Σ is a 3× 3 positive definite covariance matrix. The

prior distribution describes the heterogeneity across the voxels

taking into account any correlations between the parameters.

Note that this prior is common for all the voxels that are

analyzed, and that the hyper parameters µ and Σ have to be

estimated simultaneously with all voxels. A non-informative

Jeffreys’ prior [26] is used for the hyper-parameters on µ and

Σ:

p(µ,Σ) = |Σ|−1/2 (13)

This model is later referred as the 3 parameters hierarchical

Bayesian InSiL (HBI(3p)) model.

2) 2 parameters hierarchical modeling: In order to improve

the robustness of the model, an alternative approach was

tested, where T1 and C are voxel wise parameters, and δ
is set as a common parameter for all voxels. In that case,

the hierarchical model applies to θi = [ti, ci]
T , with µ =

[µt, µc]
T , and Σ is a 2 × 2 covariance matrix. The equations

for the prior and hyper prior are the same as in the HBI(3p).

To complete the model, a non informative uniform prior is

used for d:

p(d) ∼ 1 (14)

This implementation with constant δ for every voxel is the

Bayesian counterpart of the NLLS approach used in [12], with

the additional feature that δ is estimated from the data and

not fixed to an a priori value. In the remaining, this model

is referred as the 2 parameters hierarchical Bayesian InSiL

(HBI(2p)) model.

C. Posterior probability

The full posterior is computed applying the Bayes’ theorem

by combining the marginalized likelihood (11), the prior on

the InSiL parameters (12), the hyper prior (13), and the prior

on d in the case of the HBI(2p) model (14). The posterior for

the HBI(3p) model is:

p(θ1:M ,µ,Σ|y1:M ) ∝ p(µ,Σ)
M∏

i=1

p(yi|θi)p(θi|µ,Σ), (15)

where M is the number of voxels that are analyzed. The

posterior distribution is over both the voxel-wise and the prior

parameters, which are jointly inferred from the data. It implies

that the estimation of any parameters of a particular voxel

depends on all the voxels in the ROI, through their influence

on the prior hyper-parameters, which is a characteristic feature

of hierarchical models. A graphical representation of the

Bayesian network underlying the hierarchical modeling used

to do the parameter estimation with HBI(3p) is available in

supplementary materials.

The estimation of a voxel-wise parameter is given by the

expected value (mean) of its posterior distribution:

t̂i =

∫
tip(θ1:M ,µ,Σ|y1:M ) dθ1:M dµ dΣ (16)

and similarly for ci and di. Estimator of µ or Σ can be

derived in a similar manner to give heterogeneity or correlation

measures over the voxels. Uncertainty on the estimators can

be estimated by computing the variance of their posterior

probability distribution:

σ̂2
ti =

∫
(ti − t̂i)

2p(θ1:M ,µ,Σ|y1:M ) dθ1:M dµ dΣ (17)

Additionally, the Bayesian framework offers the possibility to

compute credible intervals and bets on those intervals from

the posterior.

D. Markov Chain Monte Carlo

The estimation of any parameter of interest requires to

compute integrals over a very large number of variables,

which is analytically intractable. Furthermore, brute force

computation of those integrals is also doomed by the curse of

dimensionality. Here we rely on Markov Chain Monte Carlo

(MCMC) method [27] to approximate those integrals. The

principle of the MCMC method is to generate random samples

of each parameter from a Markov chain, whose stationary

distribution is the posterior distribution. After a certain burnin

period, the chain will generate random samples that follow the

desired posterior distribution. Eventually, any statistic of the

posterior distribution can be computed from the Markov chain

output by averaging the samples. For instance, the estimate and

variance of ti defined in (16) and (17) can be approximated

by:

t̂i ≈
1

Ns

Ns∑

j=1

t
(j)
i and σ̂2

ti ≈
1

Ns

Ns∑

j=1

(t
(j)
i − t̂i)

2 (18)

The Markov chains were initiated from the T1 and C pa-

rameters values estimated with the classical MOLLI approach

and a numerical approximation valid for constant HR [28].

δ was initialized with random values uniformly sampled in

the interval [0.8; 1]. The burnin period was chosen to 5000
iterations in order to ensure that the chain had converged for
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every parameter. Further Ns = 15000 iterations were sampled

to construct the Markov chain from which parameters and

uncertainty estimation could be derived using (18). A detailed

description of the algorithm can be found in the appendix in

supplementary materials.

IV. EXPERIMENTS

A. Numerical simulations

A numerical phantom was designed to benchmark the

properties of the estimation methods for the InSiL and classical

MOLLI model. The MOLLI signal was generated using the

InSiL model for different sets of realistic parameter values

(M0, T1, C, δ), and an additive Gaussian noise with standard

deviation σ. The noise level was parametrized by the signal to

noise ratio (SNR) that was defined as SNR = M0/σ. M0 was

kept constant to 1 in all the phantom so the noise level was

tuned via σ. The noise level was fixed to SNR = 20, which

was found to be similar to what is observed in our in-vivo

dataset. T1 varied between 200 ms to 2000 ms with 200 ms

step. C took its value between 0.1 and 0.3 with 0.05 step,

and δ between 0.88 and 0.96 with 0.02 step. For each set of

parameters, 100 signal curves were generated with different

noise realizations.

In order to evaluate the robustness of the estimation methods

to the MOLLI sequence scheme, the signal was sampled for

the native and post-injection protocol at different TI. The same

protocol as in the in vivo dataset was used: 5(3)3 and 4(1)3(1)2

for the native and post injection protocol respectively. Further-

more, different HR ranging from 40 bpm to 120 bpm were

used to generate the data in order to evaluate the robustness

of the method to the HR.

The simulated datasets were post processed with the classi-

cal MOLLI method, the NLLS method on all 4 InSil param-

eters (later referred as LSQ(4p)), the NLLS method on the 3

InSiL parameters with the inversion efficiency fixed a priori

to the ground truth value of the phantom (later referred as

LSQ(3p)), the HBI(3p) and HBI(2p) Bayesian models.

The estimation results were then compared to the ground

truth values by computing the error in the T1 estimation as

T1err = 100 × (E[T1est] − T1gt)/T1gt for each T1gt ground

truth value in the phantom, where E[T1est] is the average

T1 estimation in the phantom for a given T1gt. Additionally,

the dispersion in the estimation was computed as T1sd =
100 × SD[T1est]/E[T1est], where SD[T1est] is the standard

deviation of the T1 estimation in the phantom for a given T1gt.

The variability of the estimation under different HR values was

computed as T1var = 100 × SD[T1]/E[T1], where T1 is the

mean estimated T1 for a given HR value, and E(.) and SD(.)
indicate the mean and standard deviation computed over the

different HR values. Similar statistics were computed for C
and δ parameters.

B. Physical Phantom

An agarose gel-based phantom, using nickel chloride as the

paramagnetic relaxation modifier, described in detail in [29],

was scanned on a SIEMENS 3T MAGNETOM PRISMA clin-

ical scanner using the product body array coil as anterior part

and the corresponding elements of the spine coil as posterior

part (18 channels in total) as used to explore cardiac patients.

It contains nine differently doped agarose gel tube embedded

in a gel/beads matrix in order to reduce B1 inhomogeneities.

Each tube corresponds to a specific couple of T1/T2, reported

in [29]. The reference values of T1 and T2 of each vial are

reported in [29], but we chose to measure our own reference

values for T1.

Reference T1 values were measured using an inversion

recovery spin echo sequence (TE = 6.5 ms, TR = 10000 ms,

Flip Angle 90◦) with 14 samples at TI=50, 100, 150, 200, 300,

450, 600, 800, 1000, 1500, 2500, 5000, 8000, and 9980 ms.

The signal was fitted with a mono-exponential recovery model.

The reference inversion efficiency δ was estimated with a

modified MOLLI sequence [14], similar to what is described

in [12]. The signal was then fitted with the InSiL model, with

T1 fixed to the reference value. Eventually, averaged values

of T1, and δ in circular regions of interest (ROI) of same size

(5 cm2) that were placed at the center of each tube were taken

as reference values.

IR and MOLLI sequences were acquired using the same

acquisition parameters (FoV 200 × 200 mm, voxel size

1.4/1.4/8 mm) and the phantom was not moved between

experiments in order that the acquisition are perfectly reg-

istered, so the same ROIs could be used for all acquisitions.

The temperature was controlled and monitored during all the

experiment and found constant and equal to 22◦ C.

In order to evaluate the proposed Bayesian approach,various

experimental scenarios were designed, by varying the MOLLI

scheme, the rest period duration, the readout sequence, and

the simulated ECG used to trigger the acquisitions. ECG

with constant and variable HR values were simulated. The

analysis of the mean HR of each MOLLI acquisition in our

patient database revealed two different patient populations: one

characterized by slow HR (mean: 55 bpm, standard deviation:

6 bpm) and the second characterized by faster HR (mean:

73 bpm, standard deviation: 9 bpm). Hence, HR were drawn

from those two Gaussian distributions in order to generate

realistic ECG with variable HR. Furthermore, the ECG of three

patients from the database with the highest HR variation within

the MOLLI acquisition were included.

A table summarizing all the experimental settings used in

the study can be consulted in the supplementary materials. For

each set of parameters, the acquisitions were repeated 5 times

for each experimental setting. A time out of at least 10s was

observed between two consecutive acquisitions.

The MOLLI data were analyzed with the same estimation

methods as for the numerical phantom. For the LSQ(3p)

method, the inversion efficiency δ of each tube was fixed to

the reference value. Mean and standard deviation of the T1

estimation within the same circular ROI as for the IR reference

acquisition were computed. Similarly to the numerical anal-

ysis, the error, dispersion, and variability under different set

of experimental conditions was evaluated, where the ground

truth value T1gt was replaced by the reference T1 measured

with the IR sequence.
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C. In Vivo Data

In vivo sample patient case is from the HIBISCUS STEMI

myocardial infarction clinical cohort (ClinicalTrials.gov Iden-

tifier: NCT03070496). Native and post injection T1 maps ac-

quired with 5(3)3 and 4(1)3(1)2 protocol schemes respectively

were computed with the 5 same methods applied to the numer-

ical and physical phantom. The extracellular volume [30] was

computed as ECV = (1−Hct)(R
post
1myo−Rnative

1myo )/(Rpost
1blood−

Rnative
1blood ) where Hct is the haematocrit and measured to 0.45

for the selected patient, and R1 = 1/T̄1 where T̄1 is the

average relaxation time of the myocardium or the blood, native

or post injection respectively.

V. RESULTS

A. Numerical Phantoms

Fig. 1 shows the error of the InSiL parameters estimation

as a measure of the accuracy of the different methods on the

phantom data at 60 bpm, with the native and post injection

protocols. Fig. 2 shows the dispersion of the InSiL parameters

estimation as a measure of the precision of the estimation

methods for the same dataset.

1) T1 estimation: Fig. 1 shows that classical MOLLI (or-

ange circles) has a poor accuracy, since it systematically

underestimates the true T1, especially for the post injection

protocol (4(1)3(1)2) for which the underestimation goes up to

30% for the longer T1 . The results for the native protocol

(5(3)3) are slightly better with an underestimation bounded

between 5 % and 15 % depending on T1. However, Fig. 2

shows that the precision of this method is excellent (T1sd ≃
6 %) for all T1 values but for the shortest one in the phantom

(T1 ≤ 600 ms).

Non linear least square fitting of all the InSiL parameter

(LSQ(4p), light-blue diamonds) is by far the worst T1 estima-

tion method in term of accuracy (Fig.1) and precision (Fig. 2).

On the opposite, fixing the inversion efficiency parameter to

the true value (LSQ(3p), green squares) greatly improves the

accuracy, with almost no error for all T1. The dispersion of

estimated T1 values is around 7.5 % for the both protocols.

Hierarchical Bayesian modeling of the InSiL model gives

very good results in term of accuracy, with an error that is

slightly higher than LSQ(3p) with |T1err| < 2 % for all T1

and both protocols. The precision of the estimates is fairly

the same for all T1 values. It is better for HBI(2p) (dark blue

upward triangle, T1sd ≃ 7.5 %) than for HBI(3p) (yellow

downward triangle, T1sd ≃ 9.5 %).

2) C estimation: Fig. 1 shows that all estimation methods

have a similar accuracy, with large estimation error depending

on the C values. The same trend is observed for all methods

and both acquisition protocols: small C are overestimated

and the overestimation decreases with increasing C. For the

classical MOLLI and Bayesian methods, the sign of the error

eventually changes and estimated C becomes increasingly

underestimated with increasing C. On the other hand, the error

of the LSQ(3p) method seems to vanish when C is high.

Fig. 2 shows that the dispersion in the estimation of C is

very large around 100 % for the non Bayesian methods (clas-

sical MOLLI, LSQ(4p), LSQ(3p)). On the opposite, HBI(3p)

and HBI(2p) have a much lower dispersion, around ∼ 25%
for both methods and both protocols.

3) δ estimation: As δ is estimated only by LSQ(4p),

HBI(3p) and HBI(2p) methods, only the results from those

algorithms have been analyzed. Surprisingly, the estimation

of δ by LSQ(4p) method is quite accurate, with an error of

1 % for the native protocol, and −4 % for the post injection

protocol, in contrast to the other InSiL parameters estimated by

this method (Fig. 1). However, the dispersion of the estimation

is high, reaching more than 25 % for the native protocol.

The Bayesian method on the opposite shows a bias between

−4 % and 4 %, with an overestimation of the small δ
and an underestimation of the large δ. The average error of

HBI(2p) is close to 0, meaning that the method was able to

estimate accurately the average δ in the phantom. Estimation

by HBI(3p) as a good precision, with a dispersion around

5 %. As δ is assumed constant for every voxel in the HBI(2p)

method, the dispersion for this method is null. The results

obtained with the Bayesian approaches are fairly independent

on the acquisition protocol.

B. Physical Phantoms

1) Results averaged over all acquisition conditions: Fig. 3

shows a summary of each algorithm performance on the

physical phantom averaged over all experimental conditions.

T1 estimation with the MOLLI methods (orange circles)

shows contrasted results. It has a poor accuracy, as it always

underestimates T1, especially at higher T1 where the underes-

timation can reach 20 % (Fig. 3 top left). On the opposite, the

precision of the method is excellent: Fig. 3 (top right) shows

that the maximum dispersion is lower than 2.5 % for very

short T1, and it falls under 1 % for T1 greater than ∼ 400 ms.

The variability under the different acquisition conditions varies

between 5 % and 12 %, especially at longer T1 (bottom of

Fig. 3).

T1 estimation with the InSiL model and the non linear

estimation method LSQ(4p) (blue diamonds) gives the worst

results, with the largest error, dispersion, and variability among

all estimation methods (Fig. 3).

Fixing δ to its reference value as it is done with the LSQ(3p)

method (green squares) considerably improves the results of

the InSiL model. The average error on T1 estimation is lower

than 5 %, indicating a very good accuracy of the model.

Furthermore, the method has a high precision, as indicated

by a dispersion lower than 1 % for all T1. Furthermore, the

method is very robust to different acquisition conditions, as

Fig. 3 indicates a variability below 5 % for short T1, falling

below 2 % for long T1.

The Bayesian approach yields the best compromise between

accuracy, precision, robustness, and dependence on the readout

sequence. Indeed, HBI(3p) and HBI(2p) methods show the

lowest average error, except for HBI(2p) at long T1 where

the T1 is overestimated (Fig. 3). The precision of HBI(2p)

is the best among all methods, as indicated by the lowest

dispersion for every T1. In comparison, the precision of

the LSQ(3p) method is slightly degraded, with a dispersion

reaching almost 1.7 %, which is a little bit worse than the
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In silico results: accuracy of the parameter estimation

Fig. 1. Simulation results: error in the estimation of T1 (up), C (middle) and δ (down) for the 5(5)3 (left) and the 4(1)3(1)2(1) (right) protocols with
the numerical phantom data at 60 bpm. Classical MOLLI results are indicated by orange circles, LSQ(4p) with light-blue diamonds, LSQ(3p) with
green squares, HBI(3p) with downward yellow triangles, and HBI(2p) with upward dark blue triangles. Since δ is not estimated but fixed a priori with
classical MOLLI and LSQ(3p) methods, δerr is not shown for those methods.

precision of the classical MOLLI or the non linear InSiL

LSQ(3p). Still, it is far better than LSQ(4p). Those results are

confirmed when looking at the robustness of the T1 estimation

to the HR variation and acquisition scheme (see supplementary

materials.)

C. In Vivo Data

Fig. 4 shows that LSQ(4p) estimation method produces

images with very poor quality, unsuitable for clinical analysis.

On the opposite, the Bayesian estimation method HBI(3p)

allows to have an image qualitatively equivalent to the the one

obtained with the MOLLI classical estimation method. The

quantitative comparison between the two methods for the post

injection acquisition, shows that classical MOLLI underesti-

mates T1 compared to HBI(3p) in the healthy myocardium (∼
15%), in the lesion (∼ 20%) and in the left ventricle (∼ 10%).

The underestimation is lower for the native acquisition with

(∼ 10%) in the myocardium, and (∼ 5%) in the left ventricle

(see supplementary material). However, this underestimation

has no significant effect on the ECV computation for this

patient. The uncertainty on the ECV estimation is similar for

every estimation methods but for LSQ(4p) which is much

higher than the others (see supplementary materials).

VI. DISCUSSION

The simulations, physical phantom acquisition, and in vivo

data used in this work show that the classical 3 parameters

mono-exponential modeling of the MOLLI sequence gener-

ates underestimated T1 values. Furthermore, estimated T1 are

sensitive to confounding experimental factors such as sequence

design, sequence readout, and HR variations. Those findings

are in agreement with what has already been reported in

previous studies evaluating the accuracy of cardiac T1 mapping

measured with the MOLLI sequence [3], [13], [19], [20].

The InSiL model was introduced in an attempt to correct

those defects and enable a more accurate estimation of T1

[12]. Both our in silico and in vitro results show that the

model is able to generate accurate and precise T1 estimation,

on the condition that the other parameters introduced by this

model are well estimated. Hence, the estimation of the voxel

wise parameters using a classical non linear least square

optimization method (LSQ(4p)) yields strongly biased and

dispersed estimated T1 values, as can be seen on figures 1 to 4.

T1 maps generated with this approach displays image of poor

quality that have no clinical use (see Fig. 4, center). On the

opposite, setting the inversion efficiency δ to an a priori fixed

value (LSQ(3p)), allows to recover precise T1 estimation. In

our numerical and physical phantom experiments, δ was set to

its true known value. This corresponds to an ideal situation,

that cannot be met in clinical condition. This approach was
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Fig. 2. Simulation results: dispersion of T1 (up), C (middle) and δ (down) estimation for the 5(5)3 (left) and the 4(1)3(1)2(1) (right) protocols with
the numerical phantom data at 60 bpm. Colors and markers are the same as in Fig. 1
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Fig. 3. In-vitro results: T1 averaged over all acquisition conditions: percentage of error (top left), dispersion (top right),and variability (bottom) under
those experimental conditions. Colors and markers are the same as in Fig. 1.

proposed in [12], [13], using an additional sequence [14] to

independently estimate the inversion efficiency parameter, and

averaging it to a single value used in the model for all voxels.

Hence, classical non linear least square approach requires bold

assumption on some parameters, that are hardly practical in

clinical routine.
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Fig. 4. In vivo results in a 62 years old male patient with a chronic myocardial infarction, acquired after gadolinium injection with a 4(1)3(1)2 MOLLI
sequence. From left to right: Late Gadolinium Enhancement image (the yellow arrow indicates the lesion), post injection T1 computed with the
MOLLI model, LSQ(4p), and HBI(3P).

The proposed hierarchical Bayesian model is an alternative

approach estimation method of the InSiL parameters. The

numerical and in vitro phantom experiments show that this

approach has similar T1 precision and accuracy compared to

the LSQ(3p) classical approach. However, it has the advantage

of not requiring to fix the inversion efficiency parameter a

priori, which is a strong a priori that cannot be made in

clinical practice.

This new estimation method is the first one that allows to

reliably estimate the inversion efficiency δ and the readout

losses C on a voxel wise basis from the MOLLI data only.

This is a direct consequence of the shrinkage effect of the

multivariate Gaussian prior on the model parameters, that has

the effect of pulling outliers estimated values toward the group

mean. This effect can be clearly observed on Fig. 1 and 2:

smaller C (center row) and δ (bottom row) are overestimated,

while higher values are underestimated. The dispersion on the

estimation is much lower compared to what classical method

can do. This indicates that the multivariate Gaussian prior was

estimated to be quite informative for those parameters (i.e.

with a small variance), which introduces a slight bias in those

parameters estimation. However, this has the huge benefit of

stabilizing the estimation, which in turn benefits to the T1

estimation.

Interestingly, simulations show that the shrinkage prior

erases almost completely the variability of δ in HBI(3p), by

setting it to an almost constant values which is equal to the

average δ of all voxels in the ROI. This means that the HBI(3p)

model can be reliably simplified by the HBI(2p) model where

δ is set to a constant value for all voxels.

It is expected that the results of the hierarchical Bayesian

method might depend on the choice of the ROI since it is

what constrains the prior. A ROI with heterogeneous tissues,

which have a wide range of T1 values, will likely yield results

that will be biased toward the mean of the ROI. This would

produce a bias where low T1 values would be overestimated

and high T1 values would be underestimated. On the opposite,

we expect optimal results for ROI with homogeneous tissue

type. However, no strong under- or overestimation of the

T1 parameters was observed with the numerical or physical

phantom data. This indicates that the shrinkage effect of the

hierarchical model did not introduce bias in the T1 estimation,

even when a wide range of T1 values are represented in

the data, as it is the case in the simulations and in vitro

experiments.

It is worth noting that when the HR is constant during the

acquisition, all methods give the same results. This is due to

the fact that the InSiL model is equivalent to the classical

3 parameters MOLLI model when HR is constant [28]. The

fact that a 4 parameters model coincides with a 3 parameters

model under some regular acquisition conditions shows that

the InSiL is a degenerate model, which might be the root

cause of the instability of the classical estimation method.

The additional constraints on the parameters brought by the

Bayesian approach allows to partially solve this problem. In

that case, the Bayesian model naturally converges toward a

situation where the inversion efficiency is constant.

The Bayesian model is built with the assumption that the

noise follows a Gaussian distribution, whereas it has a Rician

distribution [31]. Taking this into account in the model would

be straightforward, as it would impact the likelihood of the

data only (Eq. 8). However, replacing the Gaussian distribution

by a Rician one would make some analytical calculation

intractable like the marginalization of the initial magnetization

and the noise standard deviation to obtain the marginal likeli-

hood (Eq: 11). Hence those parameters would need to added

to the MCMC chains, which would increase the computation

time. Furthermore, compared to the Gaussian distribution, the

Rician distribution is much more computationally expensive

to estimate or sample, which would increase even more the

computation time of the MCMC samples generation. For that

reason we chose to simplify the model using a Gaussian

distribution. We checked that this hypothesis had no effect

on the parameter estimation by comparing the estimation

on numerical phantom generated using Gaussian and Rician

noise. No significant differences were found, showing that the

noise distribution had no impact on the estimation.

VII. CONCLUSION

In this work, a hierarchical Bayesian modeling was pro-

posed to estimate the voxel wise parameters of the InSiL
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model from MOLLI acquisition. Contrary to previous pro-

posed approaches based on non linear least square methods,

all the model parameters are estimated without fixing some of

them to a priori values. The parameters of the multivariate

Gaussian prior used in the Bayesian model are estimated

directly from the data, together with the model parameters.

This makes the method free of tuning parameters, hence more

objective. Numerical simulation, physical phantoms, and clin-

ical data show that T1 estimation uncertainty is considerably

reduced thanks to the shrinkage effect of the priors, and falls

in the range of what is obtained with the classical MOLLI

estimation method. Hence, this estimation method allows for

the first time to exploit the full potential of the InSiL model

in clinical practice, and to get T1 estimates that are more

accurate, and less sensitive to confounding factors such as

noise level, tissue properties, HR variability, sequence design

and readout sequence. Despite better accuracy and precision,

in depth clinical studies are needed to evaluate the added value

of the InSiL model for the patient.
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