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THE BOUSSINESQ SYSTEM WITH NON-SMOOTH BOUNDARY
CONDITIONS : EXISTENCE, RELAXATION AND TOPOLOGY
OPTIMIZATION.

ALEXANDRE VIEIRA* AND PIERRE-HENRI COCQUET*f

Abstract. In this paper, we tackle a topology optimization problem which consists in finding
the optimal shape of a solid located inside a fluid that minimizes a given cost function. The motion
of the fluid is modeled thanks to the Boussinesq system which involves the unsteady Navier-Stokes
equation coupled to a heat equation. In order to cover several models presented in the literature, we
choose a non-smooth formulation for the outlet boundary conditions and an optimization parameter
of bounded variations. This paper aims at proving existence of solutions to the resulting equations,
along with the study of a relaxation scheme of the non-smooth conditions. A second part covers
the topology optimization problem itself for which we proved the existence of optimal solutions and
provides the definition of first order necessary optimality conditions.

Key words. Non-smooth boundary conditions, topology optimization, relaxation scheme, di-
rectional do-nothing boundary conditions

AMS subject classifications. 49K20, 49Q10, 76D03, 76D55

1. Introduction.

Directional do-nothing conditions. For many engineering applications, simula-
tions of flows coupled with the temperature are useful for predicting the behaviour
of physical designs before their manufacture, reducing the cost of the development
of new products. The relevance of the model and the adequacy with the experiment
therefore become important [16, 41, 46]. In this paper, we choose to model the flow
with the Boussinesq system which involves the Navier-Stokes equations coupled with
an energy equation. In most mathematical papers analyzing this model [8, 27, 47],
homogeneous Dirichlet boundary conditions are considered on the whole boundary.
This simplifies the mathematical analysis of the incompressible Navier-Stokes equa-
tion since the non-linear term vanishes after integrating by part hence simplifying the
derivation of a priori estimates [7, 21, 26, 47].

However, several applications use different boundary conditions that model inlet,
no-slip and outlet conditions [1]. Unlike the inlet and the no-slip conditions, the
outlet conditions are more subject to modelling choices. A popular choice consists in
using a do-nothing outlet condition (see e.g. [25, 34, 48]) which naturally comes from
integration by parts when defining a weak formulation of the Navier-Stokes equations.
However, since this outlet condition can not deal with re-entering flows, several papers
use a non-smooth outlet boundary conditions for their numerical simulations (see e.g.
[5, 23]). A focus on non-smooth outflow conditions when the temperature appears
can be found in [12, 23, 42, 43].

In particular, directional do-nothing (DDN) boundary conditions are non-smooth
boundary conditions that become popular. The idea is originally described in [13],
and several other mathematical studies followed [5, 9, 11]. These conditions were
considered especially for turbulent flows. In this situation, the flow may alternatively
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exit and re-enter the domain. These directional boundary conditions tries to capture
this phenomenon, while limiting the reflection. It is worth noting that other boundary
conditions can be used, namely the so-called local/global Bernouilli boundary condi-
tions [12, 23, 43]. The latter implies the do-nothing boundary condition is satisfied
for exiting fluid and that both the normal velocity gradient and the total pressure
vanish for re-entering fluid. Nevertheless, in this paper, we are going to used non-
smooth DDN boundary condition since they are easier to impose though a variational
formulation.

Concerning the mathematical study of Boussinesq system with directional do-
nothing conditions, the literature is rather scarce. To the best of our knowledge, we
only found [6, 15], where the steady case is studied in depth, but the unsteady case
only presents limited results. Indeed, while [15, p. 16, Theorem 3.2] gives existence
and uniqueness of a weak solution with additional regularity to the Boussinesq system
involving non-smooth boundary conditions at the inlet, it requires the source terms
and the physical constants (e.g. Reynolds, Grashof numbers) to be small enough. We
emphasize that these limitations comes from the proof which relies on a fixed-point
strategy. The first aim of this paper will then be to fill that gap by proving existence
and, in a two-dimensional setting, uniqueness of solutions for the unsteady Boussinesq
system with non-smooth DDN boundary condition on the outlet.

Topology optimization. On top of the previous considerations, this paper aims at
using these equations in a topology optimization (TO) framework. In fluid mechanics,
the term topology optimization refers to the problem of finding the shape of a solid
located inside a fluid that either minimizes or maximizes a given physical effect. There
exist various mathematical methods to deal with such problems that fall into the
class of PDE-constrained optimization, such as the topological asymptotic expansion
[3, 14, 40] or the shape optimization method [24, 38, 39]. In this paper, we choose to
locate the solid thanks to a penalization term added in the unsteady Navier-Stokes
equations, as exposed in [4]. However, the binary function introduced in [4] is usually
replaced by a smooth approximation, referred as interpolation function [43], in order
to be used in gradient-based optimization algorithms. We refer to the review papers
[1, 22] for many references that deal with numerical resolution of TO problems applied
to several different physical settings. However, as noted in [1, Section 4.7], most
problems tackling topology optimization for flows only focus on steady flows, and
time-dependant approaches are still rare. Furthermore, to the best of our knowledge,
no paper is dedicated to the mathematical study of unsteady TO problems involving
DDN boundary conditions, even though they are already used in numerical studies
[12, 23, 42, 43]. Therefore, a second goal of this paper will be to prove existence
of optimal solution to a TO problem involving Boussinesq system with non-smooth
DDN boundary conditions at the outlet.

First order optimality conditions. As hinted above, a gradient based method is
often used in order to compute an optimal solution of a TO problem. However, the
introduction of the non-smooth DDN boundary conditions implies that the control-
to-state mapping is no longer differentiable. The literature presents several ways to
deal with such PDE-constrained optimization problems. Most focus on elliptic equa-
tions, using subdifferential calculus [17, 30, 19] or as the limit of relaxation schemes
[18, 35, 45]. We may also cite [37] for a semilinear parabolic case and [49] which
involves the Maxwell equations. We emphasize that using directly a subdifferential
approach presents several drawbacks: the subdifferential of composite functions may
be hardly computed, and the result may be hardly enlightening nor used [17]. We will
therefore use a differentiable relaxation approach, as studied in [45]. First, we will
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be able to use standard first order necessary optimality conditions since the relaxed
control-to-state mapping will be smooth. A convergence analysis will let us design
necessary optimality condition for the non-smooth problem. Secondly, we find this
approach more enlightening, as it may be used as a numerical scheme for solving the
TO problem.

1.1. Problem settings. Let Q@ C RY, d € {2,3} be a bounded open set with
Lipchitz boundary whose outward unitary normal is n. We assume the fluid occupies
a region 2y C €2 and that a solid is defined by a region €2, such that Q = €y U €.
The penalized Boussinesq approximation (see e.g. [43] for the steady case) of the
Navier-Stokes equations coupled to convective heat transfer reads:

V.-u=0,

00+ V- (ud) — V- (Ck(a)V0) =0, a.e. in )
ou+ (u-V)u— AAu+ Vp — Bley + h(a)u = f,

u(0) = uo(a), 6(0) = bo(a),

(1.1)

where u denotes the velocity of the fluid, p the pressure and 6 the temperature (all
dimensionless), ug(c), fp() are initial conditions. In (1.1), A = Re™" with Re being
the Reynolds number, B = Ri is the Richardson number and C' = (RePr)~! where Pr
is the Prandtl number. In a topology optimization problem, it is classical to introduce
a function o : x € Q — a(z) € RT as optimization parameter (see e.g. [1, 22]). The
function h(«) then penalizes the flow in order to mimic the presence of solid:

e if h = 0, then one retrieves the classical Boussinesq approximation.

e if, for some s > sp and large enough amax, b : s € [0, Amax] = h(s) € [0, tmax]
is a smooth function such that h(s) a2 0 for s < sg and h(s) & amax for s > so,
one retrieves the formulations used in topology optimization [1, 8, 43]. In the
sequel, we work in this setting since we wish to study a TO problem.

Since the classical Boussinesq problem is retrieved when h(a) = 0, the fluid zones
Qy C Qand the solid ones Q, C Q can be defined as Q, := {x € Q | a(x) < s}, Qj :=
{x € Q| a(z) > so}, where ayax > 0 is large enough to ensure the velocity u is small
enough for the Q, above to be considered as a solid. The function k() : x € Q —
k(a(z)) is the dimensionless diffusivity defined as k(a)lo, = 1 and k(a)|a, = ks/ks
with ks and ks are respectively the diffusivities of the solid and the fluid. We also
assume that k is a smooth regularization of (ks/ky)1q, + 1q,. In this framework, a
is thus defined as a parameter function, which will let us control the distribution of
the solid in Q.

Let us now specify the boundary conditions. Assume 92 = I' is Lipschitz and we
split it in three parts: T' = 'y, UT';, Ul Here, T'y, are the walls, Ty, the inlet /entrance
and Doy is the exit/outlet of the computational domain. As exposed above, we would
like to rigorously study a non-smooth outlet boundary condition. Inspired by [13],
the following formulation tries to encapsulate these different approaches. Let § be
a function defined on Tyy and define: Vo € R : 27 = pos(z) = max(0,z),z~ =
neg(z) = max(0, —z),z = 2T —x~. On top of (1.1), we impose the following boundary
conditions:

OnTy,: u=uy, =0,
Only: u=0, Cko,0 =0,

1.2 1
(12) On Lous : Adpu — np = A9, u™ — np™ — i(u -n) " (u— uref),

Ckop0 + B(u-n)~60 =0,
3
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with ¢ € L2(0,T; LA(T\.)), f € L(0, T H-1(Q)), wyn € L2(0,T5 HYA(Tiw)), 1 de-
notes the normal vector to the boundary, 9,, = n-V and (u**f, prf) denotes a reference
solution. As stated in [29], this nonlinear condition is physmally meaningful: if the
flow is outward, we impose the constraint coming from the selected reference flow ;
if it is inward, we need to control the increase of energy, so, according to Bernoulli’s
principle, we add a term that is quadratic with respect to velocity.

To define a weak formulation of (1.1)-(1.2), we introduce 7* = {u € € (; R?);
ur,,ur, = 0}, and define V* (resp H") as the closure of 7% in (H'(Q))? (resp. in
(L2(2))?). Similarly, we define ¥? = {§ € €>(;R); O|r,, = 0}, and V? and H?
accordingly. A weak formulation of (1.1)-(1.2) then reads as:

&ﬁtp—/@U-Vg@—i— Owe-vwr/(a(u-n)—Ck8n9)<p—
Q Q Q T

for all ¢ € H?. However, from (1.2), we have:

J o —crope=— [ oot [ (em o) op

out

- / (BO(u-n)” + CkdL0) ¢

Out

/ </550+/ (u-n)+ B(u-n)7) by

out

Therefore:
(WF.1)

/at&p /Qeu~w+/gcwe.w+/r ((u-n)+ﬂ(u-n))0gp—/rw¢gp.

out

Doing similar computations with the Navier-Stokes system yield:

(WF.2) / qV -u=0, Vg € L*(Q),
Q

/Q(atu+(u-V)u)~\Il+A/QVu:V\If—/ﬂBGey-\Il
(WF.3) */va-\IlJr/Qhu-\IlJr%/F (u-n)"(u—u*). ¥

out

— [fows [ aou
Q T

out

for all ¥ € H".

1.2. The topology optimization problem. A goal of this paper is to analyze
the next topology optimization problem

min J (o, u,0, p)
(OPT) . (u, 6, p) solution of (WF) parametrized by «,
s.t.
oS uadv

where J is a given cost function and, for some k > 0, we set Uyq = {a € BV(Q)
0 0 < ax) < amax a.e. on Q,, |Dal(Q) < k}. BV(Q) stands for functions of bounded
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variations, as exposed in [2]. We recall that the weak-* convergence in BV(Q) is
defined as follows [2]: (a.). C BV(Q) weakly-* converges to a € BV(Q) if (a.)
strongly converges to o in L'(£2) and (Da.) weakly-* converges to Da in §2, meaning:

lim vdDa, = / vdDa, Yv € Cy(Q),
£——+00 Q Q

where Cp(Q2) denotes the closure, in the sup norm, of the set of real continuous

functions with compact support over 2. We choose Ua,q as a subset of BV(Q) since

it is a nice way to approximate piecewise constant functions, which is close to the

desired solid distribution.

It is classical for these problems to compute first order optimality conditions
(see e.g. [33, 44]). This approach needs smoothness of the control-to-state mapping.
However, the presence of the non-differentiable function neg(x) = z~ makes this
approach impossible. Therefore, we adopt a smoothing approach, as studied in [35,
45], and we approximate the neg function with a C! positive approximation, denoted
neg,.. We suppose this approximation satisfies the following assumptions:

(A1) Vx € R, neg, (x) > neg(z).
(A2) Yz € R, 0 < negl(z) < 1.
(A3) neg_ converges to neg uniformly over R.
(A4) for every § > 0, the sequence (negl).>o converges uniformly to 1 on [J, +00)
and uniformly to 0 on (—oo, —d] as & — +o0.
As presented in [45], we may choose:

x~ if 2] > L,
(1.3) neg, (z) = 3 L
© (3 —ex) (24 iflz <5

We thus redefine (WF) with an approximation of neg, which gives:

/Q(atus + (ue - V)ue) - \II+A/

VuE:V\II—/BGGy~\II
Q Q

1
(WFe.1) + / h(a)u, - ¥ — / PV - W+ 7/ neg. (u. - n) (u, — u*) . @
Q Q 2 Jr

out

—[rw [ o,
Q Tout
(WF@2) / U - Vq =0,
Q

000 — O-u. - Vo + CkVo. -V

(WFe.3) Q Q Q

4 / ((us - 1) + g, (u. - n)) g = / bo,
T I'w

out

for all (¥, p,q) € H* x H? x L?(2). We then define the approximate optimal control
problem:

min j(aea Ug, 967p6)
(OPTe) . (ue, 0., pe) solution of (WFe) parametrized by a.,
s.t.
Qe € uad-
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As it will be made clear later, the control-to-state mapping in (WFe) is smooth, which
will let us derive first order conditions.

1.3. Plan of the paper. The rest of this introduction is dedicated to the pre-
sentation of some notations used in this article and some important results of the
literature. The core of this paper is organized in two sections. First, we will prove the
existence of solutions to (WFe), which will let us prove, with a compactness argument,
the existence of solutions to (WF). We then focus on the two dimensional case, where
we prove uniqueness of the solutions along with stronger convergence results. This
is an extension of the work done by [13], where only the pressure and the velocity
where considered, and to [6, 15], where the steady case was studied in depth, but the
results concerning the unsteady case were obtained using restrictive assumptions. We
then study the approximate optimal control problem (OPTe), for which we will derive
first order conditions. We conclude this paper with the convergence of the optimality
conditions of (OPTe), which let us design first order conditions of (OPT).

Notations. We denote by a < b if there exists a constant C(2) > 0 depending
only on € such that a < C(2)b. Denote:

A: V" — (V¥) defined by (Au,v)uy ye = A [, Vu: Vv,

B:V"xV*— (V") defined by (B(u,v),w)wuy ve = [o(u-V)v-w,

T :V? — (V) defined by (T0, V) uy yu = [, Bley - v,

P : L*(Q) — (V*)' defined by (Pp, W) uy vu = [PV - W,

N VeV — (V*) defined by (N (u,v), W) vy vu = [i neg(un)(v-w),
o No: VU V¥ — (V*) given by (Ne(u,v)), W) vuy vu = 1

 neg. (u-n) (v
w). .
e C(a): V? — (V) defined by (C(a)b, ) oy vo = [ Ck(a)VO - Ve,
e D:V"x V?— (V?) defined by (D(u,0), ) ey vo = [, 0u- Ve,
o M : V" x VP — (V9 defined by (M(u,0),¢) ey vo = Jr, ((w-n)+
PAneg(u - n))bep,
o M. : V¥ x V% — (V?) defined by (M(u,0),¢0) ey ve = Jr. ((w-n)+
fneg. (u-n))dyp,
By a slight abuse of notation, we will still denote by o™ the element of (V*)’ defined
by (0™, W) (uy yu = frout(A@nuref —pn) - w, h(a) : V¥ = (V*) the function
defined by (h(a)u,v) vy ve = [oh(a)u- v, and ¢ the element of (V?)" defined by

(9 <P>(V9)/,v9 = fpom .
Results from the literature. We now recall two results from the literature that will
be heavily used throughout this paper.

PROPOSITION 1.1. ([10, Proposition II11.2.35]) Let Q@ be a Lipschitz domain of
R? with compact boundary. Let p € [1,+00] and q € [p,p*], where p* is the critical
exponent associated with p, defined as:

—é for p <d,
;oo forp=d,
¥ =400 forp>d.

" R”Y s
* %
m

Then, there erists a positive constant C such that, for any u € W1P(Q):

ed-g 4=
HU”LQ(Q) < CHU’”LF(Q) HUHWLP(Q)-
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PROPOSITION 1.2. ([10, Theorem II1.2.36]) Let Q be a Lipschitz domain of R?
with compact boundary, and 1 < p < d. Then for any r € [ ,%} , there exists a

positive constant C' such that, for any u € WHP(Q):
1_i+d;1 d_d=1
HU\GQHLT(BQ) < CH“HLp(I;z) " Hu”{z/)VI,PEQ)'
In the case p = d, the previous result holds true for any r € [p, +o0|.

2. Existence of solutions. In this section, we will focus on proving the exis-
tence of solutions to (WFe) and prove their convergence toward the ones of (WF).
We make the following assumptions throughout this paper:

ASSUMPTIONS 2.1. e The source term f € L*(0,T; H-1(Q)).
o (U pf) are such that:

w e L7(0,T; (H'(2)1) N L>(0, T; (L*(2)7)
withr=2ifd=2andr =4 if d =3,
V-u =0,

o’ € L2(0,T; (L*(2))%),

u = u;, on Ty

o There exists kumin such that k(x) > kpyn > 0 and h(x) > 0 for a.e. x € Q.

e The initial condition ug (resp. 0y) is a Fréchet-differentiable function from
Ugg to V¥ (resp. V). Furthermore, for all a € Uyg, uo(oz)\Fm = u;,(0),
ug(a)|p, =0, V-ug(a) =0 and Op(a)|p, = 0.

e € L>®(0,T; L(Loy)) such that B(t,z) > 3, for a.e. (t,x) € [0,T] x T pys.

2.1. Existence in dimension 2 or 3. In this part, we work with a fixed € > 0
and a given ag in Uyg.

In order to prove the existence of solutions to (WFe), we follow the classical Fadeo-
Galerkin method, as used in [13, 36, 47]. By construction, V* and V9 are separable.
Therefore, both admit a countable Hilbert basis (w?); and (w)s. Let us construct
an approximate problem, which will converge to a solution of the original problem
(WFe). Denote by V,* (resp. V) the space spanned by (w{)r<, (resp. (w)r<n).
We consider the following Galerkin approximated problem:
find t = v, (t) € V¥, t = pu(t) € L2(Q) and t — 0,(t) € V! such that, defining
u, = v, +u, (W,,pn,0,) satisfy (WFEe) for all t € [0,T] and for all (¥,q,p) €
Ve x L2(Q) x V2.

As done in [47], we prove that such (uy, 0y, p,) exist. We now prove that these
solutions are bounded with respect to n and e:

PROPOSITION 2.2. There exist positive constants ¢, ¢§, ¢Y and cy, independent
of € and n, such that:

264
(2.1) sup [0l z2() < ¢, 265 (2.3) sup]llvnlle(mSCY,
011 266 7
T 0 T
2 S 2 v
02 [Vl <d 0 ed) [ Il <o

7
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Proof. Taking ¢, = 6,, in (WFe.1) and integrating by part give:

d 1
— 10172 —7/ 9gun-n+/0kven2
gilfnllze(2) — 5 ( ) A V0|

I_‘out

+/F ((u, -n) + fneg, (u, -n)) 6?2 :/FW 0,,.

out

Since § > % and using assumption (A1), one has on Tgy:

Y

(0o 0) + rcg, (1) 62 = 2 (- 0)02 2 ((w, - m) +neg, (w, ) 63

DN = N =

Y
=
3
B
+
D
™)
v
o

Therefore: 4 1/0,, ||L2 (@) T Ckmin [ VOy ||L2 @) < 9ll2)l1nllz2(r,,)- Using continuity
of the trace operator and Young’s inequality, one proves that there exists a positive
constant C(Q2) such that, for any v > 0:

C(Q)v

d 1
@”9””%2(9) + CkminHVQnH%%Q) < 27“¢||2L2(1“w) + T(HH"”ZLQ(Q) + ||V‘9n\|%2(§z))~

Taking v small enough, we are left with:

C(Q)v

1
%Hﬂnllim) < 5”?25“%2(“) + THonHB(Q)-

Integrating this equation and using Gronwall’s lemma then give (2.1) and (2.2).
Now, take ¥, = v,, in (WFe.3). After some calculations, one gets:

1
D vl + ATV + 2/ neg, (tn 1) [val? + /h\vn|2

out

/f@ v, — /atu v, —A/ Vuref:vvn+/(un.V)vn ,uref
Q Q

_ / huref vy + / (Aanuref _ npref)vn
Q

1—‘Ollt
where fy = f + Bb,e,. First, using (2.2), one has || fol|(zuy < || fll(zwy + Bdl.
Secondly, using (A1) gives that frout neg, (u, - n)|v,|? > 0 and following then the
same pattern of proof as in [13, Proposition 2], one proves (2.3) and (2.4). d
Following [47, 10], we need to bound the fractional derivatives of the solution in
order to prove some convergence results. For any real-valued function f defined on
[0,T], define by f the extension by 0 of f to the Whole real hne R, and by Z( f)

the Fourier transform of f, which we define as: F(f fR _”Tdt Using the
Hausdorff-Young inequality [10, Theorem I1.5.20] we can prove the

PROPOSITION 2.3. For all o € [0, %), there exists a constant C(c) > 0 indepen-
dent of € and n such that:

(2.5) [

(2.6) / 17127112 () |26 < C(0):

8

7 (é;) H(2L2(Q))d < Olo),
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Proof. We emphasize that (2.6) is proved if (2.5) holds by using [10, Proposition
VII.1.3] by replacing f by fy = f + Bfe,. The proof of (2.5) consists in adapting the

one of [10, Proposition VII.1.3] and is thus omitted. O
Combining the two previous results, we can now prove the following existence
theorem for (WFe).

THEOREM 2.4. For all (vo,0p) € H* x H? and all T > 0, there exists v. €
L>(0,T; H*)N L0, T; V%), 6. € L>=(0,T, H*) N L?(0,T;V?) and p. € W~1>(0, T}
L2(Q)) solution of (WFe) such that, defining ug = vo + u"¥(0) and u. = v. +u"¥,
one has for all (¥,¢p) € V* x V¥ such that V- ¥ = 0: ([,u.-¥)(0) = [,uo- ¥,
([ 0-¢) (0) = [, 00p. Moreover, one has vi = = ¢ Li(0,T;(V*)) and 0. €
12(0,T; (V7).

Proof. The proof of existence is similar to part (iv) of the proof of [47, Theorem
3.1] and the proof of [10, Proposition VII.1.4], where estimates (2.1)-(2.4) and (2.5)-
(2.6) are used in a compactness argument.

We only add the proof that (u,,#6,,) converges to a solution of (WFe.1). Using
(2.5) and [47, Theorem 2.2], one shows that, up to a subsequence, 6,, strongly con-
verges to an element 6. of L2(0,7; H?). The only technical points which needs more
detail are the non-linear terms in (WFe.1). Using the strong convergence of u, to u.
in L?(0,T; H*) proved in [47, Eq (3.41)], one proves that (6,,u,,) strongly converges
to O.u. in L1(0,T; L?(Q)). Furthermore, notice that:

T 4 T 4 4
/||<un~n>9n|\34 </ uall?y 161
0 0

L3 () — L3(T L3(T)

T 1 1
SC/O HunHE,Z(Q)”9774”22(0)||un||H1(Q)||0n||H1(Q)

SOl 2o 0,520 1001 22 0,22 (00
wnllz2 0,701 @) 10| 220,711 (2))-

This inequality together with (2.1)-(2.4) proves that ((u, - n)6,), is bounded in
L%(O7T; L%(l—‘))7 which is reflexive. Therefore, it proves that, up to a subsequence,
there exists a weak limit £y in L3 (0,7; L3 (T)) of ((u, - n)f,),. A simple adapta-
tion of the above reasoning proves that (neg, (u, - n)#,), weakly converges to some
ko in L%(0,T;L3(T)). Using the strong convergence of 8, in L2(0,T; L*(R)), [10,
Proposition 11.2.12] implies that:

((u, - 1) + Bneg, (u, - n))f, — ((u. -n) + Bneg, (u. - n))f. in L3 (0, T; L (T))

obtained using the continuity of x € R + neg, (z). By uniqueness of the limit in
the sense of distribution, we can identify 1 + Sr2 with ((u. - n) + fneg, (u. - n))b..
Therefore, (uc,6:) is a solution of (WF.1).

The convergence of the weak derivative with respect to time of v, in L%(O,T;
(V™)) is proved in [10, Proposition V.1.3]. Concerning the weak derivative with
respect to time of 6., it follows immediately from the fact that differentiation with
respect to time is continuous in the sense of distribution. Existence of the pressure
pe follows from [10, Chapter V]. O

We now use the existence of solutions to the approximate problem (WFe) to prove
existence of solutions to the limit problem (WF), along with the convergence of the
approximate solutions to the solutions of (WF).

9
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THEOREM 2.5. Let (o) C Uyg and o € Uyq such that a. = o in BV. Define by
(ve,0-,p) a solution of (WFe) parametrized by o, and define u. = v, +u’. Then,
there exists (v,0,p) € L>(0,T; H*) N L2(0,T;V*) x L>=(0,T,H%) N L*(0,T;V?) x
W=122(0,T; L%(Q)) such that, defining u = v + u’¥, up to a subsequence, we have
u. = uin L®(0,T; H*) and . = 0 in L°°(0,T HY),

u. — uin L20,T;V%) and in L?(0,T; (L5(2))),

0. — 6 in L*(0,T;V?) and in L*(0,T; ( 5(2))),

u. — u in L*(0,T; (L*(1)9) and 6. — 0 in L*(0,T; (L*(T))),

u. — u in L2(0,T; (L?(2))?) and 6. - 0 in L*(0,T; (L*(9))),

e—+o00 — 400

0,T

T2 (72 2
ouamumL(O,T,(L (F)))and@amﬁzn[/(, (L2(1))),

o p. —pin La(0,T;L2(R)).
Furthermore, (v,0,p) is a solution to (WF) parametrized by «.

Proof. Using (2.1)-(2.4) and (2.5)-(2.6), we prove that there exists u and 6 such
that all the convergences above are verified in the same manner as in [10, Propo-
sition VII.1.4]. Let us prove first that u is a solution of (WF.3) parametrized
by a and €. With the same pattern of proof as in Theorem 2.4, one proves im-
mediately that (u. - V)u. — (u- V)uin L(0,7; (L' (2))%), and (u. - n)u™ —
(u-n)u™f in L*(0,T; (L%(I‘))d). Regarding the penalization term:

A (e )ue — h(a)u”%?(O,T;L?(Q d) ~||h|| [ue — u||2L2(o,T;L2(Q)d)

+A'Am@g—mwﬂm?

Since . — « strongly in LY(Q), h(ae) — h(a) pointwise in © up to a subsequence
(which is not relabeled). Lebesgue dominated convergence theorem then implies:
h(ae)u, ——— h(a)u in L2(0,T; (L?(2))%).
e—+o00

Concerning the boundary terms, we only consider the term with the approxima-
tion of the neg function. First, we claim that there exists v such that neg, (u. - n) (u.+
we) = 5 in L3(0,T; L3 (I')%). Notice that, for e large enough and using the proper-
ties of the neg approximation, we have:
(2.7)

T T 4
[ e ae ) o, </'(ufn+1ws|mg wel) ¥, )
0 L3(T)

L3(I) L3 ()
T
< 3 3
[ (nellfy v o)l

T N .
+ wlfy 0 e
A @5|() )| I

T . T . 3
< 3 2 3 i
Sy w2 ([ mlly ) o

In addition, from Proposition 1.2, we have ||u5||%§ < ||u5||§2(Q)Hu5HH1(Q). Since
L3 (T

u. is bounded in L°°(0,T; (L?(2))?) and in L2(0,T;(H(2))?) as proved in Propo-

sition 2.2, we see that neg. (u. - n) (u. + u™) is bounded in L3 (0,T; L3 (I')%) in-

dependently of €. Since this Banach space is reflexive, it proves the claimed weak

convergence. Let us now prove that v can be identified with (u - n)~(u + u*f).

10
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384

First, since u. — u strongly in L2(0,T; L%(T')%) and neg, (-) — (-)~ uniformly,
one proves that neg, (u.-n) — (u-n)~ strongly in L?(0,7;L*T)). Then, the
weak convergence of u. in L*(0,7; L*(I")%) and [10, Proposition 11.2.12] implies that
neg, (u. - n) (ue + u®) = (u-n)~ (u+ uw) weakly in L3 (0,T; L (I')?). Using [10,
Proposition 11.2.9], we argue that v = (u-n)~ (u + u™).

Regarding p., we use an inf-sup condition as the one introduced in the proof of
[28, Theorem 5.1, eq. (5.14)], which states that

JopV-®

2.8 Pz < sup .
29 KR A 7 s

Therefore, using (WFe.3), one shows that:

1Pell2(@) S [10nacllv: + 1B(ue, ue)llv: + [l Auc v + [|A(@)ucllv: + [[TO]v-
+ [Ne (e, ue = lyr + (| fllvs + o™ v

We now bound each term depending on e:
e Since the Stokes operator is continuous, ||Auc|ly: < [[ucl| g1 (o) and therefore,
Au, is bounded in L?(0,7T;V").
d d
e Using [10, Eq. (V.3)], we prove that ||B(u.,u.)|v: < ||us||i;(§m||u5||f{1(9),
which in turn shows that B(u.,u.) is bounded in L7 (0,T;V").
e Obviously, ||h(a)uc|ly: < [|h]|oo|luc||£2() and therefore, h(c)u. is bounded
in L*°(0,T; V).
We are left with the boundary term. Let 0 = ¥ € V. In a similar manner as before
and using Proposition 1.2, there exists a constant C' > 0 such that:

1

3-d d—1 2
wmﬂmﬁ neg, (u- 1) (u — ) [ < (|l Zigy 7o) +C)

As proved before, u. is bounded in L®°(0,T; L3(2)) N L?(0,T; H(R)). Therefore, u.
is also bounded in L2~ (0, T; H(Q)). Taking the supremum over ¥, this proves that
N (ug,u.) is bounded in L%(O7 T;V'). Finally, in a similar fashion as in [10, Lemma
V.1.6], the above bounds prove that dyu. is bounded in L (0,T;V"). These bounds
prove that (p.) is bounded in L7 (0, T; L*(f2)), and therefore (p.) weakly converges to
some p in Li(0,T; L*(Q)).

Concerning 6, the convergence is largely proved in the same way as in Theorem 2.4.
The only difference concerns the convergence of neg, (u. -n) 6. to (u-n)~ 6, which
is proved in the same manner as (2.7). All these convergence results let us say that
(u,0,p) is a solution to (WF) in the distribution sense. |

2.2. Further results in dimension 2. It is notably known that the solution
of the Navier-Stokes equations with homogeneous Dirichlet boundary conditions are
unique in dimension 2. We prove here that uniqueness still holds with the boundary
conditions (1.2). We only sketch the proof.

PROPOSITION 2.6. Let d = 2. Then, the solution (uc,0c,p:) of (WFe) is unique.

Sketch of proof First of all, note that uniqueness of (u., ;) implies the uniqueness of
pe via the De Rham Theorem [10, Theorem IV.2.4 and Chapter V].

Let (ueq,0:1) and (ueq,0:9) be two solutions of (WF.1)-(WF.3). Defineu=v =
Ver — Veg and 6 = 0.4 — 0.,. Slightly adapting the proof in [10, Section VII.1.2.5],

11
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one proves that:
d v v
(2.9) £|V|%2(sz) +AIVVITa o) S U (OIVIF20) + BlOIF20) + ¥ V]2 0

where 1V is a positive constant and ¢° is a function in L*([0,T7).
Testing the differential equation verified by 6 with 6 proves that:

d 1
G0 +20 [ 190P [0 (G w + e (0 w)
1
= —/ <,B (neg, (usq - n) —neg, (uzg - n)) + i(u . n)) 0.56.
Tout
With a similar proof as the one of Proposition 2.2, we can prove that, on Iy,

?2 (%)(ul -m) + fneg, (uy - n)) > 0. Therefore, using (A3), one has:
2.10

d 1
%‘0|2L2(Q)+20/ kIVO* < <|r3|L°°<Fouc)+ >|u 013000 [0e2] 18 (Tou) 0] 23 (Do) -

Using Sobolev embeddings and Young inequality, we prove:

1
<5|L (Fout) + ) |u n‘LS(Fout ‘052|L3(Fout)|9|L3(Fout)

1\ 2 0c2|22(0)[VOe2l32 (g
< (Wlwts +3) CAEOTTALD o 4 10

(Ve)% 2 2
5 (|VU\L2(9) + \V9|L2(Q)) ;

_|_

0

where 1Y is a positive constant. Therefore, summing (2.9) and (2.10) gives%(|u|%2(m+

|9|L2(Q)) < max(gf,ge)(\u@g(m + |9|2LQ(Q)), with ¢¥ and ¢’ integrable. Therefore,
applying Gronwall’s lemma and noticing that [u(0)|3. 20 T10(0 )2 72() = 0, one shows
that u=0and § =0. 0

Note that we may also prove that, for d = 2, the solution (u,8,p) of (WF) is
unique. We can also state stronger convergence (compared to the ones stated in
Theorem 2.5) in dimension 2. These results will be useful in the analysis of the
optimisation problems.

COROLLARY 2.7. Suppose d = 2. Under the assumptions of Theorem 2.5, u. —
u strongly in L*°(0,T; L*(Q)?), Vu. — Vu strongly in L?(0,T;L*(Q)?), 6. — 6
strongly in L>=(0,T;L*(Q)), V0. — V0 strongly in L?(0,T;L*(Q)) and p- — p
strongly in L*(0,T; L*()).

Proof. Denote u = u—u,, 0 =60—0. and p = p. —p. The variational formulation
verified by (u, 0, p) reads as: for all ¥ € V*:

(2.11a)
—(Pp, ¥) =(0yu + Aa + h(a)u, ¥) (yuy yu + <(h(?<) — h(ac))ue, ¥)(vuy vt
(B(u,u) = B(uc,u.), ®) (yuy yu + (T, ®) (yuy yu
%<N(u u— urcf) Na(uaa Uz — umf)v \Il>(V“)’,V“a
(2.11b) 0=(V-1u,q)r2q),

12

This manuscript is for review purposes only.



131
0 =(040, ¢)(voy,ve — (D(u,0) + D(, 6:), ) (voy ve

s (@110) +(€(0) — C(02))6 + C(02)8, ) voy.vo
+ (M(u,0) + Mc(uc,b:), 0) (voy veo.

433 The following inequalities, valid for d = 2, will be useful throughout this proof:
434 e As proved in [10, Eq. (V.5)]:

(2.12)

<B(u7 u) - B(u@ uS)v lI’>(V“)’,V“ _ <B(ﬁ7 u) + B(uev ﬁ)v ‘I’>(V“)’,V“
135 1€ () 1[0

< (Il 2y lallm @) + lucllLz @) IVl L2 @) -
136 e Concerning the boundary term in (2.11a):
N(u,u— uref) = Ne(ue,ue - uwf)a ‘IJ>(V“')’7V“ =

N (,0), )y o+ / (neg(u - n) — neg, (u. - n))(u. —u™)- .

Tout
438 We now deal with each term separately. Concerning the first term, Young’s
139 inequality and Proposition 1.1 imply:
140 (2.13) N(u,a), ®) ey ve S0 a10) 1] a1 (0)-
141 Owning to the Lipschitz behavior of the neg function, and the uniform con-
442 vergence of neg, toward neg (see (A3)), there exists C. > 0 such that:

neg(u-n) — neg, (u. - n) =neg(u - n) — neg(u, - n)

143 (2.14) + neg(u. - n) — neg, (u. - n)
<la-n|+C.
444 where C; —— 0. Therefore, using Proposition 1.2, we infer:
e—+o0

/ (neg(u - n) — neg, (u. -n))(u. — umf) -
Tout

. (2 15) 5 | neg(u . n) — neg, (us . n)”L“(F) Hua — uref”LQ(F)”\IJHL“(F)
445 .
5 _2 re 3 re 3
S (1805 ) IV 2 ) + €= ) e = w1 g |V (0 = ) £
1 3
X ||‘P||zz(ﬂ)||v'1’||z2(ﬂ)'
446 e The inequality proved in Proposition 1.1 shows that:
— 1 _ 1 —
w7 (2.16) [ 0598 10 s 150 | V80 2 [ V20
148 e One will need also to bound the terms involving u and 6 on the boundary.
449 Using once again Proposition 1.1 | one shows directly that:
(2.17)
g o _ 3 T o
450 - (un)d.0 < Hu||i2(g)||vu||22(g)H9€Hi2(g)||VQ€HL2(Q)||0HL2(Q)||V9||L2(Q)-

13
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151 With the same technique as for (2.15), one proves:
(2.18)

/F (neg(t - n) — neg, (u. 1)) 0.0 5 (1]} IV 2 o + C- ) 161170

1 it ks
||V95‘|22(Q)HGHEZ(Q)”VHHEQ(Q)'

453 Since d = 2, one has @’ € L%(0,T; (V*)’) and we may choose ¥ = (t) for fixed ¢
454 in (2.11a). Using the fact that V- ¥ = 0 in this case, and after rearranging the terms,
55 we obtain:

d, _ _ _ _
Gl + 241030y +2 [ h@)fal + [ postu- n)faf? =

out

= 2((h(a) — h(ae)) e, By v — (B, 1), W) ey v+ (BB, 1), W)y v

— [ Bfe,-u— (neg(u - n) — neg_ (u. - n)) (u. — u™) @
Q Tout
—/ (u-n)u.-a=0.
Tout
457 Therefore, (2.12), (2.15), Proposition 1.2 and Young’s inequality imply there ex-
458 ists C7 > 0 independent of € such that:

d, _ _
£||UH%2(Q) +C1|VallZaq) S 1012:2q) +2/ |h(a) = h(ae)|* [ue]”

T g ula g0 + (92110l 2 g

160 where g1 =1+ ||U-H12L11(Q) + ||U-H%2(Q)||VU-||%2(Q) + 2||u€||L2(Q)||VU-E||%2(Q)+
161 R g [0 ) and g§ = C2 . — 0| oy |V (e — w) 2oy
462 Using once again Young’s inequality, one has:

d . _ _ ~ U

£||u||%2(9) + CIHVUH%?(Q) <||9||%2 @+ +91)||UHQL2(Q)
463 (2.19)
+2 [ hle) = hloo) e + g5

464 We now move back to (2.11c) and choose ¢ = #, which gives, after some manip-
465 ulation:

0|72 4—0/kaE )|V + /
0o Vo + |

466 f.u-Vl—C — k(o)) VO - VO
Q

(5000 + et )

out

- / [((ﬁ ‘1) + f (neg(u - n) — neg, (u, - n))] 6.0,

467 As shown in Proposition 2.2, fr ( u-n)+ Pneg(u- n)) 62 is positive. There-
468 fore, using (2.17), (2.18), Propomtlon 1.2 and Young’s inequality, one proves that
469  there exists C'3 > 0,Cy > 0, such that:

d _ _ ~
@”‘9”%2(9) + C3||V9||%2(Q) S HGEH%Z(Q)”vosH%Z(Q)HHHQL?(Q) + C4||qu%2(Q)

(€ [ (k@) - b0 1907 ) + 11+ 58

14
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where gf = 1+ [10-12 ()| V6220 98 = C2110- 112 | V6]l (0.
Summing (2.19) and (2.20) and choosing Cy small enough, there exists C* > 0
such that:

d — n * — n Uu
S (Ial1Z2 o) + 1011Z2 o)) + C IV o) + VOl Z2) S 05 + 95
(2.21) + (L4 110720y V0122 ) + 91 [l T2y + (97 + D112 (q)

+ [ (k(0) = k@) IVOR + [ (o) = b

We now introduce the following functions

= (L4 10:NZ2(0 IVOellTo () +91), b2 —/lh hiao)|” [ucl* + g5,

— (1440, = / (k) — k(0))*| V8% + ¢f.

Since u and u. both belong to L?(0,T; H'(2)?) N L*(0,T; L?(2)?) (the same holds
for 6 and 6.), a*, b¥, a’ and b? are integrable, and so are a. = max(a¥,a?) and b, =
b + Y. Grénwall’s lemma proves that for all ¢ € [0, T, ||ﬁ(t)||2L2(Q) + ||0( )||L2 @ <

(fo ds) exp (fo ac(s ) Since a. > 0 and b, > 0, t — (f(f bg(s)ds) and t

exp ( fo ae(s ds) are non-decreasing and we have

) ~ T 3 1 (T
(2.22) tes[%%](|u(t)||L2(Q)+||9(t)||L2(Q))S< / b5<s>ds) exp (2 / ae<s>ds).

Since, on one hand, . — « in L'(Q2) and «. is independent of time, and on the other
hand, u. — u strongly in L?(0,T; L?(Q2)), Lebesgue’s dominated convergence gives a
subsequence (e) such that:

(2.23)

T T
/ Ih(e) — hlae)|? Jusl> ——— 0, / Ik(a) — k(ae,)|* [0 —— 0.

Notice that, owning to the convergence of u. and 0., [[u. — u™||r2(0)[|V(u. —
w1200y and [|0c||12(q)l|Vue| r2() are bounded w.r.t e in L'([0,T]). Therefore,

since C; — 0, it proves that fo g5 + 99) — > 0. Gathering the previous
e——+4o00 e —+00
convergence results then prove that fOT ber(8)ds k—> 0. In addition, thanks to the
—+o0
convergence proved in Theorem 2.5, we show that fOT as(s)ds is bounded w.r.t. e.

Therefore, it proves that |u — uEkHLoo(O 1,02(Q)) 10 = el Lo 0,1, L2(02)) ?) 0.

We now move back to (2.21). We integrate each side of the inequality:
T T
/0 Va7 + VOl 72(0) SF° +/0 (g1 + 10=0172(0) IVO:N172(q) + DAl 72q)
T
+ [+ DI o,
with F20 — ||uo<aa> (@)l + H(?o(ae) 00(@) 2 + S (98 + 68)

+f0 Jo lk(a k(ao)|? | V0|2 + fo Jo Ih(a — h(ee)|? |ug|?. From Assumptions 2.1,
15
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the initial conditions are continuous with respect to « and thus the two first terms
above goes to 0 as ¢ — +4o00. The third, forth and fifth terms have been already
treated (see (2.23)). Concerning the two last terms, notice that due to the con-
vergence of u., one has [u. — u*f||12(q)||V(u. — u)||;2(q) bounded w.r.t e in
. T _

L'([0,T]). The main problem concerns the term [ [[u|z2(0)l|Vuel|Zz (o [[0l172(q)-
Since u. € L*(0,7;L*()?), we only need to deal with [|Vu.||7.q[[0l7q) How-
ever, as proved in Theorem 2.5, up to a subsequence, Vu. weakly converges to Vu
in L2(0,T, L*(Q)) and |ju — uEH%z(Q) — 0 in L*>([0,77]). Concerning the other terms
in g, they are all independent of €, and we mainly use the fact that [[al/z2q) — 0
. . T _
in L2 (LE), T]). We may do the same proof concerning [ |6z 2 (q) ||V95||%2(Q) ||uH2L2(Q)
and [ ||95||L2(Q)||ve5||%2(ﬂ)”9”%2(9)'

T _ T
Therefore, [ (14 10ecll120) [Vecla 0y + 90182 0y —— 0 and J7 (o +
1)||§||%2(Q) P 0. It eventually proves that ||V (u —uc,)|z2(0,1522(0)) + V(0 —

k oo

0c.) ||L2(07T5L2(Q)) k—+4o0 0-

Concerning the pressure, we use once again the inf-sup condition (2.8) on p, which
proves that:

171122 Sl0rallv: + allzzoy + [Allalze@) + 10:(@) = hlaz)ue v+
(2.24) [B(u,u) — B(u, u.)|ly, + | 70|y +

1
5”-/\/(”7 u - umf) - Ne(ug,ue — urCf)HV“

Most of the terms in the right hand side were proved to converge strongly to 0 in
13([0, TY).
e In the same pattern of proof as in (2.23), one proves easily that (h(a) —
h(ae, ))ue), converges strongly to 0 in L2(0,T; V")
e Using (2.12), one proves that B(u,u) — B(ucy, ucy,) strongly converges to 0
in L2(0,T;V").
e Summing (2.13) and (2.15) prove that: |V (u, u—u'®) — N, (u., u. —u®)||y
< llallgi) + Ce. Since u., — u strongly in L*(0,7; H'(2)) and C. — 0,
this proves that A/(u,u — u™f) — M. (u.,,u., — u™) converges strongly to 0
in L2(0,T;V").
e Finally, in a similar fashion as in [10, Lemma V.1.6], the above bounds prove
that 9, — 0 strongly in L2(0,T;V").
Therefore, all the convergence results above prove that, up to a subsequence, p. — p
strongly in L2(0,7;L?(2)). Owning to Urysohn’s subsequence principle and the
uniqueness of the solution to (WF), we actually obtain that the whole sequence
(ue, Oc, pe) strongly converges toward (u, 6, p). d

3. Optimal control and necessary conditions. We now begin the analysis of
the optimal control problems (OPT) and (OPTe). Let us detail first some assumptions
made on the objective functional:

ASSUMPTIONS 3.1. e Ford =2, 7 is lower semi-continuous with respect to

the (weak-*, strong, strong, strong) topology of Uaq x L*(0,T; V%) x L?(0,T;
V%) x L?(0,T; L3(Q)).
e In dimension 3, J is either lower semi-continuous with respect to the (weak-
¥ strong, strong, weak) topology of U,q x L*(0,T; H*) x L?*(0,T; H?) x
16
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L2(0,T; L3(Q)), or lower semi-continuous with respect to the (weak-*, weak,
weak, weak) topology of Usq x L?(0,T; V%) x L*(0,T; V) x L?(0,T; L?()).

The existence of solutions to (OPTe) and (OPT) is rather classical and we refer
for instance to [20, 31, 33]. We state a first result that let us see that a solution of
(OPT) can be approximated by (OPTe).

THEOREM 3.2. Assume Assumptions 3.1 is verified. Let (o, uc, 0., p:) be a glob-
ally optimal solution of (OPTe). Then (a}) C Uaq is a bounded sequence. Further-
more, there exists (a*,u*, 0%, p*) € Uyq x L?(0,T;V*) x L?(0,T; V%) x L2(0,T; L*(Q2))
such that a subsequence of (X, u,,0.,p:) converges to (a*,u*, 0% p*) in the topol-
ogy of Assumptions 3.1, and for all (o, 0,0, p) in Usq x L2(0,T; V¥) x L2(0,T; V?) x
L?(0,T; L3(Q)): J(a*,u*,0%,p*) < J(a,u,0,p). Hence, any accumulation point of
(af,uce,0-,pc) is a globally optimal solution of (OPT).

Proof. The proof can be adapted from [20, Theorem 15] or [31, Theorem 3]. 0O

However, the fact that this only concerns global solutions may appear restrictive.
Under an additional assumption, we can state a slightly stronger result.

COROLLARY 3.3. Assume Assumptions 3.1 hold. Let a* be a local strict solution
of (OPT), meaning that there exists p > 0 such that J(a*,u*, 0%, p*) < J(a,u, 0, p)
for all & such that ||o* — ||y < p. Then, there exists a family of local solution (af)
of (OPTe) such that () converges weak-* to o*.

Proof. Similar to [35, Theorem 3.14]. d

3.1. First order necessary conditions for (OPTe). From now on, we set
d = 2, in order to have uniqueness of solution of (WFe). We make the following
assumption on the cost function:

ASSUMPTIONS 3.4. Assume d =2 and J is Fréchet-differentiable.

We define the sets W*(0,T) = {u € L?(0,7;(V%)); du € L?(0,T;(V*)")}, and
Wo0,T) = {6 € L*(0,T;(V?%); 8,0 € L*(0,T;(V?)")}. Write, in (V“) x (V) x
L2(0,T; L?(Q2)), the equation (WFe) as e(uc, 0c, pe,a:) = 0, where e : W¥(0,T) x
W0, T) x L?(0,T; L?()) x Uaq — L*(0,T; (V*)") x L*(0, T; L?(2)) x L2(0, T; (VY
xH" x H? is defined as:

)’)

opu. + Au. + B(u.,u.) + h(a:)u. + Pp
_’_%Ng(uﬂ u. — uref) _ f _ o.ref
P*u.
e(Ue,0=p202) = | 56— D, 0.) +Cla)f. + M. (ue,0.) — &
u:(0,-) — up(ae)
0:(0,-) — Op(ae)

The operators N, and M, are Fréchet differentiable with the same smoothness as
the approximation neg.. Their derivatives with respect to u. are denoted by d, N :
wWu(0,T)? — L(W(0, T) L2(0,T; (V%))), dyM. : W*(0,T) x W9(0,T) —
LWH(0,T), L2(0,T; (V?))), defined by:

duNE (11, u— UYCf)V - Na (u, V) + Nl(u, u— urcf)v,

(duM(0, 0V, ) oy o = / (1-+ fneg’ (u-m)) (v - n)d,

Fout
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596

where N’ (u, w) is defined by:

N (0, w)v, ®) (yuy yu = /1‘ neg. (u-n)(v-n)w- .

Furthermore, these operators are bounded, as proved in the following lemma:
LEMMA 3.5. Given (u,0.) solution of (WFe):

[duN=(ue, u: — uref)V||L2(07T;(V“)’) < c([[ucllp20,mv ) IVIiL2 0,7 vw),

|[duMe(ue, 02)v| L2 0,13v0y) < ellOcllp20,3v0)) IVIIL2 0,757,
where ¢(+) is a Lipschitz function.

Proof. The proof is similar to the proof of Theorem 2.5 from which we infer,
for ¥ € V, that: <Ng(u6,v),\Il>V/,V < ||ue||H1(Q)||V||H1(Q)||‘IJ||H1(Q)- Due to (A3),
one has straight away the existence of a constant C' > 0 such that: (N’'(u,u —
w)yv, W)y v < ([[ucllmoll + OV @)l ¥l #i (o). Adding the two inequalities
and dividing by [|¥||g1(q) concludes the proof. The proof of the second inequality
being similar is thus omitted. O

Using the results of [33, Section 1.8.2], one shows easily that e is Fréchet differ-
entiable w.r.t. (uc, 0., p.), with derivative given by:

v + Av + B(v,uc) + B(u., v) + h(ae)v + Pq + T
+id N-(u,u. — u)v

v Prv
Cuo.p o) [ €] = Ol — D(uc, l) — D(v,0:) + Cac )l + Mc(uc, £)
q +dyMc(ug,0:)v
v(0,-)
£0,-)

For defining first order conditions (see [33]), a question of interests is to determine
if, for all g = (g%, g%, g%, vo, fo) € L2(0,T; (V*)") x L?(0,T; (V?)") x L0, T; L?(2)) x
H" x HY, the following linearized equation

v
(3.1) ooy la) | €] =g
q

admits a solution (v, £, q) € W*(0,T) x W?(0,T) x L?(0,T; L*(Q)).

THEOREM 3.6. For all o € Uyq, Eq. (3.1) admits a unique solution. Therefore,

! () is invertible.

€u, 0. ,p.

Sketch of proof. First, notice that using [28, Corollary 2.4], there exists v'*f €
L2(0,T; H}(Q)) such that g? = V - v**l. Thus, defining v = v — v**!, we bring the
system back in the framework of a solenoidal vector function v. Using Lemma 3.5,
the proof becomes a simple adaptation of the proof of Theorem 2.5 and [32, Appendix
A2]. Uniqueness is proved as for Proposition 2.6 (see also [32, Appendix A2]). O

A consequence of Theorem 3.6 is that for all G = (g1,92,93) € W*(0,T)" x
W0, T) x L%(0,T; L?(52)), the following adjoint equation admits a unique solution
A= (A8 N2 Ao 2o) € L2(0,T; V%) x L2(0,T; VY) x L%(0,T; L?(2)) x H* x H?:

(3.2) (€u. 0.p. () A = G,
18
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627

where (e, 4, (ac))* denotes the adjoint operator of e}, , . (ac).

After some calculations, equation (3.2) is equivalent to solve, for all (v,¢,q) €
W™ (0,T) x W9(0,T) x L?(0,T; L?(R)), the following variational problem:
(=0 + ANE 4 (V) TAY + B(ug, A) + h(a) A + PAE — Dy (0.)\?
+ Ne(ue, AY) + (M (ue, ue — uref))*)‘?
+ N2 (U.E, )\?) + (duME(usa 95))* )\ga V>W(O,T)’,W(0,T)
+ <V(0’ ')7 >‘30>H
= <glvV>W“(07T)’,W“(O,T)a
(P*AL, @) r20,1502(9)) = (92, Q) 12(0,1:22(02))
(—8,5/\2 +T AL+ C(aa)/\g - DQ(ue)Aﬁ + ME(UE)*)‘gv£>W9(0,T)’,W9(O,T)
= (g3, £)wo (0,1), W (0,T)
where <D(9>u)7 p) = <D1 (9)90>u> = <D2(u)<p7 9>7 <M6(u)07 @) = <M5(u)ﬁp,9>
= Jr. ((u-n)+ Bueg, (u-n))fp, and (Nao(ue,\Y),v) = [ (uc-n)AL - v. This
equation, in turn, is the weak formulation of:
— AT — AANE + h(ee) AR + VAZ + (Vu)TAY — (0. - V)AL — . VA = g
V- )\}; = g2
— N £ BAY e, — V- (Ck(a)VAY) = V- (u)\)) = g3
/\?\Pwurm =0,

A

I'in 07
(3.4a) an)‘g‘r‘w =0,

1
A0 A =N | = <2neg5 (ue - n) + (u - n)) A2+ (14 Bue)b\n

1
+ He ((ue — ) . ) m,

Ch(az)0nA? + BAIneg, (u.-m) [ =0
ANT) =0,2\(T) =0,

(3.4b) 1o = neg!. (u. - )

and, as shown in a similar fashion in [32], A% = A%(0,-), A% = X\¢(0, -).

An other consequence of Theorem 3.6 is that we can apply [33, Corollary 1.3]
which states that at any local solution (af,uf, 8%, p*) of (OPTe), the following opti-
mality conditions hold:

THEOREM 3.7. Let o be an optimal solution of (OPTe) with associated states
(g, 0%, pr). Then there exists adjoint states (A2, \¢, \P) € L2(0,T; V%) x L?(0,T;V?)

x L2(0,T; L%(Q)) such that, denoting (A%, \%0) = (A%(0,-),A9(0,-)) and A, = (A%, A,
AZ, AUo Ao :

e(at,uz, 0, p7) =0,
«71/1;,0; ,p;(a:) + (eu;ﬁ;p; (a:)/)*As =0,
(T4 (0,022 + (eaz (w2, 02,00) ) Aeva —al) >0, Va € Us,

uadvuad

(3.5)

e € Ugd-
19
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628 REMARK 3.8. As stated in [35, Eq. (1.89)], since e and J are Fréchet differ-
620 entiable, the mapping e — J(ae) = J(e,ue,pe) is Fréchet differentiable, and
630 J'(ac) = Th (uk, 0%, %) + (eaz (uf, 0%, p%)) Ac, which reads as:

T
. (eax(uz,07,p2))" Ac :/ (B (ce)ue - A2 + CK' () VO, - V)\Z)
Je 0

+up(ag) - AL+ g (ac) AL

632 3.2. Limit adjoint system. To conclude this paper, we will now study the con-
633 vergence of the adjoint states (A%, \?, AP) to functions (A%, A\?, \P). The only trouble

634 concerns the multiplier p. defined in (3.4b). We will prove that at the limit, u is
635 defined thanks to the convex-hull of the Heaviside function H : R —o [0, 1], defined as:

{0} ifu<O,
636 (3.6) H(u) =< {1} ifu>0,
(0,1] ifu=0.

637 As we will prove in this section, these limit adjoint states (A%, A\’ AP) let us define
638 necessary conditions of optimality for the unrelaxed problem (OPT).

639 LEMMA 3.9. Let (ae) C Uag and o € Uyg such that ae = a. Define by (A, 02 AP)
610 a weak solution of (3.4) parametrized by a.. Then, there exists (A®, \?, \P) € L>(0, T}
611 HY)NL2(0,T; V%) x L*>(0,T, H) N L2(0,T; V?) x L>=(0,T; L?(2)) such that, up to
642 a subsequence:

643 o \Y = U in L=(0,T; (L%(2))2) and \¢ — \? in L>=(0,T; L%(Q)),

644 o \! g A% in L2(0,T; (HY(2))?) and \¢ P N in L2(0,T; (HY(S2))),
€ oo € (oo}

645 o A\ —— A\ in L2(0,T; (L2(T1))?) and \Y ——— X0 in L2(0,T; (L?(T))),
e—-+oo ge—+400

646 e NP — NP in L2(0,T; L*(Q)).

647  Furthermore, there exists p € L%°(0,T; L°(Tut)) defined by —u(z) € H(—u(x) -
618 n(x)) a.e. in Tpyus such that (A%, N9, \P) is a weak solution to (3.4a) parametrized by
649  «a and p.

650 Proof. The proof is very similar to the ones presented in section 2.
651 e In a similar manner as for Proposition 2.2 and Proposition 2.3, one shows
652 that, for all o € [0, ), there exist constants c{ (o) and c{(c), independent of
653 €, such that:
T —_—
654 sup [[A2]|2(e) +/ IVAZll2 () +/ 7> (|7 ()\é’) , o 4T < eX(0),
[0,7] 0 R L2(Q)
655
T —
636 sup [|\%]| 2 ) + / V2] 10y + / 2|7 (32)| , . dr < &),
[0,T] 0 R L (Q)
657 e These bounds prove a weaker set of convergence in the same manner as in
658 Theorem 2.5. Since once again, we set d = 2, one proves the strong conver-
659 gence stated above as in Corollary 2.7.

660 We only need to prove that (A%, A%, \P) is a weak solution to (3.4a). The terms
661 (M (ue, ue —uh))*A% and (duM-.(uc,0:))" A2, v) w0,y ,we(0,7) need a more thor-
662 ough examination. We start with the first term for which we have

T
663 (N (uz,ue — u™)) A% vy = / / neg. (u. - n) (. —u™) - A¥)n-v.
0

Fout
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697

Thanks to assumptions (A3) and (A4) and u. — u pointwise a.e. in I' (due to
strong convergence in L2([0,T] x I')), there is a subsequence (not relabeled) such that
neg’ (u. -n) = g in L>®(0,T; L%°(Tout)), and such that 0 < p < 1 a.e. in Toyy and

p=1ae. in{z €Ty, u(z) n(z) >0}, p=0ae. in {zr € Ty, ulz) n(z) <0}

Furthermore, due to the convergence presented above, ((ue — uf) - A%) — ((u—u*).
A") in LY(0, T; LY (Tout))- Therefore, it proves that:

T
(M (ue, ue = u™)* N V) w0y weo.r) — / / p((a—u) A" n-v.
0 T

out

Similarly, one proves that:

T
(duMc(uz, 02))* N2, V)W (0,7), W (0,T) — / / (1+ Bp) (v-n)ox’.
o Jr

out

All other terms in (3.3) are easily proved to converge in the same manner as in
Theorem 2.5. Therefore, (A%, A\, \P) is a weak solution to (3.4a) parametrized by «
and p. O

We may now prove the final result of this paper ; namely the necessary optimality
conditions of (OPT).

THEOREM 3.10. Let o* be an optimal solution of (OPT) with associated state
u*, 0%, p*. Then there exist a multiplier p € L>(0,T; L°(Tput)) and adjoint states
(A%, M0 NP) € L2(0,T; V*) x L2(0,T;V?%) x L?(0,T; L*()) solution of (3.4a) such
that, denoting (A0, \%) = (A*(0,-),A\?(0,-)) and A = (A%, A9, AP, At \00);

<k7z;* (11*, 9*,])*) + (ea* (u*7 9*’p*)/)*A7 a— O[*>U;¢’Uad = 0’ Va e uad~
Proof. The proof follows the lines of [17, Theorem 4.4]. Denote by S the solution
operator which to « associates the solution of the relaxed equations (WFe) and by S

the solution operator which to « associates the solution of (WF). For some p > 0,
consider the auxiliary optimal control problem:

. 1, .

min Fs(as) = j(asv us,esaps) + 5”04 - asH%ﬁ(Q)
(3.7) (ue,0c,p:) = Sc(ae),

s.t. ae € Uypg,

lae — || z20) < p-

Since o, and o* are both in U,q, they are both bounded in L>(Q) and therefore,
lo* — acllr2(q) is well defined. It is classical to show that (3.7) admits a global
minimizer o € Uyq.

Using (2.22) and (2.24) (but with oz = «), one proves that (in the norm of the
topology from Assumptions 3.1 with d = 2):

(3.8) [IS(a) = Sc(@)]| £ Cey Vau € Ung,

where C; has been defined in (2.14).
Note that due to the Fréchet-differentiability of J supposed in Assumptions 3.4
and (3.8), it holds, for ¢ large enough:

[T (@, S(a)) = T (e, Se(@))| S Ce, Va € Una, [l — ™[] < p.
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We obtain as a consequence that F.(a*) < C: + J(a*, S(a*)), and:
* 1 * *
F.(a) 2 =C. + J(a", S(a")) + 5”0( - ||2L2(Q)7 Va € Ung, o —a*|lL2@) < p.
Therefore, for all a € U,q such that ||o — a*|p2q) < p:

F. (") SC.+J(",S(") SCc+ T(o, S() S 2C: + Fo ().

Hence, for some constant C’, and denoting C. = C’'C., one has the implication:
/ 1 * |2 1 2 *
Voo € Upg, 2C < §Ha — a7z < o = F.(a") < F.(o).

One has therefore the following necessary condition of optimality:

(3.9) laZ = a™||2q) < VACL.

Hence, for ¢ large enough, o is in the p-ball around o* ; therefore, o} is a local
solution of (OPTe). Using Theorem 3.7, one then proves that there exists adjoint
states (A%, A2, AP) solution of (3.4a) such that, for all o € Upq:

(3.10)

(Toe (02, 02,00) + (eaz (w2, 02,92) ) Ay —al) 4ol —a* 0= al)pao) = 0.

U, 4 Uad

From (3.9), one has af — «* strongly in L?*(f2), and therefore, in L(Q). Since
(af — a*)e C Uag, one has also (a — a*). bounded in BV (). Hence, af = a* in
U,q. Using then Corollary 2.7, Assumptions 3.1 and Lemma 3.9, we can pass to the

limit in (3.10), which concludes this proof. a
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