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1 INTRODUCTION

1 Introduction

The purpose of these notes is to offer a comprehensive introduction to topology optimiza-
tion for automated generation of complex heat exchanger designs, based on the method
of Hadamard whereby the design variable is the shape of the fluid-solid interfaces and is
updated iteratively until convergence to a nearly optimal design. The material presented
hereafter is intended to be an introductory exposure to our recent work (Feppon et al.
(2021), illustrated on fig. 1) and PhD thesis (Feppon, 2019) where the reader is referred
for further references and more detailed information about the theoretical ingredients of
the methodologies presented hereafter.

Figure 1: Topology optimized heat exchanger devices with the method of Hadamard and
a body-fitted mesh evolution algorithm. Figures from Feppon et al. (2021).

Compact heat exchangers are devices whose task is to transfer heat from parts to parts
of a system, usually between two distinct phases which can be either constituted of fluid,
solid or gas, see e.g. Incropera et al. (2012) for an introduction. The phase entering the
system with the lowest temperature is referred to as the“cold”phase, and the one entering
with a higher temperature as the “hot” phase. Heat exchangers come into play in a broad
range of industrial applications requiring cooling or heating gas, liquid or solid phases;
they are involved e.g. in chemical engineering, combustion engines, radiators, refrigerants
and heat sinks.

2.1: Industrial gas-liquid heat exchanger
design featuring blade patterns (Figure
from Giannoni (1999)).

2.2: Industrial air-water heat exchanger design fea-
turing tube patterns (Figure from COMSOL mul-
tiphysics Multiphysics (1994)).

Figure 2: Two examples of industrial heat exchanger designs.

Heat exchangers must be designed in order to allow for optimal heat transfer: for this
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1 INTRODUCTION

reason, they are usually composed of an assembly of intricate tubes and fins devised to
maximize the thermal exchange surface area (fig. 2). Simultaneously, they must meet a
number of industrial specifications. The most common one is the need to moderate the
output pressure loss due to the friction forces caused by solid walls on the fluid phases.
In other words, the output debit should be the closest as possible to the one of the input
phase. Mechanical constraints may also be needed to be considered, for instance to protect
the device from the dilation due to elevated temperatures, or from damages caused by large
pressure loads (see e.g. Capey (1965); Shah and Sekulic (2003); Laurent et al. (2016)). As
it is common in most design problems, industrial specifications are competing between one
another; for instance increasing the contact heat exchange surface area may also increase
the amount of friction encountered by the fluid, thereby worsening the output pressure
loss. Designing a heat exchanger, i.e. determining the shape of pipes, tubes and solid
walls which account for all the specifications and allow optimal performance, is therefore
a quite challenging task.

A common industrial practice is to rely on the assistance of computer-aided de-
sign (CAD) software, which enable engineers to find an optimal configuration of geo-
metric variables parametrizing a proposed guess design (e.g. Bhutta et al. (2012); Awais
and Bhuiyan (2018)). The main advantage of these software lies in their compatibility
with all the stages of the industrial process, in particular with the commercial physical
solvers used to evaluate the design properties or the with the manufacturing step (see for
instance Harries et al. (2019); Duta et al. (2007); Dinh et al. (1996)). However, they yield
by nature very little modifications of the initially proposed geometry, even though these
may represent valuable gains of performance from an industrial point of view.

A rather recent trend in the industry is the increasing popularity of additive manufac-
turing which offers greater variety of manufacturable designs along with the possibility to
use automated generative tools to devise them. The last twenty years have been marked
by great progress in the development of the field of “topology optimization” and its variety
of algorithms allowing to compute close to optimal designs free from any a priori on the
geometry. Topology optimization is now a well established practice in various branches of
the automotive, aeronautic or architecture industry (fig. 3), for the design of structures
subjected to mechanical loads which are sought to be simultaneously lightweight and
rigid. Many commercial software for numerical computations include today a topology
optimization module for such purpose.

3.1: Siemens (2017) 3.2: APWorks (2016) 3.3: Airbus (2010)

Figure 3: Some applications of topology optimization of mechanical structures in the
aeronautic and automotive industry.

Due to their ability to generate efficient and rather unconventional designs, topol-
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1 INTRODUCTION

ogy optimization algorithms offer promising perspectives for conceiving heat exchangers
with substantial gain of performances. Such desired applications face however two main
challenges.

First, the treatment of fluid systems involving potentially coupled multiphysics con-
straints such as convective heat transfer or fluid-structure interactions requires to handle
more complex numerical and theoretical ingredients than for systems described uniquely
by their mechanical properties. As a consequence, it is only very recently that research
works have started to present complex 3D optimized designs for convective heat transfer
(e.g. Yu et al. (2020) illustrated on fig. 4.1 or Pietropaoli et al. (2019); Huang et al.
(2019); Feppon et al. (2020b)) and that a few commercial software include optimization
capabilities for fluid systems, which remain to date rather limited.

Second, the design of heat exchangers featuring multiple fluid phases calls for the need
to enforce a non-mixing constraint between the hot and cold input streams. The modelling
and the implementation of this constraint into fluid topology optimization algorithms is
delicate; it has been one of the most recent research trends in the field. The first published
work on this topic is the seminal MsC thesis of Papazoglou (2015), followed since then
by Saltzman et al. (2018); Haertel (2018); Saviers et al. (2019); Rebei (2019); Tawk et al.
(2019); Kobayashi et al. (2020); Hoghoj et al. (2020).

All the aforementioned works, some of them illustrated on fig. 4, rely on density
based topology optimization methods: the design variable is a density field ρ(x) which
represents a proportion of fluid and solid at every location x of the design domain. The
physical equations describing the system must be modified to encompass such relaxed
porous states, and some penalization scheme be used in order to ensure the convergence
of the design towards a state featuring only fluid (ρ(x) = 1) or solid (ρ(x) = 0). The
exact location of the interface between the fluid domain and the solid phase is known
only at convergence, which makes the modelling and the enforcement of the non-mixing
constraint quite challenging, although possible.

In these lecture notes, we rather consider the method of Hadamard for the optimization
of the interface between the solid and fluid phase. Its main advantage lies in that the
location of the fluid-solid interface is known at all the stages of the optimization process.
This enables to perform physical computations on body-fitted meshes in which the fluid-
solid interface is discretized accurately, allowing in principle for non-intrusive simulations
with external commercial software. Furthermore, this also allows to implement the non-
mixing constraint between multiple fluid phases in a geometric manner: it reduces to
impose a minimum solid wall thickness between each connected fluid components, which
can be modelled as a minimum distance constraint.

The implementation of a full topology optimization algorithm for multiple-phase heat-
exchangers with the method of Hadamard requires the combination of multiple ingredients
which are detailed in the next sections and summarized on fig. 5.

The first step is to settle a physical model and to recast the various industrial spec-
ifications into a mathematical optimization problem featuring objective and constraints,
which is the object of section 2.

An introduction to the boundary variation method of Hadamard and to the notion
of sensitivity with respect to variations of the shape is then provided in section 3. The
key ingredient of the methodology is the knowledge of analytical formulas for the shape
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2 THE DESIGN PROBLEM

4.1: Yu et al. (2020) 4.2: Papazoglou (2015) 4.3: Kobayashi et al. (2020)

4.4: Saviers et al. (2019) 4.5: Hoghoj et al. (2020)

Figure 4: Fluid pipes optimized for convective heat transfer with density-based methods.

derivatives of quantities involved in convective-heat transfer problems, which are stated
without proof. Finally, we discuss the additional ingredients needed for the treatment of
the geometric non-mixing constraint in the context of multiple phases heat exchangers.

The next section 4 is concerned with numerical gradient-based optimization algorithms
whose main task is to convert the shape sensitivities into a design update which improves
performance while gradually enforcing the constraints. We provide a quick introduction
to the null-space gradient flow algorithm, and to how to interface it with a level set
based mesh evolution method for the numerical shape updates. The latter enables to
handle complex topological changes in the course of the optimization process while still
maintaining an explicit discretization of shapes suitable for numerical fluid computations.
The overall methodology is then summarized and numerical illustrations are provided on
heat exchanger test cases.

We provide some concluding remarks and perspectives in section 5.

2 Formulation of the optimal heat exchanger design prob-

lem

2.1 Physical modelling

The first step of the design methodology is to agree on a physical model describing the
system in a way which is as realistic as possible while still allowing for numerical com-
putations and optimization. It is already by nature a rather complex task, due to the
variety of possible models depending on the desired working conditions for the device, on
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2.1 Physical modelling 2 THE DESIGN PROBLEM

Physical model definition
and associated physics solver

(section 2)

Formulation
of the optimization problem:

objective function and constraints
(section 2)

Parallel computing

Computation and numerical
assembly of shape derivatives

(section 3)

Shape derivative of
geometric constraints for
non-mixing fluid phases

Gradient-based optimization:
computation of a descent direction

(section 4)
Null-space gradient flows

Iterative shape updates:
level set based mesh evolution method

(section 4)
Remeshing

Topologically optimized heat exchanger

Figure 5: Topology optimization workflow for automated design of multiple-phase heat
exchangers.
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2 THE DESIGN PROBLEM 2.1 Physical modelling

the chosen materials, on the need for taking into account non-linear effects due to high
temperature or turbulence due to high Reynolds numbers.

For our applications, we consider a rather generic situation where the system occupies
a box D = Ωf ∪ Ωs ⊂ Rd with d = 2, 3 constituted of fluid components Ωf and a solid
component Ωs. The fluid-solid interface is denoted by Γ := Ωf ∩ Ωs . The fluid part
Ωf = Ωf,hot∪Ωf,cold is itself constituted of hot and cold phases Ωf,hot and Ωf,cold which are
characterized by the same density ρ, dynamic viscosity ν, heat conductivity kf and heat
capacity cp. The solid phase is assumed to be made of a single material of conductivity
ks. The setting is illustrated on fig. 6.

Ωf,cold

Γ

Ωf,hot

D

Ωs

Tcold

Thot

dmin

Figure 6: Setting of the heat exchanger topology optimization problem (not all boundaries
are represented).

The fluid enters the system at the boundary ∂Ωf,in with a velocity profile v0 and exits
it with zero normal stress on the output boundary ∂Ωf,out. The fluid sticks to the wall and
therefore its velocity vanishes on the solid-interface boundary Γ. The motion of the fluid
is described by its velocity and pressure variables (v, p). For our applications, we assume
that these are solution to the steady-state incompressible Navier-Stokes equations:

−div(σf (v, p)) + ρ∇v v = 0 in Ωf

div(v) = 0 in Ωf

v = v0 on ∂Ωf,in

σf (v, p)n = 0 on ∂Ωf,out

v = 0 on Γ,

(1)

where the fluid stress tensor σf (v, p) is given by Newton’s law:

σf (v, p) = 2νe(v)− pI, with e(v) :=
1

2
(∇v +∇vT ), (2)

with I is the identity 2× 2 matrix and ∇v = (∂jvi)1≤i,j≤d the Jacobian matrix.
The velocity field v determines then the temperature distribution in both fluid and

solid components through convection (in the fluid phase) and diffusion (in both solid and
fluid phases). The cold and hot fluid phases enter the domain with given temperatures
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2.2 Heat exchanged and maximal pressure drop 2 THE DESIGN PROBLEM

Tcold < Thot on their respective inlet boundaries. It is then assumed that the temperature
field T is continuous at the solid-fluid interface Γ as well as the heat flux. All other
boundaries are adiabatic (no heat loss). We further assume that the temperature field
T satisfies the steady-state convection-diffusion equation. Denoting by Ts and Tf the
restrictions of T to respectively the solid and the fluid subdomains Ωs and Ωf , these read

−div(kf∇Tf ) + ρcpv · ∇Tf = 0 in Ωf

−div(ks∇Ts) = 0 in Ωs

T = Thot on ∂Ωf,in ∩ ∂Ωf,hot

T = Tcold on ∂Ωf,in ∩ ∂Ωf,cold

−kf
∂Tf
∂n

= 0 on ∂Ωf,out

−ks
∂Ts
∂n

= 0 on ∂Ωs\Γ

Tf = Ts on Γ

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

on Γ.

(3)

Note that both systems of equations eqs. (1) and (3) are solved successively and inde-
pendently. Change of boundary conditions or of the physical equations may be considered
without altering fundamentally the topology optimization methodology exposed hereafter.
The physical variables (v, p) and T depend on the shape of the fluid domain Ωf and we
shall sometimes emphasize this dependence explicitly by writing e.g. v ≡ v(Ωf ).

A numerical topology optimization algorithm requires eqs. (2) and (3) to be solved
many times during the total optimization procedure, typically from fifty to a few hun-
dreds of times. Although we shall delve into the details regarding the many numerical
methods available for this task, it is important to emphasize that efficient and accurate
solvers are needed for such purpose, especially to tackle 3D systems. In particular, it
is especially beneficial to resort to domain decomposition methods and efficient physics
based preconditioners, see e.g. Feppon et al. (2020b) for further discussions based on this
work and the references therein.

2.2 Heat exchanged and maximal pressure drop

Once the physical model has been mathematically settled, industrial specifications needs
to be translated in terms of mathematical constraints on quantities which can be computed
from the state variables (v, p) and T introduced above. In these notes, we consider two
physical quantities commonly considered by engineers when it comes to characterize the
performance of a heat exchanger. These are respectively the exchanged heat or output
power and the output pressure loss.

The exchanged heat between both components Ωf,hot and Ωf,cold can be mathematically
modelled by the quantity W(Ωf ,v(Ωf ), T (Ωf )) defined by

W(Ωf ,v(Ωf ), T (Ωf )) =

∫
∂Ωf,hot

ρcpT v · ndy −
∫
∂Ωf,cold

ρcpT v · ndy, (4)
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2 THE DESIGN PROBLEM 2.3 Non-mixing constraint

which measures the difference between the heat fluxes exiting the hot phase and the
one exiting the cold phase. It is then expected that the quantity W(Ωf ,v(Ωf ), T (Ωf ))
is maximized for configurations characterized by a small amount of heat exiting the hot
fluid output and a large one from the cold fluid output, meaning that the hot fluid has
been cooled down while the cold fluid has been heated up by receiving the heat of the hot
phase.

The output pressure drop associated to the cold channel (respectively the hot channel)
is modelled by the quantity DP(Ωf,cold, p(Ωf )) (respectively DP(Ωf,hot, p(Ωf ))) defined by:

DP(Ωf,cold, p(Ωf )) :=

∫
∂Ωf,cold∩∂Ωf,in

p dy −
∫
∂Ωf,cold∩∂Ωf,out

p dy (5)

where p ≡ p(Ωf ) is the pressure inside the fluid given by the Navier-Stokes equation
eq. (1). The output pressure drop is related to the loss of flow rate between the output
and the input, or to the loss of energy due to the friction incurred by the contact with the
walls. Alternative definitions of eq. (5) are possible, for instance in terms of the dynamic
pressure p + ρv2/2 rather than the static pressure p, or by considering the strain energy∫

Ωf,cold
∇v : ∇vdx instead of the pressure drop.

A heat exchanger should have low output pressure drops in order to avoid slowing
down substantially each of the input fluid phases, in view of being integrated properly as
part of a larger thermal-hydraulic system.

2.3 Non-mixing constraint

An implicit requirement of multiple phase heat exchangers is that the hot stream and
the cold stream should not mix in order to allow for later use of both phases; if mixing
was allowed then designing heat exchangers would be trivial! Since designs in which both
phases merge are certainly optimal for heat transfer, it is necessary to formulate the non-
mixing constraint mathematically for it to be taken into account by automated design
algorithms.

A convenient way to formulate the constraint is to state that a minimum solid wall
thickness should be imposed between the hot and the cold phases (illustrated on fig. 6).
Mathematically, this is equivalent to require that the distance between the boundaries of
the hot and cold phase be greater than a desired value dmin:

d(Ωf,cold,Ωf,hot) := inf
x∈Ωf,cold

y∈Ωf,hot

|x− y| ≥ dmin.

2.4 Formulation of the optimal design problem

Considering the modelling equations eqs. (1) and (3), the optimal design problem for a
two-fluid heat exchanger accounting for the desire to maximize the heat exchange W, to
maintain a low output pressure drop while keeping both input and output phases well-
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3 SHAPE AND TOPOLOGY OPTIMIZATION

separated can be formulated as the following optimization program:

max
Γ=Ωf∩Ωs

W(Ωf ,v(Ωf ), T (Ωf ))

s.t.


DP(Ωf,cold, p(Ωf )) ≤ DP0

DP(Ωf,hot, p(Ωf )) ≤ DP0

d(Ωf,cold,Ωf,hot) ≥ dmin.

(6)

where DP0 is a given desired upper bound for the allowed maximum pressure drop.

Depending on the applications, additional constraints may be considered such as a
maximum value Vol0 allowed for the mass of each fluid phases passing through the heat
exchanger:

Vol(Ωf,cold) ≤ Vol0, Vol(Ωf,hot) ≤ Vol0. (7)

The constraints of eq. (7) are not mandatory, but they are useful for instance if one desires
that only a limited proportion of fluid of the total system lies in the heat exchanger at
a given instant. Equation (7) considers one constraint for each phase in order to ensure
that these remain balanced in terms of volume.

The next sections detail a topology optimization method for solving the optimization
program of eq. (6).

3 Shape and Topology optimization with the method of

Hadamard

In order to solve the nonlinear, non-parametric constrained optimization program of
eq. (6), we consider a topology optimization procedure based on the boundary varia-
tion method of Hadamard. The main idea is to solve eq. (6) by applying iteratively small
deformations I + θ of the fluid-solid interface Γ (illustrated on fig. 7) which gradually
improve the design. The small vector field θ is found as a descent direction by a suitable
gradient based optimization algorithm. This is possible by computing the sensitivities
of the objective and constraint functions W(Ωf ,v(Ωf ), T (Ωf )) and DP(Ωf,cold, p(Ωf )) with
respect to the variations of the shape of Ωf , or equivalently of the fluid-solid interface Γ.

By essence, the method of Hadamard, which rests upon gradual shape deformations,
yields a priori shape optimization algorithms. However, when the numerical update of
shapes allows topological changes to occur, e.g. when resorting to implicit level set de-
scriptions (fig. 8), we refer to it as a topology optimization method. The method is now
well established and there is a large literature concerned with both theoretical and nu-
merical aspects, see e.g. Sokolowski and Zolésio (1992); Henrot et al. (2018) and Allaire
et al. (2021) for a recent introductory survey to the field. In what follows, we provide a
brief summary to the notion of shape derivative which is the most important theoretical
ingredient for the purpose of solving eq. (7). This part focuses mostly on the theoretical
notion of shape derivative, leaving the matter of numerical shape updates as part of a
global optimization procedure to the next section 4.
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3 SHAPE AND TOPOLOGY OPTIMIZATION

Ωf,cold

Γ

Ωf,hot

D
Ωs

θ

(I + θ)Γ

Figure 7: The boundary variation method of Hadamard, which considers small shape
deformations θ of the fluid-solid interface Γ. The new boundary (I + θ)Γ is visible in
dashed line.

8.1: Initial design 8.2: Intermediate design 8.3: Final design

Figure 8: Topology optimization of a 2D mechanical structure based on Hadamard’s shape
sensitivities. The level set method for the numerical evolution of shapes allows topological
changes to occur such as the merging of holes (figures from Allaire et al. (2002)).
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3.1 Hadamard shape derivatives 3 SHAPE AND TOPOLOGY OPTIMIZATION

3.1 Hadamard shape derivatives

Let F (Ωf ) be a quantity depending on the shape of the fluid domain Ωf (equivalently, of
the solid domain Ωs or on the interface Γ). For a given small vector field θ, F ((I+θ)Ωf ) is
the value of this quantity on the deformed configuration (I +θ)Ωf (we assume that θ = 0
on the boundaries which are not the fluid-solid interface Γ). The main idea lying behind
the definition of shape derivative rests on the fact that considering small deformation
vector fields θ enables one to consider first order asymptotic expansions of the quantity
F ((I + θ)Ωf ) with respect to θ.

In this spirit, the functional Ωf 7→ F (Ωf ) is said to be shape differentiable if there
exists a linear mapping DF (Ωf ) such that the following first-order expansion holds at
θ = 0:

F ((I + θ)(Ωf )) = F (Ωf ) + DF (Ωf )(θ) + o(θ) where
o(θ)

||θ||V
θ→0−−→ 0, (8)

where the smallness of o(θ) is measured with the norm || · ||V of some (Banach or Hilbert)
space V . The linear map DF (Ωf ) is called the shape derivative of the functional F .

3.2 Shape derivatives formulas for heat exchanger design

The practical computation of DF (Ωf ) when F (Ωf ) ≡ F (Ωf ,v(Ωf ), p(Ωf ), T (Ωf )) depends
on the solution to some partial equations (such as in eq. (6)) is achieved thanks to shape
calculus (Delfour and Zolesio (2011); Henrot et al. (2018)).

The most general expression of DF (Ωf ) involves volume integrals of quantities de-
pending on the state variables (v, p) and T , their respective adjoint states (w, q) and S,
and the values of the gradient of the vector field θ on the design domain D. In Feppon
et al. (2019a), the following expression has been derived:

DF (Ωf ,v(Ωf ), p(Ωf ), T (Ωf ))(θ)

=
∂F

∂θ
(θ)−

∫
Ωf

(σf (v, p) : ∇w + ρw · ∇v v)div(θ)dx

+

∫
Ωf

[σf (v, p) : (∇w∇θ) + σf (w, q) : (∇v∇θ) + ρw · (∇v∇θ)v]dx

−
∫

Ωs

div(θ)(ks∇T · ∇S)dx−
∫

Ωf

div(θ)(kf∇T · ∇S + ρcp(v · ∇T )S)dx

+

∫
Ωs

ks(∇θ +∇θT )∇T · ∇Sdx

+

∫
Ωf

[
kf (∇θ +∇θT )∇T · ∇S + ρcpv · (∇θT∇T )S

]
dx,

(9)

where ∂F/∂θ is a certain partial derivative of F with respect to the variations of Ωf .
Equation (9) is referred to as the volume expression of the shape derivative. As com-
plicated it might look, it can be implemented numerically once for all in a numerical
optimization procedure, since this general expression is valid for arbitrary objective or
constraint functionals F .

The adjoint states (w, p) and S are found by solving a linearized and transposed
version of the state equations eqs. (1) and (3), where the right-hand side are the partial
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3 SHAPE AND TOPOLOGY OPTIMIZATION 3.2 Shape derivatives

derivatives of F with respect to the state variables. The adjoint system of equations is
given in its most general version in the following variational form: find (w, q) ∈ Vv,p and
S ∈ VT such that∫

Ωs

ks∇S · ∇S ′dx+

∫
Ωf

(kf∇S · ∇S ′ + ρcpSv · ∇S ′)dx =
∂F

∂T
(S) ∀S ′ ∈ VT . (10)

∀(w′, q′) ∈ Vv,p∫
Ωf

(
σf (w, q) : ∇w′ + ρw · ∇w′ · v + ρw · ∇v ·w′ − q′div(w)

)
dx =∫

Ωf

−ρcpS∇T ·w′dx+
∂F

∂(v, p)
(w′, q′), (11)

where Vv,p and VT are variational spaces naturally associated to the variables (v, p) and
T , and which encompass all Dirichlet boundary condition (i.e. w = 0 on Γ ∪ ∂Ωf,in and
S = 0 on ∂Ωf,in). Note that the adjoint fluid equation eq. (11) is solved after the adjoint
thermal equation eq. (10), which is the reversed order of the state equations eqs. (1)
and (3). Similarly, eqs. (10) and (11) can be implemented once for all in the optimization
routine and be solved with the finite element method using domain decomposition and
parallel computing.

Under suitable regularity assumptions, Hadamard’s structure theorem predicts that
the shape derivative DF (Ωf )(θ) should depend only on the normal component θ · n on
the deformed interface Γ. Under this circumstance, it is possible after some integration
by parts to rewrite DF (Ωf ) in the form of a boundary integral depending only on θ · n:

DF (Ωf )(θ) =

∫
Γ

vF (Ωf )θ · ndy, (12)

for some function vF (Ωf ) defined on Γ. Equation (12) is referred to as the “surface
expression” of the shape derivative. In our heat exchanger context, the function vF (Ωf )
is given explicitly by the formula

vF (Ωf ) =gF (Ωf ) · n− σf (v, p) : ∇w + n · (σf (w, q)∇v)n+ n · (σf (v, p)∇w)n

+ ks∇Ts · ∇Ss − kf∇Tf · ∇Sf − 2ks
∂Ts
∂n

∂Ss

∂n
+ 2kf

∂Tf
∂n

∂Sf

∂n

where gF (Ωf ) is the unique function such that

∂J

∂θ
(θ) =

∫
D

fF (Ωf ) · θdx+

∫
Γ

gF (Ωf ) · θdy

for some vector field fF (Ωf ), obtained e.g. thanks to an integration by part. In part of
the literature, the function vF (Ωf ) is sometimes also called the “shape derivative” of F ,
while the distinction with the linear form DF (Ωf ) has important numerical consequences.
Indeed, several works have noticed at least empirically (see e.g. Hiptmair et al. (2015))
that the volume expression eq. (9) leads to more accurate numerical evaluations of the
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3 GEOMETRIC CONSTRAINTS

shape derivative, leading to better designs. We also observed this fact in our own numerical
applications, and hence we favour the use of the volume expression of eq. (9) of the shape
derivative rather than the surface expression of eq. (12).

Coming back to the optimization program of eq. (6), the previous formulas enable one
to compute the shape derivatives of the heat exchanged W(Ωf ,v(Ωf ), T (Ωf )) and of the
pressure drop DP(Ωf,cold, p(Ωf )). The only missing ingredient are the partial derivatives
involved in eq. (9) and the adjoint equations eqs. (10) and (11), which are easily computed:

∂W

∂θ
(θ) = 0,

∂W

∂(v, p)
(w′, q′) =

∫
∂Ωf,hot

ρcpTw
′ · ndy −

∫
∂Ωf,cold

ρcpTw
′ · ndy

∂W

∂T
(S ′) =

∫
∂Ωf,hot

ρcpS
′v · ndy −

∫
∂Ωf,cold

ρcpS
′v · ndy.

∂DP

∂θ
(Ωf,cold, p(Ωf ))(θ) = 0,

∂DP

∂T
(Ωf,cold, p(Ωf ))(S ′) = 0,

∂DP

∂(v, p)
(Ωf,cold, p(Ωf ))(w′, q′) =

∫
∂Ωf,cold∩∂Ωf,in

q′dy −
∫
∂Ωf,cold∩∂Ωf,out

q′dy.

3.3 Shape sensitivity of geometric constraints

The computation of the shape derivative of the non-mixing constraint

d(Ωf,cold,Ωf,hot) ≥ dmin (13)

of eq. (6) is not standard and requires a particular treatment. It is convenient to first
reformulate it in terms of the signed distance function dΩf,hot

associated to the hot fluid
component. The latter is equal to minus plus the distance to the boundary ∂Ωf,hot on
respectively the interior and the complement of the domain Ωf,hot:

∀x ∈ D, dΩf,hot
(x) =


− min

y∈∂Ωf,hot

|x− y| if x ∈ Ωf,hot

0 if x ∈ ∂Ωf,hot

min
y∈∂Ωf,hot

|x− y| if x ∈ D \ Ωf,hot.

As it is represented on fig. 9, the negative sign inside Ωf,hot ensures that dΩf,hot
is smooth

on the boundary ∂Ωf,hot.
The non-mixing constraint of eq. (13) can equivalently be reformulated as stating that

all points of the boundary ∂Ωf,cold of the cold phase be at a distance at least dmin from
the boundary of the hot domain:

∀y ∈ ∂Ωf,cold, dΩf,hot
(y) ≥ dmin. (14)

This formulation is still delicate to handle because it is a point-wise constraint which
would translate in a numerical setting into as many constraints as there are vertices
discretizing the boundary ∂Ωf,cold. A standard way to adress the difficulty is convenient
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3 GEOMETRIC CONSTRAINTS 3.3 Shape sensitivity of geometric constraints

Figure 9: Isovalues of the signed distance function of a domain Ωf,hot ⊂ D. The boundary
of Ωf,hot is visible as the continuous black line within the square domain.

to approximate eq. (14) by a single averaged quantity. Since dΩf,hot
is a positive function

on ∂Ωf,cold, eq. (14) can be formulated in terms of the supremum norm as∣∣∣∣∣∣∣∣ 1

dΩf,hot

∣∣∣∣∣∣∣∣−1

L∞(∂Ωf,cold)

≥ dmin. (15)

The infinity norm is then classically approximated with an Lp norm1, for a sufficiently
large value of p, in order to obtain a differentiable shape functional. A final possible
approximation of eq. (13) reads then:

Pcold→hot(Ωf ) ≥ dmin, (16)

where the averaged quantity Pcold→hot(Ωf ) is defined by

Pcold→hot(Ωf ) :=

∣∣∣∣∣∣∣∣ 1

dΩf,hot

∣∣∣∣∣∣∣∣−1

Lp(∂Ωf,cold)

=

(∫
∂Ωf,cold

1

|dΩf,hot
|p

ds

)− 1
p

. (17)

The quantity Pcold→hot(Ωf ) can be interpreted as an averaged measure of the distance
d(Ωf,cold,Ωf,hot) between both phases. From our own experience, it is sufficient to consider
the value p = 4 to obtain a correct approximation of the constraint.

It remains to describe how the shape derivative of Pcold→hot, which depends on dΩf,hot
,

can be computed. A basic application of shape calculus and of the chain rule yields

DPcold→hot(Ωf )(θ) = −1

p
Pcold→hot(Ωf )p+1

[∫
∂Ωf,cold

(
∂

∂n
+ κ

)
1

|dΩf,hot
|p
θ · ndy

−
∫
∂Ωf,cold

p

|dΩf,hot
|p+1

d′Ωf,hot
(θ)dy,

]
.

The first term of the above right-hand side has the classical structure of a boundary
integral of the type of eq. (12) which can be easily numerically evaluated as a linear form
in terms of θ. The second term involves the shape derivative d′Ωf,hot

(θ) of the signed

1Note that we use the same notation for convenience but it is not to be confused pressure field also
denoted by p.
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distance function and is more delicate to evaluate. It is also possible to derive an explicit
formula of the type eq. (12) for this term:

−
∫
∂Ωf,cold

p

|dΩf,hot
|p+1

d′Ωf,hot
(θ)dy =

∫
∂Ωf,hot

u(Ωf,hot)θ · ndy, (18)

however the analytical formula found for the integrand u(Ωf,hot) is a rather complicated
expression which depends on integrals along the normal rays to the boundary of ∂Ωf,hot

and on its principal curvatures (see Allaire et al. (2016) as one of the first approaches
relying on such explicit formulas).

In order to compute the shape derivative of Pcold→hot(Ωf ) conveniently, we rely on our
recent variational technique described in Feppon et al. (2020a) which enables to estimate
the function u(Ωf,hot) numerically without resorting to its analytical expression. The
function u(Ωf,hot) ≡ u is obtained by solving the variational problem

Find u ∈ Vω such that ∀v ∈ Vω,∫
∂Ωf,hot

uvdy +

∫
D

ω(∇u · ∇dΩf,hot
)(∇v · ∇dΩf,hot

)dx =

∫
∂Ωf,cold

p

|dΩf,hot
|p+1

vdy, (19)

where ω is a positive weight and Vω a specific Sobolev space. The left hand-side is a positive
symmetric bilinear form which can easily be discretized with the finite element method.
The right-hand side has been obtained by simply substituting d′Ωf ,hot(θ) in eq. (18) by the

opposite of an arbitrary test function v ∈ Vω. In order to solve eq. (19) numerically with
piecewise linear finite elements, the weight ω should vanish on the skeleton of Ωf,hot (the
medial axis or equivalently the set where dΩf,hot

is not differentiable). There is obviously
no unique choice of ω, one which leads to satisfying results in most of our applications is

ω :=
1

1 + 100|dΩf,hot
∆dΩf,hot

|3.5
, (20)

where we refer to Feppon et al. (2020a) for the numerical estimation of the Laplacian
∆dΩf,hot

.

The property given by eq. (18) follows by setting v = dΩf,hot
(θ) as a test function

in eq. (19) and using the following characterization of d′Ωf,hot
(θ) (see Delfour and Zolésio

(1994); Bellettini (2013)),{
∇dΩf,hot

· ∇d′Ωf,hot
(θ) = 0 a.e. in D

d′Ωf,hot
(θ) = −θ · n on ∂Ωf,hot

for any θ ∈ W 1,∞(D,Rd).

More generally, this method enables to compute shape derivatives of any functional de-
pending on dΩf,hot

(or potentially on its gradient), allowing to consider a large variety of
geometric constraints: minimum thickness, maximum thickness, overhang, etc. . .

4 Numerical topology optimization

In this last section, we describe how shape derivatives can be integrated in a whole nu-
merical optimization procedure in order to solve the heat exchanger design problem of
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4 NUMERICAL TOPOLOGY OPTIMIZATION 4.1 Null space gradient flows

eq. (6). This is achieved thanks to two main ingredients which are discussed in the next
sections 4.1 and 4.2: (i) a first order non-linear constrained optimization algorithm for
computing a descent direction based on the evaluation of shape derivatives and (ii) an
algorithm for the iterative numerical updates of shapes. A last section 4.3 provides nu-
merical illustrative examples of topologically optimized heat exchanger devices generated
with this methodology.

4.1 Null space gradient flows for constrained shape optimization

There is a rather large literature proposing various constrained optimization algorithms,
see e.g. Nocedal and Wright (1999); Svanberg (1987) or Dunning and Kim (2015) in
the context of shape optimization based on the method of Hadamard. However, these
algorithms are often not devised for the infinite dimensional context of shape optimization
where the design variable is the shape of the interface Γ, or they require tedious tuning of
algorithm metaparameters (such as the penalty parameters in the augmented Lagrangian
method).

For these reasons, we propose here to rely on our null space gradient flow algorithm
which is an extension of projected gradient flows to inequality constrained problems (see
e.g. Yamashita (1980)), and which is very convenient and robust to use for level set based
topology optimization. The next paragraphs provide an overview of the method exposed
in full details in Feppon et al. (2019b). A user-friendly open-source python implementation
of the optimization routine is available on gitlab:

https://gitlab.com/florian.feppon/null-space-optimizer.

4.1.1 Null space gradient flows

The null space optimization algorithm enables one to solve rather arbitrary equality and
inequality constrained minimization problems of the form

min
x∈X

J(x)

s.t.

{
gi(x) = 0 for 1 ≤ i ≤ l

hj(x) ≤ 0 for 1 ≤ j ≤ m,

(21)

where X is a set equipped with some kind of manifold structure, J is the objective function
and (gi)1≤i≤l and (hj)1≤j≤m are respectively the equality and inequality constraints.

The null space method finds local minimizer to eq. (21) by solving the following Or-
dinary Differential Equation (ODE) on the manifold X :

ẋ = −αJξJ(x)− αCξC(x) (22)

where −ξJ(x) and −ξC(x) are two orthogonal directions which are respectively called the
null space steps and the range space steps. The null space step −ξJ(x) is the steepest
descent direction for decreasing the objective function J which does not increase the
violation of the constraints at first order. Its expression reads

ξJ(x) := ∇J(x)−
l∑

i=1

λi∇gi(x)−
m∑
j=1

µj∇hj(x) (23)
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where (λi)1≤i≤m and (µj)1≤j≤m are optimal Lagrange multipliers which can be obtained
by solving a dual quadratic minimization problem. The range space step −ξC(x) is a
Gauss-Newton direction decreasing the violation of the constraints:

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x) (24)

where CĨ(x)(x) =
[
(gi(x))1≤i≤l (hj(x))j∈Ĩ(x)

]T
is the column vector gathering the equality

constraints and the violated inequality constraints Ĩ(x) := {1 ≤ j ≤ m |hj(x) > 0}.
Finally, αJ and αC are two positive parameters which allows to control the pace at which
the initial violation of the constraints needs to decrease.

The ODE of eq. (22) is a generalization of the standard gradient flow ẋ = ∇J(x) to
constrained inequality and equality constrained problems. However, its discretization is
not completely standard since its right-hand side can be discontinuous, leading to potential
undesired oscillations. We refer the reader to Feppon et al. (2019b) for further information
regarding its numerical treatment.

The continuous trajectories x(t) solutions to eq. (22) have “good” mathematical prop-
erties: they gradually reach the feasible domain, before evolving tangentially to the con-
straints until finding a local minimizer satisfying the first order optimality (Karush Kuhn
and Tucker) conditions. The typical behavior of these trajectories is illustrated on fig. 10
for a simple, but representative optimization problem. Optimization trajectories automat-

−2 0 2 4
x0

−1

0

1

2

3

x 1

10.000

20.000
30.000

40.000
50.000

60.000
70.000

x1
x2
x3
x4

min
(x1,x2)∈R2

= x2
1 + (x2 + 3)2

s.t.

{
−x2

1 + x2 ≤ 0

−x1 − x2 − 2 ≤ 0.

(25)

Figure 10: Four optimization trajectories of the null space gradient flow for a simple
minimization problem of eq. (25). The unfeasible domain is depicted in grey and the
global minimizer is represented by the red cross.

ically detect whether they need to evolve tangentially to the inequality constraint barriers
or if they rather need to go into the interior of the feasible domain. These properties are
preserved after discretization of the ODE of eq. (22) so long as the time step selected for
the time marching scheme is sufficiently small. Hence, the success of the optimization
routine does not depend on the tuning of unphysical metaparameters.
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4.1.2 Application of the null space algorithm to shape and topology optimization

In the context of solving the heat exchanger design problem of eq. (6), X is the set of
shapes with sufficiently smooth (Lipschitz) boundaries:

X = {Ωf ⊂ D |Ωf is Lipschitz },

while the time derivative ẋ of eq. (22), which is the descent direction selected by the
null space algorithm, is a deformation vector field ẋ ≡ θ ∈ W 1,∞(D,Rd) for the current
fluid-solid interface Γ. This vector field is computed from the knowledge of shape deriva-
tives through the Riesz identification theorem which enables to convert linear forms into
gradients. Considering a scalar-product 〈 , 〉V on a Hilbert space V ⊂ W 1,∞(D,R3) of
such vector fields, the gradient ∇F (Ωf ) ∈ V associated to the shape derivative DF (Ωf )
is the unique vector field satisfying

∀θ ∈ V, 〈∇F (Ωf ),θ〉V = DF (Ωf )(θ). (26)

Typically, one considers V = H1(D,Rd) and a common choice of the scalar product 〈 , 〉V
is

〈θ,θ′〉V :=

∫
D

(θ · θ′ + h2∇θ : ∇θ′)dx

where h is a regularization parameter homogeneous to a length and of the order of the mesh
resolution. The identification operation of eq. (26) reduces to solve a linear system with
right-hand side DF (Ωf ); it takes place at every iteration of the null space optimization
routine when computing the gradients of the objective and constraint functions in eq. (23),
as well as the transpose DCT

Ĩ(x)
of the differential of the violated constraints in eq. (24).

Finally, the discretization of the null space gradient flow given by eq. (22) with an
Euler time step ∆t and a deformation vector field θn at iteration n requires to achieve an
operation of the form

Ωn+1
f = ρ(Ωn

f ,∆tθ
n) (27)

where ρ is a mapping (called a“retraction”) which updates the current shape Ωn
f according

to the descent direction ∆tθn into an improved design Ωn+1
f . There is relative freedom for

the step of eq. (27); we resort to a level set based remeshing approach which is explicited
in the next section 4.2.

4.2 Body fitted mesh evolution method for numerical shape updates

We consider a body-fitted approach for the purpose of numerical shape updates based on
the algorithm introduced in Allaire et al. (2014). This method allows complex topological
change to occur in the course of the optimization while still maintaining an explicit dis-
cretization of the fluid and solid boundaries, which is especially relevant for fluid solvers
needing to capture boundary layer effects in the vicinity of the fluid-solid interface. It
brings the additional advantage of allowing users to use in principle their own physics
solvers on the discretization mesh.

Let θn be a given vector field which has been computed by the null space method
on the nodes of a computational mesh T n discretizing D and Ωf ⊂ D (fig. 11.1). The
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method provides as an output a new mesh T n+1 adapted to the discretization of the
evolved domain Ωn+1

f := ρΩn
f
(∆tθn). The algorithm, which implicitly defines the mapping

ρ of the domain update as in eq. (27), consists in performing two key steps illustrated on
fig. 12:

1. a deformation of Ωn
f using the level-set method (Osher and Sethian (1988)) on the

fixed mesh T n. The updated domain Ωn+1
f is obtained implicitly on the mesh T n as

the negative subdomain of a level-set function φn+1:

Ωn+1
f = {x ∈ D |φn+1(x) ≤ 0}.

The function φn+1 is computed by solving the advection equation{
∂φ

∂t
(t, x) + θ(t, x) · ∇φ(t, x) = 0, x ∈ D,

φ(0, x) = φn(x), x ∈ D,

and by setting φn+1(x) := φ(∆t, x). The initialization φn is a level-set function adapted
to the current domain Ωn

f (usually taken to be its signed distance function dΩn
f
).

2. A remeshing step, which converts the current mesh T n and the level-set φn+1 into
a new mesh T n+1 adapted to the new domain Ωn+1

f . Such is achieved by splitting
mesh elements of T according to the zero level set of φn+1 before applying remeshing
operations in order to obtain a high quality discretization mesh in view of numerical
computations. In the numerical applications of our previous works, the remeshing op-
erations are performed in 2D or in 3D thanks to the open-source software mmg (Dapogny
et al. (2014); Cirrottola and Froehly (2019)).

11.1: Vector field θn on the
mesh T n 11.2: Level set function φn

Figure 11: Illustration of the level set based mesh evolution algorithm of Allaire et al.
(2013) on a 2D setting. A vector field θ is defined at the vertices of the computational
mesh T n for the background domain D in which Ωn

f ⊂ D is explicitly discretized (in
blue on fig. 11.1). A level-set function φn adapted to Ωn

f is computed on the mesh T n

(fig. 11.2). Figures from Feppon (2019); Feppon et al. (2019a).
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12.1: Advection 12.2: Isosurface discretization 12.3: Remeshing

Figure 12: Mesh evolution algorithm illustrated on the 2D setting of fig. 11. 1. level
set function φn is advected on T n and yields a new level set function φn+1 (fig. 12.1). 2.
The mesh elements of T n are split according to the zero level set of φn+1 (fig. 12.2). 3.
Remeshing operations are performed to obtain a new high quality mesh T n+1 adapted to
the new domain Ωn+1

f (fig. 12.3).

4.3 Numerical illustrations

We complete these notes with a few numerical illustrations of the method reported from
our recent work Feppon et al. (2021). We consider the problem of designing a 3D heat
exchanger featuring transverse cold and hot fluid channels in a cubeD = (0, 1)3 as depicted
on fig. 13. The input temperatures for the hot and cold channels are Thot = 100 and
Tcold = 0. The physical parameters of the state equations eqs. (1) and (3) are given by

ρ = 10, kf = 1, ks = 10, cp = 200.

The design problem of eq. (6) supplemented with the volume constraints described by
eq. (7) is solved with the following values for the maximum pressure drop, maximum
volume and minimum wall thickness:

DP0 = 3.72, V0 = 0.15, dmin = 0.04.

Note that for more robustness of the computational methodology, we implement the
minimum distance constraint using two averaged distance constraints Pcold→hot(Ωf ) and
Phot→cold(Ωf ) rather than only the first one of them as in eq. (16). The results of the topol-
ogy optimization methodology presented above are illustrated on the next figures which
show the outcome of 500 iterations of the procedure. The state and adjoint equations of
eqs. (1), (3), (10) and (11) where solved with parallel computing using the finite-element
method on discretization meshes featuring up to 4 million of tetrahedra. Figure 14 shows
the numerical evolution of the shapes of the total fluid domain Ωf in the course of the
iterations, starting from an initialization defined as two intricated array of pipes for each
of the hot and cold fluid components. Complex topological changes occur in the course of
the optimization process, but both fluid phases remain nonetheless well separated. The
final design is shown in more details on fig. 15, where the final distribution of hot and cold
fluid components are depicted as well as sectional views of the solid domain. Finally, the
convergence histories of the objective and constraint functions are displayed on fig. 16.
The behavior of the null space gradient flow algorithm of section 4.1 can be appreciated,
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x

z
y

d(Ωf,hot,Ωf,cold) ≥ dmin

Thot

Tcold

D

Ωf,hot

Ωf,cold

Figure 13: Schematic of the 3D heat exchanger design problem. Figure from Feppon et al.
(2021).

Figure 14: Iterations 0, 25, 50, 130, 200 and 500 of the topology optimization of the heat
exchanger test case of fig. 13. The colors correspond to the magnitude of the temperature
field. Figure reproduced from Feppon et al. (2021).

VKI - 23 -



4 NUMERICAL TOPOLOGY OPTIMIZATION 4.3 Numerical illustrations

15.1: Optimized distribution of the
cold and hot fluid components, respec-
tively colored in blue and red.

15.2: Sectional view of the topolog-
ically optimized fluid domain. The
color corresponds to the temperature
profile.

15.3: Sectional view of the topologi-
cally optimized solid domain.

15.4: Sectional view of the topologically
optimized solid domain with tetrahedral
mesh elements made visible. The diame-
ter of the sphere on the right-hand side is
equal to the prescribed minimum distance
constraint dmin = 0.04.

Figure 15: Final design for the three-dimensional heat exchanger test case of fig. 13 with
dmin = 0.04. Figure reproduced from Feppon et al. (2021).
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where one can verify that the objective function to minimize (J = −W) keeps decreasing
even after once the constraints are satisfied, which occur shortly after approximately 30
iterations. The method yields a design which is clearly more efficient than the initializa-
tion since the heat exchanged has increased by approximately 10%, but more importantly,
it satisfies the maximum pressure drop and maximum volume constraints.

0 100 200 300 400 500

−2900

−2800

−2700

−2600

−2500

16.1: Objective function (opposite of
the heat exchanged, J = −W).
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16.2: Volume fractions.
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16.3: Averaged distance between the
two phases.
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16.4: Pressure drop.

Figure 16: Convergence histories of the 3D heat exchanger test case of fig. 13. Figure
reproduced from Feppon et al. (2021).

5 Conclusions and perspectives

These notes provided an introductory exposure to a complete topology optimization
methodology for automated design of multiple fluid phase heat exchangers. The cor-
nerstones of the method are the computation of shape sensitivities, the need for taking
into account a non-mixing constraint between the different input phases, an efficient con-
strained optimization algorithm and a level-set based mesh evolution method for the
numerical shape updates. The efficiency of the approach has been illustrated on a mod-
erately large-scale 3D case.

There is still room for progress towards a mature use of the method in industrial
processes. Future works will certainly improve again the efficiency of the methodology by
making use of parallel three-dimensional remeshing. Another improvement would be the
extension of the methodology to more complex physical models involving turbulence or
nonlinear thermal effects.
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