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Abstract. Many techniques have been developed to infer Boolean reg-
ulations from a prior knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean regulations for tran-
scriptional and signaling networks, but they fail to infer regulations that
control metabolic networks. This paper provides a formalisation of the
inference of regulations for metabolic networks as a satisfiability problem
with two levels of quantifiers, and introduces a method based on Answer
Set Programming to solve this problem on a small-scale example.
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1 Introduction

During the last twenty years, both the amount and the type of available data have
allowed scientists to consider intracellular processes as a whole. Boolean networks
have been refined to include non-deterministic dynamics in order to model the
response of regulatory interactions [16,2,5]. Similarly, the study of metabolism at
steady state has led to various constraint-based approaches [19,17], which usually
assume that internal metabolites are in a quasi-steady-state (QSS). The classical
approach to analyze metabolic networks at steady state is flux balance analysis
(FBA) [19]. In this approach, a linear function, e.g. biomass production, is opti-
mized with respect to stoichiometric and thermodynamic constraints, resulting
in a linear programming problem (LP).

However, both the Boolean approach for regulation and the QSS approxima-
tion for metabolism are often developed “in solo”, without considering that cellu-
lar biology is multi-layered in the sense that the metabolic layer interacts through
feed-forward and feedback loops with the regulatory layer [4,27,21,9]. Indeed,
cellular metabolism transforms nutrients into biomass constituents. Metabolic
reactions are catalysed by enzymes, which themselves are controlled by a cas-
cade of regulations involving other proteins, metabolites and abiotic factors,
such as temperature and pH. A biological system thus has several layers of con-
trol, which mutually depend on each other. It cannot be simply viewed as a
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purely hierarchical system because there are regulatory feed-forward and feed-
back mechanisms to inform each layer on the state of the other ones. In concrete
terms, some compounds produced by the metabolic layer have the capability
to block or induce signaling regulation cascades, which themselves can block
or induce transcription of genes leading to changes in the control of the initial
metabolic process.

To figure out how gene expression triggers specific phenotypes depending
on the environmental constraints [3], several constraint-based approaches for
integrating metabolic and regulatory networks have been developed that com-
bine Boolean dynamics for the regulatory layer with quasi-steady-state approx-
imations of the metabolic layer (see [17] for an overview), one of them being
FlexFlux [18], which implements the rFBA framework [9]. A major limitation
when using such frameworks to analyse regulated metabolic models is that they
require a precise description of the regulatory and signaling layers in the form
of Boolean rules. A noticeable exception is [24], where RBA is used to deduce
regulations according to perturbations of the environment. However, to induce
regulations, the authors assume that no feedback from metabolism to regula-
tion occurs, which does not correspond to the functioning of most systems. In
practice, these rules are manually curated from the literature or experimental
data. This has been done for example in the case of E. coli [8,7] and a few other
organisms. But, the need for a manual curation of Boolean rules of regulated
metabolism is a strong limitation to the use of these frameworks.

Signaling and regulatory rules can be identified from transcriptomic or phos-
phoproteomics data by solving combinatorial or MILP problems in order to
optimize data-fitting and parsimony hypotheses [23,20,26,22,25]. In this direc-
tion, the caspoTS and the BoNesis approaches [22,20,26,6] were developed for
inferring Boolean rules to model the response of regulatory and signaling net-
works from multiple time-series data. The goal of this paper is to lay foundation
for the extension of these approaches to the inference of regulatory rules driving
metabolism. This is done by discretizing both the rFBA framework (especially
the QSS approximation) and the metabolic data used as input of the inference
procedure.

This paper is structured as follows. Sect. 2 gives the background on the
dynamic rFBA framework for the simulation of coupled metabolic and regulatory
networks. In Sect. 3, we define a formal Boolean abstraction of dynamic rFBA
simulations. Then, in Sect. 4, we build on this Boolean abstraction to express
the inference of the logic of metabolic regulations as a satisfiability problem.
Finally, in Sect. 5, we apply the obtained inference framework on a case study
of simplified core carbon metabolism.

Notations The cardinality of a finite set X is denoted by |X|. Given a vector
x ∈ Dn and a set of indices I ⊆ {1, · · · , n}, xI denotes the vector of dimen-
sion |I| equal to (xi)i∈I . The Boolean domain is denoted by B = {0, 1}. Given
two Boolean vectors x, y ∈ Bn, we write x � y iff ∀i ∈ {1, · · · , n}, xi ≤ yi.
Finally, given a non-negative real vector s ∈ Rn≥0, we denote by β(s) ∈ Bn its
binarization, i.e. ∀i ∈ {1, . . . , n}, β(s)i = 1, if si > 0, and β(s)i = 0, if si = 0.
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2 Background: regulated metabolic networks

2.1 Coupling metabolic and regulatory networks

A regulated metabolic network consists of two layers. The regulatory layer is
modelled by a Boolean network, which controls the metabolites and fluxes of
the metabolic layer, which is characterized by linear equations. Feedbacks are
provided by the components of the metabolic network, which are involved in the
Boolean functions associated with the regulatory layer.

Formally, a metabolic network is given by a set of biochemical reactions
linked together by the metabolites that they consume and produce.

Definition 1. A metabolic network is a tuple N = (Int,Ext,R, S) with a set of
internal metabolites Int, a set of external metabolites Ext, a set R of irreversible
reactions, and a stoichiometric matrix S ∈ R(|Int|+|Ext|)×|R|.

Given flux bounds lr, ur ∈ R, 0 ≤ lr ≤ ur, for each r ∈ R, a metabolic steady
state is a flux vector v ∈ R|R| with SInt,R ·v = 0 and lr ≤ vr ≤ ur, for all r ∈ R.
Here SInt,R denotes the submatrix of S whose rows correspond to the internal
metabolites.

For the sake of simplicity, we assume that all reactions are irreversible. Re-
versible reactions may be split into a forward and backward reaction if necessary.

Definition 2 (Input and output metabolites). For an external metabolite
m ∈ Ext, we denote by wm = wm(t) ∈ R≥0 the concentration of m at time t ≥ 0.

An external metabolite m ∈ Ext is called an input (resp. output) metabolite
if there exists a reaction r ∈ R with Smr < 0 (resp. Smr > 0). Here Smr denotes
the stoichiometric coefficient of metabolite m in reaction r. The set of all input
metabolites is denoted by Inp ⊆ Ext.

A regulatory network is a set of biological entities (e.g. genes, reactions,
metabolites) or even abiotic entities (e.g. temperature, pH) that are linked by
causal effects: the activity of some nodes can affect positively or negatively the
activity of other nodes. This activity can be represented by a Boolean network.

Definition 3. A Boolean network (BN) of dimension n is a function f : Bn →
Bn. For each i ∈ {1, . . . , n}, the i-th component fi : Bn → B is called the local
function of i.

The influence graph G(f) of f is a signed digraph (V,E) with V = {1, . . . , n}
and E ⊆ V ×{−,+}×V such that (i, s, j) ∈ E if and only if there exists x ∈ Bn
with xi = 0 such that s · fj(x) < s · fj(x1, · · · , xi−1, 1, xi+1, · · · , xn). In the
following we will slightly abuse notation by identifying G(f) with its edge set,
i.e. G(f) = E.

A BN f is locally monotone whenever for each influence (i, s, j) ∈ G(f),
there is no influence with opposite sign, i.e. (i,−s, j) /∈ G(f).

We assume here that the fluxes of a metabolic network can be controlled by
the activity of the input metabolites and additional regulatory proteins. More
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precisely, the activity of some reactions can be blocked (forced to have a zero flux)
whenever certain conditions on the activity of input metabolites and regulatory
proteins are met. Moreover, we assume that the activity of regulatory proteins is
mediated by the metabolic network only. The resulting model is then supposed to
run on two time scales: the metabolic network is a fast system, which, depending
on the activity of input metabolites and regulatory proteins will converge to a
steady state of the reactions fluxes; the regulatory network is a slow system,
which gets updated once the metabolic network is in steady state.

Definition 4 (Regulated metabolic network). A regulated metabolic net-
work is a triplet (N ,P, f) composed of:

– a metabolic network N = (Int,Ext,R, S) with k input metabolites Inp =
{e1, · · · , ek} ⊆ Ext and m reactions R = {r1, · · · , rm};

– a set of d regulatory proteins P = {p1, . . . , pd}
– a BN f of dimension n = |Inp|+ |R|+ |P| where {1, . . . , n} = Inp ∪R ∪ P

such that G(f) is a bipartite graph between P and Inp ∪R.

In this work, local functions for input metabolites in the BN f are never used
(although the local functions of reactions may depend on them). Therefore we
set arbitrarily fe = 0,∀e ∈ Inp.

The BN f models the regulation of the fluxes in the metabolic network N .
This regulation is always in one direction: either a flux vr is only restricted
by the flux bounds lr ≤ vr ≤ ur, whenever fr(x) = 1, or it is blocked, vr =
0, whenever fr(x) = 0. Following this convention, a reaction r ∈ R is never
regulated whenever fr(x) = 1. As we will define formally in the next section, the
regulations impact the steady states of the metabolic network.

An example of regulated metabolic network is shown in Fig. 1. This example
is based on a highly simplified model of core carbon metabolism, originally pro-
posed in [9]. At the metabolic level (Fig. 1a), there are 9 metabolites and m = 9
reactions. The internal metabolites are Int = {A, D, E, O2, ATP, NADH}, the
external metabolites are Ext = {Carbon1, Carbon2, Oxygen}. All the k = 3
external metabolites are input metabolites, Ext = Inp. The set of irreversible
reactions is R = {Tc1, Tc2, To2, Td, Te, Growth, Rres, R6, R7}. The stoichio-
metric coefficients are also given in Fig. 1a. By default, they are set to 1, except
for the reactions R6 and R7.

The regulatory level (Fig. 1b) of the regulated metabolism introduces d = 2
regulatory proteins: P = {RPcl, RPO2}. Thus, the Boolean network f is of di-
mension n = k+m+d = 14. It consists of 14 functions (see Fig. 1b) which map a
Boolean vector x = (xCarbon1, xCarbon2, xOxygen, xRPcl, xRPO2, xTc1, xTc2, xTo2,
xTd, xTe, xGrowth, xRres, xR6, xR7) ∈ Bn to a Boolean value in B. The local func-
tions associated with regulatory proteins in P involve only external metabolite
variables. Among the 9 functions associated with reactions, only two (Tc2, Rres)
are non-constant: they involve the two regulatory proteins.

The influence graph of the network is shown in Fig. 1c. Only the shown
nodes (RPcl, RPO2, Tc2, Rres) have a non-constant local function or are used
in the local function of another node (Carbon1, Oxygen). The influence graph
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(a) Metabolic Network

(c) Influence graph G(f) of the regulatory
Boolean network f . Nodes without in-going
or out-going edges are not represented. Pos-
itive edges are drawn in green with a regular
tipping arrow, negative edges are drawn in
red with a bar arrow.

Regulatory proteins Input metabolites

Local function fRPO2(x) fRPcl(x) fCarbon1(x) fCarbon2(x) fOxygen(x)

Boolean rule ¬xOxygen xCarbon1 0 0 0

Reactions

Local function fTc1(x) fTc2(x) fTo2(x) fTd(x) fTe(x) fGrowth(x) fRres(x) fR6(x) fR7(x)

Boolean rule 1 ¬xRPcl 1 1 1 1 ¬xRPO2 1 1

(b) Boolean Network. All Boolean functions equal to 1 correspond to reactions
which are not regulated by the Boolean network.

Fig. 1: Example of regulated metabolic network. In the metabolic net-
work (a), each node represents a metabolite and each hyperedge a reaction.
For instance, the hyperedge R7 linking {A; NADH} to {E} models the reaction
A + 3 NADH → 3 E. Integer values over hyperedges are stoichiometric coeffi-
cients, the default value is 1. (b) defines the Boolean network regulating the
metabolic network in (a), with x ∈ Bn and n = 14. (c) shows the influence (or
regulatory) graph of the Boolean network in (b), with square nodes denoting the
regulatory proteins.

shows the multi-layered regulations of the network: external input metabolites
(Carbon1, Oxygen) regulate regulatory proteins (RPcl, RPO2), which regulate
reactions (Tc2, Rres).

2.2 Dynamic rFBA

Flux Balance Analysis (FBA) [19] returns an optimal metabolic steady state,
according to a given linear objective function in the reaction fluxes. In the fol-
lowing, we assume that the objective function is to maximize the flux through
a reaction Growth. For regulated metabolic networks, the rFBA framework [9]
allows defining a discrete time series of optimal steady states, where regulatory
variables can force reaction fluxes to be zero and input metabolite concentrations
define upper bounds on uptake fluxes.
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Definition 5. Let (N ,P, f) be a regulated metabolic network with flux bounds
lr, ur ∈ R, 0 ≤ lr ≤ ur, for r ∈ R. A metabolic-regulatory steady state is a
triple (v, w, x) ∈ R|R| × R|Ext| × B|Inp|+|R|+|P| such that

– SInt,R · v = 0,
– for each reaction r ∈ R, lr · xr ≤ vr ≤ ur · xr,
– for each input metabolite m ∈ Inp and each reaction r ∈ R with Smr < 0,
vr ≤ uptake bound(wm), where uptake bound(wm) denotes the maximum
flux through uptake reaction r, given the input metabolite concentration wm.

Two successive metabolic-regulatory steady states (vk, wk, xk) at time tk,
and (vk+1, wk+1, xk+1) at time tk+1, are linked by the following relations:

1. The external metabolite concentrations wk+1 are obtained from the previous
concentrations wk by assuming the constant uptake/secretion fluxes vk for
the whole time period [tk, tk+1].

2. The Boolean state xk+1 is obtained by applying the regulatory function f
to the binarized input metabolites concentrations x′Inp = β(wk+1

Inp ) at time

tk+1, together with the binarized reaction fluxes x′R = β(vk) and the Boolean
values x′P = xkP of the regulatory proteins at time tk, i.e.,

xk+1 = f(x′)

3. (vk+1, wk+1, xk+1) is a metabolic-regulatory steady state maximizing the flux
through the Growth reaction, i.e., there is no metabolic-regulatory steady
state (v′, wk+1, xk+1) such that v′Growth > vk+1

Growth .

In this paper, we rely on the FlexFlux implementation of rFBA [18], which
assumes a fixed time step τ between successive metabolic-regulatory steady
states (tk+1 − tk = τ for any k). The Growth reaction is assumed to reflect
the growth of the cell. FlexFlux computes the evolution of the total biomass

of the cell as biomassk+1 = biomassk · evkGrowth ·τ (from a given initial biomass0).
The maximum uptake fluxes of input metabolites m ∈ Inp at step k are defined
as

uptake bound(wm) = wm/(biomassk · τ).

Finally, the update of the external metabolite concentrations is computed as

wk+1
m = wkm − (Smrv

k
r /v

k
Growth) · (biomassk − biomassk+1),

where r ∈ R is the uptake/secretion reaction for the external metabolite m
(Smr < 0 or Smr > 0), which is assumed to be unique.

An example of a dynamic rFBA simulation using FlexFlux of the regulated
metabolic network of Fig. 1 is shown in Fig. 2. It uses a time step of 0.01h and is
initialized with 100 mM of Oxygen, 20 mM of Carbon1 and 20 mM of Carbon2.
The simulation shown in Fig. 2a is composed of 70 metabolic steady states. By
applying the binarization β, these 70 metabolic steady states correspond to 5
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(a) Simulation showing the evolution of the concentrations of the external metabolites
(Oxygen, Carbon1, Carbon2) and the production of biomass by the Growth reaction.

External metabolites Regulatory proteins Reaction flows

Time wbiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0.49 17.05 2.95 20.0 82.95 0 1 10.5 0.0 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.50 18.95 1.05 20.0 81.05 0 1 6.15 0.0 6.15 0.0 0.0 6.15 6.15 0.0 0.0
0.51 20.10 0.0 20.0 79.90 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.52 20.10 0.0 20.0 79.90 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.53 22.35 0.0 17.76 77.65 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0

(b) Focus on the times from 0.49h to 0.53h in the simulation, showing the switch from
Carbon1 to Carbon2 for biomass production.

Fig. 2: Dynamic rFBA simulation of the regulated metabolic network in Fig. 1.
The simulation is done with FlexFlux and is initialized with 100mM of Oxygen,
20 mM of Carbon1, and 20 mM Carbon2. Tke time step is set to 0.01h. The flux
bounds are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) =
(0, 12.0), ∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen,
(lr, ur) = (0, 15.0).

different binarized metabolic steady states, which are shown in Tab. 1. These
binarized metabolic steady states capture the main features of the simulation.

More precisely, the simulation shows that until 0.5h only Carbon1 and Oxy-
gen are consumed to produce biomass. This corresponds to a first time period
where the behavior of the system is monotone: the binarized metabolic steady
states are equal on this time range. The presence of Carbon1 activates the reg-
ulatory protein RPcl inhibiting the reaction Tc2 according to the regulatory
rules. At 0.5h, Carbon1 is depleted and the current Boolean state x ∈ B15 is
such that xCarbon1 = 0, xRPcl = 1, xTc2 = 0 (second qualitative behavior with
equal binarization of the metabolic steady states). At 0.51h, as shown in Fig. 2b,
the Boolean state x is updated to x′ so that the Boolean state of RPcl becomes
x′RPcl = fRPcl(x) = xCarbon1 = 0. The Boolean state of Tc2 remains unchanged
because xRPcl = 1. No biomass is produced at 0.51h. This corresponds to a
third qualitative behavior. At 0.52h, the Boolean state x′ is updated to x′′: all
the node states remain unchanged except for x′′Tc2 = fTc2(x′) = ¬x′RPcl = 1.
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External metabolites Regulatory proteins Reactions

Time wBiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0.1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
0.51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0.52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
0.59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Binarization of the metabolic steady states of simulation in Fig. 2. It
contains the binarized values of the metabolic steady state computed by the
rFBA simulation. A timepoint t appears in the table if and only if the bina-
rization of the simulated steady state is different from the binarized metabolic
steady state of time t− 1.

This corresponds to a fourth qualitative behavior. The reaction Tc2 is not in-
hibited anymore, and biomass is produced due to the uptake of Carbon2 and
Oxygen (through Tc2, Growth and Rres) until Carbon2 depletion at t = 0.59h
(fifth qualitative behavior).

3 Boolean abstraction of dynamic rFBA

In the previous example, we illustrated how the simulation of a regulated metabolic
network may generate time-periods for which the qualitative behavior is simi-
lar, meaning that the variation of all the metabolic variables is monotone and
the Boolean values of the regulatory proteins are constant. In this section, we
introduce a discrete definition of steady states to capture the monotone behav-
iors observed in rFBA simulations. This allows introducing a discretized form of
rFBA, which will be used in the next section for the reverse-engineering frame-
work.

3.1 Boolean metabolic steady states

Given a metabolic network N = (Int,Ext,R, S), we derive a logical charac-
terization of the notion of steady state, considering that reactions are either
inactive or active, and metabolites either absent or present. This will result in a
set of Boolean metabolic steady states that form an over-approximation of the
continuous steady states.

We associate all reactions with propositional variables V = {vr}r∈R. For each
metabolite m ∈ Int]Ext, we introduce a variable zm

+ as a Boolean abstraction
of the production of m and a variable zm

− as a Boolean abstraction of the
consumption of m:

∀m ∈ Int ] Ext, zm
+ def

=
∨
r∈R,
Smr>0

vr, zm
− def

=
∨
r∈R,
Smr<0

vr,

(where an empty disjunction is considered to be false).
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For each internal metabolite m, we introduce a variable ẑm which is equal
to 1 iff m is in a logical steady state:

∀m ∈ Int, ẑm
def
= (zm

+ ⇔ zm
−).

For the external metabolites, we introduce propositional variables Vext = {zm}m∈Ext

indicating whether or not m is present in the environment. The formula

N̂Ext
def
=

∧
m∈Ext

(zm
− ⇒ zm)

then states that an external metabolite can only be consumed if it is present in
the environment.

Definition 6 (Boolean metabolic steady state). A Boolean metabolic steady
state of a metabolic network N = (Int,Ext,R, S) is a Boolean vector ν̂ ∈
B|Ext|+|R| which is a satisfying assignment of the following logical steady state
formula:

N̂ def
= N̂Ext ∧

∧
m∈Int

ẑm

We denote by MSSB(N ) ⊆ B|Ext|+|R| the set of all the Boolean metabolic steady
states of the metabolic network N .

As an immediate consequence of this definition, we get the following property:

Property 1. For each metabolic-regulatory steady state (v, w, x) of the regulated
metabolic network (N ,P, f), the binarized value β(w, v) of the external metabo-
lite concentrations w and the reaction fluxes v is a Boolean metabolic steady
state, i.e., β(w, v) ∈ MSSB(N ).

Note that the converse is not true: since the logical characterization neglects
the stoichiometry, Boolean metabolic steady states may have no real-valued
counterpart.

Applied to the example, the internal metabolic constraints are the following:
zA

+ = vTc1 ∨ vTc2, zA
− = vR6 ∨ vR7 ∨ vGrowth

zD
+ = vR6, zD

− = vTd, zE
+ = vR7, zE

− = vTe
zO2

+ = vTo2, zO2
− = vRres

zATP
+ = vR6 ∨ vRres, zATP

− = vGrowth

zNADH
+ = vGrowth, zNADH

− = vR7 ∨ vRres

The logical steady state constraints equivalent to N̂ = 1 are obtained by
gathering contraints on internal and external metabolites:

vTc1 ∨ vTc2 = vR6 ∨ vR7 ∨ vGrowth

vR6 = vTd vR7 = vTe vTo2 = vRres

vR6 ∨ vRres = vGrowth vR7 ∨ vRres = vGrowth

vTc1 ⇒ zCarbon1 vTc2 ⇒ zCarbon2 vTo2 ⇒ zOxygen
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From these equations, we deduce that there are 38 Boolean metabolic steady
states for the example shown in Fig. 1. These Boolean metabolic steady states are
detailed in Appendix A. Among them, we recover the five binarized metabolic-
regulatory steady states (Table 1) appearing in the rFBA simulations of Fig.2.

3.2 Boolean dynamics

Using the logical characterization of metabolic steady states, we define a Boolean
counterpart of dynamic rFBA (Sect. 2.2). A Boolean state of the regulated
metabolic network (N ,P, f) assigns a Boolean value to external metabolites,
reactions, and regulatory proteins, which gives a Boolean vector of dimension
n = k + m + d. Such a Boolean state x ∈ Bn should match with a Boolean
metabolic steady state. Denoting by M = Ext ∪ R the external metabolites
and reactions, xM should verify the Boolean metabolic steady state constraints
described in the previous section (xM ∈ MSSB(N )). The general idea is then to
capture the possible successions of such Boolean states, subject to the regulations
through the regulatory proteins specified by the Boolean network f .

A key ingredient of dynamic rFBA is the objective function to maximize,
typically the fluxes of reactions producing biomass. However, at the Boolean
level, it is not possible to directly rank metabolic steady states according to their
biomass production, as this will be either absent or present. Thus, a specific
Boolean objective function has to be provided to score a Boolean metabolic
steady state. This takes the form of a function ô mapping Boolean metabolic
steady states to natural numbers: ô : Bk+m → N. The Boolean dynamics will
only select Boolean metabolic steady states maximizing this supplied objective.

When considering possible next states, it is crucial to account for those where
the input metabolites change their value. Hereafter, we consider any possible
change.

The Boolean dynamic rFBA is formalized by a function nextB(N ,P,f,ô) which
associates any Boolean state of the regulated metabolic network to a set of
admissible next states:

Definition 7 (Boolean dynamic rFBA: nextB(N ,P,f,ô) : Bn → 2B
n

). For

any Boolean states x, y ∈ Bn, y ∈ nextB(N ,P,f,ô)(x) if and only if for x′ =

(yInp, xR∪P) ∈ Bn,

1. the values of the regulatory proteins are computed synchronously from x′

according to f : yP = fP(x′),
2. y matches with a Boolean metabolic steady state: yM ∈ Z(x′), and
3. the matching Boolean metabolic steady state maximizes the supplied objective

function: ∀y′M ∈ Z(x′), ô(yM) ≥ ô(y′M).

Here Z(x′) = {z ∈ MSSB(N ) | zInp = x′Inp, zR � fR(x′)} is the set of Boolean
metabolic steady states that match with the value of external metabolites and with
the regulations from x′.
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Let us consider the regulated metabolic network from Fig. 1. It appears that
the steady states maximizing the growth maximize the input fluxes. Thus, we
set the Boolean objective function ô as the sum of input reactions:

ô(x) = xTc1 + xTc2 + xTo2 .

Consider the Boolean state from Table 1 at time 0, which we name x, and
the next Boolean state at time 0.51, which we name y, with the same input
metabolite values (xInp = yInp). Using the notation from the above definition, we
set x′ = x. Imagine the case where no reactions is regulated, i.e., the regulatory
BN is of the form f ′r(x) = 1 for every r ∈ R. Among the Boolean metabolic
steady states z matching the input values (zInp = x′Inp), the ones that maximize
ô always verify zTc2 = 1 (Boolean metabolic steady states 26, 29, 32, 38 in the
Table 3 in Appendix A), which does not match with y. Thus y would not be an
admissible next state.

Considering now the regulatory BN f of Fig. 1, we obtain fTc2(x′) = ¬x′RPcl =
0 and for each other reaction r ∈ R \ {Tc2}, fr(x′) = 1. The set Z(x′) contains
4 matching optimal Boolean steady states (rows 25, 28, 31, 37 of Table A.3),
among them the one matching with y. Thus y ∈ nextB(N ,P,f,ô)(x).

Let x be now the Boolean state at time 0.1, and y the next Boolean state at
time 0.51, where the input metabolites have a different state (Carbon1 switched
to 0). Let x′ be equal to x except for the input metabolites, which are equal to
yInp. We obtain that fRPO2,RPcl(x

′) = (¬x′Oxygen, x
′
Carbon1) = (0, 0) = yRPO2,RPcl.

Moreover, fTc2(x′) = ¬x′RPcl = 0 and for each other reaction r ∈ R, r 6= Tc2,
fr(x

′) = 1. In this case, there is only one Boolean metabolic steady state z
such that zInp = x′Inp and zR � fR(x′). It appears that it matches with y, i.e.,

z = yM; thus y ∈ nextB(N ,P,f,ô)(x).

4 Inference of regulations from rFBA time series

Given sequences of metabolic-regulatory steady states obtained by dynamic
rFBA from a ground-truth regulated metabolic network under different con-
ditions, our objective is to infer all the regulatory Boolean networks that can
reproduce the observed behaviors. Besides the ground-truth model, the inference
may suggest alternative regulatory logics.

Definition 8 (Search domain for BNs). The search domain for BNs, de-
noted by F, is constrained by an influence graph G: any candidate f ∈ F should
satisfy G(f) ⊆ G, i.e. uses at most the influences allowed in G. Moreover, we
assume that f is locally monotone.

Typically, G contains the putative influences from and to regulatory proteins.
In our case study, G is obtained from the ground-truth regulatory model f◦ by
“forgetting” the sign of influences (for each (i, s, j) ∈ G(f◦), {(i,+, j), (i,−, j)} ⊆
G), and adding putative influences.

Our inference problem mixes both linear constraints for characterizing the
optimal steady states of the metabolic network with Boolean constraints for
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characterizing the value changes of regulatory proteins. To express the inference
problem, we rely on the Boolean abstraction of dynamic rFBA presented in the
previous section .

4.1 Approximation as a Boolean satisfiability problem

We propose a relaxation of the inference problem by the means of the Boolean
dynamic rFBA interpretation given in Sect. 3.

Inputs of the relaxed inference problem. The inputs of the problem are (i)
a metabolic network N and a set of regulatory proteins P, (ii) sequences of
metabolic-regulatory steady states, represented by sets of pairs (st, st+1), with
st = (vt, wt, xt) and st+1 = (vt+1, wt+1, xt+1) following the notation from Def. 5:
the observed changes of metabolic-regulatory steady states are given as T ⊆ S×S
with S = R|Inp|+|R| ×B|RPs|, (iii) a domain of putative regulatory BNs F of di-
mension n = |Inp|+ |R|+ |P|, (iv) a Boolean state objective score ô : Bn → N.

Relaxed inference problem The relaxed inference problem consists then in iden-
tifying the f ∈ F such that for each (s, s′) ∈ T ,

β(s′) ∈ nextB(N ,P,f,ô)(β(s)).

Formulation as a satisfiability problem. Relying on the Boolean dynamic rFBA
abstraction, the inference problem boils down to a satisfiability problem in propo-
sitional Boolean logic using two levels of quantifiers (2-QBF):

∃f ∈ F,∀(s, s′) ∈ T, ∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x′), yR � fR(x′),

∀z ∈ MSSB(N ), (zInp 6= x′Inp ∨ zP 6= fP(x′) ∨ zR 6� fR(x′) ∨ ô(z) ≤ ô(y))

with x′ ∈ Bn defined as x′Inp = β(s′)Inp and x′R∪P = β(s)R∪P .

Note that without the Boolean optimization criteria ô (equivalently ô(z) = c),
the problem reduces to a SAT problem where the only constraints relate to the
local functions of the regulatory proteins:

∃f ∈ F,∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x′)

Indeed, yR � fR(x′) is always verified whenever fr(x) = 1 for each r ∈ R.

Since the Boolean dynamic rFBA gives an over-approximation of metabolic
steady states, and even assuming that the Boolean objective function ô matches
with the optimal metabolic steady states, our formulation leads to an approxi-
mation of admissible regulatory BN f : it may happen that a spurious Boolean
metabolic steady state (having no real counter part) has a strictly higher value
with ô than non-spurious ones.
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4.2 Implementation in Answer-Set Programming

Answer-Set Programming (ASP) [1,12] is a declarative framework allowing solv-
ing combinatorial satisfaction problems. It relies on the stable model seman-
tics [10]. The basic idea of ASP is to express a problem in a logical format so
that the (logic) models of its representation provide the solutions to the original
problem. Problems are expressed as logic programs (first order logic predicates
expressed with rules with the shape <head> :- <body> .). Stable models of the
logic programs are referred to as answer sets. Although determining whether a
program has an answer set is the fundamental decision problem in ASP, modern
ASP solvers like clingo [13] support various combinations of reasoning modes,
among them, regular and projective enumeration, intersection and union, multi-
criteria optimization and subset minimal and maximal model enumeration [15].

The stable model semantics of ASP combined with disjunctive programming
are the key ingredients that enable expressing two quantification levels Boolean
formulas (2-QBF problem), i.e. ∃x, ∀y, φ(x, y) where φ(x, y) is a quantifier-free
propositional formula (ΣP

2 -complete) [10]. The encoding of 2-QBF relies on the
so-called saturation technique [11,14]. Essentially, for fixed x and y, the encoding
ensures that a maximal (saturated) answer-set is returned if and only if φ(x, y).
Thus, whenever there exists y such that φ(x, y) does not hold (counter-example),
a smaller answer-set is returned. Following the subset-minimal stable semantics,
the 2-QBF problem is satisfiable if and only if only saturated answer-set are
subset-minimal.

5 Case study

As a proof of concept, we apply our inference framework to the simplified core
carbon metabolism described in Fig. 1. First, from this ground-truth model, we
generate sample dynamic rFBA simulations for different input conditions, re-
producing existing biological observations [9]. Next we take these simulations as
input for our method, together with an influence graph extending the one from
the ground truth model with additional putative regulations. Using our infer-
ence method, we then enumerate BNs that are compatible with both the simu-
lations and the influence graph. The results show that the ground truth model is
well recovered, together with some alternative BNs. In particular, a simpler BN
matching the data is identified, which uses fewer regulations. It turns out that the
missing regulation is not needed to reproduce the expected biological behaviour.
Our implementation relying on the ASP solver clingo [13] together with the
case study is available at https://github.com/bioasp/boolean-caspo-flux.
They can be reproduced using the notebooks and docker image at https:

//doi.org/10.5281/zenodo.5060984.

Input simulations We designed six dynamic r-FBA simulations of the BN of
Fig. 1(b) to mimic the studies of the core carbon metabolism in [9]. They cor-
respond to different sets of initially available input metabolites and regulatory
proteins (Table 3a, and Fig. 4 in Appendix B). For instance, Experiment 1

https://github.com/bioasp/boolean-caspo-flux
https://doi.org/10.5281/zenodo.5060984
https://doi.org/10.5281/zenodo.5060984
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assumes that all input metabolites (Carbon1, Carbon2, Oxygen) are available.
Experiment 2 assumes that Carbon1 and Carbon2 are present at initialization
but not Oxygen.

For each case, we use FlexFlux with an initial biomass value of 0.1 and
a time step of 0.01 to simulate the system. Each of the 6 simulations involves
200 metabolic steady states. For initial external metabolite values (zCarbon1,
zCarbon2, zOxygen), the regulatory proteins are initialized such that xRPcl =
zCarbon1 and xRPO2 = ¬zOxygen (Table 3a). Each simulation S = {(v, w, x)0, ...,
(v, w, x)200} includes 201 continuous metabolic-regulatory steady states (1 for
the initialization and 200 for the simulation). The simulations are then binarized
with SB = {(vt, zt) = β((vt, wt)) | ∀vt ∈ S}, and consecutive identical Boolean
states are removed. Table 1 shows the binarized metabolic-regulatory steady
states from the simulation of the first experiment. From the 201 continuous
metabolic steady states, 5 Boolean metabolic-regulatory steady states remain,
corresponding to the time steps {0, 1, 51, 52, 59} (see Table 4 in Appendix B
for the resulting states in each simulation).

Candidate models The search domain F for the candidate BNs is delimited
by the influence graph G of Fig. 3b, which extends the influence graph from
the ground-truth model by additional putative regulations, and by relaxing the
sign constraints. Since the influence graph G(f) of the ground-truth BN f is
included in G, we have f ∈ F. In addition, F contains all the BNs such that
fi(x) = 1, for all i ∈ Inp∪R\{Tc1, Tc2, Rres}. Furthermore, fRPcl can depend
on Carbon1, Carbon2, Tc1, and Tc2, fRPO2 can depend on Oxygen, Rres, fTc1

and fTc2 can depend on RPcl, and fRres can depend on Rres. Overall, F contains
1 944 320 BNs.

Input Metabolite Regulatory Protein

Experiment zCarbon1 zCarbon2 zOxygen xRPcl xRPO2

1 1 1 1 1 0
2 1 1 0 1 1
3 0 1 0 0 1
4 1 0 0 1 1
5 1 0 1 1 0
6 0 1 1 0 0

(a) Initial states of the six rFBA simulations used
to create the dataset for the case study.

(b) Influence graph G delimiting
the domain of putative regulatory
BNs F. Nodes without in-going
or out-going edges are not repre-
sented. Black regular tipping ar-
rows are unsigned edges, i.e. both
positive and negative edges.

Fig. 3: Input data for the case study. Table (a) summarizes the experimental
conditions used to generate the input simulations. Figure (b) shows the influence
graph delimiting the search domain for the inference problem.
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fRPO2(x) fRPcl(x) fTc1(x) fTc2(x) fRres(x) Subset minimal Ground truth

Model 1 ¬xOxygen xCarbon1 1 ¬xRPcl 1 X
Model 2 ¬xOxygen xCarbon1 1 ¬xRPcl ¬xRPO2 X
Model 3 ¬xOxygen xCarbon1 xRPcl ¬xRPcl 1

Model 4 ¬xOxygen xCarbon1 xRPcl ¬xRPcl ¬xRPO2

Table 2: Inferred models having subset minimal local functions. The
not shown local functions fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x), fTd(x),
fTe(x), fGrowth(x), fR6(x), fR7(x) are set to 1.

Boolean objective function Our inference framework requires defining an ob-
jective function ô over the Boolean metabolic steady states. Given the set of
input metabolites Inp = {Carbon1, Carbon2, Oxygen}, the objective function
is defined as ô(x) =

∑
e∈Inp xe,∀x ∈ MSSB(N ). This is motivated by the ob-

servation that maximizing biomass production often corresponds to maximizing
the uptake of inputs according to the QSS constraints. Therefore, if an available
input metabolite is not used in the observed Boolean metabolic network, then
this must be explained by at least one regulation. This objective function allows
capturing more refined behaviors at the discrete level than a standard biomass
optimization function, which may be too rough when considering discretized
values.

Results Applying the constraints from above allows inferring 40 models. All
these models share 3 local functions whose value is not constantly 1 (fRPO2(x),
fRPcl(x), fTc2(x)). They also share 9 local functions equal to 1 (fCarbon1(x),
fCarbon2(x), fOxygen(x), fTo2(x), fTd(x), fTe(x), fGrowth(x), fR6(x), fR7(x)). Fi-
nally, 2 functions can be set both to 1 or different from 1 according to the model.
The 4 smallest inferred models are described in Table 2. They can be considered
as the smallest because each local function fi of these 4 models is contained in
the local function fi of the 36 other models. Note that the ground truth, i.e. the
model used to generate the input data, is correctly inferred (Model 2).

As we represent the local Boolean functions using their disjunctive normal
form (DNF), we can focus on the simplest models by looking at the subset-
minimal ones: a Boolean function fi is smaller than a Boolean function gi if
each of the clauses of fi is a subset of a clause of gi. In this case study, there is a
single subset-minimal model: the BN 1 of Table 2. The two functions fRres(x),
fTc1(x) are set to 1 due to the subset-minimal constraint. The inferred model is
thus fRPO2(x) = ¬xOxygen, fRPcl(x) = xCarbon1, fTc2(x) = ¬xRPcl and all the
others local functions are set to 1. Note that only fRres(x) differs between the
inferred subset-minimal model and the ground truth model.

In order to check whether this subset-minimal model could be considered as
an alternative to the ground truth one, we performed dynamic rFBA simulations
with the six experimental conditions described in Table 3a. We observe that the
resulting time series are strictly identical to the simulations of the ground truth
model used to generate the dataset. This suggests that the regulation on Rres
is not necessary to reproduce the observed behaviours. The proposed subset-
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minimal model allows inferring all the needed regulations and can be considered
as the simplest regulated metabolic model matching the experimental conditions
of Table 3a. Already in [9], the authors recognize that unlike others regulations,
Rres “regulation is not necessary for the solution”. Biologically, this regulation is
only present to ensure that unnecessary enzymes decay. However, since enzyme
amounts are not explicitly represented in the rFBA framework, the dataset does
not reflect this biologic behavior, making it impossible to infer properly the
regulation. Taking into account enzymatic resources using methods such as r-
deFBA [17], should allow solving this issue. However, the inference approach will
also have to be adapted to this kind of extended metabolic modeling.

6 Discussion

We proposed a formal framework to infer Boolean rules for the regulation of
a metabolic network. The formulation of dynamic rFBA as sequence of steady
states of the regulated metabolic network enables inferring the Boolean rules
from time series under multiple conditions. A proof of concept was performed
on the simulation of the diauxic shift in carbon metabolism on a small model.

Our method builds on a Boolean abstraction of the dynamic rFBA frame-
work. It enables a formulation of the inference problem as a pure Boolean satis-
fiability problem using two levels of quantifiers, which can be efficiently solved
using Answer Set Programming. One important parameter is the Boolean ob-
jective function, which aims at identifying Boolean metabolic steady states that
match the optimal real-valued ones. This function is currently specified manu-
ally, based on biological expertise. Future work may explore how to derive an
objective function automatically. An alternative direction is to solve directly
the inference problem by mixing linear programming and Boolean constraints.
Future work will investigate the scalability of solving these different inference
problems.

Several other perspectives are to be explored. First, all regulations were con-
sidered as synchronous, which may not be the case in vivo, where regulations
can have different time scales. This choice was actually imposed by the use of
the FlexFlux implementation. Nevertheless, our method can be easily adapted
to support fully-asynchronous and asynchronous updating modes, enabling po-
tential alternative solutions. Second, the production and degradation times of
regulatory proteins and enzymes were not taken into account. Moreover, the
regulations were considered to be binary. However, we know that metabolism
proceeds by finer regulations than the abstraction proposed here, as captured
for instance by regulatory dynamic enzyme-cost FBA [17].
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Excellence project “TULIP” (grant number ANR-10-LABX-41; ANR-11-IDEX-
0002-02). Work of LP is supported by the French Agence Nationale pour la
Recherche (ANR) in the scope of the project “BNeDiction” (grant number ANR-
20-CE45-0001).
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A Binarized metabolic steady state

External metabolites Reactions
zCarbon1 zCarbon2 zOxygen vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7 Experimentation

1 0 0 0 0 0 0 0 0 0 0 0 0 2, 3, 4
2 0 0 1 0 0 0 0 0 0 0 0 0 1, 5, 6
3 0 1 0 0 0 0 0 0 0 0 0 0 2, 3
4 0 1 0 0 1 0 1 1 1 0 1 1 2, 3
5 0 1 1 0 0 0 0 0 0 0 0 0 1, 6
6 0 1 1 0 1 1 0 0 1 1 0 0 1, 6
7 0 1 1 0 1 1 0 1 1 1 0 1
8 0 1 1 0 1 1 1 0 1 1 1 0
9 0 1 1 0 1 0 1 1 1 0 1 1
10 0 1 1 0 1 1 1 1 1 1 1 1
11 1 0 0 0 0 0 0 0 0 0 0 0 4
12 1 0 0 1 0 0 1 1 1 0 1 1 4
13 1 0 1 0 0 0 0 0 0 0 0 0 5
14 1 0 1 1 0 1 0 0 1 1 0 0 5
15 1 0 1 1 0 1 0 1 1 1 0 1
16 1 0 1 1 0 1 1 0 1 1 1 0
17 1 0 1 1 0 0 1 1 1 0 1 1
18 1 0 1 1 0 1 1 1 1 1 1 1
19 1 1 0 0 0 0 0 0 0 0 0 0 2
20 1 1 0 0 1 0 1 1 1 0 1 1
21 1 1 0 1 0 0 1 1 1 0 1 1 2
22 1 1 0 1 1 0 1 1 1 0 1 1
23 1 1 1 0 0 0 0 0 0 0 0 0 1
24 1 1 1 0 1 1 0 0 1 1 0 0
25 1 1 1 1 0 1 0 0 1 1 0 0 1
26 1 1 1 1 1 1 0 0 1 1 0 0
27 1 1 1 0 1 1 0 1 1 1 0 1
28 1 1 1 1 0 1 0 1 1 1 0 1
29 1 1 1 1 1 1 0 1 1 1 0 1
30 1 1 1 0 1 1 1 0 1 1 1 0
31 1 1 1 1 0 1 1 0 1 1 1 0
32 1 1 1 1 1 1 1 0 1 1 1 0
33 1 1 1 0 1 0 1 1 1 0 1 1
34 1 1 1 1 0 0 1 1 1 0 1 1
35 1 1 1 1 1 0 1 1 1 0 1 1
36 1 1 1 0 1 1 1 1 1 1 1 1
37 1 1 1 1 0 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: All the Boolean metabolic steady states admissible for the metabolic
network N show Fig. 1a. The external metabolite Biomass is not shown since
its value can be both 0 and 1 for each Boolean metabolic steady state. The
experimentation column indicates the numbers of the experiments where the
Boolean metabolic steady states occurs.
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B Experiments and simulations

(a) Simulation of experiment 1.

(b) Simulation of experiment 2.

(c) Simulation of experiment 3.
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(d) Simulation of experiment 4.

(e) Simulation of experiment 5.

(f) Simulation of experiment 6.

Fig. 4: Simulation made with FlexFlux of the regulated metabolic network in
Fig. 1 for each experiment (Table 3a). Time step is set to 0.01. Reaction domains
are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) = (0, 12.0),
∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen, (lr, ur) =
(0, 15.0).
The same simulation graphs are obtained using the local function fRres =
¬xRPO2 and fRres = 1.
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External metabolites Regulatory proteins Reactions

Experiment Time zBiomass zCarbon1 zCarbon2 zOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

1

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2

0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
84 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
97 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

6
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 4: All the different binarized metabolic steady states of each experiment.
They are the input data used to solve the inference problem.
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27. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks
with nonlinear dynamics. Proc Natl Acad Sci USA 114(28), 7234–7239 (2017).
https://doi.org/10.1073/pnas.1617387114

https://doi.org/10.1038/msb.2009.87
https://doi.org/10.1007/s00285-017-1118-5
https://doi.org/10.1093/bioinformatics/bty139
https://doi.org/10.1093/bioinformatics/btw738
https://doi.org/10.1073/pnas.1617387114

	Learning Boolean controls in regulated metabolic networks: a case-study

