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Abstract
The objective of the present work is to compare the main Eulerian sharp-interface tracking
methods using up-to-date numerical strategies from the literature. The study is focused on the
specific case of low-Mach number formulation for the phase dynamics, and on a finite-volume
cartesian-grid discretization. Volume of fluid and Level Set methods both rely on the resolution
of an Eulerian transport equation that describes the interface and an additional step to prevent
huge deviation from the interface representation due to numerical diffusion and dispersion in
the transport step. In the VOF framework, this results in the transport of the volume fraction with
a piecewise linear construction of the interface (PLIC). In the LS framework, this takes the form
of a distance function transport which can be either a signed distance (here called Standard
Level Set (SLS)) or an hyperbolic tangent (called the Conservative Level Set (CLS)) followed
by a reinitialization step which ensures that the transported variable remains a signed distance
or an hyperbolic tangent respectively. For each method, the numerical scheme used for advec-
tion and additional step are selected because of their proven accuracy and effectiveness in the
literature for our specific framework.
Our comparison is based on 2D and 3D canonical cases of the literature (Zalesak’s Disk ro-
tation, vortex-in-a-box, sphere deformation). Our attention is drawn on a detailed analysis of
mass conservation and transport accuracy, with the use of shared metrics for all methods.
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Introduction
Direct Numerical Simulation (DNS) of two-phase problems implies that at least two non-miscible
fluids are present. This subject has been widely explored in the last decades, and several ap-
proaches were developed in order to capture the interface. This work restrains the scope to the
simulation of incompressible two-phase flows with a sharp interface representation. To this aim,
the most used techniques in the literature are Volume of fluid (VOF) [1], Level set (LS) [2] and
Front tracking (FT) [3]. While VOF and LS methods rely on an Eulerian representation of the
interface, FT methods use Lagrangian markers all belonging to the interface. This last method
will not be investigated here, it is a totally different way of handling the interface transport.
Making a choice between those methods is not trivial as they all seem to have advantages and
drawbacks regarding the application they are used for. Comparison studies are already avail-
able in the literature. However, they are often limited to 2D [4, 5] or to a single class of method
[6, 7, 8]. Moreover, recent improvements have to be included for an updated study. Here, we
investigate the capability of VOF, Standard LS and Conservative LS for under-resolved struc-
tures handling, mass conservation, accuracy and computational cost on adapted 2D and 3D
test cases.
Sec. 2 gives a brief description of the three methods considered in this work. A comparison of
these methods on test cases is presented in Sec. 3 and finally, a conclusion on the interface
tracking method choice is detailed in Sec. 4.
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Interface description
The Eulerian representation of the interface relies on an indicator function χ defined as follows

χ(x) =

{
0 if x ∈ Ωg

1 if x ∈ Ωl
(1)

with Ωg the gas part,Ωl the liquid part and x any point of the domain.
Its evolution is given by

Dχ

Dt
=
∂χ

∂t
+ u · ∇χ = 0 (2)

with u the velocity vector.
To solve this last equation numerically, χ needs a discrete representation. The VOF method
intents to solve equation (2) on the computational mesh by introducing the volume fraction of
liquid f [9] which is a discrete version of χ. For a given computational cell C of volume VC

f =

∫
C χ(x)dx

VC
(3)

f is still a very sharp and challenging quantity to solve numerically. As a circumvent, the
standard LS method solves the minimal signed distance to the interface φ instead [2]

φ(x) =


− min
∀xΓ∈Γ

|xΓ − x| if x ∈ Ωg

min
∀xΓ∈Γ

|xΓ − x| if x ∈ Ωl

0 if x ∈ Γ

(4)

where xΓ is a point belonging to the interface Γ. However, this method does not solve a quantity
related to χ any more and suffers from mass conservations issues. To improve mass conser-
vation, the LS method can also use another definition of φ which is a smooth Heaviside ψ
computed from φ, this is the conservative LS [15]

ψ =
1

2

(
tanh

(
φ

2ε

))
(5)

with 2ε the interface thickness.
The evolution of the color function c = f, φ or ψ is deduced from the following advection equation
which, in the context of low Mach two-phase flows, with divergence-free velocity ∇ · u = 0 is

∂c

∂t
+∇ · (uc) = 0 (6)

VOF method
In this work, the VOF method is based on a PLIC [10] representation of the interface .
The interface is reconstructed as a line (plane in 3D) in a mixed cell (0 < f < 1) : x · n = d.
The interface normal n is evaluated at second order using the ELVIRA [10] procedure while
the plane parameter d is deduced from the normal and the volume fraction using the analytic
relations of a chopped cube [11].
In order to alleviate possible numerical diffusion or dispersion, fluxes are computed from the
geometric reconstruction using the Weymouth and Yue dimensional-splitting (WY) scheme [12].
This allows to control the thickness of the interface and maintain it to one cell.
A dimensional-splitting scheme results in solving successive 1D advection problems :

∂f

∂t
+
∂ (usf)

∂xs
= f

∂us
∂xs

(7)
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with s the sweep direction. ∇·u = 0 does not imply
∂us
∂xs

= 0 and a direct consequence of this is

the RHS of equation (7). Hence, it is non trivial to have an exactly conservative scheme solving

those equations successively. In the WY scheme, the RHS of equation (7) f
∂us
∂xs

is replaced by

fc
∂us
∂xs

with fc = χ(xC) the indicator function evaluated at the center of a given cell. After each

sweep, a PLIC reconstruction is performed for flux computation of the next step. This gives the
following algorithm for a timestep

1. Compute the compression/dilatation factor fc

2. Perform a PLIC reconstruction by computing n and d in all mixed cells

3. Solve (7) in a given direction using Euler Implicit scheme

4. Repeat 2 and 3 for all directions to obtain fn+1

It can be shown that this algorithm leads to exact mass conservation given a divergence-free
velocity field u. WY is the only method able to keep exact mass conservation in a directional-
splitting fashion. Unsplit methods also achieve such conservation [13], but the geometrical flux
construction is way more demanding in term of implementation and computation effort. Both
approaches are limited to second order accuracy because of the geometrical nature of the
fluxes based on linear reconstruction.

SLS method
The standard LS advection method relies on the transport of φ. The discretization has a huge
impact on the mass conservation as numerical diffusion leads to artificial mass loss. This sub-
ject has been widely explored, and it has been shown that level set performs well with high-order
schemes. A complete comparison of ENO, WENO and HOUC schemes of different orders has
been done in [7]. Here, a WENO5 scheme is used for advection.
One important aspect of the SLS method is to keep the property |∇φ| = 1. If this is no longer
true, then the computation of topological properties from φ (such as normal and curvature)
would suffer from huge errors and spurious behaviour. The diffusion and dispersions of numer-
ical schemes used to solve advection will lead to the loss of this property, hence an additional
step is required. The redistancing step can be written as an evolution equation of φ in pseudo
time τ [2]

∂φ

∂τ
+ sign(φ0) (|∇φ| − 1) = 0 (8)

This results in solving a Hamilton-Jacobi equation with the corresponding HamiltonianH (φ,∇φ) =
sign(φ0) (1− |∇φ|). It can be again solved with high accuracy with a HJ-WENO5 scheme [14].
This leads to the following algorithm for a time step

1. Advance the interface by solving equation (6) to obtain φ∗

2. Compute the regularised distance sign sign(φ0) =
φ∗√

(φ∗)2 + ∆x2

3. Perform 2 iterations of equation ((8) to obtain φn+1 with the pseudo time step ∆τ = 0.5∆x

The overall method does not conserve mass as the reinitialization step is not conservative and
conservation of φ doesn’t imply conservation of mass. However, the scheme accuracy can
be very good if high order schemes are applied, the implementation is straightforward even in
multidimensional cases and the computational cost is fairly low.
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CLS method
Conservative LS method relies on a sharper representation of the interface by introducing ψ,
a smooth version of the indicator function χ. ψ is a volume fraction with a controlled interface
width ε, usually chosen as ε = ∆x/2.
For the same reasons that φ cannot maintain the property |∇φ| = 1 during transport, there is
no guarantee that the hyperbolic tangent profile ψ will remain unchanged. This takes the form
of local modifications of the interface thickness which would lead to a bad representation of the
interface and topology computation from it.
An additional equation has to be solved in pseudo time to overcome this problem [15]

∂ψ

∂τ
+∇ · (ψ(1− ψ)n− ε (∇ψ)) = 0 (9)

The stable and accurate method considered here is the ACLS of Chiodi et al. [16] where the
reinitialization is reformulated to

∂ψ

∂τ
= ∇ ·

 1

4 cosh2
(
φmap

2ε

) (|∇φmap · n| − 1)n

 (10)

with φmap = ε log

(
ψ

1− ψ

)
.

In order to ensure ψ boundness, a BHOUC5 [17] discretization is used for (6) which is a HOUC5
scheme with a switch to first order upwind when undershoots or overshoots occur in the trans-
port process. The terms in equation (10) are discretized using second order finite differences

while the normal n is computed based on n =
∇φFMM

|∇φFMM |
with φFMM a distance function

computed from a Fast Marching Method (FMM) algorithm [18]. The construction of φFMM is
fundamental in the method as it removes all oscillatory behaviour of ψ in the computation of
normals. This leads to the following algorithm for a time step

1. Advance the interface by solving equation (6) to obtain ψ∗

2. Compute the signed distance φFMM from the isocontour ψ∗ = 0.5 and φmap from ψ∗

3. Perform 1 iteration of equation (10) to obtain ψn+1 with the pseudo time step ∆τ = 0.25∆x

The overall method leads to a better mass conservation than the SLS because both transport
and reinitialization steps are conservative and the transported color function ψ represents the
liquid volume in the limit ∆x→ 0. Moreover, it allows to use high order schemes too. However,
the FMM algorithm implies more implementation and computation effort. To improve efficiency,
the FMM reconstruction and reinitialization are only performed in a narrow band of 10 cells near
the interface.

Results
Error metrics
The evaluation of the different methods is based on accuracy and mass conservation. To
provide an equal base of comparison for accuracy, the shape error Eshape is based on the

regularized Heaviside function Hε(c) which is defined as f for VOF,
1

2
tanh

(
φ

2ε

)
for SLS or ψ

for CLS. They all are smooth versions of χ with an interface thickness of 2ε = ∆x such that
Hε(c) −→

∆x→0
χ. The accuracy error is then defined as

Eshape =

NC∑
i=1

|Hε (ci,T )−Hε (ci,0)|Vi (11)
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with 0 the initial time of the simulation, T the final time, NC the number of cells in the computa-
tional domain and Vi the volume of the cell Ci.
Regarding mass conservation, VOF achieves it at machine precision and will not be displayed
for obvious reasons. The CLS method conserves ψ up to machine precision, however it does
not corresponds exactly to the volume enclosed in the 0.5 isocontour. This is why a simplex de-
composition is performed in each cell in order to find the intersections between the cell and the
interface and compute the related volume. This method leads to a second order approximation
of a volume enclosed in a given isocontour [19]. This same approach is performed for enclosed
volume in the 0 isocontour of SLS. The mass error is then defined as

Emass =

∫ T

t=0
|∆V |dt (12)

with ∆V = V (t + dt) − V (t) the variation of liquid volume computed from the simplex decom-
position method evaluated at time t and t+dt. Compared to a more classical measure of mass
loss based on the difference between initial and final volume V0 and VT , this metric gives a
better overview of the mass variation of a method with respect to time.

Zalesak’s disk rotation
The Zalesak’s disk [20] test case consists in a notched circle of radius 0.15 initially centered
at (0.5, 0.75) in a [1 × 1] domain. The notched width is 0.05 and notched length is 0.25. The

velocity field is a solid rotation defined as u =

(
2π(0.5− y)
2π(x− 0.5)

)
. The results are given for a full

rotation of the disk corresponding to a simulation time T = 1 at a CFL number of 0.5.

Figure 1. Initial and final shape for the Zalesak’s disk rotation
Figure 2. Mesh convergence of Eshape and

Emass for the Zalesak’s disk rotation

The final shape is compared with the initial shape for all methods in Figure 1. At the lowest
resolution 322, VOF keep the notch while SLS is shifted and CLS merge the two sides of the
notch. This shows how VOF is able to capture poorly resolved structure. From 642 resolution all
methods maintain the notch during the whole computation. In Figure 2, the error convergence
is displayed for all three methods. One can notice that VOF performs well even at very low
resolution while SLS and CLS perform better for high resolution with an asymptotic second
order behaviour. Regarding mass conservation, CLS is better than SLS for the low resolution
meshes while they both have the same conservation properties for the highest resolution.



ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug. - 2 Sept. 2021

Vortex in a box
Another classical test case is the vortex-in-a-box first used by Leveque to evaluate high or-
der advection schemes in incompressibles flows [21]. A circle of radius 0.15 is initially cen-
tered at (0.5, 0.75) in a [1 × 1] domain. The velocity field is deduced from the stream function

Ψ =
1

π
sin2(πx) sin2(πy) cos

(
π
t

T

)
such that it is reversed at t = T/2. The results are given for

the final time T = 8 at an initial CFL number of 0.32 (∆t is kept constant for the whole simula-
tion).

Figure 3. Vortex in a box shape at t = 4 and t = 8 with the
temporal mass evolution

Figure 4. Mesh convergence of Eshape and
Emass for the Vortex in a box

In Figure 3, VOF and CLS tend to produce numerical atomization in the thinner structures of
the serpentine while the SLS shows a more robust behaviour at the cost of mass conservation.
In Figure 4 VOF is performing better for all resolutions, this is expected as the 10242 case still
implies a thin tail which is not well resolved. Surprisingly, SLS is better at conserving mass than
CLS based on our total volume variation metric. However, the CLS method is able to retrieve
a final mass close to the initial one as demonstrated in Figure 3 which is not the case at all for
SLS.

Sphere deformation
A 3D test case is the sphere deformation, also presented in [21]. A sphere of radius 0.15 is
initially centered at (0.35, 0.35, 0.35) in a [1×1×1] domain. It is then advected by a velocity field
which induces a combination of stretching in the x-y plane and the x-z plane with an inversion
at t = T/2. The results are given for the final time T = 3 at an initial CFL number of 0.32 (∆t is
kept constant for the whole simulation).

The same conclusions can be drawn from this 3D test case : VOF and CLS produce some
numerical atomization when the interface is under-resolved as it can be seen in Figure 5 for
t = 1.5 at a mesh resolution of 1283. From Figure 6, VOF is still the most accurate method
while CLS and SLS show similar mass conservation. Apparently, the transition from 2D to 3D
doesn’t affect the overall behaviour of the methods.
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Figure 5. Shape at t = 1.5 and t = 3 for the sphere deformation
Figure 6. Mesh convergence of Eshape and

Emass for the sphere deformation

A word on computational time
To complete the comparison, the computational cost is compared between the methods. In
Figure 7, the mean walltime per iteration is given for all cases. 2D cases were run on 16 CPUs
while the 3D case was run on 64 CPUs. In 2D configurations, the VOF method is more effi-

(a) Zalesak’s disk rotation (b) Vortex in a box (c) Sphere deformation

Figure 7. Walltime per iteration for the different test cases

cient than SLS and CLS and seems to scale better with number of elements. This is because
VOF method only requires to compute fluxes and reconstruction on the interface cells and their
neighbours, hence the computational time does not scale in Nelem but in NΓ. Also, 2D compu-
tation of geometric flux and reconstruction is really fast in a split fashion. As expected, SLS is
more efficient than CLS because of the reinitialization which is more demanding in the case of
CLS.
In 3D, geometry operations are more expensive, so VOF falls behind SLS in efficiency. How-
ever, the scaling remains better with the same explanations as 2D. Finally, CLS is still the most
expensive method in 3D.

Conclusion
The 3 canonical test cases considered in this work enlighten the capabilities and limits of VOF,
SLS and CLS methods.
When the interface is well resolved, the SLS method is very interesting for its simplicity, effi-
ciency and high accuracy. Surprisingly, the CLS doesn’t seem to improve mass conservation
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with respect to the Emass metric. Moreover, the method implies an increase in computational
time which is more important than SLS and VOF. Finally the VOF method is capable of handling
under-resolved structures and conserves mass exactly at the cost of more implementation ef-
forts and computational time in 3D.
Please, note that other metrics can be used for mass conservation and would lead to different
conclusions. For example, if one chose to compute the mass error as VT − V0, then the CLS
method is better than SLS for the reversed test cases as it is able to retrieve the mass that
was lost during the first half of the simulation. However a gain or a loss of mass is still a mass
variation due to numerical errors, and in real applications, the flow field won’t reverse itself to
allow compensation of mass errors. This is why Emass has been introduced here.
Finally, this work is limited to uniform cartesian grids where VOF remains fairly simple and ef-
fective. This is not the case anymore when dealing with unstructured meshes because of the
geometric nature of the method.
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