
HAL Id: hal-03203572
https://hal.science/hal-03203572

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about transfinite sequences (extended
abstract)

Stéphane Demri, David Nowak

To cite this version:
Stéphane Demri, David Nowak. Reasoning about transfinite sequences (extended abstract). ATVA
2005 - 3rd International Symposium on Automated Technology for Verification and Analysis, Doron A.
Peled; Yih-Kuen Tsay, Oct 2005, Taipei, Taiwan. pp.248-262, �10.1007/11562948_20�. �hal-03203572�

https://hal.science/hal-03203572
https://hal.archives-ouvertes.fr

Reasoning about transfinite sequences
(extended abtract)?

Stéphane Demri1 and David Nowak2

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan, France
2 Deparment of Information Science, The University of Tokyo, Japan

Abstract. We introduce a family of temporal logics to specify the be-
havior of systems with Zeno behaviors. We extend linear-time temporal
logic LTL to authorize models admitting Zeno sequences of actions and
quantitative temporal operators indexed by ordinals replace the stan-
dard next-time and until future-time operators. Our aim is to control
such systems by designing controllers that safely work on ω-sequences
but interact synchronously with the system in order to restrict their be-
haviors. We show that the satisfiability problem for the logics working
on ωk-sequences is expspace-complete when the integers are represented
in binary, and pspace-complete with a unary representation. To do so,
we substantially extend standard results about LTL by introducing a
new class of succinct ordinal automata that can encode the interaction
between the different quantitative temporal operators.

1 Introduction

Control of physical systems. Modelling interaction between a computer system
and a physical system has to overcome the difficulty of the different time scales.
For example, reasoning about the connection between the physical description
of an electric circuit and its logical description in VHDL (standard language
designed and optimized for describing the behavior of digital systems) needs to
take into account that the two descriptions are dealing with objects running at
distinct speeds. The speeds can be so different that some abstraction consists in
assuming one system evolves infinitely quicker than the other one. Another kind
of interaction consists of controlling a physical system by a computer system.
Usually, a physical system is modelled by differential equations. Solving those
equations can then involve computations of limits. For instance, in the bouncing
ball example [14], in a finite amount of time an infinite number of actions can be
performed. It is a Zeno sequence of actions. However, Zeno behaviors are usually
excluded from the modelling of real-time controllers, which is a quite reasonable
requirement (see e.g. [7]), but also from the modelling of the physical systems,
see some exception in [5]. This is a quite drastic limitation, since Zeno sequences
are often acceptable behaviors for physical systems.

? The first author acknowledges partial support by the ACI “Sécurité et Informatique”
CORTOS. The second author acknowledges partial support by the e-Society project
of MEXT. Part of this work was done while the second author was affiliated to LSV,
CNRS & ENS de Cachan.

Beyond ω-sequences. Our main motivation in this paper is to model Zeno be-
haviors and ultimately to control physical systems admitting such behaviors.
To do so, we introduce a specification logical language that is interpreted on
well-ordered linear orderings. Reasoning problems based on this logical language
should admit efficient algorithms, as good as those for standard specification
languages as linear-time temporal logic LTL. The ω-sequences are already fa-
miliar objects in model-checking, see e.g. [28], even though such infinite objects
are never manipulated when model-checking finite-state programs. Indeed, most
problems on Büchi automata reduce to standard reachability questions on finite
graphs. In a similar fashion, the behaviors of physical system are modeled in
the paper by sequences indexed by countable ordinals, i.e. equivalence classes of
well-ordered linear orderings, even though as we will show most problems will
also reduce to questions on finite graphs. For instance, the law of movement of
the bouncing ball is modelled by a set of sequences of length ω2. The specifi-
cation of the ball, i.e. the set of acceptable behaviors, is also characterized as
a set of sequences of the same length ω2. On the other hand, the controller is
a computer system whose complete executions are ω-sequences. In this paper,
we allow Zeno behaviors of physical systems and we will present a specification
language working on sequences indexed by ordinals greater than the usual first
infinite ordinal ω.

Our contribution. We introduce a class of logics LTL(α) indexed by a count-
able ordinal α closed under addition whose models are sequences of length α.
Quantitative extensions of the standard next-time X and until U operators are
considered by allowing operators of the form X

β and U
β with β smaller than α.

As shown in the paper, for every α ≤ ωω, LTL(α) can be viewed as a fragment
of the monadic second-order theory 〈ωω, <〉 known to be decidable, see e.g. [10].
For every k ≥ 1, we show that LTL(ωk) satisfiability is pspace-complete with an
unary encoding of integers and expspace-complete with a binary encoding. This
generalizes non-trivially what is known about LTL. We reduce the satisfiability
problem to the emptiness problem of ordinal automata recognizing transfinite
words [9, 13, 29, 19, 8]. The reduction entails that the satisfiability problem has
an elementary complexity (by using [11]) but does not guarantee the optimal up-
per bound. To do so, we introduce a class of succinct ordinal automata of level k,
k ≥ 1 in which the LTL(ωk) formulae can be translated into and we prove that
the emptiness problem is in nlogspace. Succinctness allows us to reduce by one
exponential the size of the automata obtained by translation which provides us
the optimal upper bound. Finally, we introduce and motivate a control problem
with inputs a physical system S modelled by an ordinal automaton working on
ωk-sequences, and an LTL(ωk) formula φ describing the desirable behaviors of
the system. The problem we introduce is the existence of a controller C working
on ω-sequences such that the system S ×k C satisfies φ. The synchronization
operation ×k takes into account the different time scales between S and C. As
a by-product of our results, checking whether a controller satisfies the above
conditions can be done effectively but we leave the question of the synthesis of
such controllers for future work.

Related work. Our original motivation in this work is the control of systems with
legal Zeno behaviors by systems whose complete executions are ω-sequences. The
theory of control of discrete event systems was introduced in [25]. In this theory,
a process is a deterministic non-complete finite automaton over an alphabet
of events. The control problem consists in, given a process P and a set S of
admissible behaviors, finding a process Q such that the behaviors of P × Q
are in S and such that Q reacts to all uncontrollable events and cannot detect
unobservable events. Extension to specifications from the modal µ-calculus can
be found in [2] whereas the control of timed systems (without Zeno behaviors) is
for instance studied in [3, 7]. It is plausible that the techniques from the above-
mentioned works (see also [24]) can be adapted to the control problem we have
introduced but the technical contribution of this paper is mainly oriented towards
satisfiability and model-checking issues.

The logics we have introduced belong to the long tradition of quantitative
versions of LTL. LTL-like logics having models non isomorphic to ω can be found
in [1, 27, 26, 20, 22]. Temporal operators in the real-time logics from [1, 20, 22] are
indexed by intervals as our logics LTL(α). However, among the above-mentioned
works, only Rohde’s thesis [27] contains a LTL-like logic interpreted over α-
sequences with ordinal α but the temporal operators are simply the standard
next-time and until operators without any decoration. It is shown in [27] that
the satisfiability problem for such a logic can be decided in exponential-time
when the inputs are the formula to be tested and the countable ordinal from
which the model is built.

In the paper, we follow the automata-based approach for temporal logics
from [28] but we are dealing with ordinal automata recognizing words of length
α for some countable ordinal α. So, we extend the reduction from LTL into gen-
eralized Büchi automata to the reduction from LTL(ωk) into ordinal automata
recognizing words of length ωk. Many classes of ordinal automata have been
introduced in the literature. We recall below some of them. In [9, 13] automata
recognizing ωk-sequences for some k ≥ 1 are introduced making essential the
concept of layer. In [10, 29, 19], such automata are generalized to recognize α-
sequences for α countable. Correspondences between these different classes can
be found in [4]. In the paper, we mainly adopt the definitions from [19]. An
elegant and powerful extension to automata recognizing words indexed elements
from a linear ordering can be found in [8]. As far as we know, automata recog-
nizing sequences of length greater than ω designed to solve verification problems
have been first used in [18] to model concurrency by limiting the state explosion
problem. Similarly, timed automata accepting Zeno words are introduced in [5]
in order to model physical phenomena with convergent execution. The emptiness
problem for such automata is shown to be decidable [5].

As LTL can be viewed as the first-order fragment of monadic second order
theory over 〈N, <〉, theories over 〈α,<〉 for some countable ordinal α have been
also studied by Büchi [9], see also [10, 4]. For instance, decidability of monadic
second order theories over 〈α,<〉 for some countable ordinal α is shown in [10].

Decidability status of elementary theories over countable ordinals have been
established in [6, 12] whereas relationships with other theories are shown in [23].

Because of lack of space, the proofs can be found in [15].

2 Temporal Logics on Transfinite Sequences

2.1 Ordinals

We recall basic definitions and properties about ordinals. An ordinal is a to-
tally ordered set which is well ordered, i.e. all its non-empty subset have a least
element. Order-isomorphic ordinals are considered equals. An ordinal α is a suc-
cessor ordinal iff there exists an ordinal β such that α = β+1. An ordinal which
is not 0 or a successor ordinal, is a limit ordinal. The first limit ordinal is written
ω. Addition, multiplication and exponentiation can be defined on ordinals induc-
tively: α+0 = α, α+(β+1) = (α+β)+1 and α+β = sup{α+γ : γ < β} where
β is a limit ordinal. Multiplication and exponentiation are defined similarly. ε0 is
the closure of ω∪{ω} under ordinal addition, multiplication and exponentiation.
By the Cantor Normal Form theorem, for any ordinal α < ε0, there are unique
ordinals β1, . . . , βp, and unique integers n1, . . . , np such that α > β1 > · · · > βp
and α = ωβ1 .n1 + · · ·+ωβp .np. If β < ωω, then the βi’s are integers. Whenever
α ≤ β, there is a unique ordinal γ such that α+γ = β. We write β−α to denote
γ. For instance, ω2 −ω = ω2, ω× 3−ω = ω× 2 and ω2 −ω3 is not defined since
ω3 > ω2.

An ordinal α is said to be closed under addition whenever β, β′ < α implies
β+β′ < α. For instance, 0, 1, ω, ω2, ω3, and ωω are closed under addition. In the
sequel, we shall consider logics whose models are α-sequences, i.e. mappings of
the form α→ Σ for some finite alphabet Σ and ordinal α closed under addition.

2.2 Quantitative Extensions of LTL

For every ordinal α closed under addition, we introduce the logic LTL(α) whose
models are precisely sequences of the form σ : α → 2AP for some countably
infinite set AP of atomic propositions. The formulae of LTL(α) are defined as
follows: φ ::= p | ¬φ | φ1 ∧ φ2 | X

βφ | φ1U
β′

φ2, where p ∈ AP, β < α and
β′ ≤ α. The satisfaction relation is inductively defined below where σ is a model
for LTL(α) and β < α:

– σ, β |= p iff p ∈ σ(β),
– σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2, σ, β |= ¬φ iff not σ, β |= φ,
– σ, β |= X

β′

φ iff σ, β + β′ |= φ,
– σ, β |= φ1U

β′

φ2 iff there is γ < β′ such that σ, β + γ |= φ2 and for every
γ′ < γ, σ, β + γ′ |= φ1.

Actually in order to study the decidability/complexity of LTL(α), we restrict
ourselves to countable limit ordinals α so that the set of formulae is itself count-
able. Furthermore, for studying complexity issues, it is necessary to specify the

encoding of the ordinals β ≤ α occurring in LTL(α) formulae. In the sequel,
we use Cantor normal form to encode ordinals 1 ≤ β ≤ ωω, and the natural
numbers occurring in such normal forms are represented in binary.

Proposition 1. Satisfiability for LTL(ωα), 0 ≤ α ≤ ω, is decidable.

The model-checking for LTL(α) takes as inputs an ordinal automaton A with
alphabet AP (see Def. 1) and an LTL(α) formula φ and checks whether there is
an α-sequence σ accepted by A such that σ, 0 |= φ.

3 Automata-based Approach

In this section, we show how to construct an ordinal automaton Aφ such that
its set of accepted words is precisely the models of φ, extending the approach
for LTL from [28]. In the rest of this section, φ ∈ LTL(ωk) for some k ≥ 1.

3.1 Ordinal Automata

We define ordinal automata as a generalization of Muller automata.

Definition 1 (Ordinal Automaton). An ordinal automaton is a tuple
(Q,Σ, δ, E, I, F) where:

– Q is a finite set of states, Σ is a finite alphabet,
– δ ⊆ Q×Σ ×Q is a one-step transition relation,
– E ⊆ 2Q ×Q is a limit transition relation,
– I ⊆ Q [resp. F ⊆ Q] is a finite set of initial [resp. final] states.

We write q
a
−→ q′ whenever 〈q, a, q′〉 ∈ δ and q −→ q′ iff q

a
−→ q′ for some

a ∈ Σ. A path of length α+ 1 is a map r : α+ 1 → Q such that for every β ∈ α,
r(β) −→ r(β+1) and for every limit ordinal β ∈ α, there is P −→ r(β) ∈ E s.t. P =

inf(β, r) with inf(β, r)
def
= {q ∈ Q : for every γ ∈ β, there is γ′ such that γ <

γ′ < β and r(γ′) = q}.
A run of length α+1 is a path of length α+1 such that r(0) ∈ I. If r(α) ∈ F

then r is said to be accepting. The set of sequences recognized by the automaton
A, denoted by L(A), is the set of α-sequences σ : α → Σ for which there is an

accepting run r of length α+ 1 verifying for every β ∈ α, r(β)
σ(β)
−−→ r(β + 1).

Ordinal automata from Definition 1 are those defined in [19].

3.2 Hintikka Sequences

We define below a notion of closure which generalizes the Fisher-Ladner clo-
sure [16].

Definition 2 (Closure). The closure of φ, denoted by cl(φ), is the smallest set
of LTL(ωk) formulae such that

– ⊥, φ ∈ cl(φ), and ¬ψ ∈ cl(φ) implies ψ ∈ cl(φ),
– ψ ∈ cl(φ) implies ¬ψ ∈ cl(φ) (we identify ¬¬ψ with ψ),
– ψ1 ∧ ψ2 ∈ cl(φ) implies ψ1, ψ2 ∈ cl(φ),
– X

βψ ∈ cl(φ) and β ≥ ωn (0 ≤ n < k) imply X
β−ωn

ψ ∈ cl(φ),
– ψ1U

βψ2 ∈ cl(φ) and β ≥ ωn (0 ≤ n ≤ k) imply the formulae below belong to
cl(φ): ψ1, ψ2, X

ωn

(ψ1U
β−ωn

ψ2), >U
ωn

¬ψ1, ψ1U
ωn

ψ2.

It is not difficult to show that the notion of closure introduced above gener-
alizes what is done for LTL. From a formula φ, we build an ordinal automata
Aφ such that L(Aφ) is precisely the set of LTL(ωk) models satisfying φ. Follow-
ing [28], the states of Aφ are subsets of cl(φ) containing formulae to be satisfied
in the future, including the current position. Hence, cl(φ) is built in such a way
that if either q′ −→ q or P −→ q are transitions in Aφ, then all the formulae to be
satisfied in q depending on q′ and P are part of cl(φ).

Definition 3. A set X ⊆ cl(φ) is said to be locally maximally consistent with
respect to φ iff it satisfies the conditions below:

(mc1) ⊥ 6∈ X,
(mc2) for every ψ ∈ cl(φ), ψ ∈ X iff ¬ψ 6∈ X,
(mc3) for every ψ1 ∧ ψ2 ∈ cl(φ), ψ1 ∧ ψ2 ∈ X iff ψ1, ψ2 ∈ X,
(mc4) for every X

0ψ ∈ cl(φ), X0ψ ∈ X iff ψ ∈ X,
(mc5) for every ψ1U

0ψ2 ∈ cl(φ), ψ1U
0ψ2 6∈ X,

(mc6) for all ψ1U
βψ2 ∈ cl(φ) and β ≥ ωn ≥ 1, ψ1U

βψ2 ∈ X iff either ψ1U
ωn

ψ2 ∈
X or ¬(>Uω

n

¬ψ1), X
ωn

(ψ1U
β−ωn

ψ2) ∈ X,
(mc7) for all ψ1U

βψ2, ψ1U
β′

ψ2 ∈ cl(φ) with β ≤ β′, ψ1U
βψ2 ∈ X implies

ψ1U
β′

ψ2 ∈ X,
(mc8) for every ψ1U

1ψ2 ∈ cl(φ), ψ1U
1ψ2 ∈ X iff ψ2 ∈ X.

We denote by maxcons(φ) the set of locally maximally consistent subsets of
cl(φ).

For standard LTL, an Hintikka sequence ρ for a formula φ is an ω-sequence
of sets of subformulae of φ such that φ is satisfiable iff φ has an Hintikka se-
quence. Local conditions in ρ between two successive elements of the sequence
are easy to handle in Büchi automata with the transition relation. The only
global condition, stating that if ψ1Uψ2 occurs in the sequence, then some fu-
ture element in the sequence contains ψ2, is handled by the Büchi acceptance
condition. Sometimes the non-uniform treatment between local conditions and
the global condition is the source of confusion. The Hintikka sequences defined
below are based on a similar principle except that we can extend advantageously
the notion of locality. The Hintikka sequences ρ are of the form ρ : ωk → 2cl(φ).
Encoding conditions between ρ(β) and ρ(β + 1) can be performed by one-step
transitions in ordinal automata. However, the presence of limit transitions al-
lows us also to admit conditions between ρ(β) and ρ(β + ωn

′

) with 0 ≤ n′ < k.
Hence, the global condition in Hintikka sequences of LTL formulae is replaced
by a condition between ρ(β) and ρ(β + ω). For transfinite sequences, the local
and global conditions can be treated uniformly.

Definition 4 (Hintikka Sequence). An Hintikka sequence for φ is a sequence
ρ : ωk → 2cl(φ) such that

(hin1) φ ∈ ρ(0),
(hin2) for every β < ωk, ρ(β) ∈ maxcons(φ),
(hin3) for all β < ωk, X

β′

ψ ∈ cl(φ) and 0 ≤ n′ < k such that β′ ≥ ωn
′

,

X
β′

ψ ∈ ρ(β) iff X
β′−ωn′

ψ ∈ ρ(β + ωn
′

),
(hin4) for all β < ωk and ψ1U

β′

ψ2 ∈ cl(φ), (A) ψ1U
β′

ψ2 ∈ ρ(β) iff (B) there is
β ≤ β′′ < β+ β′ such that ψ2 ∈ ρ(β′′) and for every β ≤ γ < β′′, ψ1 ∈ ρ(γ).

Proposition 2. φ is LTL(ωk) satisfiable iff φ has an Hintikka sequence.

3.3 Automaton Construction

We build an ordinal automaton Aφ that recognizes only words of length ωk over
the alphabet 2AP (assuming that AP is the finite set of atomic propositions
occurring in φ). The automaton Aφ = 〈Q,Σ, δ, E, I, F 〉 is defined as follows:

– Σ = 2AP, Q = maxcons(φ) × {0, . . . , k},
– I = {〈X, 0〉 ∈ Q : φ ∈ X}, F = {〈X,n〉 ∈ Q : n = k},
– 〈X,n〉

a
−→ 〈X ′, n′〉 ∈ δ iff (one-step transition)

(A1) n < k and n′ = 0,
(A2) X ∩ AP = a,
(A3) for every X

βψ ∈ cl(φ) such that β ≥ 1, Xβψ ∈ X iff X
β−1ψ ∈ X ′.

– In order to define E, we introduce preliminary definitions. For every ψ1U
αψ2 ∈

cl(φ), we write Pψ1U
αψ2

to denote the set {〈X,n〉 : either ψ2 ∈ X or ¬(ψ1U
αψ2) ∈

X}. For every 〈X,n〉 ∈ Q we write Q〈X,n〉 to denote the subset of Q such

that for every 〈X ′, n′〉 ∈ Q, 〈X ′, n′〉 ∈ Q〈X,n〉
def
⇔

(A4) n′ < n,
(A5) for every X

αψ ∈ cl(φ) with α ≥ ωn, Xαψ ∈ X ′ iff X
α−ωn

ψ ∈ X.
For every 〈X,n〉 ∈ Q, Z −→ 〈X,n〉 ∈ E iff
(A6) n ≥ 1,
(A7) Z ⊆ Q〈X,n〉,
(A8) Z contains a state of the form 〈Y, n− 1〉,
(A9) for all ψ1U

βψ2 ∈ cl(φ) and β ≥ ωn such that ¬(ψ1U
β−ωn

ψ2) ∈ X,
Pψ1U

βψ2
∩ Z 6= ∅.

Observe the similarities between (A3) and (A5) and between (A9) and (mc6).
For LTL(ω), the above construction roughly corresponds to the Muller automa-
ton obtained from the generalized Büchi automaton for the LTL formula φ.

The automaton Aφ has 22O(|φ|)

states and 222O(|φ|)

transitions. By [11, Propo-
sition 6], the emptiness problem for ordinal automata is in P. So checking
whether Aφ accepts at least one word can be done in triple exponential time,
which provides an elementary bound but not optimal as shown in the sequel.

Proposition 3. L(Aφ) = Mod(φ).

We invite the reader to consult the tedious proof of Proposition 3 in [15] to
understand the relationships between the conditions (mc?), (hin?) and (A?).

4 Computational Complexity

In this section, we show complexity results about satisfiability of LTL(ωk) with
1 ≤ k < ω.

Theorem 1. For every ordinal α ≥ 1, satisfiability for LTL(ωα) is expspace-
hard.

4.1 Succinct Ordinal Automata of Level k

In order to refine the complexity result from Sect. 3, we define below specialized
ordinal automata that recognize ωk-sequences. Similar automata can be found
in the literature, see e.g. [13, 19, 4].

Definition 5 (Ordinal Automaton of Level k). An ordinal automaton A =
〈Q,Σ, δ, E, I, F 〉 is said to be of level k ≥ 1 iff there is a map l : Q→ {0, . . . , k}
such that

– for every q ∈ F , l(q) = k;

– q
a
−→ q′ ∈ δ implies l(q′) = 0 and l(q) < k;

– P −→ q ∈ E implies
1. l(q) ≥ 1,
2. for every q′ ∈ P , l(q′) < l(q),
3. there is q′ ∈ P such that l(q′) = l(q) − 1.

The automaton built in Section 3 is of level k when the input formula is
in LTL(ωk). However, Aφ is of triple [resp. double] exponential size in |φ| when
integer are encoded in binary [resp. unary] which is still too much to characterize
accurately the complexity of LTL(ωk) satisfiability. That is why we introduce
below a special class of ordinal automata which can represent succinctly an
exponential amount of limit transitions as the generalized Büchi automata can
be viewed as a succinct representation of Muller automata. Hence, we shall
construct A′

φ such that L(A′
φ) = L(Aφ), and A′

φ is “only” of double [resp.
simple] exponential size in |φ| when integers are encoded in binary [resp. unary].

Definition 6 (p(·)-Succinct Ordinal Automaton of Level k). Given a
polynom p(·), a p(·)-succinct ordinal automaton of level k is a structure A =
〈Q,Σ, δ, E, I, F, l〉 defined as an ordinal automata of level k except that E is a
set of tuples of the form 〈P0, P1, . . . , Pn, q〉 with n ≥ 0, q ∈ Q and P0, . . . , Pn ⊆ Q
such that

– 〈P0, P1, . . . , Pn, q〉 ∈ E implies
1. 1 ≤ l(q) ≤ k,
2. each state in P0 is of level l(q) − 1,
3. each state in P1 ∪ · · · ∪ Pn is of level less than l(q) − 1,
4. n ≤ p(|Q|),

– for every state q of level strictly more than 0, there is at most one tuple in
E of the form 〈P0, P1, . . . , Pn, q〉.

Each tuple 〈P0, P1, . . . , Pn, q〉 encodes succinctly the set of limit transitions

trans(〈P0, P1, . . . , Pn, q〉)
def
=

{P −→ q : P ⊆ Q, ∀ i Pi ∩ P 6= ∅ and ∀q′ ∈ P, l(q′) < l(q)}.

In the sequel, given a p(·)-succinct ordinal automaton A of level k, we write
Ao = 〈Q,Σ, δ, E′, I, F, l〉 to denote the ordinal automaton of level k with E′ =⋃
t∈E trans(t). The language recognized by A is defined as the language recog-

nized by Ao. In that way, a p(·)-succinct ordinal automaton of level k is simply a
succinct encoding of some ordinal automaton of level k. An important property
of such automata rests on the fact that the size of E is in O(|Q|2 × p(|Q|)). By
contrast, in an ordinary ordinal automaton of level k, the cardinality of the set
of limit transitions can be in the worst case exponential in |Q|.

The automaton Aφ from Sect. 3.3 can be viewed as a p0(·)-succinct ordinal
automaton of level k with p0(x) = x.

Lemma 1 below is the key property to obtain the nlogspace upper bound
for the emptiness problem of ordinal automata of level k, even in the succinct
version. It generalizes substantially the property that entails that the graph
accessibility problem and the emptiness problem for generalized Büchi automata
can be solved in non-deterministic logarithmic space.

Lemma 1. Let A be an automaton of level k and r be a run of length ωk
′

+ 1
for some 1 ≤ k′ ≤ k. Then, there is a path r′ of length ωk

′

+ 1 such that

– r′(0) = r(0) and r′(ωk
′

) = r(ωk
′

),
– there are K ≤ |Q| and K ′ ≤ |Q|2 such that for every α ≥ ωk

′−1 ×K such
that the normal form of α is ωk

′−1×n+β, r′(α) = r′(ωk
′−1× (n+K ′)+β).

4.2 An Optimal Algorithm to Test Emptiness

In order to test emptiness of the language recognized by an automaton of level
k, we introduce a function acc(q, q′) (see Fig. 1) that returns > iff there is a path
r of length ωl(q

′) such that r(0) = q and r(ωl(q
′)) = q′. We design the following

non-deterministic algorithm:

Empty?(A)
Guess q0 ∈ I and qf ∈ F ;
InLoop := false;
acc(q0, qf).

Nondeterminism is also highly present in the definition of acc(q0, qf). A few
global variables are used. The variable InLoop is a Boolean equals to true iff q′

in a call acc(q, q′) belongs in the periodic part of the run. Moreover, for every
i ∈ {1, . . . , k}, the variable ↑i contains the address of the occurrence of a state
in the leftmost part of a rule P → q′′ with l(q′′) = i: O(k × log|A|) bits are
needed in total. Remember that A is encoded as a string and the address of
the occurrence of a state is simply a position in that string, which requires only

acc(q, q′) (l(q′) ≤ k, l(q) = 0)

k′ := l(q′) − 1;
If k′ ≥ 0 then

Guess a rule P → q′;
↑k′+1 takes the value of the address of the first state in P ;
Guess K ≤ |Q| and K ′ ≤ |Q|2;
Guess qrepeat

k′ ∈ P such that l(qrepeat

k′) = k′ (repeating state);
q0 := q;
For i = 1 to K do

Guess qk′ ∈ P of level k′;
If acc(q0, qk′) then guess q0 such that l(q0) = 0 and qk′ −→ q0;

If qk′ 6= qrepeat

k′ then abort;
If k′ + 1 = k then InLoop = true;
Guess qk′ ∈ P of level k′;
If InLoop = true then (Check&Update(q0);Check&Update(qk′));
For i = 1 to K ′ do

If acc(q0, qk′) then
Guess q0 such that l(q0) = 0 and qk′ −→ q0;
qaux

k′ := qk′ ;
Guess qk′ ∈ P of level k′;
If i 6= K ′ then (Check&Update(q0);Check&Update(qk′));

otherwise abort;
If one of the conditions below fails then abort otherwise accept

1. ↑k′+1 6= nil (some state in P has not been visited infinitely often),
2. qaux

k′ 6= qrepeat

k′ (wrong choice of the repeating state of level k′)
otherwise if q −→ q′ then accept otherwise abort.

Fig. 1. Accessibility function

O(log|A|) bits. The variable ↑i is updated when the state whose address is ↑i is
detected in the periodic part of the run.

In the definition of acc(q, q′), in order to test whether there is a path r of
length ωl(q

′) such that l(q′) ≥ 1, r(0) = q and r(ωl(q
′)) = q′, Lemma 1 guarantees

that the periodic part of r is of length at most ωl(q
′)−1 × |Q|2 and the prefix is

of length at most ωl(q
′)−1 × |Q|. This explains the two main loops of acc(q, q′).

When a state t is guessed in the periodic part of the run, one has to check that
t indeed belongs to rules of the form P → q′′ with l(q′′) > l(qt) and one updates
the variables ↑i since t has been detected (see Fig. 2).

Theorem 2. For every k ≥ 0, the emptiness problem for ordinal automata of
level k is nlogspace-complete.

Corollary 1. The emptiness problem for Muller automata is nlogspace-complete.

The discipline on memory space done in the algorithm in Fig. 1 can be
adapted to succinct ordinal automata.

Check&Update(q)
For 1 ≤ i ≤ k do

If ↑i contains the address of an occurrence of q in the leftmost part of a rule
then ↑i takes the value of the next state in the rule (possibly the rightmost
state in the rule);
If l(q) ≤ i − 1 and q does not occur in the leftmost part of the rule that is
currently pointed by ↑i then abort. (one needs another variable to visit the
states in the leftmost part of that rule)

accept.

Fig. 2. Update of the variables ↑is

Corollary 2. For all k ≥ 0 and polynom p(·), the emptiness problem for p(·)-
succinct ordinal automata of level k is nlogspace-complete.

4.3 Optimal Complexity Upper Bounds

Theorem 3. For every k ≥ 1, the satisfiability problem for LTL(ωk) is pspace-
complete when the integers are encoded in unary and the problem is in expspace-
complete when the integers are encoded in binary.

Corollary 3. For every k ≥ 1, the model-checking problem for LTL(ωk) is de-
cidable.

Since the complexity of the emptiness problem for ordinal automata is not
completely characterized (we know it is in P by [11] but P-hardness is open),
our decidability proof does not provide a full characterization of the complexity
of the model-checking problem for LTL(ωk). However, with space ressources, it
is at most two exponential higher than the satisfiability problem.

Since the languages recognized by x-succinct ordinal automata of level k can
be shown to be closed under intersection, we have the following result.

Theorem 4. For every k ≥ 1, the model-checking problem for LTL(ωk) re-
stricted to x-succinct ordinal automata of level k is pspace-complete when the
integers are encoded in unary and the problem is expspace-complete when the
integers are encoded in binary.

5 Application: Control of Physical Systems

In this section, we formalize the control problem of a physical system by a com-
puter system by using ordinal automata and the logics LTL(ωk). Even though
it is the original motivation of our investigations on the logics LTL(α), at this

point of the paper we have all the necessary definitions and results to state con-
cisely the problem. We model a system by an ordinal automaton recognizing ωk-
sequences. For instance, the law of movement of the bouncing ball corresponds
to ω2-sequences and the set of acceptable behaviors of the ball is modelled by a
set of sequences of the same length ω2. On the other hand, the controller is an
operational model working on ω-sequences.

Before stating the control problem, we need to give definitions about the
synchronous product between ordinal automata and about the way to transform
an ordinal automaton of level 1 into an ordinal automaton of level k ≥ 2 that
has relevant actions only on states in positions of the form ωk−1 × n (lifting).
As usual, LTL(ωk) formulae can be viewed equivalently as ordinal automata of
level k and we shall use these different representations depending on the context
(see [2] for a similar standard treatment between formulae and automata).

Synchronous product. We define below the synchronous product of two ordinal
automata such that if they have the same alphabet then the language recognized
by the product is the intersection language. Otherwise, a letter that is present
in a single automaton can only affect the state component in the product re-
lated to this automaton. This is useful to deal with unobservable actions (see
below). Given two ordinal automata Ai = 〈Qi, Σi, δi, Ei, Ii, Fi〉, for i = 1, 2,
their synchronous product is defined as A1 ×A2 = 〈Q,Σ, δ, E, I, F 〉 where:

– Q = Q1 ×Q2, Σ = Σ1 ∪Σ2.
– 〈q1, q2〉

a
−→ 〈q′1, q

′
2〉 ∈ δ iff either:

• a ∈ Σ1 ∩Σ2, q1
a
−→ q′1 ∈ δ1, and q2

a
−→ q′2 ∈ δ2; or

• a ∈ Σ1\Σ2, q1
a
−→ q′1 ∈ δ1, and q2 = q′2; or

• a ∈ Σ2\Σ1, q2
a
−→ q′2 ∈ δ2, and q1 = q′1.

– P −→ 〈q1, q2〉 ∈ E iff there exist P1 −→ q1 ∈ E1 and P2 −→ q2 ∈ E2 such that
{q : 〈q, q′〉 ∈ P} = P1 and {q′ : 〈q, q′〉 ∈ P} = P2.

– I = I1 × I2, F = F1 × F2.

We write w/Σ for the subword of w consisting only of the letters from Σ.

Proposition 4. w ∈ L(A1 ×A2) ⇔ w/Σ1 ∈ L(A1) and w/Σ2 ∈ L(A2).

Lifting. In order to synchronize the system with a controller working on ω-
sequences, we need to transform the controller so that its product with S only
constraints states on positions ωk−1 × n, n ∈ N. The other positions are not
constrained.

Let A = 〈Q,Σ, δ, E, I, F, l〉 be an automaton of level 1. We define its lifting
liftk(A) at level k ≥ 2 to be the automaton 〈Q′, Σ, δ′, E′, I ′, F, l′〉 by:

– Q′ = ({0, . . . , k − 1} × (Q \ F)) ∪ F , I ′ = {k − 1} × I,
– l′(q) = k for q ∈ F and l′(〈i, q′〉) = i,

– δ′ = {〈k − 1, q〉
a
−→ 〈0, q′〉 : q

a
−→ q′ ∈ δ}∪

{〈i, q〉
a
−→ 〈0, q〉 : 0 ≤ i < k, a ∈ Σ, q 6∈ F}

,

– E′ = {{〈0, q〉, . . . , 〈i−1, q〉} −→ 〈i, q〉 : 1 ≤ i < k, q ∈ Q}∪{{〈0, q1〉, . . . , 〈k−
1, q1〉, . . . , 〈0, qn〉, . . . , 〈k − 1, qn〉} −→ q | {q1, . . . qn} −→ q ∈ E}.

Proposition 5. For all w ∈ Σωk

, w ∈ L(liftk(A)) iff the word w′ ∈ Σω, defined
by w′(i) = w(ωk−1 × i), is in L(A).

The control problem. A physical system S is modelled as a structure

〈A,Actc,Acto,Act〉

where A is an ordinal automaton of level k with alphabet 2Act where Act is a
finite set of actions, Acto ⊆ Act is the set of observable actions and Actc ⊆ Acto
is the set of controllable actions. The set of uncontrollable actions is denoted
by Actnc. A specification of the system S is naturally an LTL(ωk) formula ψ.
A controller C for the pair 〈S, ψ〉 is a system whose complete executions are ω-
sequences (typically ordinal automata of level 1) verifying the properties below.

– Only observable actions are present in the controller. Hence, thanks to the
synchronization mode, in the product system between S and C, unobservable
actions do not change the C-component of the current state. So the alphabet

of C is 2Acto .
– From any state of C, uncontrollable actions can always be executed: ∀q · ∀a ⊆

Acto \ Actc, there is a transition q
b
−→ q′ in C such that b ∩ Actnc = a.

– Finally, the system S controlled by C satisfies ψ. Because S and C work
on sequences of different length, the controlled system is in fact equal to
liftk(C) × S. So liftk(C) × S |= ψ should hold. This is equivalent to the
emptiness of the language of the product automaton liftk(C) × S × A¬ψ.

As a consequence of Corollary 3 we obtain the following result.

Proposition 6. The problem of checking whether liftk(C) × S × A¬ψ given a
physical system S, a controller C and a specification ψ is decidable.

We explained how to check that a controller is correct with respect to a
specification, but we do not address here the controller synthesis issue. More-
over, by assuming that S and C are succinct ordinal automata, we can improve
considerably the complexity of the above problem (see e.g., Theorem 4).

Example. Consider the system is a bouncing ball [14] with three actions lift-up,
bounce and stop, where only lift-up is controllable, and only stop and lift-up are
observable. The law of the ball is described by the following LTL(ω2) formula:

φ = G
ω2

(lift-up ⇒ X
1(Gωbounce ∧ X

ωstop))

G
αϕ is an abbreviation for ¬(>Uα¬ϕ). Informally, φ states that when the ball is

lifted-up, then it bounces an infinite number of times in a finite time and then
stops. An equivalent ordinal automaton Aφ working on ω2-sequences can be eas-

ily defined. The specification is given by the LTL(ω2) formula: ψ = G
ω2

X
1bounce.

Informally, ψ states that the ball should almost always be bouncing. A possible
controller for this system is described by the following LTL formula:

ϕ = lift-up ∧ G
ω(stop ⇒ lift-up)

Informally, ϕ states that the controller should lift-up the ball at the beginning
and then lift-up it again each time it stops. Similarly, an equivalent ordinal
automaton Aϕ working on ω-sequences can be easily defined.

6 Concluding Remarks

We have introduced a family of temporal logics to specify the behavior of systems
by assuming that the sequence of actions is isomorphic to some well-ordered
linear ordering (see the bouncing ball example in Sect. 5). Our aim is to control
such physical systems by designing controllers that safely work on ω-sequences
but interact synchronously with the physical system in order to restrict their
behaviors. We have extended linear-time temporal logic LTL to α-sequences
for any countable ordinal α closed under addition, by considering quantitative
operators indexed by ordinals smaller than α. This is a new class of linear-
time temporal logics for which we have shown that LTL(ωω) is decidable by
reduction to the monadic second-order theory 〈ωω, <〉 and for every k ≥ 1,
LTL(ωk) satisfiability problem is pspace-complete [resp. expspace-complete]
when the integers are encoded in unary [resp. in binary] generalizing what is
known about LTL. Our proof technique is inspired from [28] with significant
extensions in order to deal with the interaction between arithmetics on ordinals
and temporal operators. Moreover, we have introduced a new class of succinct
ordinal automata in order to fully characterize the complexity of the logics. The
treatment of these aspects leads to the most difficult technical parts of the paper.

A lot of work remains to be done even though our logics have been shown
to admit reasoning tasks of complexity similar to that of LTL. Synthesis of
controllers working on ω-sequences on the line of Sect. 5 is on the top of our
priority list. Moreover, LTL is known to be initially equivalent to the first-order
theory of 〈ω,<〉 by Kamp’s theorem [21] and by the separation theorem [17]. Is
LTL(ωk) also initially equivalent to the first-order theory of 〈ωk, <〉?

References

1. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal

of the ACM, 43:116–146, 1996.
2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with

partial observation. TCS, 303(1):7–34, 2003.
3. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and

timed systems. In Hybrid systems II, volume 999 of LNCS, pages 1–20. Springer,
1995.

4. N. Bedon. Langages reconnaissables de mots indexés par des ordinaux. PhD thesis,
Université Marne-la-Vallée, 1998.

5. B. Bérard and C. Picaronny. Accepting Zeno words: a way toward timed refine-
ments. In MFCS’97, volume 1295 of LNCS, pages 149–158. Springer, 1997.

6. A. Bès. Decidability and definability results related to the elementary theory of
ordinal multiplication. Fundamenta Mathematicae, 171:197–211, 2002.

7. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of LNCS, pages 180–192. Springer, 2003.

8. V. Bruyère and O. Carton. Automata on linear orderings. In MFCS 2001, volume
2136 of LNCS, pages 236–247. Springer-Verlag, 2001.

9. J. Büchi. Transfinite automata recursions and weak second order theory of ordinals.
In Int. Cong. Logic, Methodology and Philosophy of Science, Jerusalem, pages 3–23,
1964.

10. J. Büchi and D. Siefkes. The monadic second order theory of all countable ordinals,
volume 328 of Lecture Notes in Mathematics. Springer, 1973.

11. O. Carton. Accessibility in automata on scattered linear orderings. In MFCS 2002,
volume 2420 of LNCS, pages 155–164. Springer, 2002.

12. C. Choffrut. Elementary theory of ordinals with addition and left translation by
ω. In DLT’01, volume 2295 of LNCS, pages 15–20. Springer, 2002.

13. Y. Choueka. Finite automata, definable sets, and regular expressions over ωn-tapes.
JCSS, 17:81–97, 1978.

14. P. Cuijpers, M. Reniers, and A. Engels. Beyond Zeno-behaviour. Technical report,
TU of Eindhoven, 2001.

15. S. Demri and D. Nowak. Reasoning about transfinite sequences.
arXiv:cs.LO/0505073, May 2005.

16. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. JCSS,
18:194–211, 1979.

17. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In POPL’80. ACM Press, 1980.

18. P. Godefroid and P. Wolper. A partial approach to model checking. I&C,
110(2):305–326, 1994.

19. J. Hemmer and P. Wolper. Ordinal finite automata and languages (extended
abstract). Technical report, Université of Liège, 1991.

20. Y. Hirshfeld and A. Rabinovich. Logics for real time: decidability and complexity.
Fundamenta Informaticae, 62:1–28, 2004.

21. J. Kamp. Tense Logic and the theory of linear order. PhD thesis, UCLA, USA,
1968.

22. C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics: PSPACE and
below. In TIME’05, 2005. To appear.

23. F. Maurin. The theory of integer multiplication with order restricted to primes is
decidable. The Journal of Symbolic Logic, 62(1):123–130, 1997.

24. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16th ACM

POPL, Austin, Texas, pages 179–190, 1989.
25. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77:81–98, 1989.
26. M. Reynolds. The complexity of the temporal logic with until over general linear

time. JCSS, 66(2):393–426, 2003.
27. S. Rohde. Alternating Automata and The Temporal Logic of Ordinals. PhD thesis,

University of Illinois, 1997.
28. M. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115:1–37,

1994.
29. J. Wojciechowski. Classes of transfinite sequences accepted by nondeterministic

finite automata. Annales Societatid Mathematicae Polonae, pages 191–223, 1984.

