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Abstract

We study decidability and complexity issues for frag-
ments of LTL with Presburger constraints by restricting
the syntactic resources of the formulae (the class of con-
straints, the number of variables and the distance between
two states for which counters can be compared) while pre-
serving the strength of the logical operators. We provide a
complete picture refining known results from the literature,
in some cases pushing forward the known decidability lim-
its. By way of example, we show that model-checking for-
mulae from LTL with quantifier-free Presburger arithmetic
over one-counter automata is onlyPSPACE-complete. In or-
der to establish thePSPACEupper bound, we show that the
nonemptiness problem for Büchi one-counter automata tak-
ing values inZ and allowing zero tests and sign tests, is
only NLOGSPACE-complete.

1 Introduction

LTL with Presburger constraints. Ubiquity of counter
automata in computer science stems from their use as oper-
ational models of numerous infinite-state systems, includ-
ing for instance broadcast protocols [16] and programs with
pointer variables [3, 6]. Even the restriction to one counter
has found applications in the verification of cryptographic
protocols [21] and the validation of XML streams [9]. How-
ever, numerous model-checking problems for counter au-
tomata, like reachability questions, are known to be un-
decidable. This does not end the story since many sub-
classes admit a decidable reachability problem such as
reversal-bounded counter machines [19] or flat counter sys-
tems [5, 24].

Extending the linear-time temporal logic LTL with Pres-
burger constraints allows to specify quantitative properties
about counter systems even though undecidability cannot
be avoided (see in [7, 10] decidable fragments by re-
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stricting the use of the temporal operators). In this pa-
per, we are interested in the decidability and complexity
status of fragments of Presburger LTL restricting the fol-
lowing syntactic resources of the formulae: the class of
constraints, the number of counters and the maximal dis-
tance between two states for which these counters can be
compared. However, we preserve the full strength of the
logical operators. Our investigation is based on the stan-
dard assumption that restricting the number of variables isa
means to define decidable fragments of undecidable logics
or to design counter/clock automata with decidable reach-
ability problems, see e.g. [19, 17, 27, 23]. Furthermore
this helps to understand the complexity gaps of decidable
problems [15, 22]. Our goal is therefore to identify decid-
able and undecidable fragments of Presburger LTL (both for
model-checking and satisfiability problems) refining exist-
ing results from [8, 10, 12, 13].

Our contribution. We defineCLTL(DL) as a fragment
of Presburger LTL where atomic formulae are difference
constraints. The underlying fragment of Presburger arith-
metic inCLTL(DL) is identical to the one in the logicLp

from [10]. However, it is possible inCLTL(DL) to state
constraints between counters at two non-consecutive states.
For instance, “XXx = y” means that the value ofy at the
current state is equal to the value ofx two states further.
We callX-length the maximal number ofX operators pre-
fixing a counter. As far as undecidability is concerned, we
show that satisfiability and model-checking over counter
automata forCLTL(DL) either restricted to formulae of
X-length two with at most one counter or to formulae of
X-length one with at most two counters areΣ1

1-complete,
improving results from [10, 12]. On the positive side, we
prove that model-checking and satisfiability forCLTL(DL)
arePSPACE-complete when restricted toX-length one and to
one counter. Hence, we offer a complete and precise taxon-
omy of CLTL(DL) fragments with respect to decidability
issue.
We follow a standard automata-based approach [31, 20] but
we introduce an original symbolic representation of models
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that can be recognized by a fine-tuned class of one-counter
automata (instead of standard Büchi automata). A nice
property of this method is that it can be generalized to vari-
ous LTL extensions that defineω-regular classes of models.
Among the most technical parts of this work, we show that
the nonemptiness problem for this class of counter automata
where

• the counter is interpreted inZ,

• there are zero tests and sign tests,

• the accepted language is made ofω-sequences with
Büchi acceptance condition,

• the updates of the counter correspond to add one of the
values−1, 0, 1

is NLOGSPACE-complete. This extends what is known
about B̈uchi automata and variants of one-counter au-
tomata [21, 31]. As far as we know, this is a new result
obtained by analyzing runs. The details of the full proof are
in [14, Sect. 6]. In addition, we show that model-checking
LTL with quantifier-free Presburger constraints over one-
counter automata is alsoPSPACE-complete.

Related work. Decidability and complexity issues for
LTL variants with Presburger constraints can be found
in [7, 10, 12, 13] (see also description logics with concrete
domains in [25] and logics of space and time in [2]). Unlike
these works, we are studying systematically the effects of
bounding the number of variables and theX-length of for-
mulae while preserving the logical operators. This contrasts
with fragments shown to be decidable in [7, 10] (not closed
under negation).

Model-checking one-counter automata against modalµ-
calculus is in PSPACE [28] and more generally model-
checking pushdown systems against modalµ-calculus is
EXPTIME-complete [33] as well as linearµ-calculus [8, 18].
Herein we show that model-checking linearµ-calculus with
quantifier-free Presburger constraints over one-counter au-
tomata isPSPACE-complete, refining the above-mentioned
works. Satisfiability for this fragment is undecidable as a
consequence of [26, Sect. 14.2]. Furthermore, it is worth re-
calling that even though LTL can be expressed in the modal
µ-calculus, these two formalisms have not the same con-
ciseness on common fragment and therefore complexity re-
sults cannot always be transferred immediately.
Because of lack of space, the omitted proofs can be found
in the preliminary report [14].

2 Temporal logics, automata and Presburger
constraints

2.1 From constraint languages to linear-time tem-
poral logics

Constraint languages.LetVAR = {x0, x1, . . .} be a count-
ably infinite set of variables. We consider several fragments
of Presburger arithmetic (PA). The difference logicDL is
defined by constraints of the form

E ::= x ∼ y + d | x ∼ d |E ∧ E | ¬E

wherex, y ∈ VAR, d ∈ Z and∼∈ {<,>,≤,≥,=}. We
denote byDL+ the extension ofDL with periodicity con-
straints of the form eitherx ≡k c or x ≡k y + c (k, c ∈ N).
Finally, QFP is the quantifier-free fragment of PA, defined
by:

E ::=
∑

i∈I

aixi ∼ d |
∑

i∈I

aixi ≡k c | E ∧ E | ¬E

whereai ∈ Z andI is a finite set of indices. Obviously,
DL ⊆ DL+ ⊆ QFP. Given a valuationv : VAR → Z,
the satisfaction relationv |= E is defined in the obvious
way. For instance,n ≡k n′ iff there is z ∈ Z such that
n = n′ + kz. All integers are encoded in binary.

Linear-time temporal logics.Given a constraint languageL
(typicallyDL, DL+ orQFP), we define the logicCLTL(L)
as the extension of LTL where the propositional variables
are refined to atomic constraints fromL over expressions
representing different states of the variables. The formulae
of CLTL(L) are defined by the grammar:

φ ::= E[x1 ← X
l1xj1 , . . . , xn ← X

lnxjn
] | φ ∧ φ |

¬φ | Xφ | φUφ

whereE[x1 ← Xl1xj1 , . . . , xn ← Xlnxjn
] is a constraint

of L with free variablesx1, . . . , xn replaced by terms. A
term is a variablexi prefixed by a certain numberl of
X symbols and is denoted byXlxi (its encoding requires
O(l + log i) bits). The symbolsX and U are respec-
tively the classical operators “next” and “until” of LTL. We
use the notationsFφ andGφ as the abbreviations for>Uφ

and¬F¬φ. A one-step constraintis an atomic formula of
the form E[x1 ← Xl1xj1 , . . . , xn ← Xlnxjn

] such that
l1, . . . , ln ≤ 1. Given aCLTL(L) formulaφ we define its
X-length|φ|X as the maximal numberl such that a term of
the formXlx occurs inφ. Intuitively, theX-length defines
the size of a frame of consecutive states that can be com-
pared. The models ofCLTL(L) areω-sequences of valua-
tionsσ : N → (VAR → Z) and the satisfaction relation is
defined as for LTL except at the atomic level:
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• σ, i |= E[x1←Xl1xj1 ,..., xn←Xlnxjn
] iff

(σ(i+ l1)(xj1),..., σ(i+ ln)(xjn
)) |= E in PA,

• σ, i |= φ ∧ φ′ iff σ, i |= φ andσ, i |= φ′,

• σ, i |= ¬φ iff σ, i 6|= φ,

• σ, i |= Xφ iff σ, i+ 1 |= φ,

• σ, i |= φUφ′ iff there isj ≥ i such thatσ, j |= φ′ and
for everyi ≤ k < j, we haveσ, k |= φ.

The symbol|=, used at the level of the constraint language,
is overloaded but this will not lead to any confusion. As
usual, a formulaφ ∈ CLTL(L) is satisfiable whenever
there exists a modelσ such thatσ, 0 |= φ. We write
CLTLl

k(L) to denote the restriction ofCLTL(L) to formu-
lae with at mostk variables andX-length less or equal tol.
The satisfiability problem forCLTL(QFP) can be placed
easily in the classΣ1

1 from the analytical hierarchy.

Constraint automata.A k-variable L-automatonA is a
structure〈Q, δ, I, F 〉 such thatQ is a finite set of states,
I ⊆ Q is the set of initial states,F ⊆ Q is the set of fi-
nal states andδ ⊆ Q×A×Q whereA is a finite subset of
1SCk(L), the set of Boolean combinations of one-step con-
straints fromL built over the variables{x1, . . . , xk}. We

use the notationq
E
−→ q′ as an abbreviation for〈q,E, q′〉 ∈ δ.

A configurationof A is a tuple〈q, c〉 ∈ Q × Z
k and we

denote byc(i) the ith value of c. The one-step transition
relation−→ is defined as follows:〈q, c〉 −→ 〈q′, c′〉

def
⇔ there

exists〈q,E, q′〉 ∈ δ such that if eachxi takes the valuec(i)
and eachXxi takes the valuec′(i), thenE holds true. We

write 〈q, c〉
E
−→ 〈q′, c′〉 whenever we need to consider the

constraintE on the transition. A finite (resp. infinite)path
w is a sequence of the form{0, . . . , n} → (Q× Z

k) (resp.
N → (Q × Z

k)) such that for everyi ∈ {0, . . . , n − 1}
(resp. for everyi ∈ N) we havew(i) −→ w(i + 1). We
note〈q, c〉 −→∗ 〈q′, c′〉 if there is a finite path from〈q, c〉 to
〈q′, c′〉. An accepting run forA is an infinite pathw such
thatw(0) ∈ I × Z

k and the set{i ∈ N : w(i) ∈ F × Z
k}

is infinite (standard B̈uchi acceptance condition). We write
Lsymb(A) to denote the set ofω-words accepted byA
viewed as an automaton over the alphabetA. A CLTL(L)
modelσ realizesanω-word E0E1 · · · overA iff for every
i ≥ 0, we haveσ, i |= Ei.

Model-checking. The model-checking problemfor
CLTL(L) takes as inputs aCLTL(L) formula φ and an
L-automatonA and checks whether there is aCLTL(L)
model σ that realizes some word ofLsymb(A) and such
that σ, 0 |= φ (we writeA |= φ). For the restriction to
CLTLl

k(L), φ is in CLTLl
k(L) andA is a k-variableL-

automaton. We present the existential version of the prob-
lem to simplify forthcoming developments since we also

deal with satisfiability but results about the universal ver-
sion can be withdrawn from those presented herein.

In the rest of the paper, we mainly considerDL+-
automata or subclasses that can simulate non-deterministic
Minsky machines. We introduce below subclasses of
DL-automata on which we will restrict in some places the
model-checking problem.

Counter automata.A k-Z-counter automaton is a restricted
DL-automaton such that each transition is of the formq

E
−→

q′ whereE is a conjunction
∧

i∈{1...k}

Etesti ∧
∧

i∈{1...k}

Eupdatei

with

• Etesti ∈ {>} ∪ {xi ∼ 0 | ∼∈ {<,>,=, 6=}},

• Eupdatei ∈ {Xxi = xi + u | u ∈ Z}

for everyi. Moreover, we require that the initial values of
the counters are equal to zero (with a zero test on every
transition from an initial state). For ease of presentation,
the elements of{>} ∪ {xi ∼ 0 | ∼∈ {<,>,=, 6=}}
are encoded by{>, <,>,=, 6=}, the elements of{Xxi =
xi+u | u ∈ Z} by Z and we order the constraints according
to an arbitrary ordering of the variables. For instance, the
transition

q
>∧x2=0∧Xx1=x1∧Xx2=x2−1
−−−−−−−−−−−−−−−−−−→ q′

is encoded by

q
>,=,0,−1
−−−−−→ q′.

A k-N-counter automaton is defined similarly except that
we only consider non negative values for the counters. Ob-
viously, one-Z-counter automata with updates inZ form
a proper subclass of one-variableDL-automata that admit
also constraints of the formXx > x or Xx < x+ d.

In Sect. 3, we define an automata-based approach which
differs from [31] by the use of one-Z-counter automata
where the updates are restricted to{−1, 0, 1}, instead of
classical B̈uchi automata. Such automata are calledsim-
ple. Hence, counter automata are used as operational mod-
els (inputs of the model-checking problem) and also as lan-
guage acceptors for adapting the automata-based approach
from [31]. Proving the existence of accepting runs for sim-
ple one-Z-counter automata is not immediate since we are
dealing with B̈uchi acceptance condition, the counter is in-
terpreted inZ and zero/sign tests are allowed.

2.2 Improving undecidability boundaries

Satisfiability forCLTL(DL) is undecidable since we can
easily encode the executions of a Minsky machine with
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a CLTL(DL) formula. The proof of [10] provides that
CLTL1

3(DL) satisfiability is alreadyΣ1
1-hard. We consid-

erably refine this result by showing that one variable and
X-length two or two variables andX-length one is enough
for high undecidability.

Theorem 1 Satisfiability for CLTL2
1(DL) and

CLTL1
2(DL) areΣ1

1-complete.

We refer to [14, Section 3.2] for the full proof that con-
tains a reduction from the recurrence problem for nonde-
terministic Minsky machines, known to beΣ1

1-complete [1,
Lemma 8]. Theorem 1 also refines the undecidability of
CLTLω

2 (DL) shown in [12].
We present below the proof for theΣ1

1-hardness of
CLTL2

1(DL) satisfiability. The proof forCLTL1
2(DL) is

obtained by a reduction fromCLTL2
1(DL) satisfiability

(see [14]).
Proof. (satisfiability forCLTL2

1(DL) is Σ1
1-hard)

We show that the existence of an accepting run for two-N-
counter automata can be reduced to a satisfiability question
in CLTL2

1(DL).
First we show that for every two-N-counter automaton

A, there is an equivalent two-N-counter automatonA′ com-
putable in logarithmic space in|A| such that each tran-
sition of A′ changes at least the value of one counter.
Given a two-N-counter automatonA = 〈Q, δ, I, F 〉, A′ =
〈Q′, δ′, I ′, F ′〉 is defined by:

• Q′ def
= Q ∪ {qt : t ∈ δ and t = q

test1,test2,=,=
−−−−−−−−−→ q′},

I ′
def
= I andF ′ def

= F ,

• δ′ is defined fromδ by replacing each transitiont =

q
test1,test2,=,=
−−−−−−−−−→ q′ ∈ δ by

q
test1,test2,+1,=
−−−−−−−−−→ qt andqt

>,>,−1,=
−−−−−→ q′.

One can verify thatA has an accepting run iffA′ has an
accepting run.

Now letA = 〈Q, δ, I, F 〉 be a two-N-counter automaton
such that at each transition at least one counter changes its
value. We poseQ = {q1, . . . , qn}, I = {qα1

, . . . , qαm
} and

F = {qβ1
, . . . , qβm′

}. A configuration of〈qi, c1, c2〉 is en-
coded by a sequence of2i statesc1, c1+c2+1, . . . , c1, c1+
c2 + 1 by repeatingi times the pairc1, c1 + c2 + 1. We re-
call that aCLTL2

1(DL) model is simply anω-sequence of
integers. A new configuration is detected when four consec-
utive valuesc, d, c′, d′ are such that eitherc 6= c′ or d 6= d′.

• Let φch be the formula stating a change of configura-
tion: φch = x < Xx ∧ (x 6= X2x ∨ X(x 6= X2x)).

• Beforei states that we are just before the configuration
with control stateqi:
Beforei

def
= φch ∧ X2(

∧
0≤j<i−1 X2j(x = X2x ∧

X(x = X2x)) ∧ X2(i−1)φch.

• Initial configuration:
φinit

def
= x1 = 0 ∧ x2 = 1 ∧∨

1≤i≤m(
∧

0≤j<αi−1 X2j(x = X2x ∧ X(x = X2x))∧∨
〈qαi

,φ,qj′ 〉∈δ X2(αi−1)(φ′ ∧ Beforej′)).

φ′ is defined below.

• Recurring elements ofF :
φrec

def
=

∨
1≤i≤m′ GFBeforeβi

.

• Simulation of the run:
φrun

def
= G

∧
1≤i≤n(Beforei ⇒

∨
〈qi,φ,qj〉∈δ X2i(φ′ ∧

Beforej)) whereφ′ is obtained fromφ by replacing

– x1 = 0 by x = 0,

– x2 = 0 by Xx = x+ 1,

– Xx1 = x1 + d1 by X2x = x + d1 for every
d1 ∈ {−1, 0, 1} and,

– Xx2 = x2 + d2 by
∧

d1∈{−1,0,1}(X
2x = x +

d1) ⇒ X(X2x = x + (d1 + d2)) for everyd2 ∈
{−1, 0, 1}.

The automatonA has an accepting run iffφinit∧φrun∧φrec

is satisfiable. 2

Moreover, the satisfiability problem can be reduced to
the model-checking problem sinceφ ∈ CLTL(DL) is sat-
isfiable iff A> |= φ whereA> is theDL-automaton that
accepts all the executions (DL-automata are more liberal
than counter automata).

Corollary 1 The model-checking problems for
CLTL1

2(DL) andCLTL2
1(DL) areΣ1

1-complete.

The Σ1
1 upper bound is obtained by reducing model-

checking to satisfiability forCLTL(DL) along the lines
of [29]. In order to simulate a propositionp, we use a con-
straint of the formx = 0 assuming thatx is not used al-
ready for other purposes. By close inspection of the proof of
Theorem 1, one can also show that satisfiability and model-
checking forCLTL1

2(DL) andCLTL2
1(DL) but restricted

to the sometime operatorF (instead of until) are alsoΣ1
1-

hard.

3 PSPACE-completeness of CLTL11(DL
+)

with propositional variables

To complete the results of Section 2, we show that satis-
fiability for CLTL1

1(DL) and model-checkingCLTL1
1(DL)

formulae over 1-variableDL-automata are PSPACE-
complete. To do so, we establish aPSPACEupper bound
for satisfiability of the richer logicCLTL1

1(DL+,PROP),
including periodicity constraints of the formx ≡k y + c,
x ≡k c (k, c ∈ N) and propositional variables that can
be viewed as specific variables with a strict discipline on
their constraints. As a matter of fact, the above-mentioned
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results not only complete our classification but also many
problems on one-counter automata/nets can be encoded in
CLTL(DL+,PROP). These problems come from several
applications: verification of cryptographic protocols [21],
validation of XML streams (string representations of XML
documents) [9], or resolution of the identification prob-
lem [32]. By way of example, the class of one-variableDL-
automata properly contains the one-counter automata that
are used to validate XML streams against a recursive DTD
in [9, Sect.5]. Below is the one-counter automaton recog-
nizing the language{(ac)na(ε|cc)a(ca)nbmbm : n,m ≥
1} (we omit the tests related to zero):

c1

a0

a2

c3

a5

c4

c6

a7

b9

b8
a

ac, x++

a

c

a

c

a

c

c, x−−a

b, x++

b, x−−

b, x−−

b, x++

wherex is a counter and the alphabet is partitioned into a
set of opening tags{a, b, c} and a set of corresponding clos-
ing tags{a, b, c}. The problem of checking whether a given
word belongs to this language, a key problem in [9, Sect.5],
can be expressed in our formalism.CLTL1

1(DL) can also
express concisely richer standard properties, for instance
non-trivial safety properties of the formG(x < 2m) or live-
ness properties such thatG(x ≡2n 0⇒ F(x ≡3m 1)).

We dedicate the remaining of this section to
prove decidability of the satisfiability problem for
CLTL1

1(DL+,PROP), which is partially based on the
abstraction of models. Without any loss of generality, we
can assume that all the atomic formulae involving bothx

andXx are of the formXx ∼ x + d andXx ≡k x + c

(d ∈ Z andk, c ∈ N).

3.1 Symbolic models

Let PROP = {p1, p2, . . .} be a countably infi-
nite set of propositional variables. We define the logic
CLTL(DL+,PROP) as the extension ofCLTL(DL+) by
adding propositional variables at the atomic level. The main
reason for introducing propositional variables stems from
the fact that then satisfiability subsumes model-checking.
Models ofCLTL(DL+,PROP) are pairs〈σ1, σ2〉 such that
σ1 : N → 2PROP is a standard LTL model andσ2 : N →
(VAR → Z) is a CLTL(DL+) model. The satisfaction
relation is defined as forCLTL(DL) except at the atomic
level: 〈σ1, σ2〉, i |= p

def
⇔ p ∈ σ1(i) and given an atomic

formulaE based onDL+, 〈σ1, σ2〉, i |= E
def
⇔ σ2, i |= E

in CLTL(DL+). There is no restriction on propositional
variables in each fragmentCLTLl

k(DL+,PROP).
In order to build an automaton that recognizes the sym-

bolic models of aCLTL1
1(DL+) formula, we introduce be-

low a symbolic representation of valuations. LetX be a

finite set of one-step constraints fromDL+ built over the
variablex. We consider the following syntactic resources
of X.

• CONSx = {dmin, . . . , d−1, d0, d1, . . . , dmax} is the
set of constants occurring inX in constraints of the
form eitherx ∼ d or Xx ∼ d. We suppose that
dmin < · · · < d−1 < d0 < d1 < · · · < dmax.

• CONSstep = {emin′ , . . . , e−1, e0, e1, . . . , emax′} is
the set of constants occurring inX in constraints of
the formXx ∼ x+ e. We suppose thatemin′ < · · · <
e−1 < e0 < e1 < · · · < emax′ .

• K is the least common multiple of the integersk such
that≡k occurs inX.

Wlog, we can assume thatd0 = e0 = 0, dmax ≥ 0, emax′ ≥
0, dmin ≤ 0 andemin′ ≤ 0.

We define an abstraction of valuations like regions for
timed automata and we shall prove that this abstraction
fits exactly our goal. A map{x,Xx} → Z (also viewed
as a pair〈z1, z2〉 ∈ Z

2) is represented by a tuplesv =
〈Ex,Em,E

′
x,E

′
m,Es〉 ∈ Cx ×Modx × CXx ×ModXx ×

Cstep (depending onX) such that for each termt ∈
{x,Xx},

• Ct is composed of constraints of the form below

– (di < t) ∧ (t < di+1) for i∈{min, ..,max−1},

– t = di for i ∈ {min, . . . ,max},

– t < dmin anddmax < t,

• Modt is composed of the constraintst ≡K c for c ∈
{0, . . . ,K − 1},

• Cstep is composed of constraints of the form

– x+ ei < Xx ∧ Xx < x+ ei+1

for i ∈ {min′, . . . ,max′−1},

– Xx = x+ ei for i ∈ {min′, . . . ,max′},

– Xx < x+ emin′ andx+ emax′ < Xx.

We call such a tuple asymbolic valuationand we write
SV(X) to denote the set of symbolic valuations w.r.t.X.
Given aCLTL1

1(DL+,PROP) formulaφ, SV(φ) is the set
of symbolic valuations w.r.t. the set of atomic constraints
occurring inφ. The size ofSV(φ) is exponential in the
size ofφ and each elementsv of SV(φ) can be encoded in
polynomial space in the size ofφ. By definition, we write
v |= sv if the valuationv satisfies all the constraints in the
symbolic valuationsv .

Lemma 1 LetX be a finite set of one-step constraints from
CLTL1

1(DL+) built over the variablex.
(I) For every mapv : {x,Xx} → Z there is a unique
symbolic valuation inSV (X) denoted bysv(v) such that
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v |= sv(v).
(II) For all the mapsv, v′ : {x,Xx} → Z such that
sv(v) = sv(v′) and for everyE ∈ X, v |= E iff v′ |= E.

Proof. (I) Given sv ∈ SV(X), let Vsv be the set of pairs
〈z1, z2〉 ∈ Z

2 such that〈z1, z2〉 |= sv. It is easy to show
that{Vsv : sv ∈ SV(X), Vsv 6= ∅} is a partition ofZ2.
(II) Let v and v′ be two valuations such thatsv(v) =
sv(v′) = 〈Ex,E

′
x,Em,E

′
m,Es〉 and suppose thatv |= E.

We proceed by induction on the structure ofE.

• If E is of the formx = d thenEx must be equal to
E becaused ∈ CONSx (andv |= Ex). Sincev′ also
satisfiesEx, we havev′ |= E.

• If E is of the formx < d then, (sincev |= Ex), Ex

must be equal either tox = d′ with d′ < d or tod′′ <
x ∧ x < d′ with d′ ≤ d. Sincev′ |= Ex, we have
v′ |= E.

• WhenE is of the formXx ∼ d (resp.Xx ∼ x+d), the
proof is similar, using the constraintE′

x (resp.Es).

• Let E be of the formx ≡k c. We consider the con-
straintEm of the formx ≡K c′. By definition,k di-
videsK and soEm impliesx ≡k c′r wherec′r is the
remainder of the division ofc′ by k. As c andc′r be-
long to{0, . . . , k − 1} andv satisfies bothE andEm,
c must be equal toc′r. Sincev′ |= Em andEm implies
E, we havev′ |= E.

• WhenE is of the formXx ≡k c (resp.Xx ≡k x + c)
the proof is similar by using the constraintE′

m (resp.
Em ∧ E′

m).

• Now suppose thatE andE′ are satisfied byv iff they
are satisfied byv′.

– If v |= E ∧ E′ thenv |= E andv |= E′. By
the induction hypothesisv′ |= E andv′ |= E′

whencev′ |= E ∧ E′.

– If v |= ¬E then v 6|= E. Using the induction
hypothesis, we havev 6|= E′ and we conclude
thatv′ |= ¬E.

2

Given an atomic formulaE fromCLTL1
1(DL+), we note

sv |=symb E iff for every valuationv such thatsv(v) = sv

we havev |= E. A sequence of symbolic valuations w.r.t.φ
is a wordρ : N → SV(φ) andρ is satisfiable iff there is a
modelσ : N→ Z for CLTL1

1(DL+) such that for alli ∈ N,
we haveσ, i |= ρ(i) (we writeσ |= ρ). A symbolic model
w.r.t. φ is a pair〈σ1, ρ〉 such thatσ1 : N → 2PROP andρ :
N → SV(φ). The symbolic satisfaction relation|=symb is
extended to symbolic models. The definition is identical to
the satisfaction relation ofCLTL(DL+,PROP) except for
atomic constraints:〈σ, ρ〉, i |=symb E

def
⇔ ρ(i) |=symb E.

3.2 Automata-based approach

We show in the following that given a formulaφ in
CLTL1

1(DL+,PROP) we can build an automatonAφ rec-
ognizing symbolic representations of the models satisfy-
ing φ. In order to defineAφ, we slightly extend the
transitions of simple one-Z-counter automata (with up-
dates in{−1, 0, 1}) by decorating them with elements from
Σ ∪ {ε} whereΣ is a finite alphabet and with the iden-
tical conditions about the constraints authorized in one-
Z-counter automata. Since adding an alphabet is moti-
vated by the need to consider the automata as language
acceptors we defineL′(A) = {σ : N → (Σ ∪ {ε}) |

there is an accepting run w such that ∀i w(i)
σ(i),E
−−−→

w(i + 1)} andL(A) = {σ\ε | σ ∈ L′(A), elements of
Σ occur infinitely often inσ} whereσ\ε is obtained fromσ
by erasing allε. L(A) is the language accepted byA. The
construction ofAφ relies on the following observation.

Lemma 2 A CLTL1
1(DL+,PROP) formula φ is satisfi-

able iff there exist a symbolic model〈σ1, ρ〉 such that
〈σ1, ρ〉 |=symb φ and aCLTL1

1(DL+) modelσ2 such that
σ2 |= ρ.

Thus,Aφ is defined as the intersection of two automata
Asymb andAsat such thatL(Asymb) is the set of symbolic
models that symbolically satisfiesφ andL(Asat) is the set
of symbolic models〈σ1, ρ〉 such thatρ is satisfiable. Both
automata are simple one-Z-counter automata over the al-
phabetΣ = (2PROP × SV(φ)) andAsymb is essentially
a finite-state automaton without counters. The automaton
Asymb is built as in [31] for LTL except at the atomic level.
We definecl(φ) the closure ofφ with a slight modification
to consider both atomic constraints and propositional vari-
ables and an atom ofφ is a maximally consistent subset of
cl(φ). LetA′

symb be the generalized B̈uchi automaton de-
fined by the structure〈Q, δ, I, F 〉 such that:

• Q is the set of atoms ofφ,

• I = {X ∈ Q : φ ∈ X},

• X
〈P,sv〉,>,0
−−−−−−→ Y iff

(atomic) P = X ∩ PROP and
for every atomicE in X, sv |=symb E,
(1-step)for everyXψ∈cl(φ), Xψ∈X iff ψ ∈ Y ,

• Let {ψ1Uφ1, . . . , ψnUφn} be the set of until formulae
in cl(φ). We poseF = {F1, . . . , Fn} whereFi =
{X ∈ Q : ψiUφi 6∈ X or φi ∈ X} for every i ∈
{1, . . . , n}.

The automatonAsymb is the (non generalized) B̈uchi au-
tomaton equivalent toA′

symb which can be built in logarith-
mic space in the size ofA′

symb.
The automatonAφ is obtained by synchronizingAsymb

and Asat. Let us poseAsymb = 〈Qsy, δsy, Isy, Fsy〉
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andAsat = 〈Qsa, δsa, Isa, Fsa〉. The automatonAφ =
〈Q, δ, I, F 〉 is defined by:

• Q = Qsy ×Qsa, I = Isy × Isa, F = Fsy ×Qsa (we
will haveQsa = Fsa),

• 〈q1, q2〉
ε,t,u
−−→ 〈q′1, q

′
2〉 ∈ δ

def
⇔ q1 = q′1 and

q2
ε,t,u
−−→ q′2 ∈ δsa,

• 〈q1, q2〉
〈P,sv〉,t,u
−−−−−→ 〈q′1, q

′
2〉 ∈ δ

def
⇔

q1
〈P,sv〉,>,0
−−−−−−→ q′1∈ δsy andq2

〈P,sv〉,t,u
−−−−−→ q′2∈ δsa.

Lemma 3 Given a formulaφ, one can build a simple one-
Z-counter automatonAsat with alphabetΣ = 2PROP ×
SV(φ) such thatL(Asat) is the set of satisfiable symbolic
models w.r.tφ.
Moreover,Aφ can be effectively built fromφ in polynomial
space thanks to the wayAsat is defined.

Proof. We describe the construction of the automatonAsat

recognizing exactly the set of symbolic models〈σ1, ρ〉 such
thatρ is satisfiable. We recall that the setCONSx is such
thatd0 = 0, dmax ≥ 0 anddmin ≤ 0.

The alphabet ofAsat is 2PROP × SV(φ) but since the
set of propositional variables is not constrained inAsat, we
omit them in the technical developments below. The con-
struction ofAsat is done in a modular fashion.Asat is made
of a network of components/gadgets and it is of exponential
size in the size ofφ. A component is defined as a simple
one-Z-counter automaton〈Σ, Q, δ, I, F 〉 such that

• I andF are singletons,

• δ is a subset of(Q \ F ) × {ε} × {>,=, 6=, >,<} ×
{−1, 0, 1} × (Q \ I).

The unique state inI (resp. F ) is called the input (resp.
output) state of the component. Components are connected
in the network by defining transitions between input states
and output states. Each component inAsat has the function
either to check a property of the counter from constraints
in Cx or to update the counter according to constraints in
Modx or ModXx × Cstep. We define below the compo-
nentsAE,sv for someE ∈ Cx ∪Modx ∪ (ModXx ×Cstep)

and sv ∈ SV(φ). We write qE,sv
in

(resp. qE,sv
out

) to de-
note the input (resp. output) state ofAE,sv (when the con-
text is clear we shortly writeqin and qout , respectively).
Each componentAE,sv enforces that the next symbolic val-
uation that is guessed is preciselysv . For everysv =
〈Ex,Em,E

′
x,E

′
m,Es〉 ∈ SV(φ), we define the following

components:

• AEx,sv is such that for everyc ∈ Z, 〈qEx,sv
in

, c〉 −→∗

〈qEx,sv
out

, c′〉 iff c = c′ and[x ← c] |= Ex. This com-
ponent checks thatc satisfiesEx. Fig. 1 contains some
graphical representation of componentsAx=di,sv and

(a)

qin

qout

0 1 2 di
ε, >,−1 ε, >,−1

ε,>, +1ε,>, +1

ε, =, 0

(b)

qin

qout

0
dj di+1 di+1−1

ε, >,−1

ε,>, +1

ε, =, 0 ε, =, 0

Figure 1. (a) Ax=di,sv and (b) Adi<x<di+1,sv

Adi<x<di+1,sv whendi ≥ 0. Components withdi ≤ 0
can be defined analogously.

• A〈E′

m,Es〉,sv is such that for everyc ∈ Z, [x ←

c] |= Em and 〈q〈E
′

m,Es〉,sv
in

, c〉 −→∗ 〈q
〈E′

m,Es〉,sv
out

, c′〉
iff [x ← c,Xx ← c′] |= E′

m ∧ Es. This compo-
nent updates the counter according to〈E′

m,Es〉. Fig. 2
contains a graphical representation of the component
A〈E′

m,Es〉,sv with Em = x ≡2 1 (from sv ), E′
m =

Xx ≡2 0 and Es = x < Xx < x + 7. To build
A〈E′

m,Es〉,sv , we determine on the fly (usingEm, E′
m

andEs) thatXx = x+ i for somei ∈ {1, 3, 5}.

qin qout

ε,>, +1 ε,>, +1 ε,>, +1

ε,>, +1 ε,>, +1 ε,>, +1 ε,>, +1 ε,>, +1

Figure 2. A〈E′

m,Es〉,sv

• AEm,sv is such that for everyc ∈ Z, 〈qEm,sv
in

, 0〉 −→∗

〈qEm,sv
out

, c〉 iff [x ← c] |= Em. This component
updates the counter from0 to a value satisfyingEm

(only used at the beginning of the run). Fig. 3 con-
tains a graphical representation of some component
Ax≡Kc,sv .

qin qout

0 1 c

+1 +(K − 1)

−1 −(K − 1)

ε,>, +1 ε,>, +1

ε,>,−1

ε,>, +1

ε,>,−1

Figure 3. Ax≡Kc,sv

The automatonAsat = 〈Σ, Q, δ, I, F 〉 is defined as the
“disjoint union” of the above-mentioned components with
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an additional initial states0, F = Q and with the following
additional transitions.

• For every sv = 〈Ex,Em,E
′
x,E

′
m,Es〉 ∈ SV(φ),

s0
ε,>,0
−−→ q

Em,sv
in

∈ δ. This corresponds to decide which
constraintEm the first value of the counter satisfies.
The only way for the run to continue is to enter further
in AEm,sv .

• For every sv = 〈Ex,Em,E
′
x,E

′
m,Es〉 ∈ SV(φ),

q
Em,sv
out

ε,>,0
−−→ q

Ex,sv
in

∈ δ. When the control state is
q
Em,sv
out

, the counter satisfiesEm. Now we want to
checkEx. So, the only way to continue the run is to
enter inAEx,sv .

• For every sv = 〈Ex,Em,E
′
x,E

′
m,Es〉 ∈ SV(φ),

q
Ex,sv
out

ε,>,0
−−→ q

〈E′

m,Es〉,sv
in

∈ δ. When the control state
is qEx,sv

out
, this means that the counter satisfiesEx and

it is now time to update it according to〈E′
m,Es〉. The

only way for the run to continue is to enter further in
A〈E′

m,Es〉,sv .

• For all sv1 = 〈(Ex)1, (Em)1, (E
′
x)1, (E

′
m)1, (Es)1〉

∈ SV(φ) and sv2 = 〈(Ex)2, (Em)2, (E
′
x)2, (E

′
m)2,

(Es)2〉 ∈ SV(φ) s.t. (E′
x)1[Xx ← x] = (Ex)2 and

(E′
m)1[Xx ← x] = (Em)2, q〈(E

′

m)1,(Es)1〉,sv1

out

sv1,>,0
−−−−→

q
(Ex)2,sv2

in
∈ δ. The lettersv1 can be read since all the

verifications have been successful. The only way for
the run to continue is to enter further inA(Ex)2,sv2

. A
new symbolic valuationsv2 is guessed butsv2 has to
agree withsv1 on some constraints.

For all symbolic valuationssv1 = 〈(Ex)1, (Em)1,
(E′

x)1, (E
′
m)1, (Es)1〉 ∈ SV(φ) and sv2 = 〈(Ex)2,

(Em)2, (E
′
x)2, (E

′
m)2, (Es)2〉 ∈ SV(φ), for all c, c′ ∈ Z,

the propositions below are equivalent (by construction of
the components):

(I) [x ← c] |= (Em)1 and 〈q(Ex)1,sv1

in , c〉
ε
−→

∗

〈q
〈(E′

m)1,(Es)1〉,sv1

in
, c〉

ε
−→

∗
〈q

〈(E′

m)1,(Es)1〉,sv1

out
, c′〉

sv1−→ 〈q
(Ex)2,sv2

in
, c′〉

ε
−→

∗
〈q

(Ex)2,sv2

out
, c′〉,

(II) [x← c,Xx← c′] |= sv1.

We can now state the main property: the set of satisfiable
symbolic models (with respect to a formulaφ) is recognized
by the simple one-Z-counter automatonAsat.

Let 〈σ, ρ〉 be a satisfiable symbolic model and for alli ∈
N, ρ(i) = 〈(Ex)i, (Em)i, (E

′
x)i, (E

′
m)i, (Es)i〉. So there is

a CLTL1
1(DL) modelσ′ : N → Z such thatσ′ |= ρ. We

can show that〈σ, ρ〉 ∈ L(Asat) since there is an accepting
run of the form

r0
ε
−→ 〈q

(Em)0,ρ(0)
in

, σ′(0)〉
ε
−→

∗
〈q

(Ex)0,ρ(0)
in

, σ′(0)〉
ε
−→

∗
〈q

〈(E′

m)0,(Es)0〉,ρ(0)
in

, σ′(0)〉
ε
−→

∗

〈q
〈(E′

m)0,(Es)0〉,ρ(0)
out

, σ′(1)〉
ρ(0)
−→ 〈q

(Ex)1,ρ(1)
in

, σ′(1)〉

ε
−→

∗
〈q

〈(E′

m)1,(Es)1〉,ρ(1)
in

, σ′(1)〉
ε
−→

∗

〈q
〈(E′

m)1,(Es)1〉,ρ(1)
out

, σ′(2)〉
ρ(1)
−→ 〈q

(Ex)2,ρ(2)
in

, σ′(2)〉 . . .
Now suppose that〈σ, ρ〉 ∈ L(Asat). By construction of

the network of components inAsat, there is an accepting
run necessarily of the form

r0
ε
−→ 〈q

(Em)0,sv0

in
, c0〉

ε
−→

∗
〈q

(Ex)0,sv0

in
, c0〉

ε
−→

∗

〈q
〈(E′

m)0,(Es)0〉,sv0

in
, c0〉

ε
−→

∗
〈q

〈(E′

m)0,(Es)0〉,sv0

out
, c1〉

ρ(0)
−→

〈q
(Ex)1,sv1

in
, c1〉

ε
−→

∗
〈q

〈(E′

m)1,(Es)1〉,sv1

in
, c1〉

ε
−→

∗

〈q
〈(E′

m)1,(Es)1〉,sv1

out
, c2〉

ρ(1)
−→ 〈q

(Ex)2,sv1

in
, c2〉 . . .

By construction of each component and by equivalence
between (I) and (II) above,[x← c0] |= (Em)0 and for every
i ∈ N, [x ← ci,Xx ← ci+1] |= (Ex)i ∧ (Em)i ∧ (E′

x)i ∧
(E′

m)i ∧ (Es)i. So the modelσ′ : N → Z s.t. σ′(i) = ci
satisfiesρ, i.e.σ′ |= ρ. This means precisely that〈σ, ρ〉 is a
satisfiable symbolic model. 2

In order to evaluate the complexity of the nonemptiness
test forAφ, we also need the following result.

Theorem 2 The nonemptiness problem for simple one-Z-
counter automata with alphabet isNLOGSPACE-complete.

The tedious proof of Theorem 2 (see [14, Sect. 6]) is
based on the two following results. First, checking whether
L(A) is non-empty for simple one-Z-counter automataA
with alphabet can be reduced in logarithmic space to the
existence of an accepting run in simple one-N-counter au-
tomata with no testx 6= 0 and no alphabet (easy). Sec-
ond, checking the nonemptiness of automata from the latter
class amounts to check the existence of paths of polynomial
lengths satisfying specific properties. This second part re-
quires careful and lengthy developments. We are now ready
to state the main complexity result and its main corollary.

Theorem 3 Satisfiability for CLTL1
1(DL+,PROP) is

PSPACE-complete.

The presence of propositional variables in
CLTL(DL+,PROP) allows to reduce the model-checking
problem forCLTL(DL+) to the satisfiability problem for
CLTL(DL+,PROP) (following [29]). By inspection of
the proof (see [14, Sect. 4.2]) we obtain a logspace reduc-
tion from the model-checking problem forCLTL1

1(DL+)
to the satisfiability problem forCLTL1

1(DL+,PROP).

Corollary 2 Satisfiability for CLTL1
1(DL+) and model-

checkingCLTL1
1(DL+) formulae over 1-variableDL+-

automata arePSPACE-complete.

PSPACE-hardness follows fromPSPACE-hardness of
satisfiability and model-checking for LTL restricted to
one variable [15]. As additional corollaries, we de-
duce that the one-variable fragment of the counter logic
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Lp [10] has aPSPACE-complete satisfiability problem and
model-checking one-clock discrete timed automata with
CLTL1

1(DL+) can be done inPSPACEwhich contrasts with
the undecidability results from [11, Section 6]. Corol-
lary 2 can be extended by allowing propositional variables
in the automata and formulae. More importantly, a quite
remarkable separation feature of our technique is that we
can adapt it to any extension LTL+ of LTL for which for-
mulae can be translated into Büchi automata in polynomial
space. This includes extensions with past-time operators,
with automata-based operators [34], or with fixpoint opera-
tor, see e.g. [30].

Theorem 4 (LTL+)11(DL+) model-checking and satisfia-
bility are also inPSPACE.

It suffices to adapt the definition ofAsymb from plain
LTL to LTL +, the automatonAsat from Lemma 3 being un-
changed. As a corollary, model-checking linearµ-calculus
with difference logicDL over one-variableDL-automata is
PSPACE-complete, refining a result from [8].

We conclude this section by a more prospective remark.
Bounded model-checking [4] consists in searching for a
counterexample in executions whose length is bounded by
some integerm (encoded in binary). By adding to a finite-
state system a counter that increments after each transition,
one can concisely encode in our formalism the problem of
finding a witness execution of lengthm. Of course, one
needs to relativize the formulae: for instancepUq would
become(x < m⇒ p)U(x < m ∧ q).

4 Model-checking one-Z-counter automata

A natural question is whether Corollary 2 is optimal w.r.t.
the Presburger fragment we have considered. Lemma 4 be-
low states that we do not preserve decidability when extend-
ing the constraint language toQFP.

Lemma 4 Satisfiability for CLTL1
1(QFP) and model-

checkingCLTL1
1(QFP) formulae over 1-variableQFP-

automata areΣ1
1-complete.

Constraints of the formax + by = 0 wherea, b ∈ Z allow
to encode a configuration〈qi, c1, c2〉 of a Minsky machine
(qi is the ith control state) by the value2c13c25i and zero
tests can be done using modulo relations. This follows di-
rectly from [26, Sect. 14.2] about one counter machines
with multiplication and division by constants. In this sec-
tion, the strategy to regain decidability consists in restrict-
ing the class of models to one-Z-counter automata. Model-
checking becomes decidable (even inPSPACE) for LTL with
full quantifier-free Presburger constraintsrestricted toone
variablebut withno restriction on theX-length.

LetA = 〈QA, δA, IA, FA〉 be a one-Z-counter automa-
ton (not necessarily simple) whose set of updates is of the
form Xx = x + u with u ∈ {umin, umin + 1, . . . , umax}.
Without any loss of generality, we can assume thatumin =
−umax. Given aCLTLω

1 (QFP) formulaφ such that|φ|X =
l, we consider the following syntactic resources:

• K is the lcm of the integersk such that≡k occurs in
φ,

• CONS is the set of constantsd such that
∑
aiX

ix ∼ d
occurs inφ,

• COEF is the set of constantsai such that
∑
aiX

ix ∼
d occurs inφ.

Without any loss of generality, we can assume that
amin = −amax where amin and amax are respectively
the minimal and the maximal element ofCOEF. For
technical reasons (see details in [14, Sect. 5]), we pose
CONS(A, φ) = {dmin, . . . , dmax} such thatdmax =

−dmin = l(l+1)
2 amaxumax. We define a symbolic valu-

ation wrtA andφ as an element of the setSV (A, φ) =
Cx ×Modx × C1

step × · · · × Cl
step such that

• Cx is the set composed of the constraintsx < dmin,
dmax < x, andx = d for d ∈ CONS(A, φ).

• Modx is the set composed of the constraintsx ≡K c

for c ∈ {0, . . . ,K − 1}.

• Ci
step is composed of constraints

Xix = Xi−1x+ u for u ∈ {umin, . . . , umax}.

A result similar to Lemma 1 can be established.
We define a symbolic satisfaction relation as in Sect. 3:

sv |=symb E iff for every valuationv : {x,Xx, . . . ,Xlx} →
Z such thatsv(v) = sv we havev |= E. We can naturally
extend this relation to symbolic valuation sequences.

Lemma 5 Let φ be aCLTLω
1 (QFP) formula andA be a

one-Z-counter automaton.A |= φ iff there are a sym-
bolic modelρ ∈ SV (A, φ) such thatρ |=symb φ and an
accepting run〈q0, c0〉, 〈q1, c1〉, 〈q2, c3〉, . . . of A such that
c0, c1, c2 . . . |= ρ.

We build the automatonAφ as the intersectionAsymb ∩
Asat such thatAsymb recognizes the set of symbolic models
satisfyingφ andAsat recognizes the set of symbolic mod-
els generated from accepting runs. The definition ofAsymb

and the synchronization betweenAsymb andAsat are sim-
ilar to Sect. 3 considering the alphabetΣ = SV(A, φ)
(with ε-transitions) and the corresponding relation|=symb.
Lemma 6 below is a pivot result for proving Theorem 5 and
its proof is a variant of the proof of Lemma 3.

Lemma 6 Given a formulaφ and a one-Z-counter automa-
ton A, one can build a simple one-Z-counter automaton
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Asat with alphabetΣ = 2PROP × SV(A, φ) such that
L(Asat) is the set of satisfiable symbolic models w.r.tφ and
A.
Moreover,Aφ can be effectively built fromφ andA in poly-
nomial space thanks to the wayAsat is defined.

Proof. Let A = 〈QA, IA, FA, δA〉 be a oneZ-counter
automaton andφ be a CLTLω

1 (QFP) formula such that
|φ|X = l. The automatonAsat is defined over the alpha-
betΣ = SV (A, φ). As in the proof of Lemma 3, the con-
struction is modular. We denoteQA × Q the set of states
of Asat whereQ is a set of auxiliary states used in the con-
struction of components similar to components in the proof
of Lemma 3. For everysv = 〈Ex,Em,E

1
s, . . . ,E

l
s〉 and

qa ∈ QA, we define components:

• Aqa

Em,sv such that for everyc ∈ Z, 〈qa, q
Em,sv
in

, 0〉 −→∗

〈qa, q
Em,sv
out

, c〉 iff [x← c] |= Em.

• Aqa

Ex,sv such that for everyc ∈ Z, 〈qa, q
Ex,sv
in

, c〉 −→∗

〈qa, q
Ex,sv
out

, c′〉 iff c = c′ and[x← c] |= Ex.

• We also need to define another kind of components
that update the counter. For everyd ∈ CONS(A, φ),

Aqa

E1
s,sv

is such that for everyc ∈ Z, 〈qa, q
E1

s,sv

in
, c〉 −→∗

〈qa, q
E1

s,sv
out

, c′〉 iff [x← c,Xx← c′] |= E1
s.

The different components are connected as follows:

• The set of initial states is composed of the
states of the form〈q0, q

Em,sv
in

〉 for every sv =
〈Ex,Em,E

1
s, . . . ,E

l
s〉 ∈ SV(φ,A) andq0 ∈ IA.

• For everysv = 〈Ex,Em,E
1
s, ..,E

l
s〉 ∈ SV(φ,A) and

q0 ∈ IA, 〈q0, q
Em,sv
out

〉
ε,>,0
−−→ 〈q0, q

Ex,sv
in

〉 ∈ δ.

• For all sv = 〈Ex,Em,E
1
s, . . . ,E

l
s〉 ∈ SV(φ,A),

〈qa, q
Ex,sv
out

〉
ε,>,0
−−→ 〈qa, q

E1
s,sv

in
〉 ∈ δ.

• For all sv1 = 〈(Ex)1, (Em)1, (E
1
s)1, .., (E

l
s)1〉 ∈

SV(φ,A), sv2 = 〈(Ex)2, (Em)2, (E
1
s)2,.., (E

l
s)2〉 ∈

SV(φ,A) andqa, q′a ∈ QA such that

– (E1
s)1 equalsXx = x+d andqa

∼,d
−→ q′a ∈ δA for

some∼∈ {>, <,>,=, 6=},

– (E1
s)1 ∧ (E1

m)1 ⇒ (E1
m)2 is valid in PA (check-

able in polynomial time),

– for every 1 ≤ i ≤ l − 1, (Ei
s)2 =

(Ei+1
s )1[X

i+1x← Xix,Xix← Xi−1x],

we have〈qa, q
E1

s,sv1

out
〉

sv1,∼,0
−−−−→ 〈q′a, q

(Ex)2,sv2

in
〉 ∈ δ.

• The set of final states is{〈qf , q
Ex,sv
out

〉 | qf ∈ FA}.

By construction, for all paths· · · 〈qi, q
(Ex)i,sv i

in
, ci〉 −→

· · ·
sv i−→ 〈qi+1, q

(Ex)i+1,sv i+1

in
, ci+1〉 · · ·

svi+1

−−→ · · ·
sv i+l−1

−−−−→

〈qi+l, q
(Ex)i+l,sv i+l

in
, ci+l〉· · · in Asat, we have

ci, . . . , ci+l |= sv i. 2

Now we can conclude about the complexity of the
model-checking problem.

Theorem 5 Model-checkingCLTLω
1 (QFP) formulae over

one-Z-counter automata isPSPACE-complete.

PSPACE-hardness is a consequence of [15], see also a direct
proof in [14, Sect. 5]. As for Theorem 4, model-checking
linearµ-calculus with QFP constraints over one-Z-counter
automata is inPSPACE, refining [8]. By contrast, satisfiabil-
ity for CLTL1

1(QFP) is undecidable.

5 Conclusion

Figure 4 summarizes the complexity of satisfiability,
model-checking overDL-automata and model-checking
overk-Z-counter automata for most LTL-like specification
languages considered herein.

Apart from the completion of our classification, the
more positive results concern one-counter automata/nets,
see applications in [9, 32, 21]. ThePSPACE upper
bound for model-checking one-Z-counter automata over
CLTLω

1 (QFP) or even over its linearµ-calculus extension
refines results from [18, 8, 33, 28] that concern more gen-
eral systems and languages.
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