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Abstract—In this work, we present a framework for construct-
ing a spatial map of an indoor environment using the concept
of echolocation. More specifically, we propose a non-linear least
squares (NLS) estimator which is combined with a spatial filtering
technique, e.g., beamforming, to estimate both the time-of-arrival
(TOA) and direction-of-arrival (DOA) of the acoustic echoes.
The proposed framework is complemented with an echo detector
to classify a spurious estimate and an acoustic reflector, i.e., a
wall. Based on these estimators, we then propose two algorithms
that can complement existing range sensors and aid a robotic
platform in acoustic reflector localization and mapping: a single-
channel localization and mapping (ScLAM) and a multi-channel
localization and mapping (McLAM). Compared to commonly
used sensors, e.g., lidar and cameras, our proposed method can
detect transparent surfaces that are typically found in an office
environment. To test our algorithms, a proof-of-concept robotic
platform was built. According to our evaluation, both qualitative
and quantitative experiments reveal that the proposed methods
can detect an acoustic reflector up to a distance of 1.5 m at
a signal-to-diffuse-noise ratio (SDNR) of 0 dB in a simulated
environment and 10 dB in a real environment with an accuracy
of 80 %.

Index Terms—robot audition, TOA estimation, DOA estima-
tion, echolocation, localization, mapping

I. INTRODUCTION

Robotic platforms, e.g., drones and unmanned ground ve-
hicles (UGVs), has become an essential part of our society.
We use them for tasks that are often monotonous and danger-
ous for human workers to handle. With the advancement of
perception technology, i.e., the ability of a robot to perceive
its environment, robots are now able to perform complicated
tasks that makes them suitable in different sectors, e.g.,
agriculture [1], construction [2], supply chain and logistics
[3], hospitals [4], etc. Within a warehouse setting, robots are
often programmed to follow a predefined trajectory within
an environment to transport goods. Over time, robots were
equipped with proximity sensors, e.g., lidars, cameras, ultra-
sonic sensors, etc., for navigation, which also led the robots to
plan its own path without human intervention, making these
robots more autonomous. According to the IEEE Standard for
Robot Map Data Representation for Navigation [5], one way
to effectively navigate an indoor environment is to construct a
spatial map of an environment, which is normally done using
a very popular framework called Simultaneous Localization
and Mapping (SLAM) [6]–[8]. The advantage of constructing
a spatial map of a surrounding could also aid engineers
and building planners to do asset maintenance and survey
related work. Additionally, SLAM-based robots also aid rescue

workers and surveyors to construct spatial maps of unknown
environments, e.g. sewers [9], [10], underground tunnels, etc.
Traditionally, lidar and camera-based technologies are used to
provide input data to SLAM algorithms to construct a spatial
map of an environment [11].

However, lidar and camera-based technologies are sus-
ceptible to changing light conditions or foggy environments
and are also not suitable for detecting transparent surfaces
[12]. This makes these technologies unsuitable to accurately
generate a spatial map of a typical office environment [13].
Furthermore, lidar and camera-based technologies has limited
field of view (FOV) and thus offers limited coverage when
localizing targets around the corner of the room [14]. These
issues can be resolved by employing sound [15]. Sound is
used by animals (e.g., bats, dolphins, and rats) in nature for
orienting themselves within an environment and hunting prey
[16] by probing the environment. This process is known as
echolocation. An advantage of using echolocation for spa-
tial map generation is that it can enable a robotic platform
to navigate an environment under poor lighting conditions.
Furthermore, compared to camera and lidar-based technolo-
gies, microphones are typically cheaper and may offer omni-
directionality. In the past, the concept of echolocation was
studied by several researchers to built active SONAR (Sound
navigation and ranging) technologies for naval submarines to
detect incoming ships and hostile submarines [17].

The use of SONAR in air-borne applications is a chal-
lenging and complicated task but an attempt to study this
was proposed in [18]. The authors utilizes two ultrasonic
transmitters/receivers to effectively localize multiple targets
up to a distance of 8 m and classification of the targets were
done using template matching. Moreover, the authors in [19]–
[21] has also proposed several techniques that utilizes sound
to make a distance estimate of an acoustic reflector. However,
these works assume that the time-of-arrival (TOA) information
of the acoustic echoes are known prior to estimation. TOA
measurement of an acoustic echo is usually extracted from the
estimated room impulse response (RIR) using a standard peak-
picking approach, but this has proven to be a non-trivial and
time consuming process [22]. In acoustic signal processing,
the RIR is the transfer function between the source and the
microphone. It has a distinctive characteristic, i.e., it contains
two main components: a direct-path plus early reflections and
a stochastic long tail representing late reflections that con-
tributes to the reverberation [23]. The direct-path component
corresponds to the shortest distance that a sound travels to
reach a receiver while the early reflections correspond to the
sound bouncing off an acoustic reflector before reaching the
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Fig. 1: An example illustrating synthetic Room Impulse Re-
sponse (RIR)

receiver as shown in Fig. 1. Within the context of robotic
platforms, the individual RIRs have to be estimated as the
robot moves within an environment for TOA estimation of
the early reflections as it corresponds to an information about
the geometry of the room [24]. Furthermore, [25] proposed an
algorithm called BatSLAM that utilizes a transmitter/receiver
in the ultrasonic frequency range to generate a spatial map of
an indoor environment. In [16], the researchers built a robotic
platform that navigates an outdoor environment in order to
construct a spatial map as well as classify flora using an
artificial neural network. However, both these approach utilizes
specialized sensors that operates in a specific frequency range
of the sound, i.e., the ultrasonic range. Many robotic platforms
that exist in the market are, on the other hand, intended for
human-robot interaction (HRI), e.g., the NAO robot. These are
often equipped with standard microphones and loudspeakers
that operates in the audible frequency range. The estimation
of TOAs and DOAs from an observed signal in the audible
frequency range has been addressed previously in [26]–[29].
However, the presence of the direct-path component within
the recording makes it difficult to detect and estimate early
reflections as it contains the highest energy as seen in Fig.
1. Therefore, in [26], [30], the direct-path component was
assumed to be absent (e.g., removed by preprocessing) from
the synthetic data recordings before TOA/DOA estimation,
but, in reality, this is a non-trivial problem on its own and could
thus have a detrimental effect on the estimation. Additionally,
the estimators proposed in [26], [30] always gives an estimate
regardless of whether there actually is an acoustic reflector
in the vicinity of the robot, which may lead to a noisy
map generation. To mitigate this, we propose introducing
a statistical echo detector within our framework [31]. The
detector proposed in this paper is a binary classifier, where
the statistics of the background noise is used to optimally
define a threshold value against which the spurious estimates
are differentiated from those corresponding to actual acoustic
reflectors. Furthermore, in order to construct a spatial map
of an indoor environment, the direction of arrival (DOA) of
the acoustic echo is also required. This helps a robot estimate
both the distance and the orientation of the acoustic reflectors,
i.e., walls. Several techniques on DOA estimation exist in the

literature [32]–[35] to estimate the required information, e.g.,
TOAs and DOAs, but without addressing the influence of the
strong direct-path component of the sound source that could
have a detrimental impact in TOA and DOA estimation. To
address the presence of the direct-path component, we consider
a setup consisting of a microphone array, e.g., a uniform
circular array (UCA), and a loudspeaker situated at the center
of the array as in Fig. 2. This setup could be placed on different
kinds of robotic platforms, e.g., drones, UGVs, etc. Based on
these conditions, we propose a framework that extends our
existing approach [12], [30] to multi-channel. The framework
consist of four main blocks: 1) a spatial filtering block, that
utilizes an adaptive beamformer to filter the observed signals
2) a non-linear least squares (NLS) estimator proposed in [30]
to estimate TOA from the filtered signal 3) an echo detector
block, that takes the statistics of the background noise into
account to optimally decide a threshold for deciding if the
said estimates belong to actual acoustic reflectors and 4) a
mapping block to utilize the DOA and TOA to generate a
spatial map, as shown in Fig. 3. The process involves probing
the environment with a known sound which is recorded by a
UCA. The recorded audio data is then processed to estimate
the DOAs and TOAs of the acoustic reflections. The advantage
of the approach proposed in this paper is that it reduces
the influence of the direct-path component resulting from the
sound source, e.g., loudspeaker, which is achieved by first
processing the acoustic echo with a spatial filter and later
using the filtered signal for TOA estimation, and, then, classify
whether an estimate belongs to an acoustic reflector or empty
space. Finally, the estimates classified as belonging to acoustic
reflectors, are used for generating a spatial map. Furthermore,
the proposed methods are derived in the frequency-domain
which provides a decrease in computational load. The pro-
posed method estimate the parameter of interest directly from
the observed signals and does not rely on estimating RIRs as
the robot moves. Moreover, to test our proposed framework,
we built a proof-of-concept robotic platform to generate real
data for a multi-channel scenario similar to our earlier work
where we introduced a single-channel estimator for acoustic
reflector localization [12]. The dataset is made public1.

The remainder of the paper is then structured as follows:
Section II describe the signal model and problem formulation,
Section III describes the non-linear least squares (NLS) esti-
mator, Section IV describe the first multi-channel localization
and mapping (McLAM) algorithm while Section V describes
single-channel localization and mapping (ScLAM) algorithm.
Additionally, the robotic architecture and components descrip-
tion are detailed in Section VI before proceeding to the Section
VII. In Section VIII we test the performance of the proposed
method on a robotic platform and then we discuss our findings
and conclude the paper in Section IX and Section X. Moreover,
in Section X, we propose different ways on how this research
could be extended.

1The dataset used for simulation and evaluation can be found at
http://homes.create.aau.dk//ussa/journal/index.php
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Fig. 2: Example of a uniform circular array with six micro-
phones.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Time-domain model

Consider an array with M microphones recording a sound
emitted from a loudspeaker, including its acoustic reflections
from walls, etc. The microphones and loudspeaker are collo-
cated and the loudspeaker is assumed to be a point source. We
can then formulate a general model for the recorded signal at
microphone m, for m = 1, . . . ,M at the kth robot position,
as

ym,k(n) = (hm,k ∗ s)(n) + vm,k(n), (1)
= xm,k(n) + vm,k(n)

where hm,k(n) is the acoustic impulse response of the room
measured from the loudspeaker to microphone m at robot po-
sition, wk, for k = 1 . . .K. Moreover, vm,k(n) is the additive
background noise, including interfering sources plus the ego-
noise of the robot at position, wk. The operator ∗ represents the
convolution operator, and xm,k(n) = (hm,k ∗ s)(n). In what
follows, the background noise is assumed to be white Gaussian
noise, but prewhitening techniques could be employed in
cases where such assumptions are not met [36], [37]. By
decomposing (1) as a sum of its direct-path component and
its reflections and expressing the transfer function between the
loudspeaker and a microphone in terms of its gain and delay,
the signal model in (1) can be written as:

ym,k(n) =

∞∑
r=1

gm,r,ks(n− τref,r,k − ηm,r,k) (2)

+ vm,k(n)

where gm,r,k is the attenuation of the rth reflection from
the loudspeaker to the microphone m at position, wk, while
τref,r,k is the TOA of the reflected sound received at the
reference point of the UCA at robot position, wk, while ηm,r,k
is the time-difference-of-arrival (TDOA) between the reference
point and the microphone m. In our definition in (2), the direct-
path component corresponds to r = 1. The acoustic impulse
response has a certain structure and is distinctively described
in two parts: the direct-path plus early reflections and late
reflections often described as a stochastic and dense tail. This
means that we could rewrite (1) as the sum of the first R

reflections to facilitate TOA and DOA estimation as shown

ym,k(n) =

R∑
r=1

gm,r,ks(n− τref,r,k − ηm,r,k)

+ dm,k(n) + vm,k(n), (3)
= xm,k(n) + v′m,k(n) (4)

where dm,k(n) is the stochastic and dense tail of the late re-
flections. Often, we can combine the late reflections, dm,k(n),
with the background noise as shown in (4) [38]. If we collect
N time samples from each microphone and assume stationarity
across those samples, we can vectorize our data and extend
our signal model as shown:

ym,k(n) =

R∑
r=1

gm,r,ks(n− τref,r,k − ηm,r,k)

+ dm,k(n) + vm,k(n),

= xm,k(n) + v′m,k(n) (5)

= [ym,k(0) ym,k(1) · · · ym,k(N − 1)]
T
, (6)

where the time-stacked probe signal, s(n), early reflections,
xm,k(n), and noise, v′m,k(n), are defined similarly to ym,k(n).

Hence, the signal formulation above yield an interesting
problem to solve, namely, how to estimate τref,r,k and ηm,r,k
of an acoustic reflector that will aid in simultaneously lo-
calizing and mapping an indoor environment. However, this
requires us to estimate R unknown TOA and MR TDOAs
from the observations ym,k(n), at position, wk. If we assume
a known array configuration, however, we can reduce the
dimensionality of this problem by incorporating the geometry
of the loudspeaker and the microphone array.

B. Array Model

The array model can be chosen to be of any geometry but
in this paper, we use a uniform circular array (UCA) with
a loudspeaker placed at the center of the array. Although
any reference point could be chosen to solve the TOA and
DOA problems, we assume the center of the UCA to be the
reference point. Assuming that the reflectors are in the far-field
of the array and given the geometry of the microphones and
the loudspeaker where the center of the microphone array is
chosen as the reference point, we can then write the TDOAs
of the acoustic echoes as follows:

ηm,r(ζr) = d sinψr cos(φr − βm)
fs
c
, (7)

where ζr = [ψr φr]
T , and ψr and φr are the elevation

and azimuth angles, respectively, while d is the radius of the
UCA. Furthermore, βm = 2πi

M + α is the angular position
of the mth element on the UCA circle counted in an anti-
clockwise manner from the x-axis and α is the offset angle.
Moreover, fs is the sampling frequency and c is the speed
of sound. The TDOA model in (7) can be combined with
the observation model in (5) to simplify the dimension of the
estimation problem from MR to 2R. The problem of interest
is thus to estimate the unknown orientation parameters, i.e.,
ψr and φr, and the distance-related parameter, τr, based on
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the posed array (7) and observation (5) models. Additionally, a
classification of the estimates as either belonging to an actual
acoustic reflector or an empty space is needed to generate a
spatial map of the acoustic reflectors. Finally, the parameter
estimates of the acoustic echoes need to be mapped into the
acoustic reflector positions based on the robots movement and
orientation.

III. NON-LINEAR LEAST SQUARES (NLS) ESTIMATOR

We can resolve the problem of estimating the unknown
parameters in (5), i.e., τref,r,k and ηm,r,k, by using a non-
linear least squares (NLS) estimator, which is statistically
optimal under the assumed white Gaussian noise conditions.
Mathematically, this can be formulated as

{ĝk, τ̂ k, ζ̂k} = arg min
g,τ ,ζ,

M∑
m=1

∥∥∥∥∥ym,k(n)−
R∑
r=1

gm,r,ks(n− τref,r,k − ηm,r,k(ζr))

∥∥∥∥∥
2

2

,

(8)

where

τ =
[
τ1 τ2 · · · τR

]T
, (9)

g =
[
gT1 gT2 · · · gTR

]T
, (10)

gr =
[
g1,r g2,r · · · gM,r

]T
, (11)

ζ =
[
ζT1 ζT2 · · · ζTR

]T
, (12)

with x̂ denoting an estimate of x, and xk denoting a parameter
x related to the kth robot position. The displacement k of
the robot can be estimated using an accelerometer or can be
pre-programmed within the robot so that the robot follows
a predefined trajectory. We can also solve (8) by converting
it into frequency domain because 1) it will reduce the com-
putational load when estimating the desired parameters [39],
and 2) by working in the frequency domain, we will have
the flexibility to work in specific frequency ranges or account
for frequency dependency. For instance, if we want to work
in the ultrasonic range then we can select and utilize only
the frequency bins corresponding to these high frequencies.
This may also help us design probe signals that are non-
intrusive to human hearing but this is left for future iteration
of this research. Using Parseval’s theorem and omitting the
frequency dependency in the notation, we can transfer (8) to
the frequency domain, which yields the following:

{ĝk, τ̂ k, ζ̂k} = arg min
g,τ ,ζ

J(g, τ , ζ), (13)

where

J(g, τ , ζ) =

M∑
m=1

∥∥∥∥∥Ym,k −
R∑
r=1

gm,rZ(τr, ζr)� S

∥∥∥∥∥
2

, (14)

Ym,k =
[
Ym,k(0) · · · Ym,k(F − 1)

]T
, (15)

Z(τ, ζ) =
[
1 e−j(τ+η(ζ))2π

1
F · · · e−j(τ+η(ζ))2π

F−1
F

]T
(16)

with F denoting the number of frequency bins, Ym,k(f)
denoting the DFT of ym,k(n) in frequency bin f . Moreover,
S is the DFT vector of s(n) defined similarly to Ym,k. This
estimation problem is multidimensional and thus computa-
tionally expensive in practice. To minimize the computational
complexity, the multidimensional estimator could instead by
implemented using various cyclic methods like the RELAX
method proposed in [40] and later used in [30] to iteratively
estimate the values of τ̂ k and ĝk. In the special case where we
are only concerned with estimating one acoustic reflection, and
assuming that the direct-path component has been removed via
preprocessing, we can set R = 1. Additionally, if we assume
that the gain of each microphone is the same, then we can
solve (13) for the gain ĝk by taking the derivative of the cost
function, yielding:

∂J(gk, τk)

∂gk
=

∂

∂gk
(YHY

− gkYHZ(τk)− gkZ
H

(τk)Y

+ g2kZ
H

(τk)Z(τk))

= −YHZ(τk)− Z
H

(τk)Y

+ 2gkZ
H

(τk)Z(τk) (17)

where Z(τk) = Z(τk)�S is the frequency domain probe signal
delayed by τk samples. Solving for the linear gain parameter
gk gives:

ĝk =
YH
k Z(τk) + Z

H
(τk)Yk

2Z
H

(τk)Z(τk)
. (18)

By inserting this back into (13), we get

τ̂k = arg min
τ

∥∥∥∥∥Yk −
YH
k Z(τ) + Z

H
(τ)Yk

2Z
H

(τ)Z(τ)
Z(τ)

∥∥∥∥∥
2

(19)

= arg max
τ

IR{YH
k Z(τ)} (20)

where the operator IR represents taking the real part of the
signal. The expression in (20) estimates TOA for a single
reflector at position, wk. That is, for the special case with one
acoustic echo, the NLS estimator in (20) can be interpreted
as a cross-correlation based technique, which is widely used
within robotics for source localization [41].

Based on the above problem formulation and methods
in Section II and Section III, respectively, we propose two
algorithm that could aid different robotic platform for spatial
map construction: A multichannel localization and mapping
(McLAM) algorthm and a singlechannel localization and map-
ping algorithm (ScLAM).

IV. MULTI-CHANNEL LOCALIZATION AND MAPPING
(MCLAM)

When constructing a spatial map of an environment using
sound, a robotic platform requires both DOA and TOA infor-
mation of the acoustic echoes while distinguishing estimates
belonging to an acoustic reflector from spurious estimates.
Furthermore, this should be carried out under the presence
of a strong direct-path component originating from the sound
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source, which detrimentally influence the estimation of the
acoustic parameters. To address these problems, we propose
mounting a microphone array on a robotic platform so that
both the DOA and TOA of the acoustic echoes could be
estimated, while suppressing the direct-path component. The
multi-channel localization and mapping (McLAM) architec-
ture has four important components as shown in Fig. 3. First,
we introduce a spatial filter, i.e., a beamformer, to determine
the DOAs of the acoustic echoes impinging from the reflectors,
e.g., walls. Second, we feed the filtered observation into an
NLS estimator to find the TOAs of the acoustic echoes.
Then, we introduce a binary classifier to distinguish between
spurious and real estimates, to exclude spurious estimates
in the subsequent mapping of the acoustic reflectors, which
constitutes the final block.

A. Spatial Filter block

The DOA information of an acoustic echo can, for example,
be determined using the traditional spatial filtering techniques,
e.g., beamforming [33], as considered in this paper. Later, a
TOA estimate technique is applied, so that acoustic echoes
corresponding to the distance of acoustic reflectors are es-
timated. Apart from DOA estimation, the other advantage
of using spatial filtering before TOA estimation is that it
can suppress the direct-path component that can affect the
parameter estimation. Beamforming is based on the spatial
weighting of the signals recorded by a microphone array such
that the output signal is the weighted summation of all the
signals to extract the signal impinging from a particular DOA
[42]. In this way, we first employ a beamformer for estimating
the angle of an acoustic echo using the steered response power
approach. Subsequently, the echo is extracted by applying a
beamformer steered towards the estimated angle to produce
the output signal for the later TOA estimation using an NLS
estimator (20) [30]. We therefore seek to estimate the signal
of interest (SOI), while minimizing the influence of the direct-
path component of the probe sound and other noise sources,
e.g., from the rotors of a drone. With this aim, we consider
the use of an adaptive beamformer [33]. In addition, this idea
also builds on the statistical foundation of the EM method
[26], which indicates that this is the optimal way of solving
the problem of localizing acoustic reflectors in an indoor
environment.

Due to the broadband nature of the signals involved, we
implement the beamformer in the frequency domain. There-
fore, the observations in (1) were first converted into frequency

Fig. 4: An overview of components required to built a multi-
channel robotic platform used for this research

domain as shown:

Yk = Xk + V′k

= d(ζr,k)Sr,k + Uk (21)

=
[
Y1,k(ω) Y2,k(ω) · · · YM,k(ω)

]T
,

where Xk and V′k is defined similarly to Yk. Moreover, Uk

contains the remaining R−1 early reflections as well as the late
reverberation and background noise, and Sr,k is the complex
amplitude of the rth reflection at frequency ω. Assuming a
UCA with the center of the array chosen as the reference
point, the steering vector can be written as follows:

[d(ζk)]m = e−j
ω
c d sin(ψk) cos(φ−βm). (22)

Here, ζk is the look direction of the beamformer. The objective
of the beamformer is then to recover the desired signal Sr,k
given the observation Yk, i.e.,

Y ζk
= wHYk, (23)

where w ∈ CM and Y ζk
is the recovered signal from the

observed signal from direction ζk at position wk, which
should be an estimate of Sk. Here, several beamforming filters
could be used, while, in this paper, we consider three types
of beamformers which, e.g., facilitates a trade off between
computational efficiency, estimation accuracy, and direct-path
component suppression: 1) the minimum power distortionless
response (MPDR) beamformer, 2) the delay-and-sum (DSB)
beamformer, and 3) the linearly constrained minimum vari-
ance (LCMV) beamformer [43]. The MPDR beamformer is
derived by minimizing the power of the of the output of the
beamformer Y ζk

subject to a distortionless constraint, i.e.,

wMPDR = arg min wHRYk
w (24)

subject to wHd(ζk) = 1.

The solution to this is then well known to be given by [30]

wMPDR =
R−1Yk

d(ζk)

dH(ζk)R−1Yk
d(ζk)

, (25)
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Fig. 5: The multi-channel proof of concept robotic platform.

where RYk
= E[YkY

H
k ] is the M ×M covariance matrix of

the observed signal, E[·] is the mathematical expectation oper-
ator, and wMPDR is the complex weight vector corresponding
to the MPDR beamformer. If the observed signal is assumed
to be white Gaussian noise, e.g., RYk

= IM , where IM is
the M ×M identity matrix, the MPDR design resembles the
DSB, i.e.,

wDSB =
d(ζk)

M
. (26)

Similarly, the LCMV beamformer is derived by extending the
MPDR beamformer with additional constraints such that the
optimization problem is solved as shown:

wLCMV = arg min wHRYk
w (27)

subject to wHD = fT .

Here, D is a matrix containing all the steering vector for the
C different constraints in f ∈ RL. In this paper, we choose f
as

f =
[
1 0 · · · 0

]T
(28)

By utilizing this, we can reject the interference of the direct-
path component by introducing a null in the direction of the
loudspeaker, i.e., the center of the UCA. The solution to the
LCMV beamforming problem is

wLCMV = R−1Yk
D[DHR−1Yk

D]−1f . (29)

B. TOA estimator block

The output of these beamformers are subsequently feed
to the non-linear least squares (NLS) Estimator for TOA
estimation in (20). This estimator is statistically optimal when
estimating τ and g for a single reflection while the background
noise is white Gaussian. By preprocessing the observation with
the adaptive beamformer, this assumption is better met since
we can reduce the impact of directional and colored noise [44].
The resulting NLS estimator is then given by

{ĝk, τ̂k, ζ̂k} = arg min
g,τ,ζ

∥∥Y ζ − gZ(τ)� S)
∥∥2 , (30)

where Y ζ is the output of the beamformer (23) extracted from
direction ζ at a position wk at frequency ω, while � is the
element-wise multiplication operator. By solving for the linear
parameters in (30), we get the concentrated estimator for the
TOA and DOAs:

{τ̂k, ζk} = arg max
τ,ζ

IR
{
Y
H

ζ Z(τ)
}

(31)

where Z(τ) = Z(τ)�S and the operator IR represents taking
the real part of the signal.

C. Echo detector block

If the robotic platform is expected to move autonomously
based on echolocation, a problem of great importance is to de-
tect whether the observed signal received by the microphones
represent an acoustic reflector, or if it only contains noise, e.g.,
the ego-noise of the robotic platform. This is because the TOA
estimator in (31) provides estimates even when no acoustic
reflector is present, which may lead to spurious localization
estimates. To prevent false estimation when no acoustic reflec-
tor is present, several approaches could be applied including
machine learning approaches [45], and deep learning [46] to
categorize acoustic reflectors. Another approach could be to
include a Generalized Likelihood Ratio Test (GLRT) detector
[31] within our framework to distinguish whether the observed
signal contains an acoustic reflection or not. Compared to the
data-driven machine learning approaches, the GLRT is based
on a priori model assumptions, and does thus not require
training data. In this paper, we therefore employ the GLRT
detection approach as discussed in the following.

If we assume the acoustic reflection to be in the far-field of
the array, the decision about whether an observation contains
an acoustic reflection can be formulated as a detection problem
[31]:

H0 : ym,k(n) = v′m,k(n) (32)

H1 : ym,k(n) = gks(n− τm,k) + v′m,k(n), (33)

for m = 1, . . . ,M , where H0 is the null hypothesis refer-
ring to a situation when the observation only includes white
Gaussian background noise and late reverberation, v′m,k(n),
with variance σ2, while H1 refers to the situation when the
observation includes a reflected version of the known probe
signal s(n) in noise. Here, we assume that the direct-path
component is absent, i.e., suppressed via preprocessing. The
GLRT is then given by

p(yk; ĝk,H1)

p(yk;H0)
> γ, (34)

yk =
[
yT1,k(0) · · · yTM,k(0)

]T
, (35)

It can then be shown that, in order to detect if the observation
belongs to H1, we can use a threshold that depends on the
power of the attenuated probe signal, the noise variance, and γ.
If the power, T (yk), of a matched filtering between the probe
signal and the observed signal at the reference microphone
exceeds this threshold, we decide H1, i.e., if

T (yk) = yHk (n)H(τ k)s(n) > ĝk
ε

2
+
σ2 ln γ

2ĝk
(36)
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with

H(τ k) =
[
DT
τ1,k

· · · DT
τM,k

]T
, (37)

ε = M‖s(n)‖2, (38)

ĝk =
2yHk (n)H(τ k)s(n)

M‖s(n)‖2
, (39)

where Dτ is a cyclic shift register that delays a signal by τ
samples. The GLRT derivation is shown in Appendix ??.

D. Mapping block

In this block, the DOA and TOA estimates are used along-
side the robot’s position within an environment to localize
the position of an acoustic reflector. The aspect of the robot’s
navigation and path planning is beyond the scope of this
paper, however, by utilizing common on-board sensors, e.g.,
Initial Mass Units (IMUs), of the robotic platform, we can
estimate the robot’s position. By combining this information
with the estimates of the acoustic echoes obtained using, e.g.,
the methods considered in this paper, a spatial map of the
environment can be generated for the robotic platform. The
resulting spatial map may then enable the robotic platform to
plan its path and move autonomously within the environment.

To estimate the position of the acoustic reflector from the
estimated TOA, τ̂k, we assume that the sound propagates in
plane waves (i.e., the source is in the far-field of the array). If
we assume the speed of sound to be fixed then also assume
estimation of a single acoustic reflector then the distance of
the acoustic reflector with respect to the robotic platform is
estimated as δk = c·τk

2 . Additionally, the direction of the
acoustic reflector at position wk is determined from the DOA
estimates ψ and φ. If we assume a 2D scenario, where the
reflections and the hardware is located in the same plane,
we can utilize the far-field assumption and the choice of our
reference point to conduct the mapping as:

pxk
= wxk

+ δk cosφk (40)
pyk = wyk + δk sinφk

The procedure is then to estimate the acoustic reflector po-
sitions for each of the known robot positions, wk, along
its trajectory. The estimated acoustic reflector positions are
then concatenated in the set P = {p1, . . . , pK} with pk =
(pxk

, pyk) for k = 1, . . . ,K.
The spatial filtering, the TOA estimator, the echo detector

and the mapping block are then combined to form the basis
of our proposed McLAM method. The algorithm describing
the proposed McLAM method is outlined in Algorithm 1.
However, in some applications, only one microphone and
loudspeaker pair may be available for the mapping. In the
following section, we therefore consider, how the hardware
directivity properties may be exploited to localize the acoustic
reflectors.

V. SINGLE CHANNEL LOCALIZATION AND MAPPING
(SCLAM)

In some applications, robotic platforms, e.g, intended for
HRI may consist of only a single loudspeaker and micro-
phone. In such a scenario, it is therefore necessary to reduce

Algorithm 1: Proposed method McLAM.
Input : Trajectory

W = {(wx1
, wy1), . . . , (wxK

, wyK )};
Output: Reflector position estimates

P = {(px1 , py1), . . . , (pxK
, pyK )};

Initialization:
P = {}, DOA = {}, TOA,= {},Φ = [0◦; 360◦];

for k = 1, . . . ,K do
Probe the environment with s(n);
Record echoes in yk;
Transform signals to frequency domain
s(n),yk(n)

FFT−−−→ S,Yk;
for φ ∈ Φ do

Compute w, e.g., using (24);
Y φ,k(ω) = wHYk;

end
{τ̂k, φ̂k} = arg max

τ,φ
IR
{
Y
H

φ,kZ(τk)
}

;

φ̂k
update−−−−→ DOA;

τ̂k
update−−−−→ TOA;

Apply the echo detector in (36);
if yHk (n)H(τ k)s(n) > ĝk

ε
2 + σ2 ln γ

2ĝk
then

Compute pk using (40);

pk
update−−−−→ P;

end
end

the McLAM algorithm to a single channel localization and
mapping (ScLAM) algorithm. However, using such a single-
channel approach has certain limitations, for instance, it cannot
generally not be used to estimate the DOA of the acoustic
echoes because of the lacking spatial information. Some pos-
sible ways of combating this are to, e.g., exploit the movement
of the robot [19], or, as considered in this paper, to exploit the
directionality of the employed hardware [12].

As in the McLAM, the loudspeaker probes the room with
a known sound, s(n), which is recorded by a microphone as
the robot moves via positions wk, for k = 1, . . . ,K. The
NLS estimator described in (20) estimates τk for every robot
position, wk. Consider the platform moving in a predefined
trajectory W = {w1, . . . , wK} with wk = (wxk

, wyk), such
that the platform moves from wk to wk+1 etc. For every
position, wk, the platform will thus probe the environment with
s(n) and record the observed signal yk(n). The probed and
observed signals are then converted into the frequency domain
before passing them to the NLS estimator. In practice, the
analysis window for the TOA could be restricted to a search
interval from τmin up to τmax samples. This leads to

τ̂k = arg max
τε[τmin;τmax]

IR{YH
k Z(τ)} (41)

In ScLAM, the position of the acoustic reflector is then
inferred from the estimated TOA, τ̂k, by exploiting the typical
directionality of a loudspeaker. More specifically, we assume
the acoustic reflector to be located at the distance correspond-
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Algorithm 2: Proposed method ScLAM.
input : Trajectory

W = {(wx1
, wy1), . . . , (wxK

, wyK )},
Initialization P = {}, TOA,= {};

output : Reflector position estimates
P = {(px1 , py1), . . . , (pxK

, pyK )};
for k = 1, . . . , wk do

Acquire direction of robot movement: θr,k;
Acquire direction of loudspeaker: θl,k;
Probe the environment with s(n) ;
Record echo: yk;
Transform signals to frequency domain
s(n),yk(n)

FFT−−−→ S,Yk;
τ̂k = arg maxτk IR{YH

k Z(τ)};
{τ̂k}

update−−−−→ TOAs;
Apply the echo detector in; (36);
if yHk (n)H(τ k)s(n) > ĝk

ε
2 + σ2 ln γ

2ĝk
then

τk
remove−−−−→ TOAs;

pk using (43)
update−−−−→ P;

end
end

ing to the estimated τk in the direction of the loudspeaker.
Additionally, the direction in which the robot platform is
moving, θrob,k, at position wk, is related to the direction that
the loudspeaker is facing, θlk , by a fixed offset angle, ∆θ, i.e.,

θlk = θrob,k + ∆θ. (42)

Based on the above information, the coordinates of the position
of the acoustic reflector is then estimated as follows:

pxk
= wxk

+ δk cos θlk , (43)
pyk = wyk + δk sin θlk .

The resulting ScLAM algorithm is then proposed in Al-
gorithm 2, which can be used used to construct a spa-
tial map of a 2D environment with a single-channel loud-
speaker/microphone setup.

VI. ROBOTIC PLATFORM OVERVIEW

The proposed methods discussed in Section IV and Section
V were implemented on an embedded platform running a
Windows 10 Operating System. The microcomputer used for
the proof-of-concept robotic platform is an UDOO x86, which
is a single board development platform. On the platform,
we use MATLAB to implement the proposed McLAM and
ScLAM methods in Algorithm 1 and 2, respectively. Moreover,
for multichannel audio data acquisition, Playrec [47] was used
to probe and record the acoustic signals. The base of the
robot used for moving the microphone and loudspeaker array
as shown in Fig. 4 is a Kobuki (TMR-K01-W1), which is a
wheeled platform with on-board sensors such as accelerom-
eter, odometer, etc., for precise control and movement. The
Kobuki platform has a built-in microcontroller (Arduino) that
can be programmed with a predefined trajectory to conduct

experiments. The microphone and loudspeaker array is con-
nected to a Presonus (1818VSL) audio interface, which was
subsequently connected to the UDOO x86 microcomputer. The
sampling frequency of the audio interface was set to 48, 000
Hz. Furthermore, a pre-calibrated laser range sensor (TFMini
micro Lidar), was also attached to an external microcontroller
(Arduino Uno) which was then connected to the UDOO
microcomputer to receive a ground truth distance value for
the experiments. The laser range finder helps in evaluating
the performance of the proposed method at varying distances
under different noise conditions. The recorded data was pro-
cessed by the UDOO x86 microcomputer in real-time as the
robot was moving along its trajectory. The final assembly is
shown in Fig. 5 where the microphone and loudspeaker array
is attached on top of the Kobuki base. The microphones are
organized as a UCA with a radius of 0.2 m.

VII. SIMULATED RESULTS

In this section, we evaluate the performance of the proposed
method presented in the earlier sections. We evaluate the
performance of the ScLAM and McLAM using simulation
data and later, implement the methods on a proof-of-concept
hardware platform that was built to test the proposed method
in a lab setting. In the first experiments, the performance of
the considered TOA/DOA estimators in terms of their accuracy
were evaluated and compared against existing methods under
different background noise levels. Similarly, in the second
experiment, we evaluate the TOA/DOA accuracy of the pro-
posed methods against varying distances from the acoustic
reflector. The simulated experiments were conducted using the
room impulse response generator [48]. The dimension of the
simulated room was set to 8×6×5 m., the reverberation time
(T60) was set to 0.6 s, while the speed of sound was fixed
at 343 m/s. The loudspeaker was positioned at the center of
an UCA with a radius of 0.2 m and M = 6 microphones. A
white Gaussian noise sequence was used as the known probe
signal, s(n), consisting of 1, 500 samples from a Gaussian
distribution. Using such a broadband signal minimizes the
effect of spatial aliasing [49] and was also used in [26]
to simplify the EM estimator. However, any type of known
broadband signal could be used to probe the environment,
e.g., a chirp signal or a maximum length sequence (MLS)
[50]. Additionally, we have zero-padded the probe signal to
get a total length of 20, 000 samples so that we get a longer
analysis window which will ensure that all the reflections are
captured in the observed signal. The sampling frequency fs
was set to 48, 000 Hz. The background noise for the evaluation
was composed of three components: a cylindrical diffuse
noise em,k, the sensor noise, fm,k, and an interfering source,
im,k, e.g., external and directional noise source. The diffuse
cylindrical noise was generated using the method in [51] with
the rotor noise of a drone from the DREGON database [52].
The audio file used to generate the cylindrical noise has a
rotor speed of 70 revolutions per second (RPS). The thermal
sensor noise was simulated as a white Gaussian noise while
the interfering source is modelled as a point source. These
noises were then added to the observed probe signal before
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Fig. 6: Comparison of the proposed method against state-of-the-art

estimating the parameters of interest from the observations,
which can be mathematically written as:

ym,k(n) = xm,k(n) + v′m,k(n), (44)

= xm,k(n) + em,k(n) + fm,k(n) + im,k(n). (45)

The noise was added to achieve certain signal-to-diffuse noise
ratios (SDNR’s), signal-to-sensor noise ratios (SSNR’s), and
signal-to-inteference noise ratios (SINR’s). These are defined,
for the microphones m = 1, . . . ,M , as

SDNRm =
σ2
xm

σ2
em

, (46)

SSNRm =
σ2
xm

σ2
fm

, (47)

SINRm =
σ2
xm

σ2
im

, (48)

where σ2
y denotes the variance, σ2

y = E[y2(n)] of a zero-mean
signal y(n). In the following experiments, we then compare
our proposed method with existing TOA/DOA methods found
in the literature. This includes, the multi-channel expectation-
maximization method (EM-MC) method proposed in [26]
and the common approach to extracting TOAs from the
estimated RIR using dual-channel method [53] through the
peak-picking approach (RIR-PP). This is done by computing
Ĥ(f) = Y (f)/S(f) and then taking the inverse DFT to
get ĥ = F−1{Ĥ(f)}. These methods were compared with
different variations of the proposed beamforming and NLS-
based approach, utilizing DS (DS-NLS), MPDR (MPDR-
NLS), and LCMV (LCMV-NLS) beamforming, respectively.

Although the proposed methods can be extended and ap-
plied to 3D scenarios, we focus on the construction of 2D
maps in our experiments and therefore set ψ = 0. The
generalization to 3D is left for future research. In contrast
to earlier works in [26], [30], the direct-path component
is accounted for and thus included within the simulations.
Within the experiments, we assume that the robotic platform
is closer to one acoustic reflector. Therefore, we choose R = 1
to estimate the TOA and the DOA of the nearby acoustic
reflector. In order to estimate multiple reflections R > 1, we

can adopt several iterative methods, such as, RELAX and EM
method [40], [54]

A. Implementation of the proposed DOA estimator

To implement the beamformers, we use the overlap-add
technique [33]. The output of the microphone was divided into
overlapping frames with a frame width of 960 samples (20
ms with a sampling rate of 48 kHz) with a window overlap of
50 %. Later, each frame is multiplied with a Hanning window.
These frames are then transformed using a short-time Fourier
transform (STFT). For each frequency bin, a beamformer was
designed and applied to the received signals Yk. Furthermore,
for each sub-band, the observed signal covariance matrix,
needed in forming the MPDR and LCMV beamformers, is
estimated as

RYk
=

1

T

T−1∑
t=0

YkY
H
k . (49)

Moreover, to make the beamformers robust against, e.g.,
miscalibration and reverberation, we regularize the covariance
matrix of the observed signal as in [55]

RYk
= (1− β)RYk

+ β
Tr{RYk

}I
M

(50)

where β is the regularization parameter, Tr(·) is the trace of a
matrix, and IM is the M×M identity matrix. When evaluating
the performance of our estimator, a value of β = 0.1 was
selected for the MPDR beamformer. The noise covariance
matrix, RYk

, in (49) is then replaced by regularized noise
variance matrix (50), RYk

. For the LCMV beamformer, we
added an additional regularization using γ to mitigate poor
matrix conditioning for certain constraint and frequency com-
binations. This was done as wLCMV = R−1Yk

D[A(γ)]−1f ,
where

A(γ) = (1− γ)DHR−1Yk
D + γ

Tr{DHR−1Yk
D}I

M
. (51)

Values of γ = 0.1 and γ = 1 were selected empirically and
used in the simulations. To initiate the method, we probe
the environment with a known sound. The observed signals
recorded by the microphone array were first processed to
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Fig. 7: Evaluation of proposed McLAM method and state-of-the-art against different SINR
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Fig. 8: Evaluation of proposed McLAM method and state-of-the-art against different distances

determine the DOA of the acoustic echoes. To estimate the
DOA and the TOA of the acoustic echoes, a uniform grid
of DOAs over the interval [0°; 360°] and a uniform grid of
TOAs corresponding to a distance interval from 0.5 m up to
3 m were considered. The estimators were then evaluated over
these grids of candidate DOAs and TOAs. The reason for
selecting 0.5 m as the lower bound was done to search for
acoustic echoes that are outside the UCA which has a radius
of 0.2 m, and so that the direct-path component is not included
within the estimation window. Moreover, the upper bound of
3 m were selected because the performance of the proposed
method degrades after 3 m according to [26].

B. Comparison of the proposed methods
In our first experiment, we compare our proposed method

with the existing TOA/DOA methods. We compare the pro-
posed methods against different SDNRs while placing the
setup at a distance of 1 m close to an acoustic reflector. The
performance of the proposed methods are shown in Fig. 6.
The accuracy is defined as the percentage of estimated TOAs
that are within ±10 % of the true TOA/DOA parameter of
the first order acoustic echo computed using the image-source
method [56]. This was measured for different SDNRs while
the SSNR was fixed to 40 dB and the interfering source was
absent in this experiment. For each SDNR values the accuracy

was measure over 50 Monte-Carlo simulations. As seen in
Fig. 6, the proposed methods, MPDR-NLS and LCMV-NLS,
outperforms the existing TOA/DOA methods, EM-MC and
RIR-PP, for SDNR levels greater than −10 dB. The DSB-
NLS method offers similar performance to EM-MC both in
terms of TOA and DOA estimation for most SDNRs as seen
in Fig. 6(b).

C. Evaluation of the proposed method in the presence of a
point source interference

In this experiment, we investigate a scenario where the robot
is placed within an environment in the presence of an external
interfering source, e.g, a human-speaker, machinery, a radio,
etc. In such a scenario, the proposed method will be affected
from external elements present in the environment. Therefore,
the objective of this experiment is to evaluate both the TOA
and the DOA performance of the proposed method against
different SINR values. The interfering source was modelled as
a point source for this experiment. More specifically, within
this experiment, the robotic platform was placed close to
an acoustic reflector at a position, [1, 3, 2.5] m within an
environment of dimension 8 × 6 × 5 m3. Furthermore, the
external interfering point source was positioned at a location
[2, 1, 2.5] m such that the acoustic reflector is at a fixed
angle of 180° while the point source is placed at an angle
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Fig. 9: Acoustic image of MPDR-NLS and DSB-NLS beamformer
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Fig. 10: Evaluation of proposed McLAM method and state-of-the-art against varying Distances

of 300° with respect to the robotic platform. The performance
is shown in Fig. 7. The SINR level selected for this experiment
are within the interval [−40; 40] dB while the SDNR and
SSNR were both set to 40 dB. Moreover, some additional
consideration was taken into account when modelling the
interfering point source. For instance, if a human talker is
considered as a point source, then it is natural for the human
to move within the environment. To model this, the position of
the point source was randomize in both the x-axis and y-axis.
The interval selected to model point source movement for both
x-axis and y-axis are [1; 3] m and [1; 2] m, respectively. As
seen in Fig. 7, the TOA of the MPDR-NLS and LCMV-NLS
offer more robustness at low SINR compared to EM-MC, RIR-
PP and DSB-NLS. Similar performance is seen in the DOA
estimation. The accuracy is defined similarly to the previous
method with a tolerance of ±10% of true TOA and DOA.

D. Evaluation of proposed methods against distance
In this experiment, we consider a scenario where the robotic

platform is placed closer to an acoustic reflector and its
distance with respect to the acoustic reflector was changed
after every 50 iteration. With this setup, the performance of the
proposed method and existing methods over distance interval
[0.8; 2.2] m was investigated. Here, the SDNR and SSNR
values were set to 40 dB while the interfering source was

absent. As seen in Fig. 8, the MPDR-NLS, and the LCMV-
NLS variants outperform other methods in terms of TOA
estimation and accurately estimate the DOA of the acoustic
reflector as it can detect an acoustic reflector up to a distance
of around 2 m. This is because at larger distance the acoustic
echoes loses its energy quadratically due to inverse square law.

E. Visualizing Acoustic Echoes
Microphone array imaging has been around for quite some-

time and are used in aviation [57] for structural analysis as
well as to study low frequencies [58]. Similarly, our proposed
method could also be used to generate an acoustic image of
acoustic echoes which could aid researcher to analyse the
direction and distance of acoustic reflectors or be used as input
data for the development of deep learning based methods.

To generate an acoustic image using the methods proposed
in this paper, we consider estimation of the reflector in 2D
only, i.e., we only estimate φ. For each beamformer we
considered a grid of candidate steering angles with a resolution
of 4° in the interval [0°; 360°]. The output of the beamformer is
then passed to the NLS estimator in (20), which then estimates
τ from candidate grid of delays in [τmin; τmax]. The resulting
2D cost functions are shown in Fig. 9(a) and (b), respectively
for one of these experiments. Both plots in Fig. 9(a) and (b)
were generated at an SINR of 40 dB with the observed signal
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Fig. 11: Evaluation of the proposed method using proof of concept robotic platform against different SDNR
LIDAR = 1 m SINR = 0 dB SINR = 10 dB SINR = 20 dB SINR = 30 dB SINR = 40 dB

Methods µ [m] RMS
error [m] µ [m] RMS

error [m] µ [m] RMS
error [m] µ [m] RMS

error [m] µ [m] RMS
error [m]

MPDR-NLS 1.0558 0.2843 0.9797 0.0992 0.9718 0.0281 0.9890 0.0118 0.9861 0.0138
DSB-NLS 1.0231 0.2802 0.8647 0.8896 0.1103 0.1174 0.9075 0.0924 0.9861 0.0138
EM-MC 1.0229 0.2803 0.8647 0.1485 0.8908 0.1094 0.9075 0.0924 1.0040 0.0039

LCMV-NLS γ = 0.1 0.9899 0.2603 0.8758 0.1647 1.0387 0.0556 1.0647 0.0647 0.9861 0.0138
LCMV-NLS γ = 1 1.0325 0.2819 0.8813 0.1409 0.7996 0.2134 0.8084 0.2042 1.0254 0.0254

TABLE I: Evaluation of the proposed McLAM against ground truth and SDNRs

SINR = 40 dB MPDR-NLS DSB-NLS EM-MC LCMV-NLS
γ = 0.1

LCMV-NLS
γ = 1.0

LiDAR [m] µ [m] RMSE [m] µ [m] RMSE [m] µ [m] RMSE [m] µ [m] RMSE [m] µ [m] RMSE [m]
1.01 0.9861 0.0138 0.9861 0.0138 1.004 0.0039 0.9861 0.0138 1.0254 0.0254
1.47 1.4327 0.0372 1.5899 0.1199 1.4542 0.0158 1.4327 0.0372 1.5899 0.1199

2 1.4480 0.6142 0.7610 1.239 0.7610 1.2390 1.3321 0.6716 1.2734 0.8174

TABLE II: Evaluation of the proposed McLAM against ground truth and Distances

including the direct-path component. As seen, the cost function
of the MPDR beamformer Fig.9(a) shows a peak at times and
angles corresponding to the TOAs and the DOAs at which
the beamformer received the acoustic echo, these regions are
marked by a red circle. In comparison, the DSB cost function
in Fig.9(b) is very noisy, despite evaluating under the high
SINR of 40 dB, which makes it difficult to extract the true
TOAs and DOAs. This is partly caused by the presence of
the direct-path component and the ego-noise, which cannot be
sufficiently suppressed by the DSB.

F. Computational cost

The computational cost of the proposed methods were mea-
sured using MATLAB’s built-in function timeit. These were
tested on a standard desktop computer running a Microsoft
Windows 10 operating system with an Intel Core i7 CPU with
a 3.40 GHz processing speed and 16 GB of RAM. A Monte
Carlo Simulation of 50 trials were conducted and an average
time was calculated. The measured computational time of EM-
MC, RIR-PP, LCMV-NLS and MPDR-NLS are 63.25 s, 0.024,
59.75, and 60.65 s, respectively, for R = 1 for SINR = 40 dB.
The proposed algorithms are computationally expensive when
implemented within a robotic platform compared to lidar tech-
nologies. To address these issues, one tweak that would allow

faster computation on the robot is to probe the environment
and use echo detector first to determine whether the robot
is closer to an acoustic reflector before proceeding with the
proposed DOA/TOA estimates. This accelerate processing and
prevents the robot from estimating the parameters when not in
the presence of an acoustic reflector. Moreover, tracking, e.g.,
in the form of gradient searches, may be employed instead of
performing a full grid search for every new robot position.

VIII. EXPERIMENTS USING PROOF-OF-CONCEPT ROBOTIC
PLATFORM

In this section, we evaluate the performance of the proposed
algorithm (McSLAM) using a robotic platform under different
SINRs and distances. The objective of these experiments are
to compare our simulated data with the real data to test the
performance of the proposed method in real scenarios. Two
sets of experiments were conducted using the proof-of-concept
robotic platform described earlier in Section VII. The first
set of experiments were performed under different SINR and
distances while the second set of experiments were performed
as a qualitative test to show the mapping ability of the robotic
platform while comparing the MPDR-NLS algorithm against
the lidar data (ground truth). The data is also summarized in
Table I and Table II.



IEEE TRANSACTIONS ON ROBOTICS, 13

A. Evaluation of the proposed method against different SINRs
and distances

Similar to the experiments performed in Section VII-B,
the proof-of-concept robotic platform was placed against an
acoustic reflector within Aalborg University’s Sound Lab. In
the first part of the experiment, the robotic platform was placed
at varying distances while the SINR value was set fixed to 40
dB. The platform was placed at an interval of [1, 1.5, 2] m.
At each distance, the robotic platform probed the environment
with a known sound and 50 samples were collected at each
distances. The TOA/DOA obtained from the robotic platform
are shown in Fig. 10. As seen in the figures, the proposed
McLAM algorithm gives an accurate TOA estimate up to a
distance of 1.5 m for all combination of spatial filter. The
accuracy is defined as the number of estimates that are ±10%
of the true TOAs obtained from the lidar data. DOA accuracy
is defined similarly.

The next experiment was performed to test the proposed
method against different SINR values of the environment.
The SINR value of the environment was changed by using
a separate loudspeaker playing an audio file from YouTube
called Cocktail party2. The loudspeaker was placed 6.3 m
away from the robotic platform while the robotic platform was
fixed at a distance of 1 m away from the acoustic reflector.
The SINR of the environment was estimated by dividing
the variance of the probed signal, σ2

x, with the variance of
the background noise, σ2

v . The background noise v(n) was
recorded by the robot before probing the environment. By
tuning the volume of the loudspeaker, we then select 5 SINR
values, [0, 10, 20, 30, 40] dB. The results for this experiment is
shown in Fig. 11. Here, we see that the proposed MPDR-NLS
is robust under low SINR value of 10 dB for both TOA and
DOA estimation with 80% accuracy. The changes seen in this
experiments are discussed in Section IX.

B. Application Examples

Two qualitative experiments were performed to test the
performance of the proposed method (MPDR-NLS) in con-
structing a spatial map of an indoor environments. Two en-
vironments were selected to perform this task: 1) a typical
office environment with a glass partition and 2) Aalborg
University’s Sound Lab. These experiments are similar to
the one performed in our earlier work with ScLAM [12].
In the first experiment, the McLAM algorithm was used to
move within an office environment in a predefined trajectory
(straight line). The objective of this experiment was to compare
the proposed method against lidar, e.g., in detecting a glass
surface. The robot moves a distance of 0.5 m and stops
momentarily to probe the environment with a known sound
before moving to a new location. The robot repeats this process
for k = 1, . . .K, positions. The results are shown in Fig. 12.
As seen from the experiment, the proposed method is capable
of detecting a glass surface compared to the commonly used
lidar sensor. This shows that the proposed method is suitable
for constructing a spatial map of a typical office environment.

2https://youtu.be/IKB3Qiglyro

In the second experiment, Algorithm 1 was used within
Aalborg University’s Sound Lab, which has a dimension of
5.4×6.38×4.05 m3, to construct a spatial map. The objective
of this experiment was to move the robot in a more elaborate
path within a 3D space such that the robot encounters acoustic
reflectors as well as empty space along its trajectory. This was
done to construct a spatial map of an enclosed environment
and also to test the echo detector method presented in Section
IV-C. To accomplish this task, the room was divided in to a
grid of 20 square boxes, each box has a size of 1 m2 so that we
can ensure that the robot moves along its predefined trajectory
and robot’s location with respect to the acoustic reflector is
always known. Autonomous navigation is also possible but this
would require additional on-board sensors, e.g., using Initial
Mass Unit (IMU), odometer, gyroscope, etc., to estimate the
robot’s current position which can then be combined with
our estimates to generate a spatial map. As the robot moves
within the square grids and follows a predefined trajectory as
shown in Fig. 13(b), the robot probes the environment with a
known sound. The recorded sound is spatially filtered using
MPDR beamformer which is later feed to a NLS estimator
for TOA estimation. Later, the estimated data is passed to a
echo-detector to determine whether it belongs to an acoustic
reflector or is an spurious estimate. Finally, the estimated data
are combined with the trajectory of the robotic platform to
localize acoustic reflectors. As seen in Fig. 13(b), if the robot
moves without the echo detector then it will estimate spurious
estimates even when the robot is away from any reflecting
surfaces. However, these spurious estimates are removed when
echo detector is applied as seen in Fig. 13(c)

IX. DISCUSSION

In the experimental section, the performance of the different
methods were evaluated in both simulated and practical envi-
ronment. According to the simulation results in Fig. 6 and
Fig. 8, the MPDR-NLS, LCMV-NLS γ = 0.1 and LCMV-
NLS γ = 1 methods detects an acoustic reflector up to a
distance of around 2 m under the SDNR of −10 dB. Similarly,
in practical scenario, the methods could detect an acoustic
reflector up to a distance of around 1.5 m as seen in Fig.
10. However, in Fig. 11, only the MPDR-NLS is seen to
provide good accuracy at low SINR for TOA/DOA estimation
while LCMV-NLS γ = 0.1 is the second best choice for
TOA estimation compared to its other variant LCMV-NLS
γ = 1 which performs less then EM-MC and DSB-NLS when
evaluating under different SINR. From these experiments, we
can deduce that the MPDR-NLS estimator provides better
performance compared to other methods. The results from
practical experiments are also detailed in Table. II. The RMSE
of all beamformer variants are robust when the distance of the
acoustic reflector is less than 1.5 m with respect to the robot.
At higher distances, the RMSE increases while the RMSE
decreases with higher SDNR values. One noticeable difference
we see between simulated and practical evaluation is the
low accuracy in practical experiment. There could be various
reasons for a lower accuracy in real scenarios, for instance, in
our proposed method, we do not take sensor calibration into
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(a) Layout of office with glass surfaces.
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Fig. 12: Detecting of glass surface at Aalborg University.

(a) Layout of the Sound Lab.
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(c) 2D map of the Sound Lab with GLRT.

Fig. 13: Generating a spatial map of the Sound Lab.

account as well as sensor drift due to an increase in thermal
temperature that can arise when the sensors are operating for
a long period of time [59].

Additionally, in the simulation, we see that the presence of a
point interfering source does not limit the proposed methods’
robustness as seen in Fig. 7. This goes to show that an MPDR-
NLS and both implementations of the LCMV-NLS method are
effective in localizing the acoustic reflector of the environment
when compared to other beamformer variants in the presence
of an interfering source. In the qualitative experiments, we
exploit robot’s movement to construct a spatial map of an
environment. Here, we compare the current technologies, e.g.,
lidar, with the proposed McLAM algorithm. As seen in Fig.
13, our proposed method successfully construct a spatial map
of an environment. However, one obvious limitation of the
proposed method is that lidar accurate distance measurements
over longer distance. This is because sound intensity decreases
quadratically over distance due to the inverse squares law. One
major advantage of our proposed method, on the other hand,
is that it provides is that it can be used to detect transparent
surfaces as seen in Fig. 12 that are typically found in an office
environment, hence our proposed method could compliment
existing technologies for spatial map generation. Additionally,
we also test our echo-detector in our qualitative experiment.
As seen in Fig. 13(b), without echo-detector enabled, spurious
estimates are seen when the robotic platform is at an empty
space. However, as seen in Fig. 13(c), with the echo-detector
enabled, the spurious estimates are removed.

Moreover, both variant of LCMV beamformers behave
differently using real data and offers lower performance

compared to the simulated results. This could be due to
mismatch of the microphones/loudspeaker positions in the
array that leads, in which case the null constraint of the LCMV
beamformers are not aligned with the direct-path component.
Moreover, the LCMV beamformer implicitly assumes the
loudspeaker to be a point source, which will not hold for
larger loudspeakers located close to the array in practice. In
our future work, we plan to incorporate these inaccuracies
within our models and methods to improve their robustness.

X. CONCLUSION

In this paper, we proposed a non-traditional method of
constructing a spatial map of an indoor environment using the
concept of echolocation. Instead of working in the ultrasonic
range, a novelty in this paper is that our proposed method
could work in the audible frequency range and any kind
of broadband probe signal could be used for DOA/TOA
estimation. In addition to this, our proposed algorithms could
be used on existing robotic platform, e.g., NAO robots, as these
consist of microphones and loudspeaker that work in audible
frequency range. As seen from the experimental results, our
proposed framework could utilize different beamformers for
DOA estimation, which could be combined with our NLS
estimator for TOA estimation and an echo detector, to con-
struct a spatial map. One obvious advantage of our framework
is that each modules in Fig. 3 could be separately improved
over time in order to increase the performance of the acoustic
echo localization. Our proposed methods can detect acoustic
reflectors up to a distance of 1.5 m at an SINR of 40 dB
and robustly estimate TOA at an SINR of 10 dB with 80%
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accuracy in realistic scenario. Furthermore, an echo detector
is proposed based on the statistics of the background noise
that could aid a robot in classifying estimates stemming from
acoustic reflectors from spurious estimates. This can help
a robot map and environment to facilitate its autonomous
planning and movement. In the qualitative experiments, we
see that, compared to the commonly used lidar technology,
our proposed method can detect transparent surfaces as seen
in Fig. 12 and it can also construct a spatial map of an indoor
environment as seen in Fig. 13.

In a future iteration of this research, we aim to include
a loudspeaker’s directivity and transfer function within the
signal model. This will enable our algorithms to work more
efficiently and help us understand and develop sophisticated
sound propagation model that could enable even more accu-
rate construction of spatial maps in an indoor environment.
Additionally, we aim to decrease the computation load of the
proposed method to make it run faster on embedded devices.
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