N

HAL

open science

Hyperserial fields

Vincent Bagayoko, Joris van der Hoeven, Elliot Kaplan

» To cite this version:

‘ Vincent Bagayoko, Joris van der Hoeven, Elliot Kaplan. Hyperserial fields. 2021. hal-03196388

HAL Id: hal-03196388
https://hal.science/hal-03196388

Preprint submitted on 12 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03196388
https://hal.archives-ouvertes.fr

Hyperserial fields

VINCENT BAGAYOKO

Département de Mathématique
Université de Mons, Le Pentagone
20, Place du Parc
B-7000 Mons, Belgique

CNRS, LIX
Campus de 1'Ecole polytechnique
1, rue Honoré d'Estienne d'Orves
Batiment Alan Turing, CS35003
91120 Palaiseau, France

Email: vincent . bagayoko@umons.ac.be

]ORIS VAN DER HOEVEN ELLIOT KAPLAN
CNRS, LIX Department of Mathematics
Campus de 1'Ecole polytechnique University of Illinois at Urbana-Champaign
1, rue Honoré d'Estienne d'Orves Urbana, IL 61801
Batiment Alan Turing, CS35003 US.A.

91120 Palaiseau, France Email: eakapla2@illinois.edu

Email: vdhoeven@lix.polytechnique.fr

Abstract

Transseries provide a universal framework for the formal asymptotics of regular solu-
tions to ordinary differential equations at infinity. More general functional equations
such as E,(x +1) =exp E,(x) may have solutions that grow faster than any iterated
exponential and thereby faster than any transseries.

In order to develop a truly universal framework for the asymptotics of regular
univariate functions at infinity, we therefore need a generalization of transseries: hyper-
series. Hyperexponentials and hyperlogarithms play a central role in such a program.
The first non-trivial hyperexponential and hyperlogarithm are E,, and its functional
inverse L, where E,, satisfies the above equation. Formally, such functions E, and L,
can be introduced for any ordinal «. For instance, E1(x) =e%, E(x) = e, Lysi(x) =
log L, (x), and E, satisfies E,2(x +1) =E,(E2(x)).

In the present work, we construct a field of hyperseries that is closed under E,
and L, for all ordinals a. This generalizes previous work by Schmeling [29] in the case
when a < w®, as well as the previous construction of the field of logarithmic hyper-
series by van den Dries, van der Hoeven, and Kaplan [12].

1 Introduction

1.1 The quest of a universal framework for asymptotic calculus

In order to get our hands on a complex mathematical expression, we first need to simplify
it as much as possible. This can often be achieved by eliminating parts that are asymptot-
ically negligible. For instance, when studying the expression f (x) =loglog x+log (x*+1)
for large values of x, we may compute the approximations x>+ 1~x?,log (x>+1) ~2log x,
and then f(x) ~2logx. Such approximations rely on our ability to determine and com-
pare asymptotic rates of growth.
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Is it possible to develop a universal framework for this kind of asymptotic simplifica-
tion? This sounds like a difficult problem in general, especially for multivariate functions
or functions with an irregular growth like xsin(x**™¥). On the other hand, the problem
might become tractable for univariate functions f (x) in a neighborhood of infinity x — oo,
provided that f is constructed using a limited number of well-behaved primitives.

An important first step towards a systematic asymptotic calculus of this kind was
made by Hardy in [20, 21], based on earlier ideas by du Bois-Reymond [14, 15, 16]. We
say that f is an L-function if it is constructed from x and the real numbers R using the
tield operations, exponentiation, and logarithms. Given two non-zero germs of L-func-
tions f, ¢ at infinity, Hardy proved that exactly one of the relations f <g, f =g, or g< f
holds, where

fx)
f<g = xh—rgog(x)_()’
f=g & lim {;E—i;ER#O

Hardy also observed [20, p. 22] that “The only scales of infinity that are of any practical
importance in analysis are those which may be constructed by means of the logarithmic
and exponential functions.” In other words, Hardy suggested that the framework of
L-functions not only allows for the development of a systematic asymptotic calculus,
but that this framework is also sufficient for all “practical” purposes.

Hardy went on [20, chapter V] with the examination of possible counterexamples,
through the exploration of pathological functions whose asymptotic behavior does not
conform to any logarithmico-exponential scale. Here he made a distinction between irreg-
ular asymptotic behavior (such as oscillating functions) and regular asymptotic behavior
that yet cannot be described in terms of L-functions. Basic examples of the second type
were already constructed by du Bois-Reymond and Hardy [20, chapter II]. For instance,
let expr:=exp™=expo ko exp for k€ N and let £(x) := exp|y| x for each x € R?. Then
& grows faster than any L-function.

In order to formalize the concept of “regular” growth at infinity, we focus on classes
of (germs of) functions that are stable under common calculus operations such as addi-
tion, multiplication, differentiation, and composition. The class of L-functions indeed
satisfies these conditions, but it is interesting to investigate whether there exist larger
classes of functions with similar properties.

Two particular settings that have received a lot of attention are Hardy fields (i.e. fields
of germs of real continuously differentiable functions at infinity that are closed under
differentiation [7]) and germs of definable functions in o-minimal structures [10]. Each
of these settings excludes oscillatory behavior in a strong sense. For instance, although
the function x2 + sin x does not oscillate for large values of x, its second derivative does,
so the germ of this function at infinity does not belong to a Hardy field.

With a more precise definition of regularity at hand, one may re-examine the existence
of regular functions whose asymptotic growth falls outside any scale of L-functions. For
instance, the function € from above is not even continuous and thereby not sufficiently
regular. Nevertheless, it was shown by Kneser [28] that the functional equation

Eu(x+1) = exp Eu(x) (1.1)
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has a real analytic solution on R”. This provides us with a more natural candidate for
aregular function that grows faster than any L-function. Indeed, it was shown by Bosher-
nitzan [6] that Kneser's solution belongs to a Hardy field. The functional inverse L, of E,,
frequently occurs in the complexity analysis of recursive algorithms that use exponen-
tial size reductions. For instance, the fastest known algorithm [22] for multiplying two
polynomials of degree <n in F»[t] runs in time O(nlog n4l«™y This shows that Hardy's
framework of L-functions is insufficient, even for practical purposes.

Another example of a regular function that is not asymptotic to any L-function is the
functional inverse of log xloglog x. This fact was actually raised as a question by Hardy
and only proved in [23] and [13]. More explicit examples of such functions, like exp [e* 2,
were given in [23]. It turns out that the class of L-functions lacks several important clo-
sure properties (e.g. functional inversion and integration), which makes it unsuitable as
a universal framework for asymptotic calculus.

The class of transseries forms a better candidate for such a universal framework.
A transseries is a formal object that is constructed from x (with x — o) and the real num-
bers, using exponentiation, logarithms, and infinite sums. One example of a transseries is

ee're e _gex® 5 (log )™ +42 +x 14+ 2x 2+ 6x 2 +24x 744 4™

Depending on conditions satisfied by their supports, there are different types of
transseries. The first constructions of fields of transseries are due to Dahn and Géring [9]
and Ecalle [17]. More general constructions were proposed subsequently by van der

Hoeven and his student Schmeling [23, 29].

Transseries form a natural “infinitary” extension of the concept of an L-function. The
transseries are closed under integration and functional inversion [23, 13]. They also sat-
isfy a differential intermediate value property [26, Chapter 9]. However, transseries are
only defined formally, so their analytic meaning is not necessarily obvious. One tech-
nique for associating an analytic meaning to certain divergent transseries is accelero-
summation [17], a generalization of Borel summation [5]. An alternative technique is
based on differential algebra and model theory [27, 1]. In this paper, we focus on formal
asymptotic computations, without worrying about analytic counterparts.

Despite the excellent closure properties of transseries for the resolution of differential
equations, the functional equation (1.1) still does not have a transseries solution. In order
to establish a universal formal framework for asymptotic calculus, we therefore need to
incorporate extremely fast growing functions such as E,, as well as formal solutions E 2,
E 53, etc. to the following equations:

E2(x+1) = E,(E 2(x)) (1.2)
Es3(x+1) = E_2(E_3(x)) (1.3)
The fast growing functions E,, E.2, ... are called hyperexponentials. Their functional

inverses L, L., ... are called hyperlogarithms and they grow extremely slowly. The first
construction of a field of generalized transseries that is closed under E,» and L.~ for
all ne N was accomplished in [29]. Here we understand that E; =exp and L; =log.
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The hyperlogarithms L, L, etc. obviously satisfy the functional equations
Ly(L1(x)) = Lo(x) -1
L2(Ly(x)) = Lya(x)—-1
L,3(L2(x)) L,3(x)-1

In addition, we have a simple formula for their derivatives
1
L,(x) = — 14
' =[5 (14)
B<u

where a € {1, w, w?, ...} and

Lok taksko(X) = LTI+ (LK (x0)) )

forallne N and ky, ..., k, €N. The formula (1.4) is eligible for generalization to arbitrary
ordinals a. Taking « = w®, we note that the function L« does not satisfy any functional
equation. Yet any truly universal formal framework for asymptotic calculus should
accommodate functions such as L« for the simple reason that it is possible to construct
models with good properties in which they exist. For instance, by [6], there exist Hardy
tields with infinitely large functions that grow more slowly than L,» for all n € N.

The construction of the field L of logarithmic hyperseries in [12] was the first step
towards the incorporation of hyperlogarithms L, with arbitrary a. The field L is the
smallest non-trivial field of generalized power series over R that is closed under all
hyperlogarithms L, and infinite real power products. It turns out that L is a proper class
and that L is closed under differentiation, integration, and composition.

The main purpose of the present paper is the construction of a field of general hyper-
series that is also closed under the functional inverse E, of L, for every ordinal a. Our
construction strongly relies on properties of the field L of logarithmic hyperseries. Intu-
itively speaking, the reason is that the derivative of E, can be expressed as the composition
of a logarithmic hyperseries with E,:

_ 1

 La(Eu(x))

and similarly for all higher derivatives. One key aspect of our approach is therefore to
construct increasingly large fields T of hyperseries simultaneously with compositions

Eq(x)

o:LxT>” — T>7,

where T~ denotes the class of positive infinitely large elements of T.

The main result of this paper is the construction of a field H 2 L of hyperseries that
is closed under all hyperlogarithms L, and all hyperexponentials E,. Does this end our
quest for a universal formal framework for asymptotic calculus? Not quite yet. First of
all, it remains to be shown that H is closed under all common calculus operations, such
as differentiation and composition. Secondly, the field H does not contain any solution
to the functional equation

fy=vx+ef18Y, £~ Jx.
Fortunately, it is possible to construct fields of transseries with “nested” solutions

loglogx#—e"A

f(x):ﬁ+e logx+e
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to such equations [29, Section 2.5]. Something similar is possible for hyperseries; although
this is beyond the scope of the present paper, we introduce the fundamental concepts
that we expect to use for this generalization.

One may also wonder whether there exist natural models for hyperexponential
functions and hyperseries. We already noted that Kneser constructed a real analytic
solution E,, of the equation (1.1). Schmeling also constructed real analytic solutions
E.2 E.3, ... of (1.2), (1.3), etc. Ecalle introduced a systematic technique for the construc-
tion of quasi-analytic solutions to these and more general iteration equations [17]. In
general, it seems unlikely that there exist any “privileged” regular solutions at infinity.

Another interesting model for hyperexponentiation is Conway's field No of surreal
numbers [8]. The field No is a non-standard extension of the field R which contains
the class On of ordinal numbers. The arithmetic operations are defined in a surpris-
ingly “simple” way, using transfinite induction. Nevertheless, the field No has a remark-
ably rich structure; e.g. it is real-closed. The exponential function on the reals has been
extended to No by Gonshor [18] and this extension preserves the first order properties
of exp [11].

A “simplest” surreal solution to (1.1) with good properties has been constructed in [3].
This solution is only defined on No>” = {x € No:x >R}, but in view of our previous
remarks on real solutions of (1.1), is interesting to note that we may indeed consider it as
“the” privileged solution on No~~. Constructing each hyperlogarithm and hyperexpo-
nential L,, E,,« € On on surreal numbers involves overcoming many technical difficulties.
Our results from this paper reduce this to the simpler task of defining partial hyper-
logarithms on No, which satisfy a short list of axioms.

We finally note that Berarducci and Mantova also defined a derivation dgy with
respect to w on No [4]. This derivation again has good model theoretic properties [2].
However, although the derivation gy satisfies dgym exp x = (dpm x) exp x for all x € No,
it was pointed out in [1] that it does not satisfy 9pym E(x) = (9pm x) E(p(x) for all x €
No~”, for “reasonable” definitions of E,. Indeed, for the definition of E,, from [3], we
have 9pm(Ew(Ew(w))) = E¢(Ew(@)) # (9pM Ew(w)) Eq(Ew(w)).

Stated differently, the hyperexponential structure on No reveals that dgy is not the
ultimate derivation on No with respect to w that we might hope for. One major moti-
vation behind the work in this paper is precisely the construction of a better derivation
on No, as well as a composition. The plan, which has been detailed in [1], is to construct
an isomorphism between No and a suitable field of hyperseries with a natural derivation
and composition with respect to x. The present paper can be regarded as one important
step in this direction.

1.2 Strategy and outline of the main results

In order to construct a field of hyperseries that is closed under all hyperexponentials E,
and all hyperlogarithms L,, we follow the common approach of starting with an arbi-
trary field of hyperseries and then closing it off via a transfinite sequence of extensions.

Now closing off under hyperlogarithms turns out to be much easier than closing off
under hyperexponentiation. For this reason, and following [23, 29, 12], it is actually con-
venient to do this once and for all and only work with fields of hyperseries that are
already closed under all hyperlogarithms. In particular, the smallest field of hyperseries
of this type with an element x >R is the field of logarithmic hyperseries L from [12],
where ¢,:=L,(x) for all a.
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The next step is to work out the technical definition of a “field of hyperseries” that
will be suitable for the hyperexponential extension process. Quite naturally, such a field
should be a Hahn field T = R[[9)1]] of generalized power series, where (9,X) is a totally
ordered monomial group: see Subsection 2.2 for basic definitions and reminders. For
reasons mentioned in the previous subsection, we also require the existence of a com-
position law o: L x T>” — T, where T>”:= {s € T :s > R}. For each a € On, this allows
us to define a function L,: T>” — T by setting L, (s) := {,0s fors€ T,

We say that (T, o) is a hyperserial field if the composition o satisfies a list of natural
axioms such as associativity and restricted Taylor expansions; see Section 6 for the full
list of axioms. The only non-obvious axiom for traditional fields of transseries states
that a transseries m € T~"” is a monomial if and only if supp log m >1 (i.e. the support
of log m only contains infinitely large elements). The only non-obvious axiom HF7 for
hyperserial fields is a generalization of this axiom: if u > 1, then we require that the
support of L, (a) satisfies supp €0 a> (£<,#0a)~! for any L., +-atomic element a. Here
a€ T>” is said to be L watomic if Lg(a) is a monomial for all < w”.

Our definition of hyperserial fields is similar to the definition of fields of transseries
from [24, 29], with a few differences. The old definition includes an additional axiom
of well-nestedness T4 which is important for the definition of derivations and compo-
sitions, but which is not required for the purposes of the present paper. Of course, our
current presentation is based on the composition law o. Finally, we use a slightly dif-
ferent technical notion of confluence. We say that (T, o) is confluent if, for all ordinals y
and all s € T>”, there exist a L, #-atomic element a and 7y < w" with £,0s={,0a. We
refer to Remark 3.6 for a discussion of the differences with the definition from [29].

Given an ordinal a = w", it turns out that the hyperlogarithm L, is entirely deter-
mined by its restriction to the set of L.,-atomic elements. The field T together with
these restricted hyperlogarithms is called the hyperserial skeleton of T. The fact that the
logarithm can be recovered from its restriction to M~ is a well-known fact. Indeed, we
first recover log on 9, since log 1=0 and log m™' =-log m for all m€M ™. For all c€ R>,
meM, and infinitesimal § € T=, we then have

(_1)k+1

k
k(S.

log(cm (1+6)) :logm+logc+z
k>0

Hyperserial skeletons can also be defined in an abstract manner, i.e. without knowl-
edge of a hyperserial field of which it is the skeleton. Precise definitions will be given in
Section 3; for now it suffices to know that an abstract hyperserial skeleton is a field of gen-
eralized power series T = R[[91]] together with partially defined functions L »: 9~ — T
that satisfy suitable axioms. The first key result of this paper is the construction of an
exact correspondence between abstract hyperserial skeletons and hyperserial fields. This
correspondence preserves confluence for a suitable analogue of the confluence axiom
for hyperserial skeletons.

Sections 4 and 5 contain the core of this construction. In Section 4, we first show how
to extend the partial functions L,,» of a confluent hyperserial skeleton T = (T, (L,*) ycon)
to all of T>”. In Section 5, we prove that any confluent hyperserial skeleton T can
be endowed with a well-behaved composition law o: L x T>> — T. In Section 6, we
complete our construction of a correspondence between hyperserial skeletons and hyper-
serial fields. More precisely, we prove:
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Theorem 1.1. If (T, (L") ycon) is a confluent hyperserial skeleton, then there is a unique func-
tion o such that (T, o) is a confluent hyperserial field with

thom = m' foreachmeM” and r e R, and
l,oa = Lyr(a) for each peOnand aedom L».

Theorem 1.2. Let T = R[[9MN]] be a hyperserial field of force On. Then the skeleton
(T, (Ly) yeon) of T is a hyperserial skeleton. Moreover, if (T, o) is confluent, then so is its
skeleton and o coincides with the unique composition from Theorem 1.1.

Sections 7 and 8 are devoted to the closure of a confluent hyperserial field under
hyperexponentiation. In view of Theorem 1.1, it suffices to operate on the level of hyper-
serial skeletons instead of hyperserial fields. In Section 7, we investigate when the hyper-
exponential of an element in T~ already exists in T>"”. This gives us a criterion under
which the extended hyperlogarithms L, T~ — T~ are bijective. In Section 8, we
prove our main theorem that every confluent hyperserial skeleton has a minimal exten-
sion whose extended hyperlogarithm functions are bijective:

Theorem 1.3. Let (T, (L) ycon) be a confluent hyperserial skeleton. Then T has a confluent
extension T <on) such that the function

> >,>
Lo T Zon — TZon)

is bijective for each ordinal p. Moreover, if U D T is another confluent extension and if the
extended function Ly,»: U~ — U>"” is bijective for each u, then there is a unique embedding
of T(<on) into U over T.

Corollary. There exists a minimal hyperserial extension of L that is closed under E» for all
ordinals .

2 Preliminaries

2.1 Set-theoretic notations and conventions

We work in von Neumann-Godel-Bernays set theory with Global Choice (NBG), which
is a conservative extension of ZFC. In this set theory, all proper classes are in bijective
correspondence with the class On of all ordinal numbers. We will sometimes write 1, v,...
for elements that are either ordinals or equal to the class On of ordinals. In that case,
we write y, v < On instead of y,v € On. We make the convention that wO"=0On. If uis
a successor ordinal, then we define y, to be the unique ordinal with y=pu.+1. If pisa
limit ordinal, then we define p,:=p.
Recall that every ordinal -y has a unique Cantor normal form

y=whni+---+w'n,,

where reN, ny,...,n,€ N>? and m,..., 1, €0n with 1> --- >#,. The ordinals #; are
called the exponents of the Cantor normal form and the integers n; its coefficients. We write
p KL 0 (resp. p < 0) if each exponent #; of the Cantor normal form of ¢ satisfies p < w"
(resp. p < w"). We also define s to be the unique ordinal with w” <57 and with
Y=Y+ for some i < w'. Note that s,7=0 if and only if v < w'.
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2.2 Fields of well-based series

Well-based series. Let (9, x, <) be a linearly ordered abelian group (which may be a
proper class). Welet T := R[[91]] denote the class of functions f:9t — R whose support

supp f:={meM: f(m) #0}

is a well-based set, i.e. a set which is well-ordered for the reverse order (901, >).
We regard elements f of T as well-based series f =)  fum where fy,:= f(m) ER for
each me M. By [19], the class T is a field for the operations

f+g =) (fatgmm

f8 =) ( > fugn)m-

m ub=m
Note that each sum )’  _ f.¢, has finite support. We say that T is a field of well-based
series and that 91 is the monomial group of T. An element m & 9N is called a monomial.
An increasing union of fields of well-based series is not, in general, a field of well-
based series. However, this is always true if the union is indexed over On:

Lemma 2.1. Let (9MM,)con be a family of linearly ordered abelian groups such that MM, CIN,

whenever y<v. Set T;:=R[[IM,]] foreach y,s0 T,,C T, for pu<v. Set M := Uyeon 9N, Then
|J Tu=R[mmI].
u€eOn

Proof. Set T:=J 1/E0n T),. Clearly, T CR[[]], so it remains to show the other inclusion.
Let f € R[[MM]]. For each m&supp f, let y, be the least x € On with me M. Set

Jif =sup {pm:meEsupp f}.
ThenfETWQ T. O

If supp f # @, then we define
0r:=maxsupp f €M

to be the dominant monomial of f. We give T the structure of a totally ordered field by
setting

f>0 & f#0and f,,>0.
We define the asymptotic relations <, X, =<, and ~ on T by

f<g = (VreR>, r|fI<ig)
f<g = @FreR”, IfI<rih
f=g = fxgf
frg = f-8<f =g-f<g
The monomial group 9 is naturally embedded in T~ as an ordered group and
f<g = 2 <0g f=g = =0,
fR§ = <y f~8 = fordr=8u,0%

for all non-zero f,g€T.
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For f€T and meM, we set fun:=). .. fun. Wesay that a series g€ T is a truncation
of f, denoted g < f, if there is m €Mt with g= f.,. We have ¢ f if and only if f-g<
supp g (Which holds vacuously when g =0). We finally define

T< := {feT:supp fCM<}={feT:f<1}
T>> := {fET:f>R}={f€T:f>0and f>1}.

Series in T~ are called infinitesimal and series in T~ are called positive infinite. Each
f € T# can be decomposed uniquely as f =cm (1+¢), where c € R*, m:=0, €9, and ¢ is
infinitesimal.

Well-based families. If (fi);cs is a family in T, then we say that ( f;);e; is well-based if
e U ic1 SUPP fiis a well-based set, and
o {iel:me&supp fi} is finite for all m e N.
Then we may define the sum ), fi of (fi)ie; as the series
Y =3 (X o) m
iel m \iel

If (fi)ier and (g))je; are families, then we define their product as the family (f;g/) i j)erx/-
By [25, Proposition 3.3], if (f;)ic; and (g;);ej are well-based, then so is their product, and

we have
> figj=(fo) (Zgj)-

(i,j)elx] iel j€]

We will frequently use the following facts regarding families ( f,6™)en for (fu)nen € TV
and 6 T.

Lemma 2.2. Consider a field of well-based series T = R[[I]].
a) [29, Corollary 1.5.6] For ¢ € T=, the family (e"),en is well-based.

b) [29, Corollary 1.5.8] For (fu)nen € TN and 6 € T such that (fn0"nen is well-based,
the family (fn,e")nen is well-based whenever € X 0.

Let U =R[[91]] be another field of well-based series. If ¥: T — U is R-linear, then
we say that ¥ is strongly linear if for every well-based family (fi)ic; in T, the family
(Y(fi))ierin U is well-based, and

\P(Zﬁ) =Y Y.

iel iel

If ®:9t — U is a function, then we say that it is well-based if for any well-based family
(m)ier in M, the family (P(m;));cs in U is well-based. Then & extends uniquely into
a strongly linear map &: T — U [25, Proposition 3.5]. Moreover, ® is strictly increasing
whenever @ is strictly increasing and it is a ring morphism whenever ® (mn) =®(m) ®(n)
for all m,ne Mt [25, Corollary 3.8]. In particular, if ®(m) e for all me M and P is
strictly increasing, then @ is well-based. Hence:
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Proposition 2.3. Let 9t and N be totally ordered by < and consider an order-preserving map
Y: 9 — N. Then there is a unique strongly linear function ¥: T — U that extends Y. More-
over, if ¥ is a group morphism, then ¥ is an ordered field embedding. O

If 9T extends M (so U extends T), then the operator support of a function ®: 90t — U is
the set supp. @ =, con sSupp(®(m)/m). If supp. ® is a well-based set, then ® is well-
based; see [12, Lemma 2.9].

Definition 2.4. We define a function ®:9 — U to be relatively well-based if

supp ®(m)

su d:=
PPo U Do

. meNM, d(m)£0
is well-based.

Proposition 2.5. Let ®:9t — U be relatively well-based. Assume that 0 ¢ ®(9N) and that
00 O: M — N is strictly increasing. Then P is well-based and its strongly linear extension ® is
injective.

Proof. Given a well-based subset & C 9, we have to show that (®(m))nca is a well-
based family. We have

U supp ®(m) C{0pm): mE S} -suppe P,
med
50 Upee supp ®(m) is a well-based subset of 9. For any n€ |J . supp ®(m), the set
of pairs (m,u) € S xsuppe @ with 0¢m) 1t =n forms a finite antichain. Since any me &
with nesupp ®(m) induces such a pair (m,n/0¢m)), it follows that the set of all such m
is also finite. This completes the proof that ® is well-based. To see that  is injective, let
s€ T7 and take c € R* with s ~ c 0. The assumption that d o @ is strictly increasing gives
D(s—c05) < D(cd;) =c P(;) #0, whence (s) £0. O

Real powers. We say that 91 has real powers, if it comes with a real power operation
R x 9t - 9M; (r,m) —» m’ such that M is a multiplicative ordered R-vector space, i.e. an
ordered R-vector space with multiplication and real powering in the roles of addition
and scalar multiplication. Any real power operation on 9t extends to T~ as follows: for

eeT=, we set
A+e):=Y (;) ek @.1)
keN

and fors=cm(14+¢) €T~ whereceR”, meM,and e T, we sets":=c"m” (1+¢)".

Proposition 2.6. For r,r' R and s,t € T~ we have

!

(Sr>r’ — g
(st) = s"t"
s<t,r>0 = s"<t".

Proof. For s,t ~1, the first two relations follow from basic power series manipulations;
see [25, Corollary 16]. The extension to the general case when s, t € T~ is straightforward
and left to the reader.
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Assume now that s<tand r>0. Since (s/t)"=s"/t, it suffices to show that (s/t)" < 1.
Writes/t=cm(1+¢) whereceR>, meM, and e T=. Since 0<s<t, we haves/t<1,so
eitherm<1l,orm=1landc<1l,orm=c=1and e<0. If m<1, thenm’<1,s0 (s/t)"<1. If
m=1landc<1,thenc"<land (s/t)'=c"(1+¢e)'=c"+0(1)<1. f m=c=1and <0, then
(/) =1=(1+e)'-1~re<0,s0 (s/t) < 1. ]

Thus, the extended real power operation R x T~ — T~; (r,s) —s” gives T~ the struc-
ture of a multiplicative ordered R-vector space. Accordingly, we say that T has real
powers.

Power series operations. Given a power series

F(Xy,..., X)) =) FX{'--- X € T[[Xy,..., X4,

aeN?

and elements sy,...,s, € T, we say that F is defined at (sy,...,s,,) if the family (Fys1" - s3") e nn
is well-based.

Lemma 2.7. Suppose that 9 is uncountable and let F(Xy,...,X,) € T[[X4,...,X,]] be a power
series which is defined on (T<)". IfF#0, then F(sy,...,sy) 0 for some sy,...,8,€ T=.

Proof. We prove thisby induction on n. If n=1, then set X := X; and write F=} ;. Fx X K,
Suppose that F#0 and let ZC T~ be the set of s # 0 with F(s) =0. Fix s€ Z and let m
be such that 0# F,,,s™ 3> Fis* for all k. Since F(s) =0, there exists an index k # m with
Fs™=Fisk. Then 0#s= (F;} Fo)V ™, whence

or \7
0s:5€ 2%} C {(a_) :kmeN,qge Q,Fk,qu&O}.
In particular, {9;:s € Z7#} is countable, whereas {9;:5s € T<,s# 0} =9~ is uncountable,
so Z+T~.

Now suppose that n>1 and write F=}, _ Fx(X1,..., X;-1) X,'q‘ Assume that F#0. By
the induction hypothesis, we can find sy,...,5,-1 € T~ and k € N such that F(sy,...,5,-1) #0.
Fix such elements s,...,s,,_1 and let Z C T < be the set of s € T < such that F(s1,...,5,_1,5) =0.
By the special case when n =1, we see that Z # T=. Thus, F(sq,...,54-1,5) # 0 for
someseT. O

2.3 Logarithmic hyperseries

A central object in our work is the field L of logarithmic hyperseries of [12], equipped with
its natural derivation 9: L — L and composition o: L x L>*” — L. We briefly recall its
definition and some of its properties.

Logarithmic hyperseries. For each ordinal -y, there is an element ¢, € . which we call the
y-th iterated hyperlogarithm. Intuitively speaking, we have {y=x, {; =logx, {,=1loglog x,

o bw=Lu(x), byr1=1og Ly (x), etc. Let a be an ordinal of the form a« = w”. We write
L« for the monomial group of all formal products [=]], _, 8[77 with ([,)y<, € R". The
group £, is naturally ordered by setting [>-1 if [, >0 for some y <a with [;=0 for all <

7. We also have a real power operation on £, given by setting (][] v<a f&)r:: | €;[7

for r€R. This operation extends to all of L., as described in the previous subsection.
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We call L, :=R[[£<,]] the field of logarithmic hyperseries of strength a. If B,y are
ordinals with y < S < «, then we let [, B) denote the interval {p €On:y <p <p} and we
let £, ) denote the subgroup

{te L4:l,=0 whenever p [, B)}.

As in [12], we write L, gy :== R[[£[, 5)]], £:=U,c0on E<« and

L:=R[[£]]= |] Lew

xeOn

We will sometimes write £.on = £ and Lo, =L. We have natural inclusions £, 5 C
£, € £, which give natural inclusions L, gy C L, CL.

Derivation on L. The field L is equipped with a strongly linear derivation d: L — L.
Given a € On and a logarithmic hypermonomial [€ £,, we define the derivation of [ by

_ (Z [7(67)+) !

y<a

where (,)"=TT ., & € £, Note that 94, =(£,)"¢, =], & For fELand kN, we

sometimes write f®:=9* f. Equipped with its derivation, the field L is an H-field with
small derivation, so for f,g€ L, we have

<y

f>R=f">0, f<1=f'<1, f<g*1=f'<g"

Moreover, supp. 90X { 'is well-based, which implies the following variant of [12,
Lemma 2.13]:

Lemma 2.8. Let a =w", let T =R[[9M]] be a field of well-based series, and let :L,— T bea
strongly linear field embedding. For f € Lo, and s€ T withs < ® (), the family (@(f ™)™ pen

is well-based. Moreover, the map ¥V: Loy — T; fr— 3, %s” is a strongly linear field
embedding.

Proof. Since supp, X ;' is well-based and @ is a strongly linear field embedding, the
set G := U[ESupp*a supp ® () < CID(EO)_1 is well-based. Thus & supp s is well-based and
Ssupps<1, since s< P({). Let f €L. For each n€ N~, we have

supp (@ (f™)s™) C (supp ®(f)) (Gsupps)”.

Since supp ®(f) is well-based and & supp s <1, it follows that (CID(f(")) s e is
well-based and that the map ¥ is well-defined and strongly linear. For all f,g& L.,,
we also have

d(( )(n)) o d( (#) ) D( (]) d( (l))
y Sy 5 SRy 20D

neN neN i+j=n ieEN

q)(f(]))
Z ]l 4

jEN

which shows that ¥ preserves multiplication. a



PRELIMINARIES 13

Composition on L. Inaddition to its derivation, the field L comes equipped with a com-
position law o: L x L”” — L which is unique to satisfy:

e ForgelL™”, the map op: L - L; f > f o g is a strongly linear field embedding. As
a consequence this map preserves the relations < and < [12, Lemma 6.6].

e For feL and g heL>”, wehave fo(goh)=(fog)oh[12, Proposition 7.14].

IL>,>

e Forge and re R, we have {jog=g¢"[12, Corollary 7.5].

e Forghel™ andreR”, wehave {;o(gh)=l1og+iohand b0 (rh)=logr+li0h
[12, Section 1.4].

e For ordinals 0 < p, we have {, o {,={,,, [12, Corollary 5.11].
e For any successor ordinal y, we have o €= {,»—1[12, Lemma 5.8].
e The constant term of ¢, o {,» vanishes if y > is a limit ordinal [12, Lemma 5.8].

e For f,helL and g€ L>> with h< g, the family ((f® og) h*) ey is well-based, and

fPog
fo(g+h) = Z Thk. [12, Proposition 8.1]
keN )
The uniqueness follows from [12, Theorem 1.3]. By [12, Proposition 7.8], the derivation
also satisfies the chain rule: for all f €L and g€ L™, we have

(fog)'=(f'o8)8".
As we will see, the field L. equipped with the composition o is hyperserial.

For a = w", the unique composition o from above restricts to a composition L, x
L2 — L., For 7 <ua, the map og: Ly — L<, defined by oy (f) := f o £, is a strongly
linear field embedding with image L, ) by [12, Lemma 5.13]. Accordingly, for g€ L, 4),
we let ¢'7 denote the unique series in L, with ¢'7o £, =g¢. Note that €;(;ffl ={ u+1+1 for

whn+y _

all # and that, more generally, A url = K(LZH +n for y< w"*t and n € N. For u<vand

w
fe Lyt 4y we have
% _
folor = ) ——0"f) = ef (22)
keN ’
vk
where § is the derivation%la on L., (see[12,Section 5.1]). Let R(f):= Zkew%ék(f).
L«]}'{+ :

Then R: ]L[w;erl,IX) — ]L[warlla) is strongly linear and R(f) < f, so, by [12, Lemma 2.2],

f1e" = f=R(H+R(f)=--+ = e'f. (2.3)

In particular,

FI"—f ~ =R(f) ~ o f. 2.4)

w;¢+1

Lemma 2.9. For each u<v, each -y < < w!, and each k € N>, we have (£")® € L .

Proof. Since L~ is closed under taking derivatives and the derivation preserves infin-
itesimals, it suffices to prove the lemma for k=1. We have Eﬁw ol,= &;, SO

(7o) = (7)ot =t
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Since £}, {3 € L.+ and £5< £}, this yields (£;")" o £, ELZ . Since (£7)" o £, E Ly 4 as well,

we have (€g7) ol € ILF%wu). Since the map f+ ' maps ILF%M) onto LT, we conclude
that (£57)" = ((£5") o £,)17 LS 0. O

3 Hyperserial skeletons

3.1 Domain of definition

Welet T =R[[M]] be an ordered field of well-based series with real powers. Let v < On
be an ordinal with v>0. Given a structure (T, (L") ;<) Where L are partial functions
on T, we consider the following axioms for u <wv:

Domain of definition:
DD,. domL;=9".

,<,domL,s if uisanon-zero limit
DD,. domLr={ "
# o' { Nyen dom L if p=p, +1.

Suppose (T, (L#)u<y) satisfies all axioms DD, for u <v. We set M,»:=dom L for
all # <v and we extend this notation to the case when y =v, by setting

My =

{ Ny<ydomLyr  if v is a non-zero limit 31)

Npeny dom L ifv=v,+1.

For u <v, we call M the class of L #-atomic elements. Note that 91,» C M~ for all
n<u<v. We let Lo be the identity function with dom Lg:= 9" and, for < w" with
Cantor normal form f=w"ny+ - -+ + w’ny, we define Lg:=L. %o -+ o L7 Here we
understand that x € dom Lg whenever x € dom L, ), L, x € dom L;;%, and so on until

oni_1 oty oty
Lw'yk—l 0. OLw’)q x edom Lw'Yk-

Proposition 3.1. For u <v with p >0, we have

M = {s€ T>”:sedomLg and Lg(s) €M”, forall < w}.

Proof. Given a €M+ and B < w?, let us first show by induction on y that Lg(a) is defined
and in 91”. This holds for u =0 by definition. Let 0 < u <v and assume that the assertion
holds strictly below p. If =0, then Lo(a) =a€M”. Assume >0 and let y<p, ne N~
and < w"’be such that = w"n+ 1. We have a €M y+1 50 L1, (a) €M, 41 by definition.
In particular L,(a) €91, so our inductive hypothesis on u applied to 7 gives that
L,(Ly(a)) =Lg(a) is a monomial.

Given a€ T~ such that a €dom Lg and Lg(a) €M~ for all f < w”, let us next show
by induction that a €9+ This is clear if u=0. Let 1 <pu <v be such that the statement
holds strictly below p. If p is a successor, then for 1 < w”* and n € N, we have L+, 1,(a) =
L(Lm(a)) €M so for all n €N, Ly, (a) € Mm, whence a € M,». Assume now that y
is a limit and let 7 <p. Then Lg(a) €M~ for all B <w”, so the induction hypothesis yields
aeM,. We again conclude that a & M ,x. O
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3.2 Axioms for the hyperlogarithms

Let T be an ordered field of well-based series with real powers, let ¥ < On, and let
(L) u<v be partial functions (L) <y on T which satisty the axioms DD, for all <.
We consider the following axioms, where y is an ordinal with 0 <p <wv.

Functional equations:
FE¢. L1(m")=rLi(m) and L1(mn) =L;(m) +Ly(n) for all r€R~ and all m,n€ M.
FE,. For aeMx, we have L n(Ly#+(a)) =Lm(a) =1 if p is a successor (FE, holds triv-
ially if p is a limit).
Asymptotics:
Ap. Li(m) <m for all me M,;.
Ay Lym(a) <Lgn(a) for all 7<p and all a € M,m.
Monotonicity:
M. Li(m) >0 for all me M.
M. Lei(a) + Loy (@) < Ln(b) = Lo, (b) ™ for all <, n€N and a< b in M.
Regularity:
Ry. supp Li(m) >1 for all me M.

Ry. supp L#(a) > van(a)‘1 forall y<u,neN, and a&M,».

We define a logarithm log: 9t — T as follows:

Li(m) ifmeMm”
logm=4{ —L;(m™!) if mem= 3.2)
0 ifm=1.
Then log 2t is an ordered R-vector subspace of T. For y € On with 0 <y <v, we consider
the following axiom:

Infinite products:

P,. ZKM 4Ly11(a) Elog M for all a €M, and all sequences (7)., <+ of real num-
bers.

Remark 3.2. The axiom P, allows us to define the infinite product [ | <! L7Jr1(c1)r7 for
a e M, to be the unique monomial m € M with logm =3 y<wt T7 Ly+1(a), hence the

name. Note that the axiom Py is a consequence of FEy: if FE; holds, then for r € R and
meM”, we have rL1(m) =logm’.

Definition 3.3. Let v<On. A hyperserial skeleton of force v is a structure (T, (L#) ;<)
where T is an ordered field of well-based series with real powers and (Ly») <y are partial func-
tions on T which satisfy DD, FE,, A, My, and R, for all p<v, as well as P, for all y € On
with u<v.

Note that a hyperserial skeleton of force 0 is just a field of well-based series with
real powers and that (T, (L,#),<on) is a hyperserial skeleton of force On if and only if
(T, (Lwr)u<v) is a hyperserial skeleton of force v for each ordinal v. We will often write T
to denote a hyperserial skeleton (of force v < On), where it is implied that for u <v, the
term L, refers to the w'-th hyperlogarithm on T.
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Definition 3.4. Let T = R[[9]] and U = R[[N]] be hyperserial skeletons of force v< On.
We say that a function ®: T — U is an embedding of force v if it is a strongly linear strictly
increasing ring morphism with ® (M) CN» for each p <v such that
P(m")=P(m) forallmeMand reR,
and such that
D(Lp(a)) =L, (P(a)) forall y<vand acM,r.

If ®: T — U is an embedding of force v, then we say that U is an extension of T of force v.

3.3 Confluence

In this subsection, let T = R[[9Mt]] be a hyperserial skeleton of force v <On and let u €
On with p <v. We inductively define the notion of p-confluence in conjunction with
functions 9, T~ — M, and the classes £+[s] C T, as follows:

Definition 3.5. The field T is said to be 0-confluent if 9 is non-trivial. The function 01 maps
each s € T to its dominant monomial 3. For each s € T>">, we set

Eq[s]:=={teT>:t=s)}.
Let yeOn with 0< u<v, let s€ T>”, and suppose T is n-confluent for all 5 < .

e If pis a successor, then we define £,1[s] to be the class of series t with

(Lw;u- oaw;u)On(S) = (Lwll* obwiu)"”(t)
for some n e N.

o If uisa limit, then we define € ,1[s] to be the class of series t with

L1(0e(s)) = Len(0gn(t))
for some 7 < .

Ifeach class € ,x[s] contains an L w-atomic element, then we say that T is p-confluent. We will
see that each class & »[s] contains at most one L »-atomic element, which we denote by 0 ,»(s).

Remark 3.6. We note that y-confluence is somewhat stronger than the similar notion of
log ,»-confluence from [29], due to the extra requirement that we have maps 0.

Lemma 3.7. Let y € On with u <vand suppose T is p-confluent. Then the function ,r is well-
defined. Moreover, we have E1[a] CEu[a] forall n < pand a €M n.

Proof. We prove this by induction on y, noticing that the case y =0 is trivial. Assume
that this is the case for all ordinals 7 <yt and let s€ T>"”. To see that 0, is well-defined,
let a,b M » with b€ & v[a]. We need to show a=b.

Assume that p is a successor. Take n € N with (Lm0 dmx) (@) =< (Lyme 0 9 nx) " (b)
Since L (a) is L.#-atomic for each k and since 0+ is well-defined by our induction
hypothesis, we have 0 (L,»+(a)) = L, mk(a) for each k. It follows by induction on k
that (Lm0 wa)°k(a) =L »(a) for each k and, likewise, (L #~o wa)°k(b) =L (b) for
each k, so L m,(a) <L, »,(b). As both L #,(a) and L_#+,(b) are monomials, we have
Lr+y(a) =Lew+,(b). The axiom M,,, implies that L, is injective and thus a=b.
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Assume now that u is a limit and take 7 <y with L,7(d,7(a)) =< L(d,(b)). Since
a is L.»-atomic and since 0,7 is well-defined by our induction hypothesis, we have
0,7(a) =a. Likewise, 0,,7(b) =b,s0 L,n(a) <L,(b). Asboth L (a) and L,,7(b) are mono-
mials, we have L1(a) =L,(b). Since L is injective by M,, we conclude that a=b.

As to our second assertion, consider a € M,,» and t € En[a] with p<p. If p is
a successor, then the inductive hypothesis &, 1[a] C €,,m[a] implies d,m+(t) = a, so
Lo (Dr#(t)) = Lgr+(a) = Lym (D pr+(a)) and t € Ep[al. If p is a limit, then d,4(t) =a, so
Lon(®n(t)) =Lyn(a) =Ln(d,m(a)) and t € En[a]. a

Corollary 3.8. Let i,y € Onwith n < pu<v. If T is y-confluent, then d,1(s) =0, (0,1(s)) for
allse T>”.

Proposition 3.9. Let y € On with u<wv. If T is y-confluent for all § < ju, then the class & ,n[s]
is convex for each s € T>>. Moreover, if T is u-confluent, then 0 u: T>> — M is non-
decreasing.

Proof. We prove this by induction on p. Let s€ T>”. It is clear that &[s] is convex
and that 9 is increasing. Let u >0 and assume that the result holds for all 7 <p. By the
monotonicity axioms, each function L, is strictly increasing on 9,7 (When # =0, one
also needs to use FEj to see that Liy(m/n) =Li(m) —Li(n) >0 for m >ne&9y). As the
composition of non-decreasing functions is non-decreasing, the function (L0 0.)"" is
non-decreasing for each 7 <y and each n€ N. We deduce that 9~ is non-decreasing and
that the classes &,#[s],s € T~ are convex. O

If T is n-confluent for all 77 < y, then the proposition implies that the classes &,,1[s]
with s € T~ form a partition of T>"” into convex subclasses. If T is also y-confluent,
then we have the following explicit decomposition for all 77 < p:

T>>= || Euwlal.

aEM,,

Definition 3.10. T is said to be confluent if it is yu-confluent for each y € On with p<v. An
extension/embedding ¥: T — U of force v is confluent if U is confluent.

Note that if v € On, then T is confluent if and only if it is v-confluent.

3.4 The case of logarithmic hyperseries
Let v be an ordinal and set «:= w”. The goal of this section is to check that L, is a con-

fluent hyperserial skeleton of force v. This is immediate for v =0, so we assume that v > 0.

Definition 3.11. Let dom Ly:=£Z, and for 0< pu<v, let dom L n:={{,: w"* < o <a}. Given
ledom L, set

Ln(l)y:=4€ nol.

We will show that (L4, (L,#) u<y) is a hyperserial skeleton by checking that the axioms
are satisfied. We begin with the domain of definition axioms.

Lemma 3.12. (L, (L#)u<y) satisfies DDy and (£<p) ot = {{y: wh <L o<al, forall u<v.
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Proof. We prove this by induction on p. The case when yu =0 is immediate. For =1,
consider an infinite monomial [=] | <t (’;7 €Ly Wehave Li()=) <t (,€y41, which is
a monomial if and only [= £, for some 7y <a. Conversely, for each y <a we have L, ({,) =
ly+n € Lca. Now let 1 < <v and suppose that the lemma holds for all non-zero ordinals

less than p. Assume that y is a limit. We have p, =y, whence

ﬂ domlL, = ﬂ domL ;1= ﬂ {{,: "< y<ay={l,:w" <y<a}=domL,m.
n<p N<pi 1<t

Assume now that u is a successor. If [€dom L, then [ = ¢, where w"* < o <a, and

we clearly have Lju(l) = £, ,m» € dom L for all n € N, whence [ € (), oy dom L.
Conversely, let [€[),, o,y dom L. Then [ = {, where w"** < o <a. If u, is a limit, then

ex =ty whence w"* <o <wa and [€dom L». If u, is a successor, then o = + w"**m for
some 7= w"* and some m €N, so
by =Ly ioom = Lo L.
Since L+ (€ psxy,) = L n-—m, we see that
Lyns (1) = Lo+ (bg) = (bgrs =) 0 by = Ly (e —m.
Since L #+(I) €dom L, we must have m=0, so [={, € dom L. O

For B < w" and [ € dom Lg, note that Lg([) = {5 o [. Note also that the notions of
L_,»+1-atomicity and L,»atomicity coincide in L., whenever y is a limit with p +1 <
v. This will not be the case in general.

Proposition 3.13. The field L, satisfies P, for all u<v.

Proof. Let y<vand let € (£44) . By Remark 3.2, we may assume y>0. We have [= ¢,
for some w"* L o <a. Let (7)<t be a sequence of real numbers. We have

Z ryLlys(D= Z rybysiole= Z Ty lyyoyst.

y<wh r<wt r<wt

0

This sum coincides with log m where m:=] | y<wh brry

ELcs O

Proposition 3.14. The field IL ., satisfies Ry, Ay, and M, for all 0 < pu<v.

Proof. Let 0<pu<v and let [€ (£.,4)». We have [={, for some w"* < o <a. Write
o =7+ w"nwhere y=0s.,r, nEN, and n=0if y is a limit. We claim L»([) = by —n.
If 1 is a successor, then since {,x o € ,n+,, = {,,n—n, we have

Lo(l)y=4€ nol,=1 no €7+w/4*n =Ly o (byrepoly) = (byr—1n)oly= ol =1
If y is a limit, then [=¥¢,, so
L) = legro by =1L 4 1.

Now we move on to verification of Ry, A, and M,. The only elements in supp L ([) are
€, +»and possibly 1 (if n#0), so supp Ler(1) 1> L, ()" for all < p and n € N, which
proves R,. For 7 <, we have

Loy =Lbeyno by =Ly i (n < e’y+w" =Ln(D),
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so A, holds as well.

As to M, take ' € (£4)» with ['>1. We have [' = ¢, for some ¢’ with w"* <0’ <a.
Write 0’ ="+ w" n' where v =04 ,n, n' €N, and n' =0 if y is a limit. The argument
above gives L u(I") =€, n—n'. If " <7, then Lyn(I") > L () and if 4" =1, then n’ <n
and Ly (') =Len(l) =n—n">21. In either case, M, is satisfied. O

Recall that for [€ £, and ¥ <a, we write [, for the real exponent of £, in [. Given
f€LZ;, we define As to be the least ordinal with (2f) A #0; see also [12, p. 23].

Proposition 3.15. L is v-confluent. More precisely, for 0< u<v and f € L,, we have
0wt (f) =ty o (3.3)

Proof. We first note that L, is O-confluent as £, is not trivial. We proceed by induction
on0<u<v. Take f € ]Li’;. If 1 =1, then we have L1(01(f)) = €Af+1 = Ll(&f) where (’Af is
L.~atomic, s0 0,(f) = EAf and L., is 1-confluent. It remains to note that Af)=1=As.
Now suppose that p >1 and assume that L., is #-confluent and satisfies (3.3) for
all 7 <p. Suppose p is a successor, s0 Vr=(f) = biry), e Write (Af)sree = (Af) meome +
w'*nwithneN and with n=0if p, is a limit. We have ) .= borno by s SO

Loor= @+ (f)) = (Eeorr o bgrren) © by e = Lo (bppy g ) == Lo (bppyy o)

and lel(f) = €(Af)2w}“.
Now suppose y is a limit, so there is 7 <y with (Af)s 1= (Af) 51 = (Af) s@r= By
hypothesis, we have thatd +1(f) = ¢, , and so
Lw:ﬁl(aw:ﬁl (f)) = Lw17+1(€(/\f)2w,7> = Lw,Hl(e(/\f)zw"*) .

Again, this yields 2,1(f) =iy - |
Theorem 3.16. L., is a confluent hyperserial skeleton of force v.

Proof. Using the identity
bol=) Ll

y<a

for [=]] y<a &[y” € £« the field L, is easily seen to satisty FEq, Ay, My, and Ry. More-

over, L, satisfies FE, for all 0 <y <v by [12, Lemma 5.6]. Using Propositions 3.13, 3.14
and 3.15, we conclude that L., is a confluent hyperserial skeleton of force v. O

Corollary 3.17. L is a confluent hyperserial skeleton of force On.

4 Extending the partial functions
Let v<On. The purpose of the next two sections is to prove the following theorem:

Theorem 4.1. Let (T, (L") u<v) be a confluent hyperserial skeleton of force v. There is a unique
function o: Lvx T>” — T satisfying:

Cl,. Lewv— T; f+—> f os is a strongly R-linear ordered field embedding for each s € T>"”;
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C2,. fom=m" forallmeMand reR;
lyroa=Lyr(a) forall y<vand aedom L,

C3,. fo(gos)=(fog)osforallf EL.yy, €LY, and s€ T>;

k o
Chye fo(t+6) =Y, ot o" forall f € Loy, t€ T>>, and 6 T with 5<t.

We claim that it suffices to prove the theorem in the case when v <On. The case
when v =On can then be proved as follows: let (T, (L,") ,con) be a confluent hyper-
serial skeleton of force On. Then for every v < On, there exists a unique composition
oy: Levx T?” — T that satisfies C1,, C2,, C3,, and C4,. For u<v, the composition o,
extends o, by uniqueness. Forany f €L andse T>"~, we have f € L, for some v <On, so
we may define f os:= f o, s and this definition does not depend on v. It is straightforward
to check that this defines the unique composition o: L x T>” — T which satisfies Clop,
CZon, C30n, and C40n.

Throughout this section, we fix an ordinal v and a hyperserial skeleton T = R[[9)1]]
of force v. We fix also p <v such that T is p-confluent and we set B := w”. We assume
that Theorem 4.1 holds for y, so we have a unique composition o:L.gx T>"” — T sat-
isfying C1,, C2,, C3,, and C4,. For 7 <p and s€ T>~, we write L,(s) := {, 0s. In light
of Lemma 2.9, the expression (€g7) ® o5 makes sense for each k> 0. Our main goal is to
prove the following result:

Proposition 4.2. There is an extension of Lg to T>> such that for all s€ T>”, a € Mg, and
v < B with e:=L,(s) - L, (a) <1, we have

¢ P oLy(a)
Lo(s) =Lg(a) + Y. WTW&
keN>

We will also prove that Lg satisfies the extension of FE, to T>> (Proposition 4.13),
that Lg has Taylor expansions around every point (Proposition 4.15) and that it is strictly
increasing on T~ (Lemma 4.17).

Our extension will heavily depend on Taylor series expansions, so it is convenient
to introduce some notation for that. Let f € L., be such that f® & L.p for all k>0. Let
te T>~ and 6 € T with §<t. By Lemma 2.8 with #=p, f" in place of f, and ®:Lg— T;
g— g ot, we have that the family ((f® ot) 6%)ren> is well-based. We define

)
Tp(t,0)= ) fotpeer.

1
keN> Kt

4.1 Extending the logarithm

Here y=1. For e € T~, we define

k-1
L(1+¢):= Z ¥ ek

k
keN>

1
E(S) = Z ng

keN

and
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Note that L(1+¢) € T< and E(¢) €1+ T~. By [25, Corollary 16], we have

E(L(1+¢))=1+c¢, L(E(¢e)) =e. 4.1)

L(1+e¢)<Le. 4.2)

E(rL(1+¢))= Z (;;) ef=(1+¢e)" forallreR. (4.3)
keN

Proposition 4.3. There is a unique extension of Ly into an ordered group embedding
log: (T, x,<) — (T, +,<)
with
o log(l+e)=L(1+¢) foralle€T=, and
e log extends the natural logarithm on R”.
Fors€T”, writings=cm(1+e¢) for cER”, m:=0,, and e € T, we have

logs=logm+logc+L(1+e¢).

Proof. The uniqueness and the fact that (T, x) — (T, +) is a morphism are proven in
[29, Example 2.1.3 and Lemma 2.1.4]. To see that log is order-preserving, we need only
check thatlogs>0foralls>1. If m=c=1, then ¢ >0 and we have logs=L(1+¢) ~&>0.
Ifm=1andc>1, thenwehavelogs=logc+L(1+¢)~logc>0,since L(1+¢)<1. Ifm>1,
we have logs~logm>1R, so logs>0. O

For s€ T~”, we often write L;(s) in place of logs. For s €log T~, we define exp s to
be the unique element of T with s=logexps. If s€log T~ =L(T>”) C T>”, then we
sometimes use E1(s) instead of exp s.

Proposition 4.4. For s € T>, we have logs<s—1.

Proof. Lets=cm (1+¢) € T~, where cE R”, m:=0;,and e€ T<. f m=1, then logm =0,
sologs=logc+L(1+¢). If c=1, thenlogs=L(1+¢)<e=s-1. If c>1, then logc<
(c-1)(1+e¢),sincelogc,c—1€R, e<1, and logc <c—1. Thus

logs<(c—-1)(1+e)+L(A+e)=c(1+e)-1+e)+L(A+e)<c(1+e)-1=s5-1.
If m>1, thenlogm=_L;(m) <m and logs—logm=logc+L(1+¢)<1. Hencelogs<sand
logs<s—1. Ifm<1, then logm=—L;(m™!) is negative and infinite, so logs<-1<s—1. O

Remark 4.5. Proposition 4.4 proves that (T,log) satisfies the properties of transseries
fields in [29, Definition 2.2.1] except possibly for the axiom T4.

Proposition 4.6. For s€ T, and r € R, we have logs"=rlogs.

Proof. First, note that log m” =rlog m for all m € Mt: if m > 1, then this is just axiom FEy;
if m<1, then log m"=-logm™ =rlogm; if m=1, then log m" =0=rlog m. Now, writing
s=cm(l+e¢) withceR”, m:=0,, and € <1, we have

log(s") = log(m")+logc"+L((1+¢)")
log(m”) +logc"+L(E(rL(1+¢)) (by (4.3))
rlogm+rlogc+rL(1+¢) (by (4.1))
rlog(s). O
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Proposition 4.7. For s€ T> and § € T with & <s, the family (£ 05) 65, > is well-based,
with

log(s+0)=logs+ Tgl(s,&).

Proof. For ke N~ and s € T>”, we have Efk) €L and El(k) os= (=11 k-1)!s7* For
0 <s, we have

(fl(k) os) 6k _ (=1)k1 (é)k

k! k s
), o) 5k
So the family (6P os) 65 ren> is well-based with Ty, (s, 8) = > rens %: L(l +§>
The proposition follows, as
log(5+5)=log(s(1+§))zlogs+L(1+§)' O

4.2 Extending the hyperlogarithms

Assume now that 2 >0. Let us revisit the notion of confluence.

Lemma4.8. Let s,t € T~ and suppose that L (s)=L,(t) forsomey<p. Then Ly(s)—Ly(t)<1
forall o < B with o> +2.

Proof. We first show that L, >(s) —L,42(t) <1. Take ce R~ and € < 1 such that L,(s)=
L,(t)(c+¢). We have

Ly11(s) =L1(Ly(s)) =Lq41(t) +1og(c +e),
where log(c+¢) X 1. Set § ::L7+1(t)‘1log(c +€)<1,50 Lyy1(5) =Lyp1(£) (1 +5). We have
Lyi2(s) =log L,41(s) =Ly12(t) +1log(1+9),

where log(1+6) ~6<1. Thus, L,42(s) =L, 42(t) <1.
Now, fix ¢ with v +2< o < B and set §:= L, 12(s) —L,42(t). By C3;, and C4,, we have

Lo(s) =" 20 Lyya(s) = (7 2 0 Lya(t) + Tprea(Lyya(t),8) = Lo (8) + Tyirea(Losa(h), 0).

Lemma 2.9 in conjunction with the fact that § <1 gives us that j/;T”HZ(L/H_Z(t), ) <1, so
Ly(s)—Ly(t) <1 O
Proposition 4.9. For all s&€ T>"”, we have

Egls]={teT>":L,(s)—L,(t) <1 for some y < B}.

Proof. We fixs€ T~”. Since y >0, we know by Lemma 4.8 that it is enough to show that
Epls]={te T>>: L, (s) =L,(t) for some 7y < B}. We proceed by induction on u. If p=1,
then f=w and

Es]1={tET>7:(L1001)”"(t) = (L1007)°"(s) for some n € N}.

An easy induction on 1 yields (L1091)°"(t) < L,(t) for each t € T~ >, whence the result.
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Now suppose that u>1. If u is a successor, then for each t € £g[s] there is some
n €N with (Lm0 0,m)” (t) = Lem,(0g(t)). By our inductive assumption applied
to y., we have that L, (t) — L, (0,m(t)) <1 for some 7y < w"*. By Lemma 4.8, we have
Ly (t) =L+ (dm+(£)) <1 and an easy induction on n gives us that (Lg»s o d,m+)”"(t) —
Lmy(t) <1. Thus, we have that Lm,(t) = L,»,(0p(t)) for some n € N. Likewise,
Ley#p(8) = Ly, (0p(s)) for some m € N. By replacing m and n with max {m, n} and
invoking Lemma 4.8, we may assume that m =n. Since 04(s) =04(t), we have L, (s) =
Ly (t). On the other hand, given t & T>>, if L,(s) =L,(t) for some 7y <, then take
some n€ N with 7+ 2 < w" n<B. By Lemma 4.8, we have (Lm0 0,m)°"(5) =< Lwey(S) =<
L (1) =< (Lm0 1) " (1), SO tE 8[;[5].

If p1is a limit, then for each t € E4[s] there is 7 <y with L,1(d,,1(t)) = L,1(0p(t)). By our
inductive assumption applied to 77, we have that L, (t) —L,(9(t)) <1 for some 7y < w',
50 Lyn(t) = Len(0,,1(t)) <1 by Lemma 4.8. Thus Lu(t) = L,1(04(t)) and likewise, Ly (s) =
L (0p(s)) for some o < u. By replacing 77 and o with max{#, ¢} and invoking Lemma 4.8,
we may assume that 7 =0. Since 04(s) = 04(t), we have L1 (s) = L. (t). On the other
hand, given t€ T~ if L, (s) <L, (t) for some 7 < B, then take some 1 with y < w" <. By
Lemma 4.8, we have L1(0p(s)) = L1(s) = Ln(t) = L,1(0p(t)), so t € Egls]. O

Proposition 4.9 in conjunction with Lemma 4.8 gives us the following corollary:

Corollary 4.10. For each s € T>"” there is <y <  such that
Ly(s)—Ly(0p(s)) <1,
for all y<p <B. Moreover, if L, (s) =L, (a) <1 for some a € Mg and some y < B, then a=0p(s).
Definition 4.11. Let s€ T>"” and let iy < B with &:=L,(s) — L, (dg(s)) < 1. We define
Lp(s) :=Lp@p(5)) + Ty1n(Ly (0p(5)), ©)-

As discussed at the beginning of the section, the series j}gy(L%bﬁ(s)),e) exists in T
by Lemmas 2.8 and 2.9. To prove Proposition 4.2 all that remains is to show:
Lemma 4.12. The above definition does not depend on the choice of .

Proof. Let s, 7, € be as in Definition 4.11 and suppose that L (s) —Ls(0p(s)) <1 for some
o <pB. Set 6:=L,(s) —L,(0p(s)). We need to show that

Ty (Ly@p()),8) = Ty (Ly (0p(5)), 6)-

Without loss of generality, we may assume that ¢ <. Now
L,(0p(s)) +& = Ly(s) = €7 oLy(s)
= 4,70 (Lo(9p(5)) +6)
= 70 Lo(@p(s) + T ype(Lo(p(5)), 8).

Since €3 oLy (9p(s)) =L, (0p(s)), this yields e = Jy10(Lo (9p(5)),0). Let
F(X):= Iﬁm(@, Tyl X)), G(X)i= T yge(l, X),

considered as formal power series F(X) =),y F;X'and G(X) = Z]EN Gij in Lo,[[X]].
Then

Tyn(Ly (), €)= ) | (Fiovp(s))6' and  Jyo(Lo(0p()),8)= ) (Gjop(s)) &/,

ieN jEN
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so it suffices to show that F=G. For each h€ LS, we have

F(h) = i}gy(ey,ifw(emh)) :ifegy(ey, 0% (br+h) =) =70 (b, + 070 (b + 1) =) — by
= (7o) o b+ )~ b= b7 0 (le+ )~ b= Tyyo (b, 1) = G(N),

so (F=G)(h) =0 for all h€ LS, and we conclude that F=G by Lemma 2.7. O

We end this section with various extensions of the validity of Taylor series expan-
sions and a proof that Lg is strictly increasing on T>"~.

Proposition 4.13. Assume y is a successor. For s € T, we have Lﬁ(wa(s)) = Lﬁ(s) -1.

Proof. By Corollary 4.10, there is some 1 € N~ such that & := L m+,(5) = Lr,(0p(s)) < 1.
We may write

Ly (n-1) (L= (8)) = Lo (n—1) (L= (0p(8))) + €.
Note that L,»(9g(s)) is L<g-atomic, s0 0g L#+(s) = L,m+(0p(s)). For ke N~ we have

(egw}‘*(n_l))(k) — <€,3 + (n_l))(k) — e[gk) = (63 +1’l)(k) = (fgwi‘*n)(k),

SO 7/;10,;“(”,1)(@8) = j’;nﬂ“n(a/‘(j) for all a€Myg. It follows that
B B

Lg(Lyr+(s)) = Lp(Ler+(0p(8))) + ﬁgw"*m%)(men(Dlg(s) ), €) (by Definition 4.11)

= Lp(@p(5)) =1+ g n(Lyrn(0p(s)), €) (by FE,)

= Lg(s)-1 (by Definition 4.11)

This concludes the proof. a

Lemma 4.14. For all y <, a€Mg, and 6,e <1, we have

T[gv(L%a),&) + 3}[;7<L7<a) +6,6)= 7};7<L7(a>,5 +e).

Proof. By applying C4,, to (€g7) ® for k>0, we have

1
Tpy@+8,e)= 3 (") P o Ly(a) + Trnyn(Ly(a),6) ) "
keN>
Arguing as in the proof of Lemma 4.12, it is enough to show that

1
j/?;ﬁT’Y(e'y,X)'i' Z F(<

eg’Y)(k) oly+ j/?[gV)(k>(€7;X)) Yk= j;;gv(&y,x +Y)
keN>

as power series in Log[[X, Y]]. Let f,g € LZ4. We have
7};7(&,,]() = 470 (b+ -t

1
kEZN> H((@P)Uﬂ o 47+T“ﬂw)<k><ey,f>)gk = Tyl +f,8) = G0 (by+ f+8) =70 (by+f).
Therefore,

1
Tl H+ 3 g (G0 o b+ Tl )85 =470 (b4 f+8) 4.
keN>

Since Eﬂm(%,f +9)= Ep o (€y+ f+g)—{s, we are done by Lemma 2.7. O



EXTENDING THE PARTIAL FUNCTIONS 25

Proposition 4.15. For t€ T~"” and 6 € T with § <t, we have
Lg(t+8) =Lg(t) + Jy,(t,0).
Proof. Lety <pwith L, (t) =L, (05(t)) <1. Set e:= L, (t+6) —L,(t). By Lemmas 2.8 and 2.9,

the series Tgﬁ(t,é) exists in T. We claim that Tgﬁ(t,é) = ngv(Ly(t),s). As e = 7}7(60, o)
by 4, it suffices to show that

j’;}g(&)/x) = j’;ﬂ”(e /j’;,y(e()/x))

as power series in Lg[[X]]. But this follows from Lemma 2.7, by noting that the equality
holds when evaluated at any element of LS 5-

Now set a:=0g(t) =0g(t + ) and let h:= L, (t) —Ly(a), s0 Lo (t + ) =Ly (a) =h +¢. By
definition of Lg(t) and the above claim, we have

Lp(t) + Tyt 8) =Lp(a) + Tyrn(Loy(@), 1) + Tyt ) =Lp(@) + Ty (Lo (@), 1) + Tyn(Lo(B), €).

Using L, (t) =L, (a) +h, it follows that
Lp() + Jys(t,8) =Lp(@) + T (L), 1) + Tyr(Loy (@) + B ).
By Lemma 4.14, we conclude that
Lp(t) + J4,(t,6) =Lg(a) +T[ﬁm(L7(a),h+s) =Lg(t+9),
where the last equality follows from the definition of Lg(t +9). a

Lemma 4.16. Let a € Mg, let s,t € Eg[a], and let ¥ < B with
L,(s)-L,(a)<1, L,(t)—L,(a)<1.
Then Lg(t) =Lg(s) + Zgy(Ly(s),e) where €:= Lo (t) — L, (s).

Proof. Set 6:=L,(s)—L,(a),s0 6+e=L,(t)—L,(a). We have
Le(t) = Lg(a) + j/;gy(Lv(a),(S +e)
= Lp(@) + Jpr(Ly(@),8) + T (Lo () +5,¢)
= Ly(s) + (Lo (5),€)
where the first and third equalities follow from the definition of L and where the second
equality holds by Lemma 4.14. a

Lemma 4.17. The function Lg is strictly increasing on T ="

Proof. By induction on y;, we may assume that L is strictly increasing on T~ for all
1 <y (the =0 case follows from Proposition 4.3). As a composition of strictly increasing
functions is strictly increasing, the function L, is strictly increasing on T>"” for all y <.
Given s<te& T>”, let us show that Lg(s) < Lg(t). We start with the case when 0g(s) =
05(t) =taand take y < B with L, (s) =L, (a) <1 and L, (t)—L,(a) <1. Then e:=L, () =L, (s)
is infinitesimal and positive by our induction hypothesis. By Lemma 4.16, we have

Le(t)—Lg(s) = Egy(Ly(s),e) ~ (G oLa(s)) e
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Since Qp >R, we have (FgA)’ >0, 50 Lg(t) —Lg(s) >0.
Now we turn to the case when 05(s) < 94(t). Set a:=04(s) and b:=04(t) and take an
ordinal A:= w'’n < B with
Lras)—Ly(a)<1 and Ly(t)—-Ly(b)<1.
Set 6:=L (s)—Ly(a), so

Lg(s)~Lg(a) = 7@@@),5) ~ (G 0 La(@)) 6 < (4™) o La(a)
Repeated applications of (2.4) with 7 in place of u gives @A ~{g, so (@A)' ~ fg and
(G5 oLa(a) ~ f5o Ly(a).

Since >1, we have fg< {1 s0 lg< b= 6!, Thus, lgoLa(a) < Li(a)~. All together, this
shows that Lg(s) — Lg(a) < Ly(a)7L. Likewise, we have Lg(t) = Lp(b) < Lyb)™L. By the
monotonicity axiom M, we have Lg(a) + LA(a)_1 <Lg(b) —L,\(b)_l, so Lg(s) <Lg(t). a

5 Compositions on confluent hyperserial skeletons

Throughout this section, v stands for a fixed ordinal and T =R[[9t]] for a fixed con-
fluent hyperserial skeleton of force v. We let a:= w". Our aim is to construct a well-
behaved external composition L, x T>> — T that satisfies C1,, C2,, C3,, and C4,, from
Theorem 4.1. We will also prove that the mapping £, — T; [+ [os has relatively well-
based support for all s € T>”. Throughout the section, we make the inductive assump-
tion that Theorem 4.1 holds for all # <v and that the mapping £.,+»— T; [+ [os has
relatively well-based support for all y <v and s€ T>".

5.1 The case when v=0

Here T is a O-confluent hyperserial skeleton of force 0. The field L; = R[ [€%g]] is the field
of well-based series of real powers of the variable ¢, with real coefficients.

Lemma 5.1. If [ C R is well-based, then (s"),g; is well-based for all s€ T~

Proof. Lets=cm (1 +¢) withcE R”, meM” and ¢ < 1. Note that supp s”"Cm’ (supp ).
Since (m"),e; and (supp €)* are both well-based, we are done. |

Given f=) _pfrl)€Ls and s€ T, the family (f,s"),er is well-based by the
above lemma, so we may define

fos:= Z frs’.

reR

One easily verifies that this composition satisfies C1p and C2y. We next prove

Proposition 5.2. Let reR, g€ L2, and s€ T>”. We have §"os= (gos)".

Proof. Write g=cm (1 +¢) where c€ R”, m:= 0, and ¢ <1. We have gr:crmrzkeN (;) ek,

sog’os=c"(m"o8) Y 1oy (,:) eFos. We also have

(ges) =c"(mos) (1+eo0s) =c"(mos)" Z (;;) (eos)k.
keN
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Since ekos= (g05)k by C1p, we only need to show that (mos) =m’"os. Now m= ¢} for

some tER, so
(mos) = (Lhos) =s"=fos=m"os

by Proposition 2.6. O
Corollary 5.3. Let f €Ly, g€ LZY, and s€ T>>. We have f o (gos) = (fog)os

Proof. We have

fogos)=Y fi(gos)'= Zﬁ(gos>—(Zfrg)os—<fog>os

reR reR reR

where the second equality follows from Proposition 5.2 and the third follows from strong
linearity of composition with s. O

Proposition 5.4. For f €Ly, t € T>> and 6 € T with § < t, we have f o (t+8) = f ot + I £(t,0).

Proof. We first handle the case when f = (o, where r€ R. We have é< 1, so

(1+?)r= > () ()

keN

For ke N, we also have ({)) &) — k1 ( ) 6", so (fo)(’” ot =k! ( ) "% Therefore,

o(ef) =0 5 E) = L B )

€1’ (k)ot }
= %5k:tr+ﬁg(t,5).

keN

(t+06)

Now, Lemma 2.8 gives that the the map Loy — T; f — fot+_ (t 0) is well-based and
strongly linear, so for a general f =)’ _ f,{0€L<1, we have

fott+8)=) frt4+8)= ) fit"+ fr Iy(t,0) = fot+ J(£,0). O

reR reR

The above results show that o satisfies C3(, and C4. To complete the proof of The-
orem 4.1 for v =0, it remains to show uniqueness.

Proposition 5.5. The function o is unique to satisfy Clg, C29, C3¢, and C4y.

Proof. Let e be a composition satisfying conditions C1y, C2y, C3p, and C4g. Write
s=cm(1+e¢) € T>>, where c € R*, m:=0,, and ¢ < 1. By strong linearity, it suffices to
verify that {)es=s" for any monomial in £.1. Given r € R, the condition C4, implies

lhes=1{lye (cm)+ (cme)k,

(H® ecm
L
keN>
We have (£5)® =k! (l:) 07 so

lhes=1{ye (cm)+ Z <£>(€6_kocm)(cme)k.

keN>
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We have %O (cm) :%O (clpom) = (660 (cp)) .m:Cr(%.m) by C3;and %om:mrby C2,,
so fje (cm) = (cm)". Likewise, {5 ¥ e (cm) = (cm)"*, so

fhes=(cm) + Z ( )(cm)r keme)k = (cm) (1+ Z (;)gk]:sr. O

keN> keN>

5.2 C1,and C2, for v>0

For the remainder of this section, we assume that v >0. By the results in Section 4, we

have a well-defined extension of L., to all of T>> for each 7 <. Indeed, for s€ T~

and 7y <a, take n with y=w" n+ ¢ with o <w" (so n=01if v is a limit). Then we may set
’y(s> U(Lw”*(s)>-

GivenaeM, and [=]] y<a &r € £, we have by P, that ZKN 7oL y1(a) Elog M, so
wesetloa:= exp(Z,Ka T 7+1(c1)) eM. Clearly, the map £, — ;[ l[oais an embed-
ding of monomial groups which preserves real powers, and by A,, this embedding is
order-preserving as well. For f € L., we set foa:=} o fi(loa). By Proposition 2.3,
we have:

Lemma 5.6. The map Lo,— T; f — f oca is a strongly linear ordered field embedding.
By Lemma 2.8 with ®(f) := f o a, the series Tf(a,s) exists in T for any e <a.

Lemma 5.7. Let aeM,, e€ T, and p <a. We have

Ly(a+e)=Ly(a)+ Tgp(a,e).

Proof. If v is a limit ordinal, then the lemma follows from C4,, for any ordinal  with
p <w!, so we may assume that v is a successor. We prove the lemma by induction on p.
The lemma is immediate when p =0, so suppose p >0 and take n€ N and 0 <y < w"* with
p =w"*n+. Our induction hypothesis yields

Lyven(a+e) =Lyven(a) + jﬁf

wV*n

(a,€).
Note that L v+, (a) €9, and Tgwwn(a,e) ~ (U poa)e<1. We claim that
Loy (Legren(a+€)) =Ly(Lern(a)) + g, (Lgren(a), Jg, 0., (0,)).

When ¢ < w", this just follows from C4,,. When v = w"* =1, this is Proposition 4.7 with
Lyv+u(a) in place of t and Tgwmn(a, g) in place of 6. When 7y = w"* > 1, this is Definition
4.11 with L, (a) in place of 95(s) and Tgw,,*n(a,e) in place of ¢. Since LA,(LCL,wn(awL £)) =
Ly(a+¢) and L,y(vam(a)) Ly(a), it remains to show that Iy (men(a) Lo e, (0, €)) =
Tgp(a, ). Now J; . (Leoven, Ty e, (L0, X)) = Iy (€0,X) asseriesin L,[[X]]. Indeed, forhe LS,

we have

Iy(ew”*n/j/?wV*n(€0/h)) = f o(ew"n*'j? V*n(fo,h))—f ew'/*n

€ O(gw”*n+€w”*n°(60+h) w"*n) € Oew’/*n
7°(€wV*n°(€0+h>) e’y o beyven

byo (bo+1)— 6= Ty, (b0, h).

We conclude by Lemma 2.7. O
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Lemma 5.6 shows that C1, holds if s =a. In the general situation when s € T>"”, our
next goal is to show that the family (L,.1(s)),<. is well-based. For the remainder of this
subsection, we fix s € T>"”. By v-confluence and Corollary 4.10, take n € N and u <v such
that L, (s) —L,(0,(s)) <1 for all w”n <y <a. If v is a successor, we can arrange that y=v,.
Set a:=0,(s), set £:= L (s) —L,(0,(s)), and set B:= w".

Lemma 5.8. Let f € L., and let meN. If vis a successor or f € J
f oLgm(a) is defined and equal to (f o {g;,) o .

p<v L., then the expression

Proof. Suppose v is a successor ordinal, so f=w"". Then Lgm(a) €My, so foLgu(a) is
defined. As the maps f+ (folgy)oa and f+ foLgu(a) are strongly linear, we may
assume that f is a monomial [=]] € Since £, o lgy = g1 for ¥ <a, we have

r<a
(lodgm)oa= (n Q;”,nﬂ) o a:exp( Z [,,L[;mﬂ(a)) :exp( Z [,,L,,(Lﬁm(a))) =loLgy(a).
y<a r<a r<a

Now suppose that v is a limit and that f € L., for some 7 <v. By increasing 77, we may
assume that fm < w’, so f, g € L. Then C2, and C3, give

(foeﬁm)Oa:fo(gﬁmoa):foldﬁm(a)~ a
Lemma 5.9. There is a well-based family (fy k) pn<y<aken> from ]Lfﬁw such that

Lyt1(s)=Lyy1(a) + Z (fyxoa) e

for each «y with Bn <y <a. ken”

Proof. Fix oy with fn <y <a. We first claim that
Ly+1(8) =Lya(@) + T ypn (Lpn(a), €).

If v is a limit, then take 7 with v <w”<a. Then efﬁ’}, b € L, s0 C4;; gives

Ly1(5) = 610 Lpn(@) + Tpan(Lpn(a), )

and C3, gives €7'_‘i1 oLgn(a) =Lyi1(a), thereby proving the claim. If v is a successor, then

take p <a with y+1=p8n+p. By Lemma 5.7 and the fact that €7 +1=1{, we have

Ly41(5) = Lo(Lga(s)) =Ly(Lgn(a)) + J¢,(Lga(a), €)
Lys1(@) + Jpon (Lpn(a), ).

Having proved our claim, let k>0 be given and set f, ;:= % (@ﬁ"l)(k) o lgn € Lipn,a)-
Lemma 2.9 yields ((’;Jﬁﬁ)(k) <1, whence f,<1. If v is a limit, then (f;ﬁnl)ac) € Loy,
where 7 is as above. So in both the successor and limit cases, we may apply Lemma 5.8
with (Eyi”l) ® in place of f to get

1
foam Lty

Ongn(a).
This gives

Lyy1(s) =Lys1(a) + I;g»;(Lﬁn(a)ﬂ) =Ly41(a)+ Z (fyroa) ek,
keN>



30 SECTION 5

It remains to show that the family (f, t)gn<y<aken> is well-based. Since (£,11)gn<y<a
is a well-based family in L, and Lgy4) — L<o; f— f 'P1 is strongly linear, the family
(¢ +1) gn<y<a is Well-based. Since supp. 9 is well-based and infinitesimal, the family

((€;+1)(k))ﬁn<7<a,keN> is well-based. We conclude that the family (f, ) gn<y<aken> is
well-based. a

Proposition 5.10. Let (7)<, be a sequence of real numbers. Then the family (L,41(8))y<a iS
well-based and the series ) <t 7o Loyt1(s) lies in log T>.

Proof. We will show the following;:
a) For each k<n, the family (Ly41(s))gk<y<pk+1) is well-based and

Y ryLya(s) € log T,
Bk<y<p(k+1)

b) The family (L,11(8))gn<y<a is well-based and

Z t4Lyy1(s) € log T~.
pn<y<a

The proposition follows from (a) and (b), since the union of finitely many well-based
families is well-based and log T~ is closed under finite sums.
To see why (a) holds, let k <7 and note that

(Ly+108)) prscy<pk+1) = (Lp+1(Lgk(5))) p< -

Since ({y41)p<p is well-based, C1, gives that (L,11(Lgk(8))) p<p= (o410 Lpk(s)) p<p is well-
based. We have

Z o Lyy1(s) = Z tgk+pLp+1(Lpk(s)).
Bk<y<Bk+1) p<p

Set [:= Hp<ﬁ K;'Bk“’ei}q;. We claim that Zp<ﬁ Tek+pLp+1(Lpx(s)) =log(lo Lgk(s)). If u=0,
then [={;* and

Z Tgk+p Lo+1(Lpr(s)) =1 L1(Li(s)) =log(Lk(s)™) =log (Lo Lgk(s)).

p<B

If >0, then C3, gives

> TocsoLpe1(Lp(s)) =1og(1) o Lpk(s) =log(lo Lgi(s)).
p<B
As for (b), let €:= Lgn(s) —Lﬁn(a). By Lemma 5.9, there exists a well-based family
(f1.,6) pu<y<aken> from ILfﬁM) such that
Lysa(s) =Lysa(@) + ) (frroa)eh.
keN>
The families (L,+1(a))pugy<a and (fyk© @) gn<y<aken> are well-based by Lemma 5.6

and the fact that a €91,. Since the family (sk)keN is also well-based, it follows that
((fyoa) ) pn<y<akeN> is again well-based. In particular,

(L'y+1(5)>,3n<'y<zx:(L'y+1(a)+ Z (f'y,koa)g )
keN> Bn<y<a
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is well-based. Now

Z ToLyy1(s) = Z ToLyi1(a) + Z r7Z (f%koa)sk.

pn<y<a Bn<y<a pn<y<a  keN>

Since f, x and * are infinitesimal for all k>0, we may write

Z 77L7+1(5):( Z 7’7L'y+1(a>)+51

Bn<y<a Bn<y<a
where 6 € T~. By (4.1), we have § =L(E(4)) €log T~. Furthermore, P, implies
Y 7yLysa(a) Elog M Clog T,

pn<y<a

We conclude that Zﬁn@q ryLyy1(s) Elog T>. O

Let=]], _, "€Lcy In light of Proposition 5.10, we define

y<a Y
[os := exp(z [7L7+1(s)).

r<a

We note that the map £.,— T~; [~ [os is an embedding of ordered multiplicative
groups for each se T~

Our next objective is to show that the map £, — T; [+ [os extends by strong lin-
earity toamap L.,— T which satisfies C1, and C2,,. For this, we will show that [ [os
is a relatively well-based mapping, by using a similar “gluing” technique as for Proposi-
tion 5.10. Recall that our second induction hypothesis from the beginning of this section
stipulated that the mapping £ ,»— T; [+ los is relatively well-based for all x <v and
seT>.

Proposition 5.11. Let ®: £, — T be the map ®(l):=1os. Then ® is relatively well-based.
Proof. Let @, be the restriction of ® to £(p,,4) and for k<, let Oy be the restriction of
P to S[‘Bk“g(k+1)). Since

suppo P C (suppe Po) - - - (suppe Pu-1) (suppe Pxn),

it suffices to show that each ®; and ®, are relatively well-based. For the ®y, fix k<n.
Our induction hypothesis implies that the map ¥y: £1,5) — T; [+ [0 Lgi(s) is relatively
well-based. By Lemma 5.8 with [ in place of f, we have

Dy(lolgr) = (Lo dpr) os=TloLgi(s) = Yi(D).

It follows that ®y is also relatively well-based with suppe ®r=suppe Y.
Now for ®5,. Let [= Hﬁn<v<w €[77 € L£1gn,n)- By Lemma 5.9, we have a well-based

family (£, ) gn<y<aken> from ILfﬁM) such that

log(@sn()= > LLya®= Y LLga@+ Y L Y (frrea)e
Bn<y<a Bn<y<a Bn<y<a keN>
Exponentiating both sides, we obtain

QD= E| Y I ) (frroa)er

pn<y<a keN>
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80 0o,y = o a. The set
¢E:= U supp((fykoa) by

pn<y<akeN>
is well-based, infinitesimal and does not depend on [. Since
supp P>n(l) C e
02,0

for all [ € £(gy,4), we conclude that suppe O, C €™ is well-based. a

We already noted that the map @ from Proposition 5.11 is an order-preserving mul-
tiplicative embedding. By Proposition 2.5, it follows that @ is well-based, so it extends
uniquely into an order-preserving and strongly linear embedding ®: L., — T. Taking

fos:=d(f) forall f €L, this proves C1,. By construction, we also have C2,,. Note that
o extends the unique composition L_7x T~ — T of Theorem 4.1 for n<v.

5.3 Properties C3, and C4, and uniqueness for v>0
Proposition 5.12. For r€R,g€ L2, and s€ T>”, we have §" os = (gos)".

Proof. As in Proposition 5.2, it suffices to prove that (Ios)"=1["os holds for each [=
I e L4 For such [, we have

y<a Y
log(I"os) = LyrLy41(s).

y<a
By Proposition 4.6, we also have log((les)") =rlog (les) =7} _ »lyLy+1(s). By injec-
tivity of the logarithm, we conclude that (los)" =["os. O

Lemma 5.13. For all h€ .2, and all s € T>, we have log(hos)=(logh)ecs.

Proof. First, we note that for [=] ] y<a 5;7 € £, we have

(logl)os= ( Z [7€7+1) 05= Z lyLyy1(s) =log(los),
r<a r<a

where the last equality uses the definition of [os. Now, lethe L2, and write h=cm (1 +¢)

withc€R”, m:=9, and e<1. Then hos=c(mos)(1+e¢os) and

_qyk-1
(-1) Kog

(logh)os = (logm)os+logc+ Z
keN>
log(mos) +logc+ Z DA (g0s)k
g g 2 ’
keN>
= log(c (mos)(1+¢€o0s))=log(hos).

Here we used the facts that (log c) cs=log ¢ and that composition with s commutes with
powers and infinite sums. O

Proposition 5.14. The function o satisfies C3,, i.e. forall f € Lo, g€ LY, and s € T we

have f o (gos) = (f og) os.
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Proof. We will show by induction on y<v that fo(ges)=(fog)oesforall feL_,x all
g€LZy, and all s€ T>. If u =0, then this follows from Proposition 5.12 and strong
linearity.

Let ;1>0, let g and s be fixed, and assume that the proposition holds whenever f €L
for some 77 < pu. By strong linearity, it suffices to prove that [0 (gos) = (log) os for all

(=TT, 3,[76 L.n Lemma 5.13 gives

log(lo(gos)) = (loghe(ges)= Y Ll 10(g05),

y<wt

(log(leg))es=((logl)og) s = ( Z [7€7+108) os.

y<wt

log((log)os)

Using the injectivity of log and strong linearity, we may thus reduce to the case when [={,,
for v < w!. Our induction hypothesis takes care of the case when  is a limit ordinal or
when y < w"*, so we may assume that [={,, where w"* <y <w". By the inductive defin-
itions of L, (gos) and ¢, og, we may further reduce to the case when y=w"*. Lemma 5.13
takes care of the case y =1, so we may assume that > 1. In summary, we thus need
to show that L #+(gos) = ({,#0g) s, where y>1.

Set a:=0,1(g) € L<4. We claim that ({,m0a)os=L, m(acs). We have a= {, m,
where w"* <o <a, k€N, and k=0 if u. is a limit ordinal. As {, ,w = mgo {y, we have

fw;uo a= fw;u o (fw;z“ko &7) = (fwy*o fwy“k) o &7: (fwwf—k) o] f = U’+w’“’_k'
This gives

(Lpmoa)os = (byymi—k)os=Ly,,m(s)—k=Lym(Ls(s))—
= L (Lym*(Ly(8))) =L (Loy i+ (8)) = Lm+(aos),

where the first equality in the second line follows from Proposition 4.13.

Having proved our claim, let us now show that ({,#+0g) os=Ln(g0os). Take v <w"*
with L, (gos) —L,(d,m(ges))<1,and e:={,0g—~{,0a<1. We have

lrog= CL)},*o(f 0g)= €T',§*o(€70a)-|-T[1%(€70a,8):(’w;z*oa-kj;mw((’?oa,s).

As {, € L, and (l’;'ﬁ) ® e L+ for all k>0, by Lemma 2.9, our induction hypothesis
applied to p. gives

(L7 0o (b0a))os=(L 1) P o ((Eyoa)os)= (L) P oL, (aos)

for k>0. Along with C1,, we thus have

(w;u 0(€70a) ((€ ;z*)(k)O(%oa))os
Tptenoes = [ ¥ o= ¥ -

keN> keN
fu (k)OL (aOS)
= ) g (eo9)' =Ty (Ly(aes),eos).
keN> ' :

Using also our claim that ({,»ca) os=Lm(acs), we obtain

(byreog)os=(fy,moa)os+ j;,l}”(@yo a,e)os=L,m(aos) +j;l}7}“(L7(aos),£ 08).
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It remains to show that L (g os) =L »(acs) + j}r%(Ly(aos),eos). Now

Ly(gos)—Ly(aos)=({,08)os—(f,oa)os=€05<1,
SO 0+ (a0s) =0ym+(gos) and Lo (aos) —L,(d,m(aos)) <1. We may thus apply Lemma 4.16
to gosand aos, to conclude that L,»(gos) =L (acs) + IT’L*(L')/(GOS),g 08). |
Proposition 5.15. For y<w, t€ T~ and § € T with 6 < t, we have
Lo (t+6) =L, (t) + Ty (t,0).

Proof. Since C4, holds for 7 <v, we need only consider the case when v is a successor
and w" <y <a. We prove the result by induction on 1. By Proposition 4.7 (when v=1)
or Proposition 4.15 (when v > 1), we have L v (t + ) =L (t) + Tww(t, 0). Assume that
¥>w"” and write ¥ = w" + 0 with ¢ < w"*. We have

Ly(t+0) = Lo(Laor+(t+0)) = Lo (L () + Jg,0.(£,8)).
Since Tgw,,*(t, 0) < Lw+(t), the induction hypothesis yields
Lo (Low(8) + Tg0(t,8)) = Lo (Lo (D) + Ty, (Lo (1), T (£,)).

Since L, (L+(t)) =L, (t), it remains to show that ﬁy(me(t),Tww(t,é)) = 7}7(t,5). It is
enough to show that Tga(éww, Tgwm(&),X )) = j/}y(fo,X ) as power series in L,[[X]]. This
follows from Lemma 2.7, since

Tt (b TonClo 1)) = T4, (e, bioreo (bo + 1) = o) = by 0 (b0 (b + 1)) = b0 -
670 (€0+h> _&y: jjEn,(€0/h>/

forall he LS, ]
Proposition 5.16. The function o satisfies C4.,, i.e. forall f E Ly, all t€T>” and all 5 €T
with 6 <t, we have

fo(t+8)=fot+If(t,0).

Proof. Fix t€ T~ and § € T with §<t. Let T: L., — T be the map given by
T(f):=fot+ Js(t,6).

We need to show that f o (t+0) =T(f) for all f € L.,. By Lemma 2.8, the map T is

strongly linear, so it suffices to show that [o (t+6) =T(l) forall [=] | r<a 5;7 € £,. Since

log is injective, it is enough to show that log (I (t46)) =log T(I). Now log (lo (t+6)) =
(log ) o (t+6) by Lemma 5.13 and log T'([) =T (log [) by [12, Lemma 8.3]. By Proposi-
tion 5.15 and strong linearity, we have

T(log 1) :T(Z wﬂl) =Y LT =) LLya(t+8)=(oghe (t+0).

y<a y<a y<a

We conclude that log(lo (t+6)) = (log ) o (t+ ) =T (log ) =log T (I). O
To conclude our proof of Theorem 4.1, we prove the uniqueness of o.

Proposition 5.17. The function o is unique to satisfy C1,, C2,, C3,, and C4,,.
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Proof. Let e be a composition satisfying conditions C1,, C2,, C3,, and C4, and let
se€ T>”. We first show that ¢; es={;0os. Write s=cm+, with c€ R>, m:=0,, and
0<s. By C4,, we have

@).<Cn0
61‘S:€1.(Cm)+ Z T(S
keN> )

For k>0, we have fl(k) = (D (k=11 €5k, so C2, gives
6 e (cm) = (-1 (k=1)! (cm) * = £ o (cm).

Thus, it remains to show that ¢; e (cm) = {10 (cm). Using C2,, C3,, and the identity cm =
(c¥p) em, we see that

tre(cm)="{1e((cly)em)=(l1o(cly))em=({+]logc)em=L;(m)+logc.

Likewise ¢ 0 (cm) =Li(m) +logc.

Now we turn to the task of showing that f es= f os for f € L.,. We make the induc-
tive assumption that for y<vand f €L_,» wehave f es= f os (if 4 =0, this is Proposition
5.5). By strong linearity, it suffices to verify that [es=1[0s for any monomial [€ £,.
As (les) ' =1"1es and likewise for [os, it suffices to show this only for € SZ,X. Given
[= ]_[le 8;7 € £, we have by C3,, that

le(les) = (fol)es=> [, (L103),
r<a
lio(los) = (folyos= )" L(Ly108).
r<a
Thus, it suffices to show that £, es={,0s for all ¥ <a. By our induction hypothesis,
we only need to handle the case that v is a successor and 7y > w"*. If v =w"*, then by
Proposition 4.9, there is an ordinal ¢ < w"* with e:={; 05— L;(d,(s)) < 1. Our inductive
hypothesis and Lemma 2.9 yield

{05 = lro05=L,(0,1(5)) +¢,

(€1 P @ Ly(0ire(s)) = (£50) % 0 Ly(dir(s)) (for ke N>)
Thus,
{05 = €;$*o(€gos):€L$*o(Lg(awv (s)) +¢) (by C3,)
y® N
= 017 0 Ly(Dei+(s)) + Z (tf) 'L"(a“’ {(8)) ok (by C4,)
keN>
(k) v
= (blyioby) @re(s) + Z () .Ilf(aw (5)) ek (by C3, and C2,)
keN>
—_ wl/* wV*
keN>
= (’wmos.

Now suppose 7> w"* and assume by induction that {, es={,os for all c <. Take o <7y
with 7y =w" + 0. Then C3,, and our inductive assumption gives

b os=(l,0l,r)es="1{;0(l,05)=1{;o0(lyro05)=(fyol,m)os=1{,05.

This concludes the proof. a
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6 Hyperserial fields

We are now in a position to prove Theorems 1.1 and 1.2. Let T = R[[9]] be a field of
well-based series, let ¥ <On, and let o: L_,vx T~ — T be a function. For r € R and
meM, we define m” as follows: set 17:=1, set m":= flom if m > 1, and set m":= 5 om ™! if
m<1. For € On with u <v, we define D, to be the class of series s & T>> with lyos€E
9N~ for all ¥ < w'. We say that (T, o) is a hyperserial field of force v if the following axioms
are satisfied:

HF1. L ,v— T, f — fosisastrongly R-linear ordered field embedding foralls€ T>".
HF2. fo(gos)=(fog)osforall fE€ L., g€ELZ, ands€ T

HF3. fo(t4+0)=)cn %5]‘ forall fEL,v, t€T>”,and € T with 6 <t.

HF4. (’3( 05< 6;7;( ot for all ordinals u<v, y<w", and all s,t € T~ with s <t.

HF5. The map R x0Mt— 9M; (r,m) »m’ described above is a real power operation on 1.
HF6. {10 (st)=f1os+ ot foralls,teT>”.

HF7. supp ¢1om>1 for all me 9> and
supp lroa> (o) forall IS u<v, y<w', and a €D .

Axioms HF6 and HF7 only make sense when v >0, so they are assumed to hold trivially
when v=0. We say that (T, o) is confluent if 9 #1 and if for all € On with y <v and
all se T>”, there exist a €D » and y < w" with

lyos = {,oa.

For the remainder of this section, we fix a hyperserial field T = R[[9t]] of force v. For
each u <v, we define the function L » D+ — T;a+— {,roa. The skeleton of (T, o) is
defined to be the structure (T, (L,#),<,) equipped with the real power operation on 9t
given by HF5. The main purpose of this section is to prove the following refinement of
Theorem 1.2.

Theorem 6.1. The skeleton (T, (L") u<y) of (T, o) is a hyperserial skeleton. Moreover, if (T, o)
is confluent, then so is its skeleton and o coincides with the unique composition from Theorem 4.1.

When v =0, then the skeleton of T is just the field T itself with the real power oper-
ation on 9. Clearly, this is a hyperserial skeleton, as there are no axioms to verify. More-
over, it is O-confluent so long as (T, o) is, so Theorem 6.1 follows from Proposition 5.5,
since o clearly satisfies Cl1y, C2p, C3p, and C4y. Therefore, we may assume that v > 0.
We will verify the various hyperserial skeleton axioms over the next few lemmas, begin-
ning with the Domain of Definition axioms:

Lemma 6.2. The skeleton (T, (L.#),<y) satisfies the axioms DD, for all p<wv.

Proof. By definition, D is the class of s& T>” with {yos€IN”. Since {yos=s by HF5,
the axiom DDy holds. Let us fix 0 <y <v and let us assume that DD, holds for all 7 <p.
If y is a limit, then

ﬂ domL, = ﬂ {s€T>”:L,os€IM” forall y<w}
n<p n<p
{s€T>”:l,os€M” forall y<w"}=dom L.
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o

Suppose  is a successor. The inclusion dom L+ C[,,c dom L« holds by definition,
so we show the other inclusion. Let ¥ <" and let s €[, .\, dom L. Take nE€N and
0 K wh' with y=w" n+ 0. Then L(s) €dom Ly, s0 &, o LI(s) €M, by our induc-
tive assumption. Repeated applications of HF2 give , o L_«(s) = £, 0s. Since v < w" is
arbitrary, this gives s&dom L. i

Now for the functional equations, asymptotics, regularity, and monotonicity axioms:
Lemma 6.3. The skeleton (T, (L.»)u<y) satisfies the axioms FE,, Ay, and R, for all p<v.

Proof. Given r€ R~ and m,n €91, we have

Li(m") = fio(lhom)=(l1olh)om=(rby)om=r(fiom)=rLi(m) (by HF2 and HF1)
Litmn) = fHo(mn)=Fliom+lion=Li(m)+Li(n), (by HF6)

so FEj holds. Let 0 < <v be a successor ordinal and let a € 9M,», so Lm(a) is defined
and lies in M,». The axiom HF2 implies

L #(Lms(a))y =4 pmo (Luoa)= (L, nol,m)oa=l,u—1)oa=L,n(a)—1,

so FE, holds as well. The asymptotics axiom Ag follows from the relation ¢; < fpin L.
and HF1. Likewise, A, follows from the fact that £« < {, for all 7 <p. By HF1, we note
that the sets (¢ no s)"! and {(Lny 0 s)7L: n <u and n € N} are mutually cofinal for each
s€ T>”. The regularity axioms R, for y <v therefore follow from HF7. O

Lemma 6.4. The skeleton (T, (L.#),<y) satisfies the axioms M, for all y<v.

Proof. The axiom M follows from the fact that ¢; >0. For 0< <, let v < w and take
a,be M » with a<b. We need to show

bprob—Lroa>(Lyoa) ™+ (£,0b)7L.

We first consider the case that a < £,70 b for some 57 <  with y < w**. Then HF4 gives us

that 14" 0a< €140 (£,10b) = fn0b. By (2.4), we have 1% =+ +¢, where [= %ﬂ e
U w
| PR ;' and e < L. Since r0b—{S 0a>0, we have

Lopob—L noa>loa+eoa.

Since 7 < w™! we have f;l <1, 50 (£y0 a) = &;l ca<loa. The axiom HF4 gives {,0a<
by0b,50 (byom) ™+ (£y0b) ! <2(8y0a) < loa. Thus,

bprob—Lroa>(Lyoa) + (£,0b)7L.
Now we handle the case that a3 {10 b for all 57 < with ¥ <", We claim that the sets
{((Upoa) o< w"} and {(Ly00) 10 < W}

are mutually cofinal. Let o < w” be given and take 1 < u with 7 < w’™ and ¢ < .
Then a > {70 b by assumption, so a> {1, 0b and HF4 gives {,0b>{,0a> {, 0 ({,mpob) =
{145 0b. This proves the cofinality claim. Now, HF7 gives supp ({,»o a) > {({, o a)~
o <w"} and likewise, supp(£,70b) > {(£, 0 b)™ : 0 < w"}. Thus,

supp ({10 b—{roa) Csupp({roa) Usupp(byrob) >{({,0 AL (o) o< wh.

In particular, {,r0b—{,m0a> ({0 a) 1+ (€yo b)~!, as desired. O
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Before proving the infinite powers axioms, we need a lemma:

Lemma 6.5. Let s=cm (1 +¢) € T>” withc €R”, m:=0,, and e < 1. Then
lios={lom+logc+L(1+¢),

where L is as defined in Subsection 4.1.

Proof. Set 6:=cme, so §<cm and s=cm+ 6. The axiom HF3 gives

JICH
fios=tio(cm)+ 1k—fcm)5.

keN>
We have {10 (cm)="{10 ((clp) om)= ({10 (clp)) odq by HF2, and ¢; 0 (c p) = {1 + log c.
Hence

€1(k) o(cm) €1(k) o(cm)
€1os:(€1+logc)om+ Z T5:€10m+]0gc+ Z T(S'

keN> keN>

Given k>0, we have €1(k) ot= (=D 1 (k=1)!+7*, so for 6 <t, we have
(7 em) o (D ( 5 )k_ (~1)<!
Kl "k \em) Tk ©
6o (cm) ok

Thus, Zkel\PT‘S =L(1+¢). O

Lemma 6.6. The skeleton (T, (L»)u<v) satisfies the axioms P, for all yp € On with yu<v.

Proof. let u €On with y<v, let a€M,,» and let (1), . be a sequence of real numbers.
We need to show that ZKM 7y Ly+1(a) Elog M, where logm:=—{; 0 m! formeM=<and
where log 1:=0. Set [:=]] <l &7. We may assume that [#1 and, by negating each r., if
need be, we further assume that [ > 1. Hence {; o [ is defined. The axioms HF1 and HF2
give
Y rylysa(@)=(fohoa=fo(lea),
y<wh

so it remains to show that [caeM~. For each v <w!, we have L, ,1(a) €M~ This gives
supp f10(loa) CM”. Take c€ R” and e <1 with [oa=¢0,4(1+¢). Lemma 6.5 gives

lio(loa)=400q+logc+L(1+¢).

The axiom HF7 gives supp({100(.q) > 1. If e £0, then L(1+¢) ~¢, so 0, €supp L(1 +¢).
If ¢ #1, we have supp log c ={1}. As we have established that supp ¢;0 ([ca) C M~ it
follows that c=1 and ¢ =0. Thus [ca=0(,, € 9, as desired. O

This shows that (T, (L,#)u<y) is a hyperserial skeleton of force v. Now we turn to
confluence. First, we need a lemma:

Lemma 6.7. Let s,t € T>” and let y < w”. If L os={l,ot, then £y 105— L, 10t<1 and
lyos—{lyot <1 forall cwithy+2< 0o <w". Inparticular, {;os={, ot forall o with y <o <w”.

Proof. The proof is essentially the same as the proof of Lemma 4.8. Take cE R” and e < 1
with £, os=c({,ot)(1+¢). By Lemma 6.5, we have

byyr105="t10(Lyos)=l1o(c(lyot)(14+e)) =L, 1ot+]logc+L(1+¢),
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sO lyy108~{y 1ot Set §:= (&H]ot)‘1 (logc+L(1+¢€))<1,50 &yp108=(ly410t) (1+9).
Again, Lemma 6.5 gives

lyipos=to(lyr108)=L1o(({yy10t) (1+0)) =Ly 20t +L(1+9),

50 lyyp08—Llyp0t=L(140)~5<1. Now set h:=(ly205—-{,120t) <1 and fix o with
rY+2<0<w”. We have

ngS—fgot = €§7+20(€7+ZOS)—€;7+20(€7+20t)
= 470 ((Gazo ) +1) =720 (G y20t)

= J,

by a0t ) ~ (672 o (£ 120D
Since (£17*%)',h <1, we have £, 05—, 0t < 1. ]
Lemma 6.8. Suppose (T, o) is confluent. Then (T, (L") y<v) is confluent as well.

Proof. The skeleton (T, (L") u<y) is 0-confluent since 9 is non-trivial. Let # € On with
0<p<v and assume that (T, (L,7),<y) is 17-confluent for all 7 <. We also make the
inductive assumption that for s € T>” and 7 <y, we have £, 0s={,00,(s) for some y <
w'. Lets€ T>” and take y <w" and a€ M ,» with £, 05= £, 0 a. We will show thatd»(s) =
a. We first handle the case that y is a successor. Take n € N> with y < w"*n. Lemma
6.7 gives {,my 08 = {,my0a. By assumption, we have {, 00 u+(s) = {,0s for some p < wh,
SO Ly 00 yix(s) = {,m 05, again by Lemma 6.7. Induction on m gives (Lu+ 0 ,m)°"(s) =<
{ o8 forallme N>, so

(war o Dwy*)On(S) = ewl“’n o= Q,ﬂ*n oa= (Lwl‘* o Dwi‘*)on(a>/

and 0,#(s) =a. The case that y is a limit is similar, though this time we take 7 <y with
v <w' and use that

L1(Qn(8)) =€ mos={,moa=L, 1(d,1(a))

to see that 0,#(s) = a. Since s was arbitrary, this gives that (T, (L") <) is y-confluent. O

Proof of Theorem 6.1. Lemmas 6.2, 6.3, 6.4, and 6.6 show that (T, (L.#),<y) of (T, o)
is a hyperserial skeleton. The composition o clearly satisfies C1,, C2,, C3,, and C4,,.
If (T, o) is confluent, then (T, (L,»),<y) is confluent by Lemma 6.8 and Proposition 5.17
implies that o coincides with the unique composition from Theorem 4.1. O

Given a confluent hyperserial skeleton (T, (L") ,<y) of force v, it is clear that the
unique composition o: Lc,v x T>” — T in Theorem 4.1 satisfies all of the hyperserial
field axioms except for possibly HF4. In the course of our inductive proof in Sections 7
and 8, we will prove the following lemma (Lemma 7.5):

Lemma 6.9. Let (T, (Ly)y<y) be a confluent hyperserial skeleton of force v and let o be the
composition law established in Theorem 4.1. Then the function T>” — T>7;s+— KL';C 05 is
strictly increasing for all ordinals v < w" < w".

Thus, the unique composition in Theorem 4.1 satisfies HF4 as well. The proof of
Lemma 7.5 will not rely on any of the results from this section. This gives us the fol-
lowing refinement of Theorem 1.1:

Theorem 6.10. If (T, (Ly#)u<y) is a confluent hyperserial skeleton of force v, then there
is a unique function o such that (T,o) is a confluent hyperserial field of force v with
skeleton (T, (Le#) u<y)-
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7 Hyperexponentiation

Our goal for Sections 7 and 8 is to prove Theorem 1.3. We will actually prove a “rel-
ative” version of the theorem, for which we first need a few more definitions. Given
a confluent hyperserial skeleton T of force v< On, we let o: L,»x T~” — T~ be the
composition from Theorem 4.1. For each 7 < w", we let L,: T>"> — T~ be the map
given by L, (s) :={, os.

Definition 7.1. Let T be a confluent hyperserial skeleton of force v<On and let p<v. We say
that T has force (v, p) if for each <, the function L. T=> — T > is bijective.

Note that if T has force (v, ), then L,: T>> — T>"” is bijective for all v < w".

Remark 7.2. Every confluent hyperserial skeleton of force v is a confluent hyperserial
skeleton of force (v,0). Given a set-sized field of transseries T, we recall that the expo-
nential function cannot be total [23, Proposition 2.2]. Thus, any confluent hyperserial
skeleton of force (v, u) with u >0 is necessarily a proper class.

Remark 7.3. Let T be a hyperserial skeleton of force On. Then T is hyperserial of force
(On, ) if and only if (T, (L") y<,) is hyperserial of force (v, ) for all v > p. Similarly, T
is hyperserial of force (On, On) if and only if T is hyperserial of force (On, ) for all p.

We can now state the relative version of Theorem 1.3 that we are after:

Theorem 7.4. Let T be a confluent hyperserial skeleton of force v<Onand let y<v. Then T has
a confluent extension T < of force (v, p) with the following property: if U is another confluent
hyperserial skeleton of force (v, u) and if ®: T — U is an embedding of force v, then there is a
unique embedding ¥: T« ) — U of force v that extends ®.

Theorem 1.3 follows from Theorem 7.4 by taking v =y = On. Throughout Section 7
and Subsections 8.1, 8.2, 8.3, and 8.4, we fix a confluent hyperserial skeleton T = R[[91]]
of force v and an ordinal # <v, and we make the induction hypothesis that Theorem 7.4
holds for (v, 4). Note that this holds trivially if # =0. Our main objective is to show that
Theorem 7.4 still holds for (v, u + 1) instead of (v, ).

For this, we have to show how to define missing hyperexponentials of the form E»(s)
with se T>”. In this section, we start by giving a formula for hyperexponentials E ,x(s)
that are already defined in T>"”. In the next section, we show how to adjoin the missing
hyperexponentials to T.

Before we continue, let us fix some notation. Let
& = w'

pi= !
Given 7y < B, we set
lrypyi= n tr € L1y, by py = n by, teg:="{0,p)-

r<o<p r<o<p

<o<p 17, Given se T>”, we set
<

Note that £ ={<j; and that B[T,Z p=11

Liypy(8):i=tiypos,  LET(s):=7os, LT 5 (s):=00] 5 05,
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and we view L, g), Lﬁ , and L[,y p) as functions from T> to T>”. We define L(, g, and
L(7 p) analogously.

Given y <w, we say that E,(s) is defined if s €L, (T>”). If T is of force (v, ),
then E, (s) is defined for all y < wh and s&€ T>”. Lemma 4.17 tells us that L., is strictly
increasing; in particular, it is injective. We let E,: L,(T>”) — T~ be its functional
inverse, which is again strictly increasing. We may also consider E,, as a partially defined
function on T~

Our induction hypothesis, that T exists, has the following consequence:

Lemma 7.5. For -y < B, the function L[3 is strictly increasing on T,

Proof. Let s,t € T~ with s<t. By our inductive assumption, E, (s) and E,(t) both exist
in T (<. As E, and Lg are strictly increasing on T(><'Z) and s<t, we have E, (s) <E,(t) and

Ly"(s) =L(Eq(s)) <Lg(Eo (1) =Lg" (t). O

7.1 Local inversion of the hyperlogarithms

In this subsection, we study the range of the functions LI,? for v < and give a formula
for their partial functional inverses. We fixae T>” and set ¢:=Lg(a) € T>~. We also fix
A<B. For ke N, we define series t; € L.g inductively by

= 0
fee1 i= €<ﬁtlg

Intuitively speaking, t;oa behaves hke (& 1 ) ® o p, whereas the sum ¥ keN k' e¥behaves
like Ly (Eg(@ +¢€)) for e< L(M;)(u) and thereby provides a functional inverse of L;A on
a neighborhood of ¢.

Proposition 7.6. Let e € T with e < L(A,@(a)‘l. Then the family ((txoa) sk)keN is well-based
and tgoa > (tkou)skfork>0.

Proof. Consider the derivative 9, g := E[T A/\ ) d on L.g. We claim that t;= BI[‘A,[;)(&)) o {) for
all ke N. This is clear for k=0. Assuming that the claim holds for a given k, we have

tear = Lepti=lep (Aap (o) © &)/—Qﬁ(a'fw)(fo o)) b
G ITCORINE “[Aﬁ) () o b= a[Aﬁ)(fo)OfA-

In light of this claim, we have tyoa= 8'[‘,\,!;) (€p) o Ly(a). Recall that d has well-based oper-
ator support supp, 0= {£}1:7<B} < 5" as an operator on L.g, so

supp. dnp <y =" [] 4= [] 6'=tip

A<Y<B A<y<p
Consider the strongly linear map
O:Lg — T
fr— foLa(a)
and set
A= U supp ®(m),

mESupp. Iy p)
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so A is well-based and A< LE//\\,ﬁ) (La(a)) =L py(a). ForkeN, wehave tyoa= CID(BI[‘,\,I;) ),
so for m €supp(troa), there exist my, ..., mx Esupp. Iy gy with
me (supp ®(my) - - - supp ©(my)) -supp P ().
This gives us
supp (troa) CAX-supp @ (£)
and it follows that
supp ((txoa) ek) C (A -supp s)k-supp D(b).
As e< L(A,ﬁ)(a)‘l, we have 2(-supp € <1, so we deduce that ((txoa) ek)keN is well-based
and that tgoa > (troa) X for k>0. O

For our next result, we need a combinatorial lemma for power series over a differ-
ential field. Let (K, 9) be a differential field. Then the ring K[[X]] is naturally equipped
Y (n+1)aa X",

with two derivations:
[e'e] !
n=0 n=0

a[i anX”) = i d(a,) X"
n=0

n=0
We also have a composition o: K[[X]] x XK[[X]] — K[[X]] given by

Ro(XS)— R(XS)

[ee]

for R,S € K[[X]]. This composition cooperates with our derivations as follows:

9(Ro(XS))=(0R)o (XS)+ (R"o(XS)) XS, (Ro(XS))' =(R'0(X8))(XS)'

Lemma 7.7. Let S=} _yan X" €K[[X]] and R=}
(X'S) and assume that we have

by, X" € K[[X]]. Write F:=Ro

meN

uagoby=1, (n+2)a,1=uagoay, (m+1)by1=udby,

for each n and m, where u € K. Then F=by+ X.

Proof. The last two assumptions give us the following identities

R’ = udR, and (7.1)
(XS) = ag(14+uX9S). (7.2)
We claim that (dbg) F' = 9F. Indeed, we have
dF = 9(Ro(XS))
= (OR)o(XS)+ (R'0(XS))XdS
= (WR)o(XS)+ (R =(XS)) XS (by (7.1))

(U 4+X9S) (R0 (XS))

= u ' (14+uX9dS) (R o (XS))

= ulag (XS)' (R"o (XS)) (by (7.2))
(dbg) (XS)" (R"= (X)) (since uagdby=1)
(9bg) (Ro (XS))'

(0bg) F'.
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Write F= Z;":OFka. The identity (9bo) F' =9F yields Fx41=+——=— (k+1>ab JoFy for each k. Since
Fo=bg, we conclude that F;=1 and Fr=0 for k> 1. O

Lemma 7.8. Let ¢ € T with e <L py(a)~". Then

L} [ S t’;—"!”eﬂ] =g+e. (7.3)

neN

Proof. We have

1A (m) m
tnoa 1A tnoﬂ ((ﬁ ) o(tooﬂ) tnoﬂ
Lﬁ (Z — s”) =Lg (tooa+z p s”) = Z - Z p el .

neN n=1 meN n=1

Consider the formal power series

(fT/\)(m)Ot ty m
FO= Y ﬁ—o(z mX") €L [X]].

m!
meN n>1

Writing F(X) =), [ X*, we have

Z (Fkoa)sk:L[gA( Z t"n—o!a:s”).

keN neN
Thus, it suffices to show that F(X ) = fﬁ +X.
Let a,:=; +1), tps1 and by, = —( M@ o t,. Then by factoring out X from the inner

sum and reindexing, we have

F(X)= Z by, (X Z anxn)m.

meN neN

Note that the sequence (a,,) satisfies the identities:

/ tns2 €<,Btr’z+1 €<ﬁﬂ1’1
e =TT 2! n+2

Since (((’gA) Moty = (((gA) m+D o o) th= ((@A) m+1) 6 1) {3, the sequence (b,,) satisfies the
identities

1
(m+1)!

bin

AN (m+1) g gm0
(&) o m+1) 4

b():fg/\ot():f/s, bpi1=

Setting u:= (), we have
!

/ ! ! ! b !
ua0b0:€<[;b0:1, (n+2)an+1:€<5an:uaoan, (m+1D)by1=—- l),\ =uby,.

Using Lemma 7.7, we conclude that F(X) =by+ X = b+ X. O
Proposition 7.9. The map s — LIgA(s) is a bijection from Ly (a) + T<0@ to Lg(a) + ’]I"<LW”(“)_1.
Proof. Let 6<L)(a) and let s:=L,(a) +J. We have LIT;A(S) =Lg(a) + T[g/\(LA(a), d), so

B (s)=Lg(@) ~ (") o La(@)) 5 < (") o La(a)) La(a).

Since {3 = (fﬁMo 6) = ((l’ﬁ ) 0 £)) £y, we have

/ {5 _
(SINE 7? b= p),
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so L}'(s) ~Lg(a) <L\ p)(a) ™. This gives L} (s) € Ly(a) + T<L<Aﬁ><“”:.
Conversely, given £ < L(A,ﬁ)(a)‘l, Lemma 7.8 yields L;A(ZkeN kk—(;usk) =Ly(a) +e. Let
us show by induction on k> 1 that ;< d(/\,ﬂ) f,. We have t;=1{_g 0= lapy =g O

Assuming that t; < 66,@ ), we have

tear = Lapth < lap (B py 1) = Lap (K E by L gy O+ Eir gy 1)
We have

b =10 Z GOk bop) ~ 0 01 L2 Loy < Ozt Loy = L0 Loy = Gl p),
A<o<p

s0 k€ by £0p) b+ Ea gy & ~ € g . This gives

/ < eé(/\/ )
e S ap by p) 61 = % = lonp =L p O
It follows that (f¢oa) ek < (tyoa) L(Alﬁ)(a)‘k<LA(a) for each k>0, so ZkeN> tkk—c;a£k<LA(a).
Since tgoa=L,(a), we conclude that )", _; tkk—,a €Ly(a) + T<L®, m]

7.2 Truncated series

Definition 7.10. We say that a series ¢ € T is 1-truncated if it is purely infinite, i.e. if
supp ¢ COMN”. For 0<n <, we say that ¢ € T>> is w'-truncated if ¢ >L(m™) for all
m e (supp @)~ and all y<w". Let Ty ,»denote the class of w'-truncated series in T.

In Subsection 3.3, we showed for 77 < v that the class T>"> can be partitioned into
convex subclasses &,,1[s],s € T, each of which contains a unique L _-atomic element
0,,7(s). In this section, we describe a different partition of T into convex subclasses, each
of which will contain a unique w'-truncated series #,(s). We will then show that Lgis
bijective provided that Ty g CLg(T>"”). This was done in [29] for =1, but we provide a
short proof below. First, fors& T, set #1(s) :=s51, s0 #1(s) is 1-truncated and s—#1(s) < 1.
We also set Lq[s]:={t€T:#1(s) =#1()}.

Proposition 7.11. [29, Proposition 2.3.8] For s€ T~, we have s €log T~ ifand only if #1(s) €
log T~. Thus, the function log: T~ — T is bijective if and only if T ;1 Clog T~.

Proof. Lets€ T~ and let r€R, and e € T™ with s=#1(s) +r+¢. We haver+e€log T~,
since exp(r+¢) =exp(r) E(¢) € T”. Thus, we have s€log T~ if and only if #1(s) Elog T~,
since log T~ is an additive subgroup of T. O

As a related fact for later use, we also note the following;:

Lemma 7.12. For s€ T~, we have #1(logs) =log ds. Thus, s €M if and only if logs € T\ ;.
Moreover, Ly is a bijection between E1[m] and Lq1[L1(m)] for each meM”.

Proof. Given s& T, write s=cm (1 + ¢), where cE R”, m:=0,, and e<1. We have

logs=logm+logc+L(1+e¢)
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R and M give that L1 (91”) C TS ; and, as T 1 is a subgroup of T, it follows that log 91 C
Ty 1. Thus, log m is 1-truncated. If ¢ #1, then supp log c = {1} and if ¢ #0, then L(1+
g) ~ ¢, s0 supp L(1+¢) <0.. Thus, #1(logs) =logm, as desired. The fact that s € 91 if
and only if logs € T ; follows from this and the fact that log is injective. Now assume
thats>1and let n€9M”. Then

se€éqn] & m=n &= #1(L1(s))=Li(m)=Li(n) < Li(s) € L4[L1(n)],

so L1(&q[n]) = L1[Li(n)] N L1(T>7). By Proposition 7.11, L4[L1(n)] N L1(T>") =
L1[Ly(n)]. m]

For the remainder of this subsection, we assume that > 0.
Lemma 7.13. We have T 5+ R> C Ty p. If pis a successor, then Ty g+ R =T p.

Proof. For g € T gand r€ R>, we have (supp ¢ +1)~=(supp ¢)“and g +r>¢@sop+re
T, p. Assume now that y is a successor and let p € T, gand re R. Again, (supp ¢ +7)~=
(supp ¢)~. Take n€N with n>—r. Then for all y < and m € (supp ¢)~<, we have

o>L " )y =L (m™) 4> LY (m ) -,
sog0+r>L;7(m‘l). a

Lemma 7.14. Let a€ T~ and let ¢ :=Lg(a) € T>”. Then ¢ is B-truncated if and only if
supp ¢ > L, (@)~ forall v <.

Proof. We have (supp go)> > L,,(a)‘1 for all v < 8 since the series L, (a) is infinite. Let
m e (supp @)~ and let y < B. By Lemma 7.5, the function LI,;7 is strictly increasing, so we
have ¢ = L/;7(L7(a)) > L237(m_1) if and only if L, (a) > m~!, hence the result. O

By Lemma 7.14 and R, the series Lg(a) is -truncated for all a € M. The axiom Ry
also gives that L1(m) is 1-truncated for m € 9.

Lemma 7.15. Let s,t € T~ with s >t and let oy < B. Then LI,?H(S) > L;ﬂ(t).

Proof. Take r€ R~ with rs>t. Then Lemma 7.5 gives L}ﬂ(rs) > Lgﬂ(t), so it is enough to

prove that L[T;%l(s) > L[g’y(r s). For this, we may show that Bg%l > €g7 o(rfp) in L. As the
map L — L; f — f o {; is order-preserving, it is enough to show that

G =0 o ly> (70 (rby)) o b=} o (rby).
This follows from Lemma 7.5 and the fact that r ; < {,. O

Definition 7.16. For t € T>"”, we define
Lglt]:={set+ T<:s=tor (s+tand t<L[T;7(|s—t|‘1) for some y < B)}.

Proposition 7.17. The classes Lg[t] form a partition of T>"" into convex subclasses.

Proof. Let t€ T~”. The convexity of .Lg[t] follows immediately from the definition of
Lp[t] and Lemma 7.5. Let s € Lg[t]. We claim that Lg[t] C Lg[s], from which it follows
by symmetry that Lg[t] = Lg[s]. This clearly holds if s =t, so assume that s # ¢.
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We first show that t & L[;[s] Let e:=s5s—-t<1and let y < with t<LT7(|£| 1y for some
v <. Given o with >0 >, we have €7 o, = {, < £, whence £” < €0 Therefore,

Ly (el =LE7 (L3 (lel™)) <L (lel™)

by Lemma 7.5, so t<LT‘7(|€| 1y for all such ¢.
If u is a successor, taken<ww1th'y<w”*n Thent<LT“’ (el and since s—t=¢e< 1,
we have

s=t+e<Li (el +e<Lp(lel™) +n+1=L" "D el ).

If u is a limit, take 7 < p with y <w”, so that t<LT“’ (leI™"). Let us show that s <L;w (|£| 1.
Suppose for contradiction that s > L[; (Isl‘l) By (2.4), we have

1! 1, Wl 1,
b — g~ T ls, (’ﬁ —lg~—— .

w wr7+2
. / / Tt T
Since €, +2< {,+1, we have €/3 — > €ﬁ — g, so

wr7+1

g g = (4~ ) - (4"~ 45) ~ ¢} —eﬁ~—

€ 71+2

€‘3 e[w17+2 ﬁ)

Therefore,
e=s—t> LI (el ™) =L el ~ Ly (e ™) 7.

This means that |e] ' < L[ w2 ﬁ>(|8|‘1): a contradiction since €[ Wr*2gy < .

Now let u € Lg[t] and let us show u € Lg[s]. This is clear if u=s or if u=t, so we
assume that , s, and t are pairwise distinct. By our claim, we have t € Lg[s] and t € L[u],
so take y < B with s < L;7(|t—s|‘l) and u< L;7(|t— ul™). Note that

Is—u| <|t=s|+ |t —u| <2max (|t —s|, [t—ul),

>1 —min (Jf—s|"}, [t—u[™)). Lemmas 7.5 and 7.15 yield

thus, [s—u["' > 25

Ly (s —u™) > LY @1s —u™) > min (L7 (s, L (it -ul™)).

If L7 (ls—ul™) > L (1t =sI™") >s, then u € Ly[s] by definition. If Ly (s —ul™) > Ly (1t -
ul” 1) >u, then s € Lg[u], so u € Lg[s] by our claim. O

Proposition 7.18. Let t € T>'”. Then the class Lg[t] contains exactly one B-truncated element.

Proof. Let us first show that Lﬁ[t] contains a S-truncated element Suppose that t itself
is not B-truncated, let m € (supp #)= be greatest such that t < L T(m™!) for some y <.
Setting ¢ :=t.n, we have ¢ —f =m, so LWH(Igo H > Lm(m 1) by Lemma 7.15. Our
assumption on m therefore yields L[T;%l(l(p {1 > t, whence peE aCﬁ[t].

We claim that ¢ is B-truncated. Fix n € (supp ¢)=. By definition of ¢, we have t >
LWH(n 1 forall ¥<pB. Since t—@s,=n, Lemma 7.15 gives LT7 1(n_l) >L;7(|t Ponl” Y for
all ¥ < B, 50 @un & Lp[t] = Ls[¢]. By definition, this means that P> LW+ (lp—@sal™) for
all y < B. Since ¢ — ¢, =<n, we have LT7+1(|§0 o b >LT7(n‘1) by Lemma 7.15. Thus,
o> L[T;7(n‘1), as claimed.
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Now let ¢, 1€ T~ be B-truncated series with ¢ € L[ ¢]. We need to show that ¢ =1.
Take v < B with ¢ <L[T;7(|qo — ™). For m € (supp ¢)<, we have ¢ > L;7+1(m‘1) since ¢ is

B-truncated. Therefore,
L (p-¢I™) > 9> L (m™h,

so ¢ — 1,b|‘1 >m by Lemma 7.15. Thus (supp ¢)=>|¢ —l. Since |¢p — | <1, we deduce
supp ¢ > |p—1, so ¢ L. We also have i€ L[ @], so the same argument gives ¢ <{¢ and
we conclude that ¢ = 1. O

For t € T>”, we define #5(t) to be the unique B-truncated series in Lg[t]. Note that
this definition extends the previous definition of #;. It follows from the proof of Propo-
sition 7.18 that #4(t) s for all s € L[] and that

Lp[t] = {s€T>” :#p(s) = #p(H)}.

Proposition 7.19. For a€ T>"> we have

Lg[Lg(a)] ={s € T>":5-Lg(a) <L[%/3>(a)‘1 for some 7y < B}.

Proof. We have se Lg[Lg(a)]\ {Lg(a)} if and only if L;p(|s—Lﬁ(a) ) >Lg(a) for some p <pB.
Since Lg(a) = L/;p(Lp(a)) for each p < B, this is in turn equivalent to |s — Ll,g,(a)l_1 > Lp(a)
by Lemma 7.5 . Thus, s € Lg[Lg(a)] if and only if |s—Lg(a)| < Lp(a)‘1 for some p < B,
and it remains to show that |s—Lg(a)| < Lp(a)_1 for some p < g if and only if |[s—Lg(a)| <
L[%lg)(a)‘l for some 7y < B. This follows from the fact that if p <y <, then {,> {1, 5) > {,,
50 Ly(a) ' < Liy,py (@) < Ly(@) ™" u|

Proposition 7.20. For each a€ T>"> we have Lg(Eg[a]) C L[Lg(a)].

Proof. Let u € &gla]. Then there is A = w'n < B with Ly(u) —Ly(a) < 1. Thus, Ly(u) €

Ly(a)+ T= and so Lg(u) = L;A(L/\(u)) eLg(a) + ’I[‘<L“"”(u)_1 by Proposition 7.9. Therefore,
Lg(u) € Lg[Lg(a)] by Proposition 7.19. O

Corollary 7.21. We have #goLg="Lgodg on T>". Thus, for s€ T>"~, we have s € My if and
only if Lg(s) € Ty p.

Proof. Let se T~”. Then Lg(d4(s)) € Lp[Ls(s)] by Proposition 7.20 and Lg(ds(s)) is -
truncated by R, and Lemma 7.14. Thus Lg(04(s)) = #5(Lg(s)). The fact that s& Mg if and
only if Lg(s) € T g follows from this and the fact that Ly is injective. O

Proposition 7.22. Assume that T is a confluent hyperserial skeleton of force (v, u). Then
Lg(Epls]) = Lp[Lp(s)] for all s€ T>”. In particular, if Eg(t) is defined for t € T, then
Eg is defined on Lg[t].

Proof. We prove this by induction on p. Let s€ T>”. By Proposition 7.20, we need
only prove that Lg(E[s]) 2 Lg[Lg(s)]. Let t € Lg[Lp(s)]. By Proposition 7.19, there is a

-1
A=w'n<pwithteLg(s)+ T<tnp®), By Proposition 7.9, there isa v € L (s) + T < with
t= L[T{\ (v). Since T is hyperserial of force (v, ), the hyperexponential E, (v) is defined and

E,g(t) :EA(U).
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Finally, since v~ L,(s), Lemma 4.8 and Proposition 4.9 imply E,(v) € £g[s]. O

Corollary 7.23. Assume that T is a confluent hyperserial skeleton of force (v, u). Then we have
Ego #p=0p 0 Eg whenever one of the sides is defined.
Corollary 7.24. The following are equivalent:
a) T has force (v, pu+1).
b) For all <y, the function E 1 is defined on T .
¢) Forall y<y and s € T>'”, the hyperexponential E (t) is defined for some t € L [s].
d) For all 5 <y, we have L,i(Mn) =Ty .

Proof. The equivalence between a) and b) follows from Proposition 7.22 and the fact that
we have

T = |_| OCw”[(P]

(;7ET>’w:7

for all 7 < u. The equivalence between b) and c) follows directly from Proposition 7.22.
The equivalence between b) and d) follows from Corollary 7.21. m|

7.3 Useful properties of truncation

Throughout this subsection, we let 0 < u <v and we set f:= w" and 6 := w"*. Given
s,t€ T, it will be convenient to introduce the following notations:

s<pt = Lgls]<Lp[t] = #p(s) <#p(t)
S:‘Bt = L‘B[S]:Lﬁ[t] = #ﬁ(s):ﬁﬁ(t)
Lemma 7.25. Let s€ T>”, y <, and r € R”. We have

Lp"(rLy(s)) =p Ly(s)

Proof. We claim that if {s# €g7 o(rt,), then fg— l’gy o(rf,)<1land
lp< )7 Vo llg— 0370 (r £,

Assuming that fg # €g7 o(rf,), we have

1 1 (eg“Hl)(k) 0 lyi1
(570 (rb) =7 olog(rty) = (57" o (byy1+logr) = ) 7 (log ",
keN ’

whence "o (r£,) = fg~ ((4"*") 0 £,,1) log . Now
/ /.
(é,/; 7+1) olyy1= Til = 5[71+1,/3)/

SO Eﬁw o(rly)—{g= €[_,y1+1,[;) < 1. Since {}y41,6) > €,41, we have |{5— €g7 o (r €7)|_1 > {41, SO
Lemma 7.5 gives

eg”lowﬁ—eg%<r47>|—1>eg7+1o 1= s,
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as desired. Composing with s gives that if Lg(s) # L[TSW(VL,,(S) ), then Lg(s) —L;7(7L7(s)) <1
and

Ly(s) <Ly (ILp(s) ~ Ly (r Ly (s)I ™),
From which it follows that L;W(VL,Y(S)) € Lp[Ls(s)]. O
Corollary 7.26. Let s,t € T>” with ts. Then Lg(st) =g Lg(s).

Proof. We have Lg(st) —Lﬁ (L1(st)) = L (Ll(s) +L1(t)). Let n >0 with t <ns. We have
0<Lq(t)<Li(s)+logn<2Li(s), so

L5 (L1(5)) <L (L1(s) + L1(£)) <L} (3Ly(s))

by Lemma 7.5. Since Lg(s) = ngl(Ll(s)) =5 Lfgl(SLl(s)) by Lemma 7.25 and Lg[s] is convex,
we are done. O

Lemma 7.27. For each s € T~ and each y < 6, we have
Ly"(s) =p Lg(Ly(s)) =p Lg(s).

Proof. Take A = w'n with <A< #6. Since 0/17 < {p, we have o = ng o €AT7 < €ﬁ o {p by
Lemma 7.5. This gives

<O = = g o () <G 0 (20,00,
Thus, L T(s) < LT“’ (2 L,+(s)). Likewise, since £, > {), we have

1
650672%0&\ tg“ﬂ o(f ’7+1o€/\)— va 0(€ r7+1—1’l)> va 0<§€wn+l>,

s0 Lg(Ly(s)) > L (;wal(s)) Lemma 7.5 gives €)= €170 fo> €} 0 £, = s> 50 £, 50

we have
+ +1/1
LI QL) > LY (6) 2 Ly(Ly () > L} 1<§Lwﬂ+1(s)).

tlt! t /1
By Lemma 7.25, both Lﬁ (2L y+1(s)) and Lﬁ (5qu+1(s)) are elements of £5[L5(s)].
Since Lﬁ[L[;(s)] is convex, this means that it also contains Lgv(s) and Lg(L,(s)). O

We have the following useful consequence:
Corollary 7.28. Let s,t € T>"” be such that L, (s)=Ly(t) for somey,o <0. Then
L‘B(S) =B L‘g(t)
Proof. Take 1€ N> with — L, (s) <L (f) <11L,(s). Then
1
Lﬁ<;L7<s)> <Lp(Lo(£) <Lp(nLy(s)).

We have Lg(nL,(s)) =g Lﬁ"(n L,(s)) by Lemma 7.27 and we have Lﬁ7(n L,(s)) =g Lg(s)
by Lemma 7.25, so Lg(nL,(s)) =g Lg(s). Likewise, Lg( (s)) =p Lg(s). Since Lﬁ[L[;(s)]
is convex, this yields Lg(L,(t)) =g Lg(s). Since Lg(Ls(t)) = Lg(t) by Lemma 7.27, we
conclude that Lg(t) =g Lg(s). O
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Corollary 7.29. Let s,t € T with Lg(s) <g Lg(t). Then s t€T>> and Lg(s~'t) =p Lg(t).

Proof. As Lg is strictly increasing, we have s <t, which gives L1(s) <L1(t). We first claim
that Li(s) » L1(t). If p>1, then Corollary 7.28 gives that L (s) # L1(t), so we may focus on
the case when p=1. Suppose towards contradiction that L,,(s) <. L(t) and that L (t) =
L1(s) + € for some €< L1(s). Then

Lo(t) =Leo(8) =L (L1(5) +€) =L (L1(5)) = Tp(La(s),€) ~ (¢L) o La(s)) &,

Since ({11 =¢,+1, we have (1) = ¢/, = €[_01,w), so (UMY oLi(s) = €[_01,w> 0L1(s) =Li1,w)(s) ™.
Since ¢ < L1(s), we have

Lo(t) =Leo(8) ~ (£ 0 L1(5)) € < Lz, (5) 7Y,

s0 L,(s8) =w Lw(t) by Proposition 7.19, a contradiction.
From our claim, we get 0< L;(s™'t) =L;(t) —L1(s) = L1(t). This yields s}t € T>>, as
Li(s™'t) e T>>. Take r€ R> with r ! Li(t) <L1(s7't) <rLi(t). Lemma 7.25 gives

Le(t) =L (L1(t)) = L} (r ' L1(£)) =p L} (r L1 (1)),

so Lg(t) =p L1(s7'#) since Lﬁ[Lﬁ(t)] is convex and L;l is strictly increasing. O

8 Hyperexponential extensions

In this section, T = R[[2t]] is a confluent hyperserial skeleton of force v<On and a = w".
Given p <v we consider a class T of w!-truncated series without w-hyperexponentials
in T and show how to extend T into a minimal confluent hyperserial skeleton Tt =
R[[9MT]] of force v that contains E»(¢) for all series ¢ € T. Most of the work in the
case i =0 has already been done in [29], but Subsection 8.1 contains a self-contained
treatment for our setting. For the construction of Tt in Subsections 8.1, 8.2, 8.3, and 8.4,
we recall that we made the induction hypothesis that Theorem 7.4 holds for (v, ). After
the construction of T, we conclude this section with the proofs of Theorems 7.4 and 1.3.

8.1 Adjoining exponentials

Let To(T) be the class of all 1-truncated series ¢ € T ;1 for which exp ¢ is not defined.
Let T be a non-empty subclass of To(T) and let (T} be the R-subspace of T\ ; generated
by T and log M. By Lemma 7.12, {T) consists only of 1-truncated series.

Group of monomials. We associate to each ¢ € (T) a formal symbol e? and we let Mt
denote the multiplicative R-vector space of all such symbols, where e? e¥ =e?*¥ and
(e?)'=e"?. We use 1 in place of e’. We order this space by setting e? >e¥ < ¢ > 1.
It is easy to see that (M, x, <, R) is an ordered R-vector space which is isomorphic
to ((T), +, <, R). We identify 9t with the R-subspace el°8™ of M via the embedding
m—s e%8™ Let Tt:= R[[9Mr]], so the identification 9 C Mt induces an identification
T C Tt. In the special case when T =Ty(T), we write 9 ) := Mt and T(g):= Tr.

Extending the logarithm. For e? € My, we set

loge?:=¢.
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We let L, be the restriction of log to M7. Note the following:

1.

3.
4.
5.

By construction, (T, L) satisfies DDy and FE,. Moreover, Li(m) = Ll(eLl(m>) for
meM”, so (T,L1) C (T, L)

. We claim that (Tr,L;) satisfies Ag. Suppose for contradiction that ¢ =L (e?) >e?,

where e? €Mif. Then 0, >z e?, 50 L1(0y) > ¢ by definition. This gives L1(d,) >y,
which contradicts the fact that (T, L) satisfies A,.

By definition, we have e? € My if and only if L1(e?) >0, so (Tt,L;) satisfies M.
Since L1(e?) = ¢ € Ts 1 for e? €M7, the axiom Ry is satisfied.

As remarked in Remark 3.2, Py follows from FE,.

Extending L. For ¢ €(T) with e? > 1, we have L;(e?) € M7 if and only if p €M™, so

e’ e, ey dom Li" if and only if ¢ €
we set

dom Li" if and only if ¢ €9, Accordingly,

neN

dom L:={e?:p€(T)NM,}, Ly(e?):=Ly,(p)+1.

This ensures that DD; holds. Note that if a €91, then Li(a) €{T) N M, so a=e@ e
dom L,, and L, ey =L, (L1(a)) + 1 =Ly(a). Thus, M,Cdom L,, and (T, Ly, L) C
(Tt,Ly,L,). We also have the following;:

1.

For e’ €domL,, we have
Lo (L1(e?)) =Le(@) =L (e?) -1
so (Tt,L1,L,,) satisfies FE;.

. Fore?edom L, wehave L, (@) +1=({,+1)op<{yop=¢,since {,+1<{. Thus

Lo(e?)=Ly(¢) +1<¢@=L1(e?),
which proves A;.
(T, Ly, L) satisfies My. To see this, let e?,e¥ edom L, with e? <e¥ and let n e
N. We want to show that L,,(e?) + L,(e?) ' <Ly (e¥)—L,(e¥)™. Since L,.1(e?) <

L,(e?) and Ln+1(el/’) < Ln(el/’) by Ay, we may assume without loss of generality
that n>0. Now

Lo?) +Lye?”)™ = Ly(@) +1+ L, 1(p)7
Loe?)=Lye?)™ = L) +1-Ly1(y) L

Since ¢, €M, and since (T,L;,L,,) satisties M, we have
Lo(@) + Lit1(9) < Leo() — LiL1 ().

Let e/ €dom L. Since ¢ €M, and (T, Ly, L,) satisfies Ry, the hyperlogarithm
Lo (@) is w-truncated by Lemma 7.14. It follows from Lemma 7.13 that L,(e?)=
L, (@) +11is also w-truncated, so (Tt,L1,L,,) satisfies Ry.

. Let e €edom L, and let (r,),en be a sequence of real numbers. To show that

(T, Ly, L) satisfies P, we need to show that the sum s =) 7nLur1(e?) is in

log M. We have

neN

s= Y rulue1€®)=rop+ Y ruLu(g).

neN neN>



52 SECTION 8

Since ¢ € M,, and since (Tt, L1, L) satisfies P1, we have ) > 7 Ln(p) Elog M.
It remains to note that rop =roL1(e?) =log e’ €log Mt and that log M is closed
under finite sums.

Extending L, for 1<y <v. Let 1 <y <wv and set dom L,7:= 9,7 We need to show
that DD;, holds for each 7, and for this, it suffices to show that DD, holds. Let e’ e
ﬂneN dom L7} and take n with L;4+1)(¢) = Lem+1)(02(@)). Since L, (@) +1= Ly (),
Lemma 4.8 gives that

Lw(n+l)(e(p) :Lwn(Lw(gp) +1) :Lwn(Lw(gp)) = Lw(n+l)((/)) = Lw(n+l)(bw2((/)))'

Since Lyn+1)(€?) and Lyn+1)(0,2(¢)) are both monomials, they must be equal. The
axiom M; gives e’ =0,2(¢) €M 2=dom L.

Now FE,, Ay, M, Ry, and P, hold for each 1 <7 <, since they hold in T. Further-
more, P, holds if v € On; this is clear if v >1 and the above proof of P still goes through
when v=1. Thus, (T, (Ly#),<y) is a hyperserial skeleton of force v which extends (T,
(Leor )r]<1/)-

Proposition 8.1. Assume that M., C(T). Then Tt is v-confluent.

Proof. Clearly, Ttis O-confluent. Lets & TT> "~ and take pe(T)witho;=ef e 7. We have
L1(d1(s))=L1(e?) =@ € T. Let a:=0,(¢p) and take n with (L;0071)""(¢) = (L1007)"(a).
We have L1(01(s)) = ¢ and, by assumption, a€(T), so

(L1001)" "V (s) = (L1001 (@) = (L1007) "+ (e").
By definition, a €M1, implies e® €dom L,,, so 9,,(s) =e®. We have

Ly(00(8)) =Lw(e") =Ly(a) +1=Ly(a) =Ly(00(a)),
50 0,,2(s) =0,,2(a) and, more generally, 0,,1(s) =0,1(a) for 2<n <v. Thus, the skeleton Tt
is v-confluent. ]

Let us summarize:

Proposition 8.2. The field Tt is a confluent hyperserial skeleton of force v. It is an extension
of T of force v with {T) CL1(Mt).

Using the composition from Theorem 4.1, we can check whether an embedding ® of
confluent hyperserial skeletons is of force v without having to verify that ®(9t,,7) C9,»
for all #.

Lemma 8.3. Let U= RI[[]] be a confluent hyperserial skeleton of force v with the external
composition o: L, x U”” — U from Theorem 4.1 and let ®: T — U be a strongly linear field
embedding. Suppose that @ () CN, that P(m") =D (m)" forallmeM and all r € R, and that
®(L,(a)) =L n(P(a)) forall y<vand all a€M,n. Then P is an embedding of force v.

Proof. We will show by induction on # <v that ® (91,1 CN,». For =0, this holds as ®
is order-preserving. Let 77 >0 and assume that ® (M) TN for all 1 <7. If 7 is a limit,
then by DD,, we have

D (M 1) =<I>(ﬂ zmwl) =[] @) C () N =N

1<y 1<n <n
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Suppose 7 is a successor and let aeN,,». We have L +,(a) €M, for allneN by DD,
Our induction hypothesis gives L 1+,(®P(a)) =D (L 1, (a)) EN, = for all n e N. Applying
DD, again gives ®(a) €1, 50 O (M) SN a

Proposition 8.4. Let U =R [[9]] be a confluent hyperserial skeleton of force v and let : T — U
be an embedding of force v. If ®(T) Clog(U~), then there is a unique embedding

Y. TT —U
of force v that extends ®.

Proof. As U is hyperserial of force v, we have an external composition o: L, x U>” — U.
Since ®(T) Clog U~, ® is R-linear, and log U~ is an R-subspace of U containing
®(log M), we have ®((T)) Clog U~.

Since ®(M”) CN”~, we have ®(Ty 1) CUs 1 so ®({T)) Clog U” N Us,1. Thus,
exp(P(¢p)) is a monomial for ¢ € (T) by Lemma 7.12. We define a map ¥: Mt — N
by setting

Y(e?) :=exp(P(9)).
It is routine to check that ¥: 9t — 91 is an embedding of ordered monomial groups with
R-powers. By Proposition 2.3, this embedding ¥ uniquely extends into a strongly linear
tield embedding of Tt into U, which we will still denote by ¥. Note that if m €91, then
Y (elosM)y = exp(®(logm)) =exp(log(P(m))) =D (m), so ¥ extends P.

We now prove that ¥ is a force v embedding. By Lemma 8.3, we need only show that
¥ commutes with logarithms and hyperlogarithms. Given e? €M, we have

Y(log(e?)) =¥ () =D (¢) =log(exp(P(¢))) =log(¥(e?)).

Now let u <v with x>0 and let e? € (M) . If 4 >1, then e? €M1, so we automatically
have L (¥ (e?)) =¥ (L,»(e?)), since ¥ extends ®. If u=1, then ¢ €(T)NM,, so

Lo(¥(e?)) =Lu(exp(P(9))) =Lu(P(9)) +1=D(Lu(p) +1) = D(Ly(e?)) =¥ (Lu(e?)).

Let us finally assume that A: Tt— U is another embedding of force v that extends ®.
To see that A=Y, it suffices to show that A(e?) =¥ (e?) for 9 €(T). Now

log(A(e?)) =A(log(e?)) =A(p) =P (¢),
so A(e?) =exp(P(p)) =¥(e?). ]

8.2 Adjoining hyperexponentials

From this point until Subsection 8.5, we let 0 < 2 <v and set

B = w

0 = w.
Note that f =0 w if u is a successor and B =0 if y is a limit. Let T,,(T) be the class of all
B-truncated series ¢ € T, g for which Eg(¢) is not defined. Let T be a non-empty subclass
of T,(T). Consider ¢ €T and s T>”. We have #5(Ls(s)) = Lg(d4(s)) € Lg(T>") by
Corollary 7.21. Since Lg[Ls(s)] contains a unique B-truncated element, ¢ is -truncated
and g & Lﬁ(T>’>), it follows that ¢ & aCﬁ[L‘B(S)]. Thus, we have

¢<Lg(s) = @<pLg(s)
p=2Lp(s) = @>pLp(s).



54 SECTION 8

If u is a successor, then let (T) be the smallest class containing T such that ¢ —1 &(T)
whenever ¢ €(T) and p—-1¢& Lﬁ(’I[‘>'>). By Lemma 7.13, the class (T} also consists only
of p-truncated series. If y is a limit, then set (T):=T. Note that T,(T) =(T,(T)). For
the remainder of this subsection (with the exception of Proposition 8.30) we assume
that T=(T).

Remark 8.5. Let ¢ €T and suppose p is a successor. If ¢ —n & T for some n €N, so
Eg(¢—n) is defined in T, then for each m €N, we have

¢—(m+m)=Lg(Eg(¢p—n))—m=Lg(Lom(Eg(¢—n))),

s0 Lgu(Ep(@—n)) = Eg(@— (n+m)). In particular, ¢ — (n+m) ¢T.

Group of monomials. We assoc1ate to each l€ £.pand each ¢ €T a formal symbol [[eﬁ ]
This should be thought of as [0 eﬁ if eﬁ is an element in a hyperserial extension of T.
Accordingly, we write eﬁ in place of fo[eﬁ] and 1 in place of 1[e/3]

We define the group £<9[eﬁ] as follows. If y is a limit, then £<9[eﬁ] is the group
generated by the elements [[e /3] with [€ £.p and satisfying the relations ll[eﬁ] lz[eﬁ]
(1 1) [eﬁ] Hence £<9[eﬁ] is the group of products

t= 1_[ tq,[eg]], t(pE£<9,

p€eT
for which the hypersupport
hsupp t:= {p €T:t, #1}
of t is finite. If y is a successor, then let ~ be the equivalence relation on T defined by

s~t &< t-se&Z.

We let 2<g[eg] be the group of formal products

t=[] tlefl.  t,ELe
p€eT

for which the hypersupport hsupp t is well-based and hsupp t/ ~ is finite. Given s,t &
£<g[eg], we note that hsupp 57! t C hsupp s U hsupp t, whence st € £<g[eg]. Hence
£<g[eﬁT] is indeed a group.

Forte £<9[eg]¢1, we define ¢ :=maxhsupp t and 7 :=min {7y <8:(ty), #0}. We set
t >1 if t, > 1, which happens if and only if (t,,),,>0. The following facts will be used
frequently, where t,u range over 2<9[eg]:

o =g fort#l,

* @y <max (@ ¢y), and if g # ¢, then ¢, =max (¢, ¢y)

o Ifl<tuoruxt<l,then¢i<g,,

o Ift>landu}>1orift<1andux1 then @y =max (@, @y).

Let Mt denote the direct product 2<9[eﬁ] x9M. We denote by tm a general element (¢,
m) of this group, where we implicitly understand that t € £<9[eﬁ] and m € M; we also
identify (t,1) and (1, m) with t and m, respectively. In the special case when T=T,(T),
we write 9, :=Mr.
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Remark 8.6. Assume that y is a successor and consider t € £<g[eg] as above. The advan-
tage of the representation of t as an infinite product of terms of the form tq,[eg] with
t, € L.pis that such a representation is unique. Alternatively, it is possible to represent t
as a finite product of terms of the form [[e/f ] with (€ £<5, but uniqueness is lost, since
fo[eg)] = Eg[egﬂ].

Nevertheless, we may construct a privileged representation as a finite product as fol-
lows. Since hsupp t/ ~ is finite, there exist ¢1>--- > ¢, € T with ¢; A ¢; for i # j and
hsupp t/ ~={g1,..., ¢4}/ ~. Since hsupp t is well-based, we may also take ¢;=max{¢p &
hsupp t:p ~ ¢;} for all i. Then

t=[] [] to-mlef™.

1<i<n meN
@i-meT

Fixie{l,...,n} and set A;:={meN:¢;—m&T}. For each m € A;, we have log t,,_, =
Zv<9 (tp—m)y ly+1, 50

Z log(t(p,-—m o lom)

Z (log tg,—m) o lom= Z (Z (t(pi—m>’y€'y+l)°€9m

meA; meA; meA; \y<0
( ,'—m)
ZZZMWWﬁ%nnmq
meA; y<o meA; y<0
Set
* (tqz,'—m)
t(Pi'_ n n €9m+,)/’y€ £<‘B
meA; y<0

This gives us the finite representation

t= [T tlef.

1<ig
Note that t > 1 e=t, > 1=ty > 1. i~

Ordering. Let 97 be the set of all elements t m € My that satisfy one of the following
conditions:

t>1, m<1,and ¢ >Lg(m™) @)
t<1, m>1,and @i <Lg(m) (II)
t>zlandm>1 (TID)
t>land m>1 Iv)

We define the relation < on Mt by tm <un if and only if (u tHmmhHe MT.

Proposition 8.7. The relation < is an order on M that extends the orderings on both M
and 2<9[eg].

Proof. By definition, the relation < extends the orderings on 9t and 2<9[eg]. In order to
show that < is an order, it suffices to check that M7 is a total positive cone on M.

Let tme Mt \ {1}. By the definition of 93?% and the fact that @1 = ¢y, it is clear that
tm and (tm)~! cannot both be in M7. Let us show that either t m € M5 or (tm) ' € M7.
Assume that tmgM7. If t<1and m<1or t1and m<1, then (tm)~! satisfies (IIT)
or (IV). Suppose thatt >1, m<1, and ¢ gLﬁ(m‘l). Then ¢¢< Lﬁ(m‘l) since @& Lﬁ(’I[‘>'>),
SO P11 =@ < ng(m‘l). Since t ' <1 and m™' > 1, we conclude that (tm)~! satisfies Im. 1f
t<1,m>1,and = Lg(m) then (¢ m) ! satisfies (D), for similar reasons.
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Now let tm,un€Ms. We will show that (tu) (mn) € M7. If both tm and s n satisfy
one of the last two rules, then this is clear. Thus, we may assume without loss of gener-
ality that t m satisfies either rule (I) or rule (II). We consider the following cases:

Case 1: tm and un both satisfy (I) or they both satisfy (II). Suppose that they both
satisfy (I). Then tu>1and mn<1, so we need to verify that ¢y, > Lg((m n)™h. By Corol-
lary 7.26, we have Lg((m n)™h =p max (L[;(m‘l),Lﬁ(u‘l) ). Since t,u>1, we also have ¢y, =
max (¢, ¢y), whence Lg((m n)™h <g @ The case when tm and un both satisfy (II) is
similar.

Case 2: t m satisfies (I) and un satisfies (III) or (IV). We have tu>1, so if mn>1, then
(tu) (mn) satisfies (IV). Suppose that mn<1. If n=1, then Lﬁ((mn)‘l) = Lﬁ(m‘l) and if
n>1, then (mn)'<m™, so Lg((m < ng(m_l) as Lg is strictly increasing. Since tm
satisfies rule (I) and u >>1, we have

Pw=max (¢, @u) = @¢> Lg(m™) > Lg((mn) ™),

so (tu)(mn) satisfies (I).

Case 3: t m satisfies (II) and un satisfies (III) or IV). We havemn>m>1,soif tu}>1,
then (tu)(mn) satisfies (IV). Suppose that tu<1. Ifu>>1, then 1<u<t™, 50 9, < p-1= s
and ¢, <max (¢, ¢y) = ¢y Since tm satisfies rule (II), we have ¢ <g Lg(m), so

PSS @i<p Lp(m) < Lg(mn).
Hence (tu) (mn) satisfies (II).

Case 4: One of the monomials t m and u n satisfies (I) and the other one satisfies (II).
Without loss of generality, we may assume that t m satisfies (I) and un satisfies (II). Let
us first consider the case when tu<1. Then 1<t<u"!, 50 ¢ < @ 1 =@, and @, < @y
Since ¢¢> Lﬁ(m‘l) and ¢, < Lg(n), we deduce that ng(m_l) <g Lg(n), so Lg(mn) =g Lg(n)
by Corollary 7.29. Since un satisfies (II), we have ¢, <Lg(n), so

PSS Pu<Lg(n) =g Lg(mn)

and (ts)(mn) satisfies (II).

Let us now consider the case when tu > 1. If mn > 1, then (tu) (mn) satisfies (III).
Ifmn=1and tu>1, then (tu) (mn) satisfies IV). f mn=tu=1, then mn= (tw)! so
tm=(un)"}, contradicting that tm,une 9. It remains to consider the case that mn< 1.
Then m™'>n>1, so L/g(m_l) > Lg(n) as Lg is strictly increasing. Since ¢ > L[;(m‘l) and
@u<Lg(n), we deduce that ¢ > ¢,, S0 ¢y, = @¢. Since n~1<1, we have (mn)"'<m™, so
Lﬁ((mn)_l) <L[;(m‘1). This gives

Pu= 1> Lem™) > La((mn) ™),
so (tu) (mn) satisfies (I). O
Remark 8.8. Givenme M~ and t & £<9[eg]>, we have
m<t<=>m‘lt>1<=>L[;(m) < @y
Since m #t, we also have m >t < Lg(m) > ¢(. More generally, for se T>>, we have
s<t<=>L5(s)<got, s>teLg(s) > ¢y

This is because Lg(s) =g Lg(05) by Corollary 7.28 with o= =0.
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Extending the real power operation. Forr€ R and tm &My, define (tm)":=t"m” where m”

is as defined in 91, and
t'=[ | tylef1€ Lslef].
9eT

It is easy to check that this defines a real power operation on Mit. Note that ¢ = ¢ for
each non-zero r € R.

Now that we have defined an ordering and a real power operation on M, we let
Tt:=R[[M7]]. Then Tt is a field of well-based series extending T. When T=T,(T), we
write T(V) :=T.

8.3 Extending the hyperlogarithmic structure

In this subsection, we extend the hyperlogarithms L7 from T to T, while verifying that
they satisfy the axioms for hyperserial skeletons. We separate various cases as a function
of 77, including the case of the ordinary logarithm when 7 =0.

In each case, we start with the definition of the domain dom L_» of the extended
hyperlogarithm L,» on Tt and then define L,» on the elements of dom L,,» which do
not already lie in 9,.. We next check that (T, (L,),<,) satisfies the domain definition
axioms DD, as well as the other axioms for hyperserial skeletons.

Extending the logarithm when p=1. Suppose that y=1,so f=wand 0 =1. For {H€ £

and ¢ €T, we define
1

9- .
1 178 1y := rew 1f(p—1ET
og(lole]) {rEw(GO—U otherwise.

We extend log to £alel] by setting

logt:= Z log(6y[el])
p€eT
for t= H(peT f(r)"’[ef,] e £.1lel]. Note that log(f(r)(”[ef,]) #0 if and only if ¢ € hsupp t. We
claim that log t is well-defined. Let ¢1>--->¢,€T and Ay,...,A, C N be as in Remark
8.6,50 t=[Ti_; [1,en, " "[ef™] and

log t= i Z logwgtﬂi*m[ez’]i—m]) — i Z r(pf—m e((f},’—m—l'

i=1 meA; i=1 meA;

Each sum )’ 1 7pm eﬁj_m_l exists in T, since the support (eff,"_m_l)me 4, is a strictly

decreasing sequence in £alel]. Thus, log t is well-defined. If t #1, then we note that

Toir Pt T teff_l if gﬂt— 1eT
log t ~log(fy"le ) ~ { thEw(qot— 1) otherwise.
Finally, we extend log to all of it by setting log(tm) :=1log t + log m. We let L; be the
restriction of log to the class M7, so (T, L) satisfies DDy.
Using the definition of real powers, it is straightforward to check that (T, L) satis-
ties FEj. Let p€T. If 9 —1 €T, then eff,_l efalel]”. If ¢p—-1¢T, then E  (p—-1)€M,C
9~ by Corollary 7.21. In either case, log(%[ef,]) >1 for all € R. Hence,

supp L1(tm) Csupp log t Usupp logm>1
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for tme M7 and Ry is satisfied. The axiom Py follows from FE, so it remains to be shown
that (Tt, L) satisfies Ag and M,.

Lemma 8.9. (Tt, L) satisfies A,.

Proof. Given tm €97, we must show that L{(tm) < tm. We proceed by case distinction:
1. If t=1, then Li(tm) =Li(m) <m=tm since (T,L) satisfies A,.
2. If m=1,thent>1and

o=l ifg-leT
! E,(pi—1) otherwise.

If p—1€T, thenor, € £<1[e£] and Popy =Pt~ 1. Thus 97, < t since ¢ —1 < .
If p—1&T, then L,,(d,¢t)) = @t —1 < ¢y, so Remark 8.8 again yields 97, <t. In
either case, Li(tm) =L (t) <t=tm.

3. Suppose t >1, m<1, and ¢¢> Lw(m_l). We have Li(tm) =L(t) —Ll(m_l), so it is
enough to show that L;(t) < tm and Li(m™) < tm. We have

Lom™2) =L 2Ly(m™)) =, Lo(m™)

by Lemma 7.25, so ¢ > Lo(m™2), whence tm?>1and tm>m™'>L;(m™). Since
@ar=@¢>Lo(m™), we also have t1/?2m > 1, so

tm>tY2>Li(tY%) < Lqi(b).

4. Suppose t<1, m>1, and ¢ <L, (m). This time, we need to show that Lyt H<tm
and Li(m) < tm. Using that 2= ¢ and that L,(m!/?) =, L,(m), we have t*m,
tml/2> 1, so

tm>t1>Li¢t™D, tm>m2>Li(m"?) =<Li(m).

5. If t>1and m>1, then Li(tm) =Lq(t) + L1(m). So the result follows from the fact
that Li(t) <t<tmand Li(m)<m<tm. a

Lemma 8.10. (T, L) satisfies M.

Proof. Given tm €97, we need to show that L;(tm) >0. If t=1, thenm >1so L (tm) =
Li(m) >0 since (T,Ly) satisties My. If m=1, then t>1, so r,, >0. Since

" el ! ifp—1€T

Li(t) ~
1(®) 7o Ew(@i—1) otherwise,

we have Li(tm)=L(t) >0. If t, m>1, then L1(tm) =L1(t) + L1(m) >0.
Consider now the case that t <1, m>1,and ¢¢<L,(m). Since L1(tm) =L;(m) —Li(t7h,
we need to show that L1(t™") < L;(m). For each r€ R>, we have

L(m) =4 LY (rLy(m)) = Lo (rLi(m)) +1
by Lemma 7.25. As ¢ <., L,,(m), this gives -1 <L, (rL1(m)). If p;—1 €T, then we have
Lyt =ef ™ < rLy(m) =< Ly(m)
by Remark 8.8. If 9~ 1T, so E,(¢:—1) is defined in T, then for each r€ R, we have
Eu (p¢—1)<rLi(m)
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since E,, is strictly increasing. Asr€ R~ is arbitrary, this gives Ly (t~ 1y = Eu(@¢—1) <Lqi(m).
Finally, suppose t>1, m <1, and ¢;>L,(m™"). The same argument as above gives
@i—1>L,(rLy(m™Y)) forreR>, s0 Li(t) >Li(m™) and L(tm) =Li(t)-Ly(m™ 1) >0. O

Extending the logarithm when p>1. For [=]] _, E,y € Lpand ¢ €T, we define

log(i[ef1) =Y L, t,11[ef].
<0
This sum is well-defined, as €g+1[e;§’] < &Hl[eg] fory<o<#. Forte £<9[eg], we set
log t:= Z log(t, Z Z (tp)y by eﬁ
@Ehsuppt @E€hsuppt y<6
This sum is also well-defined, as hsupp t is well-based and €7+1[eﬁ] < €g+1[eﬁ] for all
7,0<6,and ¢, €T with ¢ <. If t#1, then note that log t ~ (t;,), £ t+1[eﬁ] SO
Dlogt—&yﬁl[eﬁ ] Dlog’tm[eﬁ ]
and log t >0 whenever t > 1. Finally, we extend log to all of Mt by setting
log(tm):=log t+logm.

for tme M. As before, we let L1 be the restriction of log to M7, so (T, L1) satisfies DDy.

The axiom FEj (and thus Py) follow easily from the definition of L and the axiom R,
holds since €7+1[eﬁ] >1 for each . Let us prove that A, holds for t € £<9[eg]> Given
t>1, we need to show that td1/ ;) > 1. Since Po,, = P it suffices to show that (’LDLl(U)(pt
fq)f(DLm))qu >1. Since (DLl(t))(Pt 0L1(t¢ ), this further reduces to showing that t,, > L1(t,,).
But this follows from the fact that A holds for L.g. The proof that Ag holds for a general
element t m € M7 is identical to cases 3-5 of Lemma 8.9. Let us now show that (T, L;)
also satisfies M.

Lemma 8.11. (Tt, L) satisfies M.

Proof. We have L1(t) >0 for t & £<9[eg]> and Li(m) >0 for me M. It follows
that Li(tm) >0 for tm € M7 so long as t,m > 1. Suppose that t >1, m<1, and ¢;>
Lﬁ(m‘l). Then Li(tm) = Lq(t) — Li(m™), so it is enough to show that Li(t) > Li(m™).
As shown in the argument that A, holds, we have ¢;, = ¢« By Lemma 7.27, we also
have L[;(m‘l) =p Lﬁ(L1(m‘1)). Thus, Pop > L[;(L1(m‘l)), so L1(t) =0p, >Li(m™); see
Remark 8.8. The case that t <1, m>1, and ¢ <Lg(m) is similar. O

Extending L,» when 0<#n < p.. Given 0<# <., we set
dom L:=9,1U {fy[eg] :p€T and W <L y<6}.
Given 7y with w" <y <6, we decompose y =7y, + w"n, and define
va(&,[eg]) = szw'Hw”[eg] —n.

Note thatn=0and L,( €7[eg’] )=t wv[e/f ] whenever 7 is a limit ordinal. More generally,
we have

Lw‘(fv[eg]) = €7+w’[eg]

whenever (<7, (including the case when 1 =0).
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Lemma 8.12. (T, (L) y<u,) satisfies DD, for each 1< p..

Proof. We prove this by induction on 7 < j,, beginning with 7=1. Let tm € M{, so

Li(tm)=logm+ Z Z (t¢)7€7+1[eg].
@€hsuppt y<0
If Li(tm) €M7, then either t=1orm=1. If t=1, thenme (,ern dom L1" if and only if
meM,,. If m=1, then L,(t) €M7 if and only if t="¢ [eﬁ] edomL,,. It remains to note
that L,,(¢,[e ﬁ]) €7+n[eﬁ] €My for all n.

Now assume that 77 >1 and that DD, holds for all 1 <#. Since (T, (L,7),<,,) satisfies
DD, for each 17 <, we may focus on elements of the form €7[eg’] where y<f#and p€T.
For the remainder of the proof, we fix such an element. If 7 is a successor, then we need
to show that ¢ [eﬁ] = ﬂneN dom L.} if and only if 7y = w". One direction is clear: if
v=>w' then Ly, (¢, [eﬁ D=4y wrn [eﬁ ] €dom L, for each n. For the other direction, if
l [eﬁ ]edom L, then y = w'*, so write y =y + w" m and note that me(E [eﬁ 1=
by, e +wv>«[e/3 ]—mis a monomial if and only if m=0. If # is a limit, then y > w" forall i<y
if and only if 7 > w™ = w', so we have ¢ [eﬁ] €dom L, if and only if ¢ [eﬁ] € dom L,
forall 1 <7. a

Lemma 8.13. (T, (L) y<u,) satisfies Ay for each 1< p..

Proof. Let p €T and 7,1, 7 €On with 0< 1<y <y, and w’ <y <. Since (T, (LeMar<p,)
satisfies A, for each A < p,, it suffices to show that va(&,[eg ]) < Lwt(€7[eg]). Decom-
posing v =¥+ w’ n, we have ys 1+ w'’>7v + ', so

Lw’7<€7[e/;p]) €7>>w:7+w’7[e/3] n<ty q+w’7[eg)] < €7+w1[e§’] = Lw’(ev[e/;p])- U

Let0<y <y, let w™ <y<6,and let p €T. We note that va(&,[eg]) has no infinites-
imal terms in its support, so R, is satisfied since it holds in (T, (L") y<y,)- To see that (TT,
(L) y<p,) satisfies FE;, suppose that 7 is a successor and write y =1+ @’ n. Then

Lw”(Lw”*(g’y[eg] )) = Lw”(gfyzwq+w’7*(n+l)[e[(3p]) = e’yzw:ﬁw”[eg] -(n+1)= Lw”(ﬂy[e[gp]) -1

Lemma 8.14. (T, (L") y<y,) satisfies M, for each 17 < p.. with 1> 0.
Proof. Let 7 <y, with >0, let a,b € (Mt),7 with a<b, and let w'n < w’. We want to
show that
Leg(8) + Legin (@) ™ < Ly1(b) = L (6) ™
If a, b €M1, then this holds because (T, (L") ,<u,) satisties M. Consider the following
cases:
1. Ifa= fy[eg] and b= fg[e/f], then write ¥y =ys1+w mand 0 =0s 1+ w’ k. We
have
L@ +Lom(@™ = € wrlef]-m+ 6] lef]
L(0) ~Lom(®) ™ = Ly, valef]—k= L omlef].
Since a < b, we have ¢ <. If ¢ <9, then £, ,7+wv[e/3] <Y, ,7+wv[e/3] If p=1,

then > o, so either s, > 0.1 OF Y1 = szv and m>k. In Tboth cases, we have
Le(@) + Lom(@) ™ <Leyt(b) = Legin(b) ™
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2. Ifa="¢ [eﬁ] and be M, then we must have ¢ <Lg(b) by Remark 8.8. Writing
Y =Yswi+w"m, we have Li(a) = ,7+wv[eﬁ] M, SO VL y(a) = €7>>w'7+w”[e/3] By
Corollary 7.28, we have L[;(va(b)) [; Lﬁ(b) > @, so

Lo(0) > b, yrw[ef]=Lon(a),

again by Remark 8.8. In particular, L (a) + Lym(a) i< L,n(b)— Lo (6)7L.

3. faeM,nand b= Ey[eg’], then ¢ >Lg(a). Arguing as in the previous case, we have
Lo(0) =, raw[ef]>Lan(a). O

Lemma 8.15. (T, (L) y<p,) satisfies Py, for each 0 <n < p..

Proof. Let a€ (Mr),» and let (7).« be a sequence of real numbers. Consider the sum
si= Z,qu ryLy41(a). We need to show that s €log Mry. If a1, then s €log M. Sup-
pose a=1{, [eﬁ] with w™" < o< 6. Then L,(a) = Uﬂ[eﬁ] for all y<w', so

5= Z r’YL’Y+1(€U[eﬁ]): Z r7€U+’7+1[eﬁ]:log([[eﬁ])

y<w" y<w"

where [:= H,qu 55176 Lo O

Extending Ly if p>1 is a successor. Assume that y>1 is a successor and let ¢ := w/**.
We take

dom Lg:=9MgU {By[eg]:(pET and { L y<6}.

Note that { <y <0 implies oy ={n for some n € N. Moreover, if i, is a limit, then n=0.
In other words,

mgu{fgn[e/f] :peTand neN}  if y, is a successor.
domLy =
MoU {eg] 19 eT} if p, is a limit.

We define
eg "n ifp-1€T

Lo(¢
o( é‘n[eﬁ]) [Eﬁ(qo 1)-n  otherwise.

The proofs of Lemmas 8.12 and 8.15 can be amended to show that (T, (L.7)y<y,) satis-
ties DD,,, and P,,,; just replace 7 with y.. Since (T, (L") ,<,,) satisfies R;,, FE,,, and A,
it suffices to check these axioms for elements of the form Egn[eﬁ ], where g €T and ¢n < 0.
If p—1€T, then eg) €M7 and if p—1& T, then ¢ —1is B-truncated by Lemma 7.13 (recall
that y is a successor), whence Eg(¢ —1) € Mg CIM~ by Corollary 7.21. In either case, we
have supp Lg(fgn[eﬁ 1) >#1,s0 (T, (Lo y<p,) satisfies Ry,. As for FE,,, suppose that i, is
a successor. We have

Lo(Le(tnlef])) =Lo(feornlef]) =ef = (n+1) =Lo({za[ef]) -1
if p—1€T and we have

Lo(Le(Len[ef])) = Lo(€znan[ef]) =Ep(9=1) = (n+1) = Lo({zulef]) 1

otherwise.

Lemma 8.16. (T, (L) y<y) satisfies A,
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Proof. Let p €T, {n<6,and i1 <p,. If p—1€T, then we have
Lf)(eé‘n[eg)]) :eg—l_n < €§n+w’[eg] :Lw’(ecfn[eg])-

If p—1¢T, then Lg(fgn[eg]) =Eg(¢ —1) —n. Since Lg(Eg(p—1)) =¢—1< ¢, we have
Lg((’gn[eg]) =Eg(p-1)< €§n+wt[eg] by Remark 8.8. O
Lemma 8.17. (T, (L) y<y) satisfies M.
Proof. Let a,b € (M1)g with a< b and let w'n < 6. We need to show that
Lo(@) + Leyn(a) " <Lg(b) = Lo (b) .

We proceed by case distinction.

1. If a,b € My, then this holds because (T, (L) ;<) satisfies My,

2. Suppose a= sz[eg] and b= Qrk[elﬁp] for some {m, k< 6 and some ¢, €T. Then
eg_l—m + €§m+w‘n[eg]_1 ifp-1€T

Lo(a) + Lom(a)™ = o1
Eg(p—1)-m+ €§m+wtn[eﬁ ] otherwise,

Lg(b) =Ly (6) 7!

eg_l—k—€§k+wtn[elﬁ'b]_l ifpy-1€T
Eg(p—1)—k— €§k+wtn[eg]‘l otherwise.
If p—1,¢—-1€T, then either ¢ <9 or ¢ =1 and m >k. In either case, we have
Lo(a) + Lem(a) ' <Lo(b) =Ly (b) ™. If p~1€Tand p—1£ T, then ¢ < ¢ so
Lo(a) + Lom(a) " =ef ™ < Eg(1p~1) = Lo(b) — Loyn(b) !

by Remark 8.8. A similar argument handles the case that p—1¢ T and y-1€T.
Finally, if p—1¢ T and -1 ¢ T, then again, either ¢ <4 or ¢ =9 and m>k. In the
first case, we have Eg(¢—1) <Eg(y—1),s0 Eg(¢—1) <Eg(y—1) since both Eg(¢—-1)
and Eg(y—1) are monomials by Lemma 7.13 and Corollary 7.21. In the second
case, we have Lg(a) + Ly (a) ™ < Lg(b) — Loy (6)™ since Lg(b) —Lg(a) =m—k=1
and L (a)™L, L (0) 1< 1.

3. Suppose a= (’gm[eg] for some {m < 0 and some ¢ €T and b €My. Then ¢ <Lg(b)
since a < b. For each r € R”, we have Lg(b) =¢ L[f(rLg(b)) =Lg(rLg(b)) +1 by
Lemma 7.25, 50 ¢ =1 <Lg(rLg(b)). If p—1€T, then Lg(a) Xeg_l <rLg(b) =<Lg(b)
by Remark 8.8. Hence,

Lo(@) + Lom(a) ™ <ef " <Lg(b) = Ly(b) — Lm(b) ™"

If p—1&T, then Eg(¢—1) <rLg(b) since Eg is strictly increasing. Since r & R~ is
arbitrary, this gives Eg(¢ —1) <Lg(b), so
Lo(a) + Lem(a) ™ =< Eg(¢p—1) < Lg(b) = Lg(b) = Lyin(b) .
4. Suppose aeMyand b= €§m[eg] for some {m < 6 and some ¢ €T. Then ¢ >Lg(a),

so similar arguments as above give ¢ —1> Lg(rLg(a)) for each re R~. Again, we
conclude that Lg(a) + Ly (a) < Lg(b) =Ly, (b) 7L |

Extending Lg. We define

domL[; :
ng(eg) :

Dﬁﬁu{eg:q)eT}
.
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Lemma 8.18. (T, (L) y<u+1) satisfies DD .
Proof. If =1, let tme Mg, with t = Hg)eT &'[e’]. We have

Littm)=Lim)+ Y Li(¢’lefD=Lim)+ Y rpel ™+ Y r,Eu(p-1).
p€eT p-1eT ¢-1¢T

If Li(tm) € 931T>, then eithert=1orm=1. If t=1, thenme ﬂneN dom L{" if and only if
meM,. If m=1, then Li(t) €My if and only if t= ef, €dom L. By Remark 8.5, we have

el ™ ifp-neT
E,(p—n)  otherwise

Lu(el) = {

for all n, where Eg(¢ —n) €9, by Lemma 7.13 and Corollary 7.21.
If 1 >1 is a successor, then let p €T and {m < 0. We need to show that Egm[eg] €

(Ndom Ly" if and only if m=0. This holds since
p-1 .
ez —m ifp-1€T
Lo(tenlef]) =1 7 -
Eg(p—1)-m  otherwise

and since Eg(¢ —1) €M whenever ¢ —1&T, by Corollary 7.21.
Finally, if y is a non-zero limit, then we use that

ﬂ {&,[eg]:goeT and w”*§7<9}:{e/f:qoeT}. O
n<m

To see that R, is satisfied, let p € T and let w”n < B. By Remark 8.5, we have

Comlel] i y<p.

van(eg)‘lzz (eg_n)‘1 ify=p,and p—neT
Eg(p-n)™ if y=p.and p-ngT
Let m € (supp ¢)~. Since ¢ is B-truncated, we have ¢ >Lg(m™). This gives (’wvn[eg]_l <m
for y<wy. If =p,, then p—nis also B-truncated by Lemma 7.13, so ¢ —n > Lﬁ(m_l) since
(supp @)= = (supp (¢ —n))=. This gives (eg_n) >mif gp-n€T. If p—n@&T, then Eg(p—
n) >m™! since Eg is strictly increasing. Since Eg(¢ —n) is a monomial by Corollary 7.21,
this gives Eg(@—n) > m~L. In all three cases, we have Lwnn(eg )_1 <m, so

supp Ly(ef) =supp ¢ >Lam(ef) ™,
as desired.
If 1 is a successor, then either Lg(eg’) = eg’_l or Lg(e/f) =Eg(¢—1). Inboth cases,

Le(Lo(ef)) =p—1=Lg(ef) -1,

so FE,, is satisfied. Asfor A, let :<p. Since {y>{g, we have ¢ >Lg(¢), so Remark 8.8 with
t= €wt[eg] and s = ¢ gives

Lwt(eg) = Bw:[eg] > :Lﬁ(eg).

Lemma 8.19. (T, (L) y<pu+1) satisfies M.
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Proof. Let a<b&dom Lg and let w'n <. We want to show that
Lo (@)™ + Lem(0) ™ <Lg(b) —Lg(a).

Note that Lg(a),Lg(b) € T 5. We claim that Lg(a) < Lﬁ(b). Ifa,b E I, then this follows

from the fact that (T, (va)q<y+1) satisfies M,. If a= 6/3 and b= eﬁ then we have Lg(a) =
p<p=Lg(b). If a eﬁ and b €M, then Lﬁ(a) @ <Lg(b) by Remark 8.8 and likewise, if
a€Mgand b= eﬂ, then Lg(a) <¢p=Lg(b).

Now suppose towards contradiction that L, (b)~ T4 Lm(a) > Lg(b)—Lp(a). We will
show that Lg(b) € Lg[Lg(a)]. As Lg(a) is the unique B-truncated element in Lg[Lg(a)]
and Lg(b) is B-truncated, this is a contradiction.

Since Lein(a) ™ > Lem(b) ™ by M, we have 2 Ly (a) ™ > Lg(b) —Lg(a), so

%Lw:n(a) <|Lg(b) —Lg(a)| ™"
By Ao, we have Li(Lon(a)) < Lym(a) =3 Lom(a), 50

Lom+1(a) <|Lg(b) —Lg(a)[ ™",
If Lyit1(a) €T, then Lemma 7.5 gives

Lp(a) =LE " (Loms1(a)) <LF" (Lg(6) — La(a)[ ™),
so Lg(b) € Lg[Lg(a)]. Suppose Lyum41(a) & T~ and let ¢ € T with a:eg. If 1< ., then
Lamn11(a) = bymi1[ef ] <ILg(b) = Lg(a)| ™,
SO @ <L5(|L[;(b) —L[;(a)|‘l) by Remark 8.8. As ¢ =Lg(a), this too gives Lﬁ(b) (S £5[L5(a)].
Finally, if 1 = p. < p, then
Lomi1(a) = e "] <ILg(b) —Lg(a)| ™,

50 ¢ —n<Lg(|Lg(b) —L[;(a)l‘l) by Remark 8.8. As lg+n= €T6n’ we have

¢ <Lg(Lp(b) —Lg(a)[™) +n=LI"(ILg(b) ~Lg(a)| ™),
so Lg(b) € Ls[Lg(a)] once again. O
Lemma 8.20. (T, (L) y<pu+1) satisfies P .

Proof. Let a€dom Lg and let (7)< be a sequence of real numbers. Consider the sum
§:= Z'y<[3 2 7+1(a) If a €M, then s €log M since (T, (L,1)y<p+1) satisfies Py Assume
therefore that a = eﬁ for some ¢ €T. If p is a limit, then =6 and

5= Z ryLoyvi(ef) = Z 1y byelef] =10g(l[eé”])

< <0

where [:=[]._, {7 € £Z,. If u is a successor, then we may write

<6 "7

S= Z Z Tf)n+7L9n+7+1(€g}) = Z Z rgn+7L7+1(Lgn(eg)),

neN y<#0 neN y<0
If p—neT for all n, then

Z Z 7’9n+'y ’y+1 LGn eﬁ Z Z r9n+’y r+1 eﬁ )_log(n [ g n])

neN y<0 neN y<6 neN
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where [, := ]_[7 <6 &;9”” € 229. If p—n&T for some n, then let ng >0 be minimal with

p—no&T. We have s =s1 + 52, where

51= ) ) tonsgLysr(ef ), 2= ) Y Tonry (Lon-ny++1(Eg(@—n0))).

n<ng y<6 nxzng y<6
Note that
s1=log n H &rf””[eg_”] elog(Lglef]),

n<ng y<6

so it remains to show that s, € log M. Since Eg(¢ —no) € My by Lemma 7.13 and Corol-
lary 7.21, this follows from the fact that (T, (L") <;+1) satisfies P,. |

Extending L u+1. Suppose v>u+1. We define

domL y+1 := SJTwyﬂu{e;f:qoeTﬂmtwml}
Lw;¢+1(eg) = Lwy+1(q))+1.

For ¢ €T, we have eg) €,en dom Lg" if and only if ¢ €M 1 since ¢ = Lﬁ(eg). This
proves that (T, (L) y<u+2) satisfies DD,,1. Let p€ TNM 1. We have

Lwa(Lﬁ(e/;P)) = Lw;m(qo) = Lw!‘“(eg) -1,

so FE, ;1 is satisfied. As for A1, it suffices to show that L+ (ez)) <Lg (eg) since ng(eg)) <
sz(eg) foralli<u by A,. Since £ u+1+1<{y, we have

wa—l(eg) :Lw;¢+1((p) +1= (fw;¢+1+1) ogo<(p:L5(eg).

Now for Ry4 1, let w'n< wh*1. Since L‘B(n+1)(eg) < Lw:n(eg) by A, it suffices to show that
supp Lw;¢+1(eg) > Lﬁ<n+1)(eg)‘l. Since
supp Lus1(ef) =supp L1 (@) U1}, Lpauin(ef) ™ =Lpa(p) ™,

it is enough to show that supp L .+1(¢) > L[;n(qo)‘l. This holds because (T, (L) y<p+2)
satisfies R, 11 and ¢ €0 y+1.

Lemma 8.21. (T, (L") y<pu+2) satisfies My, 1.

Proof. Leta,bedomL +1 witha<bandletw'n< w"*1. We want to show that L, p+1(a) +
Lom(a)™ 1< L, x+1(b) —Lem(b)7L. Since Lgn+1y(a) <Lwi(a) and likewise for b, it is enough
to show that

L +1(@) + L1y (@) 7 < Lopps1(0) = L1y (B) 7
We proceed by case distinction:
1. If a,b € Mg, then the result follows from M, ;1 for T.

2. Ifa= eg and b= e;f, then

Lw+1(a) +Lggneny (@)™ = Lusi(@) + 1+ Lgn(@) ™"
Low1(6) —=Lg(nr1y(6)™ = Lwr(yp) +1—Lga(p) ™
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Since ¢, p €M u+1and (T, (L,1) y<pu+2) satisties M, 1, we have

Lyis1(9) + Lgn(@) ™ <Lt () = Lga (1) 7.

3. Ifa= e;f and b&M 41, then ¢ <Lg(b). Since ¢, Lg(b) €M u+1and (T, (L) y<p+2)
satisfies M, 1, we have

L w+1(@) + Lgn(9) ™t <L ur1(Lg(6)) — Lgn(Lg(b)) ™ =L jus1(b) =1+ L1y (0) ™
Thus,
L w+1(a) + Lgur1y (@)=L us1(@) + 1+ Lgn(9) ™ <L us1(b) + Lgnr1y ()71

4. IfaeMgand b= egj , then the argument is similar to the previous case. O
Lemma 8.22. (T, (L) y<p+2) satisfies Py 1.

Proof. Let ae (M), x+1 and let (r,) <! be a sequence of real numbers. We need to
show that the sum s= Z’y<w"“ ryLyt1(a) isinlog Mr. If a€ M, then s€log M. If a= eg

for some ¢ €eTNM 41, then
5= Z Z Vﬁn+'yL,Bn+'y+1(e[q3)) = Z 7’7L7+1(eg)) + Z Z 7’,371+7L7+1(Lﬁn(e[(3p))‘
neN y<p r<B neN> y<pg
We have Zv<ﬁ r7L7+1(eg’) €log My, since (T, (Loy)y<pu+1) satisties P,. We also have

Z Z rﬁn+va+1(Lﬁn(eg>) = Z Z gn+yLy+1(Lgm-1)(¢))

neN> y<f neN> y<p

- Z Z Ten+yLpm-1)+7+1(9) Elog M,
neN> y<f

since 9 €M _y+1and (T, (L7) y<pu+2) satisfies P, 1. We conclude by noting that log Mt is
closed under addition. O

Remark 8.23. In the case that v =y + 1, the argument that DD, is satisfied gives
(M) v = [| domL§"=MuwU{ef: 9 ETNMr)
neN
and the proof of Lemma 8.22 also tells us that (T, (L") ;<,) satisfies P,.
Extending L,» when p+1<n<v. If v>pu+1, then we will not extend the hyperloga-
rithms L,» with 7> u+1. So for n <v with 7> pu +1, we simply set
dom L 7:=9,n.

Lemma 8.24. (T, (L) y<y) satisfies DDy, for all n<wv.

Proof. It suffices [JOrs: is this really clear at this point?] to show that (Tt, (L,7)y<y)
satisfies DD,, 2. Suppose towards contradiction that there is some ¢ € TNM 41 with
eg) € ﬂneN dom LZZ,(H. Take n >0 with L_u+1,(¢) =L u1,(d 0+2(@)). Since wal(eg) =
L w+1(@)+1=L,_ x+1(¢), Lemma 4.8 gives

Lot (€F) = Logpst (1) (L1 (@) +1) = Lypis ) (L1 (@) =< Lt (0 pis2(90)).
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Since L u+1,, (eg) and L+, (0, x+2(p)) are both monomials, they must be equal. The axiom
M, ;1 gives eg =0,u+2(¢@) €T, a contradiction. ]

For all y <v with 7> p +1, the axioms FE,, A;,, M;, R, and P, automatically hold in Tt
since they hold in T, as does the axiom P, if v>y +1 is an ordinal.

8.4 The extended hyperserial skeleton
We have completed the proof of the following:

Proposition 8.25. (Tt, (L,,")y<y) is a hyperserial skeleton of force v.
Let us finally examine the confluence and universality of Tr.

Proposition 8.26. Assume that M x+1 CTU L[;(T>'>). Then Tt is v-confluent. In particular,
Ty is v-confluent.

Proof. Clearly, Tt is O-confluent. Consider s € TT> 7 and write 01(s) =0, =tme MT. By
our definition of L1, we either have have 91(L1(0s)) =01(L1(m)) or 91(L1(d,)) = €%+1[eg)‘].
If 91(L1(9)) =01(L1(m)), then d,,(s) =0, (m) and, more generally, d,,1(s) =0,,7(m) €M
for all 7€ On with 1<y <v, since E,[0,(m)]=E,[m] CE1[m] by Lemma 3.7. Assume
from now on that 91(L1(9s)) = (’%H[eg‘].

We set y:=7 and ¢:=¢. For 1<y <y, let us first show by induction that

Dwv(€7[eg]) = E’ng”*[eg] €M .
If =1, then y =71 and
1(L1(9) = by aalef] =Li(b[ef]) =1Lt [ef])),

so we indeed have d,,(s) =¥, [eg]. Let 1< <y and suppose that Dwo(%[eg]) = €72ww[eg]
for 1<o<n. If 1<y <y and 5 is a successor, then our induction hypothesis yields

Lo (@ur(G[ef])) =Lar by, lef]).

Writing 71+ = Y+ + w1, we have

Lw”*“vzww[eg]) = eyéwqu”*[eg] —h= eyéwqu”*[eg] = Lw”*(evzwm[eg] )
SO

1l [ef]) =0un(ur (G [ef1)) =4y, lef].

If 1 <y <y and =1, is a limit, then there is o <7 such that 7y 7 =Y+ For this o, we
have

Lw"(aw"(%[eg] )= Lw"(evgww[e/?] )= Lw"“?zwm[e/;p] ),

so Dwv(%[eg)]) = E,,»wm[eg)] €M, Finally, if =y and p is a successor, then ys = =
w"*n, where n=01if 1, is a limit. This gives
- ifp-1€T
Lo(@e(£,[e2])) = Lo(bumen[ef]) =1 F " ne
@bl =otalefD= TS

In both cases, we have Lg(ag(&y[eg] )) = Lg(e;f), SO Dﬁ(fy[eg] )= eg = 5729[eg], since ys»g=0.
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Let us now show that d,+1(¢,[ef]) exists. Let a:=0u1(¢), 50 a€TULg(T>”) by
our assumption that 90 »+1 CTULg(T>""). Take n with (Lgo05)*"(¢) = (Lgo05)°"(a). We
have Ls(05(£,[ef1)) =Lg(ef) = ¢, so0
(Lgo0p)° "1 (ef) ifaeT
(Lgo0pg)° ™V (4,[ef]) = (Lgodp)(a) =

B° 908 ( ’Y[ ,3]) B°Up (Lﬁogﬁ)"(”"‘l)(Eﬁ(q)) otherwise.

Since a is an infinite monomial, it is w/*-truncated, so Eg(a) €M u+1 50 long as it is
defined. Thus, Dw;¢+1(€7[eg]) is either equal to eg or Eg(a).
If Dwy+1(€7[eg’]) = Eg(a), then Dwv(%[eg’]) =0,1(Eg(a)) for n€On with p+1 <y <.
On the other hand, if ? w;z+1(€7[eg]> =eg, then
Lw;z+l<0wy+l<€7[eg)] )) = Lwarl(eE) = Lw;erl(a) +1= Lwarl(Cl).
Take neN with (L u+100 1) (a) =< (L 100 1) (D n+2(a)). Then

(Lw;Hrl oawy+1)°(”+1)(€7[eg)]) = (Lw;z+1 Obw;z+1)o(n+1)(a) = (Lw;erl 0Dwy+1)o(n+1)(bw;¢+2(a)),

so Dw;¢+2(€7[eg]) =0, x+2(a) and, more generally, Dwv(fy[e/f]) =0,7(a) when 7 € On and
p+2<y<v. a

Propositions 8.25 and 8.26 yield:

Corollary 8.27. If M 11 CTU Lﬁ(']I‘>'>), then (T, (L) y<v) is a confluent hyperserial skeleton

of force v.
Remark 8.28. Let 0 <# < p,. Then
(M) =M U{[ef]: 1€ (£<p)» and ¢ €T}
Giveny<w'’and [[eg] € (M1)wr \ M1, we have LW([[e/f] )=L,(1) [e;f]. Givente £<9[eg],
we have 0,,1(t) =0,1(tp,) [eg‘].
Let us now show that T satisfies a universal property. We start with a lemma.

Lemma 8.29. For any a,b € Mg with a<b and any y,0 <6, we have Ly (a) <L, (b).

Proof. Choose 17 <y, and n € N such that 7,0 <w’n. Then L,(a) <a and L,(b) <
L, (b) so it suffices to show that a < Lm,(b). Since L_;+1(a),L,+1(b) are monomials and
L+ (a) <L, s+1(b), we have

qu+1(a) <Lw:7+l(b) XLwiﬁl(b) —n:qu+1(Lw’7n(b)>.
The monotonicity of L s+ gives a<L,,(b). We conclude that a <L,,(b), since a and

L1,(b) are monomials. O

Proposition 8.30. Let U=R[[1]] be a confluent hyperserial skeleton of force v< On and let
®: T — U be an embedding of force v. Let TCT,(T) be a subclass (we no longer require that
T=(T)). If ®(T) CLg(U>""), then there is a unique embedding

Y. T<T> — U
of force v that extends ®.
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Proof. Since U is confluent, we have an external composition o: L, x U>” — U. We first
claim that ®((T)) CLg(U>""). If p is a limit, then T =(T) so there is nothing to show. If
y is a successor, then for ¢ €(T), there is po€ T with ¢ = py—n. We have

Lg(Lon(Eg(P(90)))) =Lg(Eg(P (o)) —n=D(¢o) —n=>(¢),

50 Eg(®(¢)) =Lon(Eg(D(90))) € U=, Having shown our claim, we may assume without
loss of generality that T=(T).

Given ¢ €T, the series ®(¢) is f-truncated, so Eg(P(¢)) is f-atomic, by Remark 7.21.
We set a,:= Eg(®P(¢)) €15. Note that for p €T and [= H7<ﬁ E;” € £.p, the series

loa, :exp( Z [7L7+1(a¢))

r<B

exists in 91 by P,,. Let us define a map ¥: £<9[eg] —MN. Lette £9[eg]. If y is a limit, then
hsupp t is finite and we define

Y(t):=]] tyoa, e
p€eT

If p is a successor, let 1> --- > ¢, €T and ty, be as in Remark 8.6. We define

n
Y(t):=]] 500,
i=1
Note that in both the limit and successor case, we have

log¥(t)=) log(tyoap) =Y > (t)yLys1(ay).
g€eT p€eT y<0
Given ¢ <9 €T and 7,0 <0, we have L,(a,) <L,(ay) by Lemma 8.29 and, if y <o, then
Ly (ap) <Ly(ap). Thus, log ¥(t) ~ (tp,) 4 Ly+1(ap) for t £1. In particular, ¥ is order pre-
serving, since

t>1=(ty),,>0=log¥(t)>0=¥(t) >1.

Next, we extend ¥ to all of Mt by setting ¥ (tm) =¥ (t) $(m) for tm & Mt. Note that ¥
extends ®. It is straightforward to check that ¥: 0t — I is an embedding of monomial
groups which respects real powers. We need to show that ¥ preserves the order. Let
tmeMy. If both t, m>1, then ¥(tm)="Y¥(t) d(m) >1. This leaves us two cases to con-
sider:

1. Suppose t >1, m<1, and ¢ > Lﬁ(m‘l). Set r:= (tp,)4, > 0. We claim that
Lﬁ(m‘l) =5 LIT;%H(Z r Li(m™)). If u =1, then 9 =0, so this follows from
Lemma 7.25. If u>1, then 1,9+ 1< 6, so this follows from Lemmas 7.25 and 7.27. In
either case, we have ¢ > L;7‘+1(2r‘1L1(m‘1)), s0 P (¢y) >L;7‘+1(2 r Ly (®m™h)).
From this, we see that

Lo+1(8g) = Lo 1(Eg(P (@) >2r ' Ly(P(m™h),
SO %rL%Jrl(a(m) >L1(®(m™)). Since L1 (¥ (t)) ~ Ly 41(ay,), this gives L1 (¥ (t)) >
L1(®(m™Y)). Thus
log(¥(tm)) =L1(¥(t)) L1 (P(m™1)) >0,
so Y(tm)>1.
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2. Suppose t<1, m>1, and ¢ <L[;(m). Set r:= (ty,)1, <0. As before, Lemmas 7.25
and 7.27 give ®(¢,) <L”‘“( ‘1L1(<I>(m))>, s0
=21 Ly 41(ap,) <L (P(m)).
Since Ll(‘F(t)‘l) =—log(¥(t))~ —rLy1(ag,), this gives Ll(‘F(t)_l) <L1(®P(m)), so
log(¥ (tm)) =Ly(P(m)) L1 (¥(£)™) >0
and ¥ (tm) >1.

By Proposition 2.3, the function ¥: Mt — N extends uniquely into a strongly linear
strictly increasing embedding Tt— U, which we still denote by Y.

We claim that ¥ is an embedding of force v. By Lemma 8.3, we need only show that ¥
commutes with logarithms and hyperlogarithms. We begin with logarithms. Let [€ £¢
and ¢ €T. If y=1, then [={) for some r € R and

log(Y (&lef1)) =rLi(ay) =rLi(Eo(®(9))) =r Eo(P(p-1)).
If p—1€T, then
rE (®(p-1)) =ras1=Y(og(flel]))
If p—1¢&T, then log(£j[e’]) € T and
rE,(@(¢—1)) =P (rEu(p—1)) = D(log(filel])) = ¥ (log(£lel]))
If >0, then

log(¥(I[ef1)) =) L Lys1(ap) = (Z Ly byea[ef ) ¥ (log(1[ef1))-

r<6 y<0
In all cases, we have, log(‘P([[eg] )= ‘P(log([[eg] )). For tme My, we have

log¥(tm) = log¥(t)+log ¥(m)= Z log(‘P(t¢,[eg]))+log d(m)
9eT

Z ‘I’(log(tq,[eg)] ) +Plogm)="ogt) +¥(logm)="Y(log(tm)).
p€eT

Now, let 0<n<pu+1andlet t= fy[eg)] €dom L7\ M. Note that ¥(t) =L, (a,), so we
need to show that ¥(L.1(t)) =L1(Lq(a,)). Write y =757+ w'mn. If n<py., then

Y (L) =Yl yrarlef]=n)=Lo_ yrar(8p) =n=Lyn(Ly(ay)).
If y=p.<p, then y=w" n. If p—1€T, then
W(Lo(t,[ef]))=W(ef ) —n=ay1-n=Lo(a,) —n=Lo(Ly(a,)).
If p—1¢T, then
Y(Lo(t,[ef])) =Y (Es(p—1))—n=D(Eg(p—1))—n=Lg(a,) —n=Lo(L,(a,)).

If 7=y, then y=0 and
Y (Lp(t)) =¥ (p) =P(p) =Lg(ay).



HYPEREXPONENTIAL EXTENSIONS 71

If y=p+1, then y=0and
W(L () =¥ (Lw1(@) +1) = (L uni(@) +1) =L w1 (D(9)) + 1= Luna(ay).

Since Y (L,n(m)) =D (L,7(m))=L,n(P(m)) =L, (¥ (m)) formeM,»and sincedom L 1=
M, for > p +1, this completes the proof of our claim that ¥ is an embedding of force v.

We finish with the uniqueness of ¥. Let A: Tt— U be another embedding of force v
that extends ®. To see that A=Y, we only need to show that A(t) =¥ (t) forall te £<9[eg].
For ¢ €T, we have

Lg(A(ef)) = A(Lg(Es(9))) = A(9) = D(9),
SO A(eg) =a,. For v <0, we deduce that
A(€7+1[e§’]) =A(L7+1(e§’)) :L7+1(A(e/§))) =L,11(ap) =‘F(€7+1[eg])-

Since A is strongly linear, this gives log A(t) = A(log t) = ¥ (log t) =log ¥ (t) for t
£<5[eg], so A(t) =¥ (t) by the injectivity of log. a

8.5 Fields with bijective hyperlogarithms
In this subsection, we prove Theorem 7.4. Recall that T is a confluent hyperserial skeleton
of force v.
Definition 8.31. Let u<v. For vy € On and n< p, we define M., 4 as follows:
[ ] m(olo) = m.
o My = Miyy.) ) if 1 is asuccessor.
o My =Usey My, if 1 is a non-zero limit.
o M0 :=Urey Mo if v>0.

We set T,y = R[[M (1], s0 T(o,0)=T and we have the force v inclusion T ey C T,y
whenever A <7y or A=y and o <. We set

M=) Moo,  Tiep= J Too
7€0n 7€0n

Note that T (<) = R[[9M(<y)]] by Lemma 2.1. Note also that M <p) =9 and T (<o) =
T. Theorem 7.4 is a consequence of the next two propositions:

Proposition 8.32. T, is a confluent hyperserial skeleton of force (v, ).

Proof. By Corollary 7.24, it suffices to show that
(T(<ﬂ)>>,w” - Lw”(T(><,;))

for n<p. Fix n<p and fix s€ (T<,)s . Fix also a limit ordinal v with s € T@/g). Then
sE T@% so either Ei(s) exists in T, or E,u(s) exists in (T(,,4)) o) = T(y,5+1)- In either

case, Eqi(s) €T/ 0y- )

Proposition 8.33. Let U be a confluent hyperserial skeleton of force (v, u) and let &: T — U be
a force v embedding. Then there is a unique force v embedding ¥: T <,y — U extending .
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Proof. We will show for each y € On and each # < p that there is a unique force v embed-
ding ¥(4,: Ty, — U extending ®. We have ¥ 0y = P, so suppose that we have defined
this unique embedding ¥\ ) when A <7, o <p and when A =7, o <. If 5 is a successor,
then T, = (T(;,4.)) (4.), S0 by Proposition 8.4 (if 1. = 0) or Proposition 8.30 (if 5. >0), the
embedding ¥,,,,) extends uniquely to an embedding

Since ¥, uniquely extends ¥,,,,) and since ¥, ,,) uniquely extends ®, we see that
¥,y uniquely extends ®. If 5 is a limit, then we set ¥, ==, y Y (7,00 Themap ¥,
is only defined on (J,, y L(y,0), which may not equal T¢,,;), but ¥(,,,) is defined on all of
M,y and so ¥(, ;) extends uniquely to a force v embedding T, ;) — U, which we also
denote by ¥(,,,). Aseach ¥, ;) uniquely extends ®, we see that ¥, ;) uniquely extends
® as well. Likewise, we define ¥, o) to be the unique force v embedding extending

Uiy Y- 0

Theorem 7.4 follows from Propositions 8.32 and 8.33.
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