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Abstract
The Beta coefficient theorized by the CAPM is estimated by the Market Line. By hypothesis, the Beta is stable over

time but empirical studies on it volatility don't confirm this fact. One of them is related to with agent heterogeneity

hypothesis. In this paper; we study this hypothesis by continuous wavelets decomposition of the market line

components. We use the wavelet Coherence to calculate a time-frequency Beta. We apply this methodology on three

French listed stocks (AXA-LVMH-ORANGE) with different OLS beta for the daily period from 2005 to 2015. We

show that the coherence and the time-frequency Betas improve our understanding of the equity characteristics and

nature according to their time and frequency dynamics. AXA and LVMH have globally an high coherence with the

market whereas ORANGE coherence is low (whatever frequencies). These results can affect the time-frequency betas

values. By analyzing the betas we see different evolutions and dynamics which can be considered by portfolio

managers to optimize their investment horizon. The continuous wavelets is a powerful tool for emphasize the time-

frequency instabilities of betas. The hypothesis of heterogeneity of agents have an impact on systematic risk

estimations and need to be considered in financial calculations.
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1 Introduction

The Capital Asset Pricing Model (or CAPM) developed by Treynor (1961, 1962) and
Sharpe (1964) establishes a relation between the risk premium of asset and the market
premium called the Securities Market Line.

ri,t = α + β.rm,t + ϵt (1)

With ri,t the risk premium of the asset i (deined as the diference between returns
and risk free rate) and rm,t the market premium; ϵt is an i.i.d(0, σϵ) process.

The Beta parameter is a measure of systematic risk. For portfolios managers, the Beta
value is useful to appreciate the asset sensitivity to market movements. It is estimated
by OLS whose one of the hypothesis is the stability of the coeicients over time. Black,
Scholes and Jensen (1972), Fama and McBeth (1973) Fabozzi and Francis (1978) Bos and
Newbold (1984) discuss this hypothesis highlighting the instability of Beta. Followings
these results, many methods are developed in order to estimate time-varying parameter
as the rolling forward regression (or recursive) and the GARCH processes (see Bollerslev
et al. 1988 , Groenwold and Fraser 1997 and Brooks et al. 1998).

Moreover, the CAPM implicitly assumes that agents have homogeneous behaviours.
So, two investors with diferent investment horizons make choice base on the same sys-
tematic risk measure. But they do not adjust the Beta to their appetence. This claim
is contestable because of the risk could be diferentiated according to the investment
frequency. On this basis, Gençay et al. (2005) and Mestre and Terraza (2017a) indi-
cate the existence of frequency systematic risk by using a wavelets methodology. The
wavelets has been developed by Haar in 1909 and used in Signal Processing by Morlet and
Grossmann (1984). Thereafter, Meyer (1986− 1987)1 , Mallat (1989− 2001− 2009) and
Daubechies (2002) study their properties and create diferent wavelets ilters. Thanks to
more computing power, Auth (2013) and Bekiros et al. (2016) use continuous wavelets
transforms (CWT) and the time-frequency coherence and phase to analyze the causality
and interactions between variables.

In this paper, we propose a formula (and a methodology) based on Continuous
Wavelets in order to estimate time-frequency betas at each time t and each frequency s.
We illustrate the applicability of our formula, in the CAPM framework, by estimating
the Beta of three stocks listed on the french market (CAC40 index) for the daily period
2005−2015: AXA, LVMH, ORANGE. We select these stocks according to their diferent
risk-proiles established with OLS Beta values (AXA with a Beta greater than 1, LVMH
with a Beta equal to 1 and ORANGE with a beta lesser than 1)2.

We indicate that it is possible to estimate a Time-Frequency varying Beta. An anal-
ysis of its time-frequency characteristics improves our understanding of systematic risk
dynamics and its changing. Consequently, equities can be distinguished by the time-
frequency dynamics of Betas ofering managers more risk-proiles and assets classiica-
tions.

In a irst part, we present a synthesis of the multivariate wavelets methodology, and
then we describe results for the selected stocks.

1Abel price in 2017
2OAT 10 years rate is assimilated as risk free rate



2 Multivariate Time-Frequency Analysis

We use CWT to provide the time-frequency characteristics of the market’s line as
the Coherence (correlation coeicient). The complex Morlet wavelet, φM(t), is used as
ilter because it represents a good balance between time and frequency localization of
events. During the decomposition process, the function φM(t) is shifted by τ and dilated
by s in order to extract information on several frequency scales at a particular time t.
All shifted-dilated versions of φM(t) constitute the wavelets family providing the iltering
properties.

The mathematical expression of the Morlet wavelet is written as follow:

φM(t) = π−1/4e(if0t)e(−t2/2). (2)

With f0 the non-dimensional frequency equal to 6 in order to satisfy the admissibility
condition.3

The wavelets coherence formula between two functions x(t) and y(t) (with same length
N) or Time-Varying Coherence, is similar as the Fourier Coherence (Cf. bibliographies
14, 19, 22, 23) . We deine a spectral covariance between the wavelets of x(t) and y(t)
called the cross-wavelets spectrum SWxy(s, τ). This spectrum is associated with the
(auto) power spectra SW 2

x and SW 2
y and we can establish the Wavelets Coherence WQτ,s:

WQτ,s =
|G(s−1.SWxy)|

2

G(s−1. |SWx|
2).G(s−1. |SWy|

2)
(4)

Because of the Complex Morlet wavelet, the coherence coeicients are complex. Con-
sequently, the coherence is equal to 1 in its real representation (whatever τ and s). We
need to smooth the outputs by a time-frequencey smoothing noted G. G is composed
by a Time-smoothing, Gtime for a given frequency scale, and by a Frequency-smoothing
Gscale for a given time t. The G operator is build as follow:

G(W ) = Gscale(Gtime(W )) (5)

Gscale and Gtime expressions is developed by Torrence et Webster (1998):

Gtime(WN) = WN .c1
−t2/2s2 (6)

Gscale(.) = WN .c2Π(0.6s) (7)

c1 and c2 are normalization constants, WN is the wavelets coeicients and Π represent
the rectangle function4.

3A more precise presentation of the continuous wavelets methodology in univariate case is available
in reference 19.

The admissibility condition guarantees the nullity of wavelet mean and the energy preservation during
the decomposition process.

Cϕ =

∫ +∞

−∞

∣∣∣ϕ̂(s)
∣∣∣
2

|s|
df < +∞ (3)

with ϕ̂(s) the Fourier transform of ϕ(s)
4The rectangle function is a function equal to a in the interval [−1/2, 1/2] and equal to 0 outside



The WQτ,s formula is equivalent to the determination coeicient. For each frequency
scale s and at each time t, we have a coeicient between 0 and 1 representing the squared
correlation between the two series (the explanatory power of x(t) on y(t) at time t). It
is theoretically possible to link this formula with the Beta.

√
(WQτ,s) =

|G(s−1.SWxy)|

G(s−1. |SWx|
2)1/2.G(s−1. |SWy|

2)1/2
(8)

√
(WQτ,s) =

|G(s−1.SWxy)|

G(s−1. |SWx|
2)1/2.G(s−1. |SWy|

2)1/2
∗
G(s−1. |SWx|

2)1/2

G(s−1. |SWx|
2)1/2

(9)

Showing the term
|G(s−1.SWxy)|
G(s−1.|SWx|

2)
we have:

√
(WQτ,s) =

|G(s−1.SWxy)|

G(s−1. |SWx|
2)

∗
G(s−1. |SWx|

2)1/2

G(s−1. |SWy|
2)1/2

(10)

√
(WQτ,s) ∗

G(s−1. |SWy|
2)1/2

G(s−1. |SWx|
2)1/2

=
|G(s−1.SWxy)|

G(s−1. |SWx|
2)

(11)

The right term of this equation is the absolute value of Time-Frequency Beta |βτ,s| :

|βτ,s| = (WQτ,s)
1/2 ∗

G(s−1. |SWy|
2)1/2

G(s−1. |SWx|
2)1/2

(12)

This equation represents the relationship between the Beta and the Coherence like
in the case of a simple regression model. The Coherence is weighted by the ratio of the
variables standard-deviations.

The formula (12) doesn’t provide the Beta sign because it is based on the squared root
of the coherence. In order to overcome this problem, we use the wavelets phase function
θτ,s. This function is the ratio of the imaginary ℑ and real ℜ part of the cross-spectrum:

θτ,s = arctan(ℑ(SWxy(τ, s))/ℜ(SWxy(τ, s))) (13)

The phase function values are between −π et π, so we establish a sign parameter ϑτ,s

deined as follow:

• If |θτ,s| ∈ (0 , π
2
) →ϑτ,s = 1 The two chronics are in phase and so positively correlated

.

• If |θτ,s| ∈ (π
2
,π) →ϑτ,s = −1 The two chronics are out of phase and so negatively

correlated.

By including the parameter ϑτ,s in equation 12 we have the deinitive formula of βτ,s :

βτ,s = ϑτ,s ∗ (WQτ,s)
1/2 ∗

G(s−1. |SWy|
2)1/2

G(s−1. |SWx|
2)1/2

(14)



3 Results and Discussions

The OLS estimates of Equity-Market relationship are considered as Benchmark by
investors. They assume the homogeneous Behavioral hypothesis of agents. In this section,
we illustrate the applicability of this formula discussing this hypothesis, and we analyze
the wavelet coherence and Time-Frequency Betas of the selected stocks.

3.1 OLS Estimations of Equity-Market Relationship

OLS Estimations of the three market’s line need to verify the stationary of the vari-
ables (see Appendixe 1). The intercepts estimators are not signiicant contrary to the
Beta estimators. The Beta value indicates the equity risk-proil : AXA is an ofensive
stock amplifying the market luctuations because its beta is greater than 1. LVMH has
a beta equal to 1 so it follows the market movements in the same proportions. Or-
ange is a defensive stock because it attenuates the market efects (beta lesser than 1).
The coeicients of determination indicate that Market Variance explain a relatively high
percentage of returns variance. However,residuals of these models are autocorelated, het-
erescadastic and non-normally distributed. From a statistical point of view, these results
are insuicient, the Beta is not BLUE because of it doesn’t respect the mimimal variance
property.

Moreover, the efects of crises (shocks) on Beta value are ignored. The Equity-Market
links (as causality) are supposed stable over time. It is possible to illustrate the high
volatility of beta across time by using rolling regression (see bibliography 18), but there
is no distinction between short or long-run sensitivities. This method supposes that the
short and long run shocks have similar efects, but the frequency aspects of the investment
are not considered. These OLS betas are noted BMCO throughout the paper.

To improve this static approach, we use a multidimensional time-frequency analysis of
the wavelet coherence and betas to determine the time and frequency dynamics of equity
risk-proile.

3.2 Coherence between Equities and Market

Wavelet Coherence (Figures 1) is illustrated by a color system and represents the
evolutions of equity-market links in time-frequency space. 5

• Red represents a strong (high) correlation between the CAC40 and the equity.
Correlation level decreases with the color intensity ( red,orange, yellow).

• Blue represents a weak (low) correlation between the two variables.

The bold lines delimit the areas for which the correlation (the R2 in this case) is
signiicant at 5% risk level (calculated with Monte-Carlo Simulations). The white shaded
area is the Cone of Inluence and it represents edge efects. Because of the inite samples
sizes (non-ininite length), edge efects can appear and bias the calculations of cross-power
spectra.

5The phase is represented by arrows. We use the Package-R Biwavelets of Gouthier, Grinsted and
Simko based on Torrence et Compo paper, see references 22



On the following igures 1, the frequency scales (the y-axis) represents the Period (in
days) and the Time (in days) starting from 0 (the irst observation) until 2869 (the last)
is on the x-axis.

We highlight a Red dominance for AXA and LVMH illustrating a high correlation
with the CAC40 but blue areas indicate a lesser correlation. Then, the systematic risk
represents 80%-100% of total risk but not necessarily at each time t and frequency s.
ORANGE coherence is globally dominated by Blue but we note an huge red areas between
1200− 2000 days for 0 to 256 periods (in y-axis), and an other area since 2500 days. In
this case, the intensity of the Equity-Market relationship is not homogenous over time
and frequency. Reb and Blue alternate at high-frequencies illustrating the instability of
Equity-Market links for short-run horizon (2 days till 1 week). The Red areas become
larger at Low-Frequencies, so the coherence is globally Homogenous for long-run horizon.

Considering these observations, we conclude that the Equity-Market links are time
and frequency dependent.Globally, equities with strong Beta (AXA) or unit Beta (LVMH)
are highly correlated with the market as opposed to equities with low beta (ORANGE).
But these results provide a day-by-day and frequency-by-frequency framework, so the
breaks and changes are highlighted as we can see for ORANGE (red area). In this case,
the Time-Frequency Betas estimators are required to analyze a varying systematic risk
according to the instability of Equity-Market relationship.

Figure 1.1 Coherence between AXA and CAC40



Figure 1.2 Coherence between LVMH and CAC40

Figure 1.3 Coherence between Orange and CAC40



3.3 Time-Frequency estimates of Beta

The Betas are estimated with a 1/2 frequency-step in order to reduce the compu-
tational time but with a relatively ine scale. We have 300, 000 Betas per stocks corre-
sponding to the Time-Frequency evolution of systematic risk. The scales s are linked
to a Period of investment representing the time horizon of investors. For each scale s,
we have 2, 868 Betas (1 at each time t) describing the time dynamics of systematic risk
conditionally to the investors horizons. With this bi-dimensional information, we can
analyze both the time and the frequency stability of equity-risk-proile.

To consider heterogeneous behaviours, we select the following frequency scales to
represent a particular trading horizon:

• The s2 scale illustrates a sine function with a 2-days period in Fourier space so it
represents a short-run investment horizon.

• The s5 scale illustrates a sine function with a 5-days period in Fourier space so it
represents a 1-week investment horizon.

• The s128 scale illustrates a sine function with a 128-days period in Fourier space
so it represents a 6-months investment horizon.

In order to appreciate the frequency variations of beta, we estimate the Beta by
OLS on the three previous scales. We compare their values with the static OLS betas
calculated without wavelets (as reminder BMCO). The OLS Beta estimators on scale i,
noted Bsi (Bs2, Bs5 and Bs128) are not time varying because their are based on OLS
hypothesis.

The Table I summarizes the diferences between these two types of Betas.

Table I: ( BMCO-Bsi ), (i = 2, 5, 128).

s2 s5 s128
AXA 0.07 -0.08 0.34

LVMH 0.03 -0.07 0.22
ORANGE -0.02 0.06 0.13

The OLS global Beta estimators and the wavelets OLS betas are diferent conirm-
ing the frequency variations of systematic risk. The sign of the diference indicates if
the OLS beta is lesser or greater than the wavelets estimators. In absolute value, the
diferences are minor for short-run investment (scale 2) whereas it is more important for
low-frequencies scales (long-run investment) as on s128. This simple observation justiies
the wavelets using and supporting the heterogeneous behaviors hypothesis during the
investment choices. So, we have to complete our study by analyzing the time-frequency
Betas dynamics which are useful for investors to appreciate their risks over time and
according to their investment horizon.

Figures 2 illustrates the Time-Frequency Betas values of AXA stock on the y-axis
and the time on x-axis. The results for the others stocks are recorded in appendixes 2.
To improve our analysis, we represent on these igures the diferent OLS beta estimates.
Moreover, we divide the overall period from 2005 to 2015 into sub-periods in order to
considerate the crisis efects.



• The ante-subprimes crisis period from 2005 to 2006.

• The Subprimes Crisis Period 2007− 2009.

• The Debt Crisis in Europe 2010− 2012.

• The post-crisis starting in 2013.

These periods are represented on Figures 2 by vertical lines.

Figure 2.1 Time-Frequency Betas of AXA 2 days

Figure 2.2 Time-Frequency Betas of AXA 1 week



Figure 2.3 Time-Frequency Betas of AXA 6 months

The time stability of betas (the robustness) is ensured if betas values are not signif-
icantly diferent over time. But graphically, we observe the lesser or greater volatility
of betas across time and across frequencies. We calculate the mean and the standard-
deviation of Time-Frequency Betas on the four sub-periods in order to synthesize these
graphs and simplify interpretation. Results are in Table II.

Table II : Means and Standard-Deviation of Time-Frequency Betas by period

2005-2006 2007-2009 2010-2012 2013-2015 Overall Period 2005-2015
Mean-Sdev Mean-Sdev Mean-Sdev Mean-Sdev Mean-Sdev

Axa s2 1.32 0.95 1.66 0.8 1.5 0.71 1.3 0.61 1.46 0.78
s5 1.59 0.62 1.48 1.12 1.62 0.41 1.44 0.52 1.52 0.73

s128 0.96 0.16 1.92 0.68 1.64 0.18 0.67 0.53 1.33 0.69
LVMH s2 1.11 0.9 1.04 0.53 1.18 0.57 1.14 0.66 1.12 0.61

s5 1.5 0.51 1.12 .39 1.1 0.38 1.02 0.66 1.15 0.52
s128 1 0.08 0.88 0.13 0.78 0.12 1.15 0.14 0.95 0.19

Orange s2 1.11 0.91 0.75 0.54 0.85 0.49 1.4 1.01 1.02 0.8
s5 0.97 0.66 0.78 0.61 0.75 0.3 1.23 0.83 0.93 0.66

s128 0.79 0.069 0.67 0.22 1.15 0.17 1.04 1.34 0.92 0.74

The Time-Frequency Betas of the three equities have a relatively high and erratic
volatility at the high-frequencies as opposed to the low-frequencies where the evolu-
tions seem smoother. This fact is related to the coherence values: strong for AXA
and LVMH and weak for ORANGE. The Equity-Market relationship seems more stable
at low-frequencies for AXA and LVMH because the strong correlation areas are wider.
Consequently, the Betas are more robust and less volatile compare to High-Frequencies.



The crisis efects on Time-Frequency Betas evolutions are especially noticeable for the
AXA stock: the Beta mean increases signiicantly at high-frequencies during the two crisis
periods. Then, the aggressive risk-proile of AXA is challenged outside crisis periods. At
the opposite, ORANGE and LVMH proiles have contrary evolutions. For LVMH, crisis
efects on its short-run Betas are tenuous. For ORANGE, we notice similar evolutions at
short-run but the long-run volatility is explosive, so the risk-proile is non-robust.

4 Conclusion

In this paper, we establish a new method to estimate time-frequency varying parameters
based on CWT. We derive a Beta formula from the wavelet-coherence providing the
value of the coeicient at each time t and each frequency s. We use the wavelet-phase to
determine its sign. The CAPM model is used as an example to emphasize the usefulness
and the interest of the method for portfolio managers.

The 3 selected stocks illustrate the results obtained with our methodology according
to the initial equities risk-proiles.

On the one hand, the stocks have globally high (AXA and LVMH) or low coherence
(ORANGE) but not totally homogeneous at each time or frequencies. This result indi-
cates that the intensity of the relationship between variables is time-frequency varying.
So, we can suppose that the systematic risk intensity vary over time and frequencies.

On the second hand, we estimate the Time-Frequency varying Betas. By analyzing
the time evolutions of betas,we show that initial risk-proiles are not robust over time
especially during crisis period. Moreover, we note diferent frequency dynamics: at short-
run (s2), the betas are erratic whereas it seems smoother at long-run (s128). We can so
classify diferently the stocks according to their time-frequency characteristics.

With this methodology, portfolio managers can appreciate time changes in systematic
risk according to its investments horizon. And also, they can measure the crisis impact
on the risk, the volatility intensity or ind the generating process of beta in forecasting
view. Finally, they can optimize and adjust their decisions (choices).

This methodology can be applied for any equities or for any regression model to
appreciate dynamically the parameter value with frequency aspects.



5 Appendixes

A1-Tests on variables

Phillips-Perron Stationary test on equities returns

Stokcs Test Value Critical Value at 1%
CAC -56.11 -3.96
AXA -51.22 -3.96

LVMH -55.7 -3.96
Orange -54.42 -3.96

Tests on residuals

Stocks Beta T-Stat Constant T-Stat R2 LB ARCH JB
AXA 1,5 31.74 4.25E-04 1.54 0.68 21.07 62.13 41993.2

LVMH 1 36.81 3.48E-04 1.68 0.62 13.24 38.34 10867.6
Orange 0.73 18.83 3.5E-05 0.157 0.43 17.7 37.81 4480.43

At 5% risk level, LB is Ljung-Bpx Test: χ2(5) = 11.1, ARCH is ARCH-LM Test:
χ2(2) = 5.99, JB is Jarque-Bera Test): χ2(2) = 5.99.

Figure A2.1 Time-Frequency Betas of LVMH 2 days



Figure A2.2 Time-Frequency Betas of LVMH 1 week

Figure A2.3 Time-Frequency Betas of LVMH 6 months



Figure A2.4 Time-Frequency Betas of Orange 2 days

Figure 1: Figure A2.5 Time-Frequency Betas of Orange 1 week



Figure A2.6 Time-Frequency Betas of Orange 6 months
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