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Abstract— The propositional logic Lp is the smallest syntax 
that formalizes Aristotle's three principles. It is commonly 
accepted that it is insufficient to capture human reasoning. 
Many formalisms have been proposed to extend the modeling 
capabilities of formal languages. The most common approach is 
to extend or to impoverish the syntax of Lp. We propose, with 
the contextual logic Lc, to take a different path. It consists in 
automatically integrating into the set of atomic propositions of 
the language silent propositions, which we call thoughts. By 
identifying the formulae, they bring to the formalism a reflexive 
reasoning capacity. We use it to define a semantic interpretation 
function of models, which captures the notions of inconsistency 
and predicate. The contribution of Lc to the family of non-
classical formalisms is that it models fallibilistic reasoning (an 
intelligent agent has no certainty and believes what seems 
justifiable to him) and perspectivist reasoning (his beliefs are 
obtained by summing up the beliefs he has from several disjoint 
perspectives). We illustrate the behavioral properties of the 
contextual logic by developing at length an example of 
application. It allows us to present how to use it in the 
framework of Symbolic Artificial Intelligence. 

Keywords— Formal Language, Nonmonotonic Logic, Belief 
Revision, Knowledge Representation, Reasoning, Artificial 
Intelligence, Fallibilism, Perspectivism, Cognitive Science 

Résumé— La logique propositionnelle Lp est la plus petite 
syntaxe qui formalise les trois principes d'Aristote. Il est 
communément admis qu'elle est insuffisante pour capturer le 
raisonnement humain. De nombreux formalismes ont été 
proposés pour étendre les capacités de modélisation des 
langages formels. L’approche la plus souvent étudiée consiste à 
étendre ou à appauvrir la syntaxe de Lp. Nous proposons, avec 
la logique contextuelle Lc, d'emprunter une voie différente. Elle 
consiste à intégrer automatiquement dans l'ensemble des 
propositions atomiques du langage des propositions silencieuses, 
que nous appelons des pensées. En identifiant les formules, elles 
apportent au formalisme une capacité de raisonnement réflexif. 
Nous l'utilisons pour définir une fonction d’interprétation 
sémantique sur les modèles, qui capture les notions 
d'inconsistance et de prédicat. L’apport de Lc à la famille des 
formalismes non-classiques est qu'elle modélise le raisonnement 
faillibiliste (un agent intelligent n'a aucune certitude et croit ce 
qui lui semble justifiable) et le raisonnement perspectiviste (ses 
croyances sont obtenues en additionnant les croyances qu'il a de 
plusieurs perspectives disjointes). Nous illustrons les propriétés 
comportementales de la logique contextuelle en développant 
longuement un exemple d'application. Il nous permet de 
présenter comment l'utiliser dans le cadre de l'Intelligence 
Artificielle Symbolique. 

Mots clefs— Langages Formels, Non Monotonie, Révision des 
Croyances, Représentation de la Connaissance, Raisonnement, 
Intelligence Artificielle, Faillibilisme, Perspectivisme, Sciences 
Cognitives 

I. INTRODUCTION 

The propositional logic Lp is the smallest syntactic model 
that formalizes Aristotle's three principles: 

● of identity (a proposition is what it is), 
● of the excluded third (a proposition is true or false), 

● and of non-contradiction (a proposition cannot be both 
true and false). 

Formalisms based on Lp classically focus on modeling 
knowledge that is deemed to be true. It is insufficient to 
model the full diversity and complexity of human reasoning, 
which also exploits inconsistent or uncertain information. 

Many propositions have been presented to cover this 
need. They consist in enriching or impoverishing the syntax 
of Lp to express levels of necessity (epistemic modal logics), 
universal quantification (predicate logics), inconsistency 
(paraconsistent logics), new rules of syntactic production 
(such as default logic), multiple interpretation strategies 
(adaptive logics), or multi-valued interpretation (multivalued 
logics). 

They each manage to capture different properties. But 
they have not succeeded in modelling in a single language the 
many modes of reasoning empirically observed in humans 
(D. Andler [2]). 

One need is to move from a “monotonic” semantics (what 
is true remains true) to a “non-monotonic” semantics (what is 
true at one moment may be false the next moment). To 
achieve this, the contextual logic Lc proposes the following 
approach: remain strictly within the monotonic syntax of the 
propositional logic Lp and enrich the set of atomic 
propositions by silent propositions, integrated and consumed 
automatically. 

We call them thoughts. They identify the formulae 
belonging to the set of knowledge. This gives the formalism 
a capacity for reflexive reasoning. This property is used to 
define a non-monotonic semantic interpretation function 
based on the exploitation of thoughts in the models of the 
theory. 

We first present Lp to lay the theoretical foundations of 
our work and to share the vocabulary we use and the 
associated definitions. The supposed limits of the syntax of 
Lp are recalled. 

The principles of Lc and its main properties are then 
described. It strictly respects the syntax of Lp. Its contribution 
to the family of formal languages is to propose a formalism 
that models a non-monotonic, de dicto, fallibilistic (an 
intelligent agent has no certainty and believes what seems 
justifiable) and perspectivist (its beliefs are obtained by 
summing up the beliefs it has from several disjoint 
perspectives) semantic. 

The supposed limitations of the propositional logic are 
then revisited. The properties of Lc make it possible to capture 
behaviors previously thought to be beyond the reach of the 
syntax of Lp. We show how they can be used to model the 
notions of inconsistent knowledge and predicate, to exploit 
inductive or abductive reasoning methods, and to circumvent 
the problem posed by the complexity of associated 
algorithms. 

To illustrate this, we conclude our presentation by 
developing an example of the application of Lc. It calls upon 



a sufficiently broad knowledge base to demonstrate, through 
a practical case, the non-monotonic expressiveness of the 
language and to give meaning to the various technical 
examples used throughout the text. 

Our first aim in this paper is to show that it is possible to 
deal with the subject of non-monotonicity within the strict 
framework of the syntax of Lp. However, we agree with D. 
Batens when he states [13]: 

“The initial goal of the study of logic is to explain human 
reasoning” 

Our work is rooted in mathematical logics. But our quest 
for Artificial Intelligence has direct links with computer 
science, philosophy, and cognitive science. It will not be 
possible not to address these topics to clarify some of our 
remarks. However, where necessary, we limit ourselves to 
introductory presentations. Documentation is readily 
available if needed. 

II. THE PROPOSITIONAL LOGIC 

In this article, we refer to several formal languages. We 
do not detail them in general so as not to make the 
presentation unnecessarily heavy, inviting the reader to refer 
to the many documents available on these formalisms. 

However, we think it is useful to pause for a moment on 
the propositional logic Lp. This paragraph does not contain 
anything new. Its purpose is to share definitions of the 
vocabulary and symbols we use. 

The syntax of Lp 

The language of the propositional logic Lp is composed 
of: 

● atomic propositions, forming the set PLp, 
● the connector of negation noted ¬, 
● the connector of implication noted →, 

and parenthesis symbols, which are used according to the 
classical mathematical rules. 

The rules for forming a well-formed formula are: 

● any atomic proposition is a well-formed formula, 
● if f and g are well-formed formulae, then the 

expressions f, (f), ¬ f and f → g are well-formed 
formulae, 

● a well-formed formula is obtained only by applying 
the two precedent rules a finite number of times. 

Let f, g and h be some well-formed formulae. The 
following formulae are some axioms: 

● f → (g → f) 
● (f → (g → h)) → ((f → g) → (f → h)) 
● (¬f → ¬g) → ((¬f → g) → f) 

These three axioms are sufficient to cover all the axioms 
of Lp. For example, f → f is another axiom, which can be 
demonstrated from these three using the theorem formation 
rules: 

● every axiom is a theorem, 
● let f and g be well-formed formulae. If f and f → g are 

theorems, then g is a theorem (this rule is called the 
modus ponens), 

● a theorem can only be obtained by applying the two 
previous rules a finite number of times. 

The statement f is a theorem is denoted ⊢Lp f. 

A theory ELp is a set of well-formed formulae. The 
formulae f ∈ ELp represent the hypotheses of ELp. 

A formula f is said to be provable in ELp if, and only if, it 
can be produced from ELp by applying the theorem formation 
rules, for all hypotheses of ELp behaving as theorems. In this 
case, f is a theorem of ELp, and it is denoted ELp ⊢Lp f:  

A theory is said to be consistent if it does not produce the 
negation of a theorem. Otherwise, it is said to be 
inconsistent. 

To simplify the expression of formulae, the language is 
commonly extended to disjunction (denoted ∨), conjunction 
(denoted ∧) and equivalence (denoted ↔) connectors. For f 
and g well-formed formulae, they are defined by: 

● f ∨ g is equivalent to (¬ f → g), 
● f ∧ g is equivalent to ¬ (f → ¬ g), 
● f ↔ g is equivalent to (f → g) ∧ (g → f) 

A literal is an atomic proposition or the negation of an 
atomic proposition. A clause is a disjunction of literals. 

A formula is said to be in normal form if it is a 
conjunction of clauses. A. Thayse [23] indicates that any 
well-formed formula admits a logically equivalent rewriting 
in normal form. For example, the normal form of the formula 
((¬ f → g) → h) is ((¬ f ∨ h) ∧ (¬ g ∨ h)). 

Let ELp be a theory, f be a clause and a be a literal such 
that ELp ⊢Lp f ∨ a. f ∨ a is in its minimal clausal form if f 
is not a theorem of ELp. And the normal form of a formula is 
said to be in its minimal normal form if each clause in it is 
unique and is in its minimal clausal form. 

P. Siegel [22] proposes a linear complexity process that 
rewrites any well-formed formula into its minimal normal 
form. 

The semantic of Lp 

Classically, the logician's attitude is to see in formal 
language only mathematical symbols. What is relevant is the 
study of the mechanisms and laws of reasoning, modeled by 
syntactic rules. Any reference to semantic content is 
discarded. However, it is possible to attribute a meaning to 
connectors if it is strictly symbolic and univocal. 

Let ELp be a theory of Lp, and f and g two well-formed 
formulae. The syntactic interpretation function of Lp is 
defined by a function ILp such that: 

● ILp(ELp, f) = true or exclusively ILp(ELp, f) = false or 
exclusively ILp(ELp, f) = unknown 

● If f is a hypothesis of ELp, then ILp(ELp, f) = true 

The meaning of the connectors is then defined by: 

● ILp(ELp, ¬ f) = true if, and only if, ILp(ELp, f) = false 
● ILp(ELp, f → g) = true if, and only if, ILp(ELp, f) = false 

or ILp(ELp, g) = true 

The syntactic interpretation ⊨Lp is defined by: 

ELp ⊨Lp f if, and only if, ILp(ELp, f) = true 

The unknown value should not be understood as a third 
truth value. It is used to indicate that the constraints of the 



theory do not allow to compute the truth value true or false. 
For example, the value of ILp({a → b}, a) is not computable. 

The syntactic interpretation of an axiom is always true, 
and Lp is adequate and complete: everything that is produced 
(using ⊢Lp) is true, and everything that is true (according to 
⊨Lp) is produced. 

ELp ⊨Lp f if, and only if, ELp ⊢Lp f 

We conclude this presentation of propositional logic by 
giving a definition that we will use a lot. Let ELp be a theory 
of Lp. A model of ELp consists in associating to each atomic 
proposition only one truth value (true or exclusively false) 
such that the result verifies the logical constraints expressed 
by ELp. ELp is consistent if it has at least one model. It is 
inconsistent otherwise. 

For example, the theory ELp = {a, b → c} is verified by 
three models: 

{(a, true), (b, true), (c, true)} 
{(a, true), (b, false), (c, true)} 
{(a, true), (b, false), (c, false)} 

So, it is consistent. As a counter example, {a, ¬ a} does 
not accept a model: if a is assumed to be true, ¬ a is not 
verified - and vice versa. So, it is inconsistent. 

III. THE LIMITS OF LP 

Modeling human reasoning with Lp has encountered four 
major difficulties. 

1) Human reasoning sometimes seems incoherent. But 
syntactic inconsistency leads to the production of everything 
and its opposite: whatever f and g two well-formed formulae 
of Lp, {f, ¬ f} ⊢Lp g. This is the explosion principle. It forbids 
the appearance of a syntactic inconsistency in a theory. This 
topic is covered in paragraph V. 

2) Human reasoning uses semantic links between 
propositions. But the symmetrical behavior of connectors 
prohibits this type of modeling in Lp. Put more explicitly with 
an example, f → (g → h) is syntactically equivalent to 
g → (f → h): f and g have the same behavior in the formula, 
and neither of them has a privileged relationship with h. This 
topic is covered in paragraph VI. 

3) Theory distinguishes three modes of reasoning found in 
humans: deduction (establishing a particular law from 
general facts), induction (establishing a general law from 
particular facts) and abduction (identification of the most 
likely cause of an observed event). Deduction is formalized 
by the modus ponens rule, but the other two modes escape the 
formalism of Lp. This topic is covered in paragraph VII. 

4) The computational algorithms associated with Lp are of 
exponential complexity. In practice, it takes several seconds 
to deduce knowledge using a base of a few dozen formulae. 
This is obviously not acceptable in the context of human 
reasoning, and more generally in the context of Artificial 
Intelligence. It requires a good level of responsiveness. This 
topic is covered in paragraph VIII. 

The successive failures of logic researchers to solve these 
problems have led many to conclude that the modeling of 
human reasoning probably escapes Lp, and logic formalisms 
more generally (D. Andler [2]). 

IV. THE CONTEXTUAL LOGIC 

Let us consider a thought. We perceive it in the sense 
defined by R. Descartes [4]: 

“By the name of thought, I understand all that is so much 
in us that we are immediately aware of it” (translation) 

and we describe it with a set of sentences. However, even if 
this description were ideally complete and perfect, we are 
immediately aware that it is not the thought it describes. 

We model this observation by distinguishing, for a given 
thought, two notions in the syntax of the language: a unitary 
sign c, which symbolizes it, and a combination of signs f, 
which reproduces the sentences that describe it. This leads to 
the need to define a relationship between c and f. To this end, 
we consider the following postulate [11]: 

Contextual postulate Let L be a formal language with the 
functions of syntactic production ⊢L and the syntactic 
interpretation ⊨L. A well-formed formula f of L is a set of 
signs that has no meaning. Its meaning is carried by a 
thought, which is an atomic proposition of L “which is not 
pronounced”. For c symbolizing this thought, the relation 
between c and f is c ⊨L f. 

The expression c ⊨L f asserts neither the thought c nor the 
sentence f. It models that the sentence f expresses the thought 
c. c is an atomic proposition which respects the syntactic 
properties of L. So, c ⊨L f is equivalent to ⊨L c → f if L is the 
propositional logic Lp. 

For example, if we consider two sentences f and g that 
express the thoughts c1 and c2 respectively, we should not 
formalize this knowledge by the set {f, g} (because f and g 
are some sets of signs that has no meaning) but by 
{c1 → f, c2 → g}. It models: “c1 is expressed by f and c2 is 
expressed by g”. We thus agree with L. Wittgenstein when he 
states [25]:  

“We should not say: The complex sign aRb says that a is 
in the relation R with b, but: That a is in a certain relation 
R with b says that aRb“ (translation) 

The application of the postulate to a formalism L produces 
the contextualized logic L. By language convention, we call 
contextual logic, denoted Lc, the contextualized propositional 
logic. 

Each contextual formula takes a form c → f, for c a 
thought (and an atomic proposition) and f a well-formed 
formula in the sense of Lp. Expressions in Lc accept a natural 
order: 

● atomics propositions of Lp are at rank 0, 
● a thought is at rank 1 or higher. We will see later that 

we propose to automatically handle the assignment of 
a rank to a thought, 

● the rank of a well-formed formula in the sense of Lp is 
equal to the maximum rank of the atomic propositions 
(including thoughts) that compose it. 

We define a well-formed formula in the sense of Lc to be 
a formula c → f, for c a thought of rank n and f a well-formed 
formula in the sense of Lp of rank m, such that m < n. 

No well-formed expressions are acceptable. They allow 
for ⊢Lp production and ⊨Lp syntactic interpretation. However, 
we only lend them meaningless technical behavior, which 
makes them useless in the context of the language. 



Given the syntax c → f of the contextual formulae, the set 
{(ci, false), ci are the thoughts} characterizes some models 
that verify any contextual theory. For example, 
{(c1, false), (c2, false)} characterizes some models that verify 
{c1 → f, c2 → g}. 

The first consequence is that a contextual theory admits 
at least one model. So, it is always consistent. 

The second consequence is that contextual logic is unable 
to produce certainty. Put differently, in Lc, any thought is 
possibly false, and, as a direct effect of the application of the 
form c → f, any formula f (except for axioms), and so any 
atomic proposition of Lp, can be true or false: there is no 
certainty in Lc. Uncertainty is intrinsically embedded in the 
syntax. 

To remedy this problem, Lc adopts the following 
principles: 

● because any formula can be true or false, there is no 
need to interrogate a contextual theory with a question 
such as “Is f true or false?”. The solution adopted is to 
ask the question in the form: “What can I conclude if 
I suppose that f (or ¬ f) is true?”. 

Notation f is called the stimulus. It is possibly empty, 
and it is denoted SLc. 

● because every thought is possibly false, we propose to 
relativize the semantic interpretation to the subsets of 
thoughts identified as the most relevant. We cannot 
conclude that f is true or false, but we can say “f is true 
(or false) with respect to the most relevant sets of 
thoughts”. 

For example, let a and b be two atomic propositions of Lp, 
and c1, c2 and c3 be three thoughts. Consider the following 
set: 

ELc = {c1 → a, c2 → ¬ a, c3 → b} 

We cannot product that a or b is true or false. But we can 
say that a is true considering {c1}, or that b is true considering 
{c2, c3}, etc. There are many possible combinations, so we 
should define a method for selecting “the most relevant sets 
of thoughts”. 

For this purpose, we need some definitions. 

Definitions Let ELc be a theory of Lc and i and j be 2 integers 
such that 0 < i ≤ j. 

A set of thoughts is called a context. 

A context is said to be of rank i to j if all the thoughts in 
it are of rank i to j. A context of rank i to i is said of rank i. 

A context that is verified by at least one model of ELc is 
called a possible (or a consistent) context. 

A context that does not check any model of ELc is called 
an impossible (or an inconsistent) context. 

An impossible context is called a strict impossible context 
if each of its strict subsets is possible. 

A possible context that has no strict extension that checks 
ELc is called a maximum context. 

A possible context is called the credible context if it has 
no join with a strict impossible context and if all its strict 
extensions have a join with a strict impossible context. 

In the following, and in accordance with common 
practice, we will invariably use the notions of conjunction of 
formulae (for example: c1 ∧ c2) or of set of formulae (for 
example: {c1, c2}) to designate the same object. A 
conjunction of thoughts also means a context. 

Example Let a, b and c be three atomic propositions of Lp, 
and c1, c2, c3, c4 and c5 be five thoughts. Consider the 
following set: 

ELc = {c1 → a, c2 → ¬ a, c3 → b, c4 → ¬ b, c5 → c} 

c1 ∧ c2 and c3 ∧ c4 are the only two strict inconsistent 
contexts. So, c5 is the credible context, and there are four 
maximal contexts: {c1, c3, c5}, {c1, c4, c5}, {c2, c3, c5} and 
{c2, c4, c5}. 

We see that, for a given theory, there are possibly several 
maximal contexts (potentially empty) and a single credible 
context (potentially empty). They are obtained by calculating 
the strict incoherent contexts in a first step. The different 
possible combinations of thoughts then produce them. 

We use these definitions to define the function that 
identifies the contexts considered most relevant for semantic 
interpretation. 

Definition Let ELc be a theory of Lc, SLc be a stimulus and Tc 
and Tm be two integers such that 0 < Tc < Tm. The relevant 
contexts are defined as follows: 

● calculation of the maximal contexts of rank Tm and 
above on {ELc, SLc}. This defines a set of contexts {Ck}, 

● then enrichment of each maximal context Ck, by the 
credible context of rank Tc to Tm-1 on {ELc, SLc, Ck}. 

This defines the set of epistemic contexts. It is denoted 
CELc, SLc, Tc, Tm. 

This definition presents the notion of epistemic contexts. 
They are the most relevant sets of thoughts, which meets the 
need we identified earlier. 

Other definitions are possible, for example by using the 
ranks of thoughts more finely. Epistemic contexts are 
sufficient for the modelling needs presented in this article. 

We are now able to define the semantic interpretation 
function of Lc. 

Definition Let ELc be a theory, SLc be a stimulus and Tc and 
Tm be two integers such that 0 < Tc < Tm. A well-formed 
formula f is said: 

● conceivable if there is at least one epistemic context 
C1 such that {ELc, SLc, C1} ⊨Lp f and there is at least 
one epistemic context C2 such that 
{ELc, SLc, C2} ⊨Lp ¬ f, 

● credible if there is at least one epistemic context C1 
such that {ELc, SLc, C1} ⊨Lp f and there is no epistemic 
context C2 such that {ELc, SLc, C2} ⊨Lp ¬ f, 

● improbable if there is at least one epistemic context 
C1 such that {ELc, SLc, C1} ⊨Lp ¬ f and there is no 
epistemic context C2 such that {ELc, SLc, C2} ⊨Lp f, 

● not interpretable in other cases. 

{ELc, SLc, C ∈ CELc, SLc, Tc, Tm} is said a semantic perspective. 

This definition presents the basic semantic interpretation 
function of Lc. It can be enriched, for example by 



distinguishing true formulae in all semantic perspectives. 
This version is sufficient for the modelling needs presented 
in this article. 

Example Let a and b be two atomic propositions of Lp, c1 and 
c2 be two thoughts of rank 1, and c3 and c4 be two thoughts of 
rank 2. Consider the following set: 

ELc = {c1 → a, c2 → ¬ b, c3 → c1, c4 → ¬ c1} 

Let Tc=1 and Tm=2, and we consider the stimulus is 
empty. {c3, c4} is incoherent, so {c3} and {c4} are the two 
maximal contexts of rank 2. Let's add to each the credible 
context of rank 1 associated with it to calculate the two 
epistemic contexts. We obtain: 

● {c3, c1, c2}. The associated semantic perspective says 
that a is true and b is false (according to ⊨Lp), 

● {c4, c2}. The associated semantic perspective says that 
b is false (according to ⊨Lp). 

So, according to the semantic vocabulary of Lc, a is 
credible and b is improbable. 

The semantic interpretation function has a mathematical 
definition and is therefore very rigorous. This is not 
necessarily compatible with our natural language habits. 
Therefore, we will allow ourselves some linguistic shortcuts, 
for example: 

● a perspective designates a semantic perspective, 
● a well-formed formula in the sense of Lc is a piece of 

knowledge, so a theory is a set of knowledges, 
● a belief is a formula which expresses a thought or a set 

of thoughts, 
● a conceivable expression is also said true and false or 

possible, 
● a credible expression is also said true, conceivable, or 

possible, 
● an improbable expression is also said false, 

conceivable, or impossible. 

We will use them in a way that does not create confusion. 

We now present the properties of Lc. Its contribution to 
the family of non-classical logics is that it is the only formal 
language that simultaneously verifies these behaviors. 

We remain on a technical observation and not discuss 
their relevance. Indeed, each property echoes philosophical 
concepts and deserves a dedicated article. The debates are 
rich, and there are as many defenders as detractors. We do not 
bring new elements to enrich these exchanges. The interested 
reader will easily find in literatures in-depth presentations of 
these topics. 

The syntax production function is monotonic 

Lc respects the syntax of the propositional logic and is 
therefore syntactically monotonic: whatever f and g are 
contextually well-formed formulae, if a theory ELc produces f 
then {ELc, g} produces f. 

Note that the syntactic interpretation function is 
mechanically also monotonic. 

The semantic interpretation function is non-monotonic 

Lc decorrelates the syntactic interpretation function from 
the semantic interpretation function. Syntax produces a set of 
formulae according to the rules of the contextualized 
formalism. 

Semantics then provides an interpretation by analyzing 
the models of the theory. They are considered as they are 
produced by the syntax. We do not employ the concept of 
extension sometimes used by non-classical formalisms. 

The models of a theory can change if a new piece of 
knowledge is introduced. So, CELc, Tc, Tm must be recalculated 
in this case, and Lc has a non-monotonic semantic: 
considering the same stimulus SLc, a formula f can be credible 
considering {ELc, SLc} and incredible considering 
{(ELc, g), SLc}, for g a new piece of knowledge. We will see 
examples of use in the following paragraphs. 

Lc brings a reflexive capacity to reasoning 

The contextual postulate models the relationship between 
thoughts and the sentences that express them. By 
distinguishing expression and thought, and by identifying 
thought, it brings a reflexive capacity to formal language: 
thoughts can reason about themselves using the constraints 
carried by the sentences that express them. 

It thus brings formal language closer to natural language: 
formalism is used as a means of expression. The properties 
carried by the syntax of language model the reasoning 
mechanisms of thought (J. Fodor [5]). They generate, by 
opportunity, the ability to reason about what is said. 

The syntax has a de dicto behavior 

De dicto and de re are two locutions that distinguish two 
important modalities of statements and the reasoning behind 
them. De dicto means in Latin about what is said, and de re 
means about the fact.  

In Lc, a piece of knowledges (c → f) does not express a 
fact, but models that the thought c is expressed by a sentence 
f. Note that contextual postulate supposes that language is 
unable to capture thoughts completely (c → f is not c ↔ f). 

Contextual logic thus distinguishes between the thought 
c, which is the whole that one wishes to express, and the 
sentence f, which is the way it is said. The reasoning then 
exploits the logical relations that appear in the sentence which 
is said. 

The semantic is fallibilism 

Non-monotonicity is a matter of completeness of 
knowledge: a belief that is true in one state may be false in an 
enriched state. Fallibilism (K. Popper [18]) is a more radical 
philosophical principle. It assumes that absolute knowledge 
is impossible: all belief can, at any time, be questioned – and 
possibly contradicted. 

The syntax of Lc is that of Lp. It is therefore based on 
axiomatic principles which it considers as absolute. However, 
a consequence of the contextual postulate is that every 
proposition is possibly false. Lc thus proposes the paradox of 
relying on a syntax considered as absolutely true to model 
knowledge interpreted semantically as absolutely uncertain. 

To avoid this, the solution is to consider that what is not 
explicitly false is credible and will remain so until it is 
explicitly contradicted or challenged. 

We will illustrate this with some examples which we will 
develop in the following paragraphs. 

The semantic is perspectivist 



Perspectivism (F. Kaulbach [10]) refers to philosophical 
doctrines that defend the idea that our perception of reality is 
composed of the sum of the perspectives we have on it. 

In Lc, the semantic interpretation is obtained by 
considering the interpretations, possibly contradictory, of 
each epistemic context: truth is not the consequence of a 
global point of view built on the whole of thoughts, but the 
juxtaposition of several points of view from distinct subsets 
of thoughts. 

Propositions are attributes, not assertions 

In the most adopted mathematical approach, an atomic 
proposition is an assertion apprehended in its content. 
Considering a theory, its semantic interpretation admits a 
truth value: it is true or false (or possibly another value in the 
case of multi-valued formalisms). 

In Lc, it is not possible to deduce that a proposition is true 
or false according to Lp. This is a mechanical consequence of 
the application of the contextual postulate. A proposition (or 
a formula) can only be interpreted in relation to a set of 
thoughts, called a context. It characterizes it. 

So, in Lc, a proposition is not an assertion in the strict 
sense of the term. It must be understood as a characteristic, or 
an attribute, of the context. 

Consider, for example, the sentence “If Tweety is a bird, 
then it flies”. Its modeling in predicate logic can be: 

  Bird(Tweety) → Flying(Tweety) 

In Lc, this assertion is modeled by: 

   c1 → (Tweety → Bird) 
   c2 → (Bird → Flying) 

which allows for several readings, for example: attributes 
Bird and Flying are attributes of the context {c1, c2} if we 
consider the stimulus Tweety, or are attributes of the stimulus 
Tweety if we consider the context {c1, c2}. 

We have finished with the presentation of Lc. The 
following sections show how to use its properties to provide 
answers to the difficulties identified in paragraph III. 

Considering the definition of epistemic contexts, Tc and 
Tm can theoretically take any value. According to the work of 
J. Pitrat [17], there are probably cognitive thresholds limiting 
the capacities of human reasoning. In the rest of this 
document, we will use the thresholds 2 and 3, which are 
sufficient to cover the expected level of expressiveness 
expected in this article. And by writing convention, we will 
henceforth note ci,j the thoughts. i singularizes the proposition 
and j indicates its rank. 

V. MODELING AN INCONSISTENT KNOWLEDGE 

 For example, consider a set of Lp’s propositions {a, b, c} 
and let be the following set: 

ELp = {a → b, a → ¬ b, c, a} 

It is inconsistent because ELp ⊢Lp b ∧ ¬ b. According to 
the explosion principle, whatever f an assertion, ELp ⊢Lp f. 
This is not acceptable. 

ELp has no meaning according to the contextual postulate. 
Let us now place ourselves in the contextual logic framework. 

Considering the set of thoughts {c10,2, c20,2, c30,2, c40,2}, we 
assume the following theory: 

 ELc = { c10,2 → (a → b), 
  c20,2 → (a → ¬ b), 
  c30,2 → c, 
  c40,2 → a  } 

ELc is consistent, and there is an incoherence between the 
three thoughts c10,2, c20,2, and c40,2 because: 

  {ELc, c10,2, c20,2, c40,2} ⊢Lp b ∧ ¬ b 

{c10,2, c20,2, c40,2} is a strict impossible context. So, {c30,2} 
is the only epistemic context. If the stimulus is empty, we 
obtain one perspective which says {c}, and {a, c} if the 
stimulus is {a}. 

This is a first result showing the possibility of exploiting 
inconsistent beliefs in Lc. The solution is to get around the 
problem by considering that the thoughts c10,2, c20,2 and c40,2 
are not credible because they carry an inconsistency. 

We now want to address this inconsistency, by modelling 
that a → b (i.e., the thought c10,2) is not always true - or, put 
differently, is sometimes true and sometimes false. Let's use 
two new thoughts, c11,3 and c12,3: 

ELc = { c10,2 → (a → b), 
  c11,3 → c10,2, 
  c12,3 → ¬ c10,2 
  c20,2 → (a → ¬ b), 
  c30,2 → c, 
  c40,2 → a  } 

Considering a is the stimulus, let's calculate the epistemic 
contexts. There are 2 maximum contexts of rank 3: {c11,3} and 
{c12,3}. Let us extend each of these contexts to their associated 
credible contexts of rank 2: 

● considering {ELc, a, c11,3}, {c20,2, c40,2} is the only 
strict impossible context, so {c10,2, c30,2} is the credible 
context of the rank 2 in this case, 

● considering {ELc, a, c12,3}, {c10,2} is the only strict 
impossible context, and {c20,2, c30,2, c40,2} is the 
credible context in this. 

In fine, considering the stimulus {a}, we obtain two 
epistemic contexts: 

● {c11,3, c10,2, c30,2} which says {a, b, c} is true, 
● {c12,3, c20,2, c30,2, c40,2} which says {a, ¬ b, c} is true. 

We conclude that, taking a as the stimulus, c is credible 
(or true), and that b is conceivable (or true and false). The 
formalism does this by modeling an epistemic information: 
the belief a → b (i.e., c10,2) is true (what c11,3 formalizes) and 
false (what c12,3 formalizes). 

We have used a single contradiction {c11,3, c12,3} to 
illustrate our point. If multiple contradictions (two 
contradictions {cx1,3, cx2,3} and {cy1,3, cy2,3} for example), the 
different cases are managed on the maximal contexts on Tm 
({cx1,3, cy1,3}, {cx1,3, cy2,3}, {cx2,3, cy1,3}, and {cx2,3, cy2,3} with 
the example). We obtain by combination the set of relevant 
perspectives. This is illustrated in the example that we 
develop at the end of the article. 

Comparison with other formalisms 



In this section, we point out the major gaps in the 
treatment of inconsistent or incomplete information between 
Lc and other non-classical formalisms. 

Paraconsistent and multivalued logics aim to tolerate 
inconsistencies by escaping the principle of explosion. The 
approach, theorized by J. Lukaszewicz [13], is either to 
weaken Aristotle's principles to limit the inferential capacities 
of language or to add a third truth value to indicate that the 
knowledge concerned is both true and false. 

Lc addresses the issue of uncertainty and inconsistency 
through its perspectivist property: it models that something is 
simultaneously true according to some thoughts and false 
according to others. 

Lc is therefore not a paraconsistent or a multivalued 
formalism. It strictly preserves the syntax of Lp. Therefore, it 
does not escape the principle of explosion. If one retains a 
reference context that syntactically produces f ∧ ¬ f, then it 
produces any belief g whatsoever. Inconsistency is accepted 
in the semantic interpretation of Lc, it remains non-tolerable 
in its syntax. 

Another fundamental difference between Lc and other 
non-classical formalisms is its fallibilistic property: noting 
that there is no certainty, it takes as credible what is not 
explicitly false. In other words, it takes as true everything that 
is possible and not explicitly impossible. This property gives 
Lc a particular behavior, which does not allow it to fully 
capture modal logics or default logics for example. 

Default logic is proposed by R. Reiter [20]. To reason 
with uncertain information, he extends production rules by 
expressions of the form (a : b / c) which read: “if a is true and 
if b is possible then c is produced”. In Lc, the thought that b 
is possible “generates the thought b”. However, related to R. 
Reiter's syntax, Lc's expressiveness is limited to normal 
default rules, of the form (a : b ∧ c / b ∧ c) [11]. 

Modal epistemic logics extend the expressiveness of 
languages by adding a new connector for reasoning about the 
quality of the interpretative value. The most widely used 
epistemic modal connector is the alethic connector ◻. ◻ f 
usually expresses that f is necessary, and its dual ¬◻¬ f, 
denoted ◇ f, that f is possible. The language relies on the 
semantics of possible worlds of S.A. Kripke [12] to benefit 
from a syntactic interpretation function of ◻. 

We have proposed a relationship between modal 
epistemic logics and Lc [11]. This requires an evolution of the 
definition of epistemic context, using ranks to capture the 
imbrications of the monadic connector (rank i for ◻, rank i+1 
for ◻◻, etc.). It models the sets {◻ f} and {◇ f, ◇¬ f}, but 
the set restricted to {◇ f} is interpreted as {◻ f}: f is 
considered necessary if the possibility of its opposite is not 
explicitly expressed. Lc adds a default rule to the K system: 
{¬◻¬ f  : ◻ f / ◻ f }. In the framework of Kripke's semantics, 
this expression reads: if I know an accessible world in which 
f is true, and I do not know an accessible world in which ¬ f 
is true, then I consider that f is true in all accessible worlds. 

Default and modal epistemic logics deal with the issue of 
incoherence by evolving the syntactic capabilities of the 
language. D. Batens proposes another approach [3]. He 
considers that there are several reasoning strategies, and that 

the solution consists in choosing the one that is best adapted 
to the situation. These are adaptive logics. 

Consider, for example, the following set of formulae: 

ELa = {¬ p, ¬ q, p ∨ q, p ∨ r, q ∨ r} 

It is incoherent, and therefore explosive in the context of 
propositional logic.  If one adopts a strategy favoring reliable 
reasoning, it is not possible to deduce r: it would be unwise 
to conclude anything using the first three formulae. However, 
if we choice a strategy that minimizes abnormalities, and 
assume that at least two of the first three formulae are true, 
then r is produced. 

In contextual logic, the set becomes: 

 ELc = { c1,2 → ¬ p, 
   c2,2 → ¬ q, 
   c3,2 → p ∨ q, 
   c4,2 → p ∨ r, 
   c5,2 → q ∨ r } 

Assume that the stimulus is empty. {c4,2, c5,2} is the 
reference context because {c1,2, c2,2, c3,2} is a minimal 
impossible context. As far as we know, r is not interpretable. 
Using epistemic contexts that retain the maximal credible 
contexts at rank 2 is therefore a prudent strategy. 

So, Lc is not an adaptive logic. Both formalisms have the 
capacity to adapt their semantic interpretation to local 
characteristics: Lc chooses to use or not a thought depending 
on the stimulus. But its principle is not to adapt his reasoning 
to a typology of situation. It uses a unique analysis strategy, 
based on the definition of epistemic contexts. 

We end this comparative section with the circumscription 
logic of J. McCarthy [14]. It consists in extending the set of 
atomic propositions by propositions that indicate the 
epistemic character of a formula. For example, “a → b is true 
with some exceptions” is modeled by ((a → b) ∨ abnormal). 
The atomic proposition abnormal indicates that the formula 
(a → b) allows for exceptional behavior. 

The models of the theory are then analyzed to select those 
that minimize the abnormalities. This approach, which 
consists of looking for a solution in the set of atomic 
propositions, coupled with an analysis of the theory's models, 
is most certainly the closest to our own. We have shown that 
contextual logic can capture its expressive capacity by 
adapting the definition of epistemic contexts to meet the 
minimality criterion [11]. 

However, beyond this result, the choice to minimize 
abnormalities seems reasonable but can easily be questioned 
with use cases. This difficulty is shared with adaptive logics, 
or more generally with the concept of epistemic rooting 
proposed by P. Gardenfors and D. Makinson [7]. 

Indeed, these methods suppose the existence of an order 
relation (on formulae or on reasoning strategies) which would 
oversee selecting the information in case of incoherence. 

In Lc, syntactic consistency is guaranteed. It is therefore 
not necessary to manage this in the formalism.  However, the 
existence of an order relation is supported by experiments in 
cognitive science. We shall see this point in paragraph VIII. 



VI. MODELING A PREDICATE KNOWLEDGE 

Lp sees a proposition as a whole, which is given a 
universal value. It is then necessary to decompose this whole 
when we wish to use a singular value. To this end, predicate 
logic meets this need by allowing the desired relationship to 
be modeled directly in the elementary proposition. It then 
becomes possible to model that Socrates is a man, and to 
deduce that Socrates is mortal because a man is a mortal: 

Man(Socrates) 
Man(Socrates) → Mortal(Socrates) 

This syllogism uses the link between Man and Socrates to 
deduce the association with Mortal. In this context, G. Frege 
[6] theorized the notion of universal quantifier. As a classical 
example of use: 

∀ x Man(x) → Mortal(x) 

which reads: whatever x is, if x is a man then x is mortal. We 
note two enrichments with respect to the native modeling 
capabilities of the propositional logic: 

● the notion of the universal quantifier ∀. We will come 
back to the subject of universal connectors at the end 
of the article, 

● the possibility of breaking down a proposition into 
several singular instances. In our example, Men are 
mortal is modeled by using two distinct units, Man 
and x. The expression Man(x) creates a syntactic 
relationship, which formalizes a semantic link, 
between these two-unit elements. 

We have seen in paragraph III that it is not possible to 
model a relation between two atomic propositions in Lp 
because of the symmetric behavior of connectors. We now 
present how this point can be solved in Lc. 

Suppose in Lp the set of propositions {a, b, c, d, e, f} and 
the following theory: 

 ELp  = { a → b, 
  c → d, 
  a → ¬ c, 
  c → (a → e), 
  c → (a → f) } 

We want to model that a → e is a predicate of c – i.e., c is 
the subject of a → e. The problem is that the formula 
c → (a → e) is syntactically equivalent to a → (c → e). 

Now, consider the following set in Lc: 

 ELc  = { c10,2 → (a → b), 
  c20,2 → (c → d), 
  c30,2 → (a → ¬ c), 
  c40,2 → (c → c41,1), 
  c41,1 → (a → e), 
  c50,2 → (c → (a → f))  } 

c40,2 and c41,1 model the predicative knowledge. They 
break the syntactic symmetry, and introduce two new pieces 
of information: 

● the predicate is syntactically distinguished by c41,1, 
● c40,2 says that c41,1 is true if c is true. 

c41,1 is of rank 1, so, by definition, it does not participate 
in epistemic contexts. 

Let c ∧ a be the stimulus. {c10,2, c20,2, c40,2, c50,2} is its 
epistemic context. The perspective associated says 
{c, a, b, d, e, f, c41,1}. The presence of c41,1 indicates that 
a → e is a predicate, but the relationship with its subject c is 
not apparent. 

It can be found by applying the following method: 

● calculate the perspectives of the stimulus c. It says 
{c, ¬ a, d, c41,1}. The predicate c41,1 is obtained by 
c40,2, 

● calculate the perspectives of the stimulus a.  It says 
{a, ¬ c, b}. The thought c41,1 is not syntactically 
produced, 

● apply the predicates associated with each perspective 
to the other perspectives. This produce {e} by 
applying c41,1 to the perspective of a. e is associated 
with the stimulus c associated with the applied 
predicate, 

● and finally, calculate the perspectives of the stimulus 
c ∧ a. This produce {f}. 

If the thought of a predicate appears in a perspective, then 
it expresses that its subject is its stimulus. Unlike in predicate 
logic, the notion of predicate is not modelled in the syntax of 
Lc. It is carried by the semantic meaning of the perspectives. 

This method extends the consumption of epistemic 
contexts by a recursive function: 

The semantics of a complex universe is obtained by 
crossing the semantics of the objects that compose it. 

The semantics of a universe composed of three objects A, 
B and C can only be partially obtained by analyzing the 
perspectives of A ∧ B ∧ C. To obtain a complete 
perception, we must analyze {A}, {B}, {C}, {A, B}, {A, C}, 
{B, C} and {A, B, C} separately, and cross-reference the 
properties associated with these seven different objects. 

We call this method generalized contextual semantics. It 
allows to exhaustively capture the characteristics of each 
object, of each combination of objects, and to calculate cross-
predictive inferences. It seems to produce redundancies. We 
have not studied whether technical optimizations are 
possible. 

VII. INDUCTION AND ABDUCTION 

The contribution of induction and abduction to deduction 
is the imaginative capacity. The modus ponens rule only 
produces what is already inscribed in the premises. In other 
words, it is not capable of anything new: it says what is 
already known. This is the essential condition to guarantee 
the maintenance of the syntactic coherence of a theory of Lp. 

In Lc, syntactic coherence is guaranteed as soon as new 
information is associated with a new thought. This opens the 
doors to the imagination, making any new thought possible. 

Abduction has been formalized by C.S. Peirce [24]. In 
logic, it can be expressed as follows: 

If a → b is true and if b is true, then a is true 

“If I see something flying, I assume it is a bird because 
birds fly”. This is obviously a shortcut in reasoning. 

Induction is identified and studied in logical approach 
since Aristotle. An example of application is the following: 



If a → b is true and if a → c is true, then b → c is true 

Aristotle showed that this is not correct and can lead to 
false conclusions: “The donkey, the mule and the horse live 
long; they are animals without gall; therefore, animals 
without gall live long”. 

In fact, any inductive or abductive production is 
potentially false. Therefore, the statistical tool (at the basis of 
Neuronal Artificial Intelligence) seems to be better suited to 
deal with this subject than the logical tool. 

However, Lc allows to assume a result of the induction of 
the abduction, and to test its credibility. 

“Humans decide on provisional and fallible intuitions, 
even in logical matters” – D. Battens [3] 

Given its fallibilistic property, Lc can consider a thought 
to be true if it is not explicitly contradicted. The use of 
induction and abduction rules is therefore formally possible. 

However, this can lead to completely absurd, even 
explosive, conclusions. For example: if b is true, then, 
whatever a, a → b is true, so a is true. This case can be dealt 
with by restricting the application of the rule to minimal 
clausal forms, but this is not the only pitfall. We will study 
this topic on another occasion. 

VIII. THE ALGORITHMIC COMPLEXITY 

We have not solved the conjecture p=np. The algorithms 
of Lc are those of Lp, thus of exponential complexity. 

Note that our aim is not to model a formal mathematical 
language, but to capture human reasoning through a 
mathematical formalism. In this context, the question 
becomes: why does algorithmic complexity cause a problem 
in the use of a formal language in Artificial Intelligence? 

A first need is to integrate the new piece of knowledge. If 
it generates an inconsistency with existing knowledge, Lp 
faces the problem of the epistemic rooting: what to choose, 
between the old and the new? A mix of the two? 

The contextual postulate guarantees the maintenance of 
the syntactic consistency of the database, whatever the new 
thought integrated. This first need is therefore covered. 

The second need is to be able to analyze the information, 
and its semantic impact. Lc must calculate inconsistent 
contexts, which requires the use of the algorithms of Lp. 

The application of the semantic interpretation function on 
a few dozen formulae will therefore lead to a response time 
problem. But it is possible to take advantage of the properties 
of Lc to concentrate the semantic analysis on a few selected 
pieces of knowledge. The result may be incorrect. 

However, this is what reasoning does all the time. Not a 
day goes by that we do not use conclusions based on 
incomplete assumptions, even though we are aware of all the 
information that would have allowed us to conclude 
correctly. 

In the context of Artificial Intelligence, this second need 
is therefore covered if we accept the fact that human 
reasoning is imperfect: we need to define a function that 
selects, for a given stimulus, a subset of knowledges. The 
semantic interpretation is calculated only on this subset, not 
on the whole knowledge base. 

To achieve this, we propose to exploit the results obtained 
in cognitive science. Lc is well suited to model human 
memory (D. Norman [15]). Indeed, the guarantee of syntactic 
consistency allows a safe distinction between long-term and 
short-term memory. This makes it possible to integrate into 
the algorithm cognitive thresholds from cognitive science 
research: 

● the minimal change in beliefs between tn and tn+1, 
● the evolution criterion, which favors the use of the 

most recent or “primitive” thoughts, 
● the technical incapacity threshold, which limits the 

number of simultaneous thoughts that can be used 
simultaneously, 

● the semantic thresholds: J. Pitrat shows that a human 
is not able to reason on more than four levels of meta-
knowledge [17], 

● the threshold of proportionate reasoning: when 
confronted with a stimulus, the objective is not to 
perform the best theoretical analysis, but to reach a 
level of analysis sufficient to cause a reaction. 

We see a three-level architecture emerging: 

● a long-term memory (LTM), in which knowledge is 
stored as it arrives, 

● a short-term memory (STM), fed by a function that 
selects knowledge from the long-term memory using 
cognitive thresholds, 

● and a working memory (WM), which semantically 
interprets the content of the short-term memory. 

This is a simple first approach, but it already gives some 
results that we find interesting in the context of human 
reasoning - for example, deducing, because we have just 
passed an airport, that the object in the distance in the sky is 
a plane (and not a bird). Note that we use a production rule 
by abduction to obtain this result. 

We are currently enriching the algorithm to integrate 
these notions. Our objective is to be able to study its behavior 
when faced with practical use cases, and to verify that it 
reproduces (with all the limitations associated with this type 
of exercise) reasoning that is more or less identical to that 
which would be observed in a human being. 

IX. EXAMPLE OF AN APPLICATION 

After presenting the theoretical principles of contextual 
logic, we propose to develop an example of application to 
clarify our purpose, and to illustrate the knowledge modeling 
capabilities of Lc. 

To do this, we use the example of the bird Tweety, a 
classic case study in the literature on non-monotonicity and 
belief revision. It would of course have been possible to do 
this with any other subject. 

But underneath its apparent simplicity, the interest of the 
Tweety case is to be understandable by all, while gathering 
all the theoretical problems of non-monotonicity. 

In this paragraph, we will describe in detail the different 
steps, taking the risk of making it sometimes a bit tedious to 
read. 

Example Consider the following knowledge, which we call 
the ENL (for Natural Language) set: 



Birds and felines are animals (01 and 02). Birds are not 
felines (03). Animals are generally diurnal (04). Diurnal animals 
are not nocturnal (05). Birds usually fly (06). They are generally 
insectivorous (07) and gregarious (08). Felines are carnivorous 

(09) and usually solitary (10). Solitaires are not gregarious (11). 
Insectivores are generally not carnivorous (12). 

Swallows, sparrows, ostriches, and owls are bird (13, 14, 15 

and 16). Swallows are not sparrows (17), ostriches (18), or 
owls (19). Sparrows are not ostriches (20) or owls (21). Ostriches 
are not owls (22). Ostriches do not fly (23). Owls are solitary (24), 
nocturnal (25), carnivorous (26), and insectivorous (27). 

Cats and lions are felines (28 and 29). Cats are not lions (30). 
Cats are nocturnal (31). Lions are gregarious (32). 

Carnivores are hunters (33). Herbivores are prey for 
hunters (34). Hunters generally attack prey (35). If the prey is 
larger than the hunter, the latter does not attack (36). Ostriches 
are larger than cats (37) and owls (38). 

ENL is deemed to be not exploitable in the syntax of Lp: it 
contains non-coherent and predicative information. It might 
be possible to model it using the default predicate logic, for 
example. 

We have not attempted this. Our aim is not to compare the 
capabilities of the formalisms, but to show that the syntax of 
Lp is sufficient to model certain knowledge that was, until 
now, deemed to escape it. 

We propose to translate this knowledge into the syntax of 
Lp by the following formulae. 

01 02 Bird ∨ Feline → Animal 
03 Bird → ¬ Feline 
04 Animal → Diurnal 
05 Diurnal → ¬ Nocturnal 
06 Bird → Flying 
07 08  Bird → (Insectivore ∧ Gregarious) 
09 10 Feline → (Carnivore ∧ Solitary) 
11 Gregarious → ¬ Solitary 
12 Insectivore → ¬ Carnivore 
13 14 15 16 (Swallow ∨ Sparrow ∨ Ostrich ∨ Owl) → Bird 
17 18 19 Swallow → (¬ Sparrow ∧ ¬ Ostrich ∧ ¬ Owl) 
20 21 Sparrow → (¬ Ostrich ∧ ¬ Owl) 
22 Ostrich → ¬ Owl 
23 Ostrich → ¬ Flying 
24 25 26 27 Owl → (Solitary ∧ Nocturnal ∧ Carnivore ∧ Insectivore) 
28 29 (Cat ∨ Lion) → Feline 
30 Cat → ¬ Lion 
31 Cat → Nocturnal 
32 Lion → Gregarious 
33 Carnivore → Hunter 
34 Herbivore → (Hunter → Prey) 
35 Hunter → (Prey → Attack) 
36  Hunter → (Prey → (Larger → ¬ Attack)) 
37 38  Ostrich → ((Cat ∨ Owl) → Larger) 

This wording models the knowledge expressed in ENL in 
an “abrupt way”. The next step is to transform this set into its 
normal form. We obtain: 

01 Bird → Animal 
02 Feline → Animal 
03 Bird → ¬ Feline 
04 Animal → Diurnal)    (em) 
05 Diurnal → ¬ Nocturnal 
06 Bird → Flying    (em) 
07 Bird → Insectivore    (em) 
08 Bird → Gregarious    (em) 
09 Feline → Carnivore 

10 Feline → Solitary    (em) 
11 Gregarious → ¬ Solitary 
12 Insectivore → ¬ Carnivore   (em) 
13 Swallow → Bird 
14 Sparrow → Bird 
15 Ostrich → Bird 
16 Owl → Bird 
17 Swallow → ¬ Sparrow 
18 Swallow → ¬ Ostrich 
19 Swallow → ¬ Owl 
20 Sparrow → ¬ Ostrich 
21 Sparrow → ¬ Owl 
22 Ostrich → ¬ Owl 
23 Ostrich → ¬ Flying 
24 Owl → Solitary 
25 Owl → Nocturnal 
26 Owl → Carnivore 
27 Owl → Insectivore 
28 Cat → Feline 
29 Lion → Feline 
30 Cat → ¬ Lion 
31 Cat → Nocturnal 
32 Lion → Gregarious 
33 Carnivore → Hunter 
34 Herbivore → (Hunter → Prey)   (pk) 
35 Hunter → (Prey → Attack)  (em) and (pk) 
36  Hunter → (Prey → (Larger → ¬ Attack))  (pk) 
37  Ostrich → (Cat → Larger)   (pk) 
38   Ostrich → (Owl → Larger)   (pk) 

This transformation has a linear complexity (P. Siegel 
[22]). We have introduced two new pieces of information, 
denoted by (em) and (pk). The explanations will come later. 

For the time being, let us consider that the knowledge is 
entered in the order in which it appears, according to the 
following algorithm: 

For each formula fi 
If fi has a subject, then PK 
Else 

Creating the thought ci0,2 
Creating the formula ci0,2 → fi 
If there is a contradiction, then EM 

 The sentences are processed one after the other. 

01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 
05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Flying) 
07 c070.2 → (Bird → Insec vore) 
08 c080.2 → (Bird → Gregarious) 
09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 
11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insec vore → ¬ Carnivore) 
13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 
20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Flying) 
24  c240.2 → (Owl → Solitary) 

For each sentence, the system asks if there is a subject, 
and the answer is no. The formula is integrated, and the 



system tested its semantic consistency. Until formula 23, 
there is no question. The formula 24 is then integrated. There 
are several possibilities: 

● the STM (see paragraph VIII) can only contain a finite 
number of formulae, for example the last ten arrivals. 
The system does not detect any problem, and the 
process continues with the following sentences. 

● the LTM has more capacity, or benefits from a more 
complex selection function (e.g., using the atomic 
propositions of the incoming formula to search the 
LTM for related sentences). 
A potential inconsistency is then detected: owls are 
birds (16), birds are gregarious (08), owls are solitary (24) 
and gregarious is not solitary (11). So, owls do not exist, 
or they are solitary and not solitary. 
It then asks the instructor, who has two choices: 

o he does not know, or he considers it is normal: the 
semantic inconsistency is accepted, and the 
system moves on to the next step. Note that it is 
the maintenance of syntactic consistency that 
allows this, 

o it indicates that one of the pieces of knowledge 
involved in the inconsistency is true and false. In 
this case, birds are gregarious (08) is sometimes 
true and sometimes false. In this case, the system 
applies the EM module to the indicated formula. 

The EM module is : 

 if fi is of type em 
     Creating the thoughts ci1,3 et ci2,3 

 Creating the formula ci1,3 → ci0,2 

 Creating the formula ci2,3 → ¬ ci0,2 

We have previously identified by (em) the formulae that 
are affected by this module. Let's continue the treatment. We 
obtain: 

01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 

c041.3 → c040.2 
c042.3 → ¬ c040.2 

05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Flying) 

c061.3 → c060.2 
c062.3 → c060.2 

07 c070.2 → (Bird → Insec vore) 
c071.3 → c070.2 
c072.3 → ¬ c070.2 

08 c080.2 → (Bird → Gregarious) 
c081.3 → c080.2 
c082.3 → ¬ c080.2 

09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 

c101.3 → c100.2 
c102.3 → ¬ c100.2 

11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insec vore → ¬ Carnivore) 

c121.3 → c120.2 
c122.3 → ¬ c120.2 

13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 

20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Flying) 
24 c240.2 → (Owl → Solitary) 
25 c250.2 → (Owl → Nocturnal) 
26 c260.2 → (Owl → Carnivorous) 
27 c270.2 → (Owl → Insec vore) 
28 c280.2 → (Cat → Feline) 
29 c290.2 → (Lion → Feline) 
30 c300.2 → (Cat → ¬ Lion) 
31 c310.2 → (Cat → Nocturnal) 
32 c320.2 → (Lion → Gregarious) 
33 c330.2 → (Carnivore → Hunter) 

We come to the formula number 34: 
Herbivore → (Hunter → Prey). Before integration, the 
system asks if it contains a subject. The answer is yes, for 
Herbivore. The PK module is then applied: 

if fi is of type pk 
 // fi is a clause, so it is of type g → h 
 // with g is a conjunction of literals 
 // and h is a disjunction of literals 
 // g is indicated by the instructor 
 Creating the thoughts ci0,2 et ci3,1 

  Creating the formula ci0,2 → g → ci3,1 

  Creating the formula ci3,1 → h 

We have previously identified by (pk) the formulae that 
are affected by this module. 

After application to the whole of ENL, we obtain: 

01 c010.2 → (Bird → Animal) 
02 c020.2 → (Feline → Animal) 
03 c030.2 → (Bird → ¬ Feline) 
04 c040.2 → (Animal → Diurnal) 

c041.3 → c040.2 
c042.3 → ¬ c040.2 

05 c050.2 → (Diurnal → ¬ Nocturnal) 
06 c060.2 → (Bird → Flying) 

c061.3 → c060.2 
c062.3 → c060.2 

07 c070.2 → (Bird → Insec vore) 
c071.3 → c070.2 
c072.3 → ¬ c070.2 

08 c080.2 → (Bird → Gregarious) 
c081.3 → c080.2 
c082.3 → ¬ c080.2 

09 c090.2 → (Feline → Carnivore) 
10 c100.2 → (Feline → Solitary) 

c101.3 → c100.2 
c102.3 → ¬ c100.2 

11 c110.2 → (Gregarious → ¬ Solitary) 
12 c120.2 → (Insec vore → ¬ Carnivore) 

c121.3 → c120.2 
c122.3 → ¬ c120.2 

13 c130.2 → (Swallow → Bird) 
14 c140.2 → (Sparrow → Bird) 
15 c150.2 → (Ostrich → Bird) 
16 c160.2 → (Owl → Bird) 
17 c170.2 → (Swallow → ¬ Sparrow) 
18 c180.2 → (Swallow → ¬ Ostrich) 
19 c190.2 → (Swallow → ¬ Owl) 
20 c200.2 → (Sparrow → ¬ Ostrich) 
21 c210.2 → (Sparrow → ¬ Owl) 
22 c220.2 → (Ostrich → ¬ Owl) 
23 c230.2 → (Ostrich → ¬ Flying) 
24 c240.2 → (Owl → Solitary) 
25 c250.2 → (Owl → Nocturnal) 
26 c260.2 → (Owl → Carnivorous) 
27 c270.2 → (Owl → Insec vore) 
28 c280.2 → (Cat → Feline) 



29 c290.2 → (Lion → Feline) 
30 c300.2 → (Cat → ¬ Lion) 
31 c310.2 → (Cat → Nocturnal) 
32 c320.2 → (Lion → Gregarious) 
33 c330.2 → (Carnivore → Hunter) 
34 c340.2 → (Herbivore → c343.1) 

c343.1 → (Hunter → Prey) 
35 c350.2 → (Hunter → c353.1) 

c351.3 → c350.2 
c352.3 → ¬ c350.2 

 c353.1 → (Prey → Attack) 
36 c360.2 → (Hunter → c363.1) 

c363.1 → (Prey → (Larger → ¬ Attack)) 
37 c370.2 → (Ostrich → c373.1) 

c373.1 → (Cat → Larger) 
38 c380.2 → (Ostrich → c383.1) 

c383.1 → (Owl → Larger) 

We have converted ENL into a set ELc that is fully 
compatible with the syntax of propositional logic. It is Lp 
consistent. This process requires some comments: 

● thoughts are indeed silent atomic propositions. They 
appear completely automatically in the syntax. The 
communication interface with the instructor does not 
see them, and only acts through the atomic 
propositions of Lp, 

● the properties of Lc simplify the revision of beliefs: it 
is only done by adding the new pieces of knowledge, 
without ever modifying the knowledge already 
entered in the system. 
In case of error, it is possible to “cancel” a knowledge 
ci,2 → f by creating a thought cix,3, and integrating the 
formula cix,3 → ¬ ci,2. The combinatorics on the 
maximal contexts of Tm means that ci,2 is not retained 
in the epistemic contexts. 

● Hunter → (Prey → Attack) (formula number 35) uses 
simultaneously a predicate and an epistemic modality: 
it is false if the prey is large (formula number 36). 

To obtain epistemic contexts is very tedious, so we have 
computerized the process to overcome this difficulty. To do 
this, we use a classical propositional logic solver (to calculate 
the minimum inconsistent contexts) and a classical 
combinatorial algorithm (using the minimum inconsistent 
contexts to calculate the epistemic perspectives). 

Here are some examples obtained by applying general 
contextual semantic interpretation function (we suppose the 
STM is the LTM, i.e., paragraph VIII): 

● if the stimulus is Bird or Swallow: birds (or swallows) 
are animals, diurnal, gregarious, insectivore, and fly, 

● if the stimulus is Ostrich: ostriches are birds, 
insectivore, gregarious, diurnal, and do not fly, 

● if the stimulus is Owl: owls are birds, carnivorous, 
solitary, nocturnal, and fly, 

● if the stimulus is {Cat, Sparrow}: the sparrow is 
attacked. We use the general contextual semantic. 
With the stimulus Cat, we obtain all properties of cats. 
It is a hunter; it is not a sparrow; etc. And if it meets a 
prey it attacks. 
With Sparrow, we obtain all properties of Sparrow. It 
is a prey, and it is not à cat. 
Finally, we use generalized contextual semantics to 
cross the perspectives of Cat and Sparrow. We obtain 
a context that verifies the predicate c353,1, and 
associates this predicate with the hunting cat through 
the thought of c350,2. 

● if the stimulus is {Cat, Owl, Sparrow, Ostrich}: the 
sparrow is in a bad way, but the ostrich can go about 
its business. 
To obtain the set of knowledges from this stimulus, 
we need to interpret the relevant models of {Cat}, 
{Owl}, {Sparrow} and {Ostrich} separately, then the 
pairs {Cat, Owl}, {Cat, Sparrow}, {Cat, Ostrich}, 
{Owl, Sparrow}, {Owl, Ostrich} and {Sparrow, 
Ostrich} then the triplets, etc. The order in which the 
proposals are processed is not important, 

● and if the stimulus is {Lion, Ostrich}, the ostrich 
would have some reason to be worried. 

X. CONCLUSION 

By applying contextual postulate to propositional logic, 
we obtain a formal language which, while strictly respecting 
the syntax of Lp, allows to model the notions of incoherence 
and predicate. Lc's contribution to the family of non-
monotonic logics is to propose a fallibilist and perspectivist 
formalism. 

This result echoes a fundamental question: is human 
reasoning fallibilist and perspectivist? It is still open (see H. 
Albert [1] and W. Quine [19] for example). 

If the answer is no, contextual logic is probably to be 
studied as a mathematical curiosity given its specific 
properties. If the answer is yes, the contextual postulate offers 
an alternative to Symbolic Artificial Intelligence. 

Some points of clarification 

We have certainly not answered all the questions that this 
work raises. But there are also some topics that we have 
deliberately skimmed over so as not to make our remarks 
totally indigestible. We list them below, in a thought-
provoking format for interested readers. 

1) We indicate that we associate a new thought with each 
clause of the normal form of the theory. This has an impact 
on the semantic interpretation: for the same stimulus, the 
interpretation on the set {c1 → f, c2 → g} can be different 
from the one that would be obtained on the set {c → f ∧ g}.  

We have no theoretical argument to justify the choice we 
have made but only a pragmatic explanation: the conversion 
of a set of formulae into its minimal normal form is achieved 
by a linear algorithm, and each clause identifies a unique 
formula and therefore a unique thought. 

2) Concerning the semantic interpretation function, we 
propose the definition of epistemic contexts to identify the 
relevant sets of thoughts. Other definitions are possible. We 
have retained the one that gave us the closest results to human 
reasoning on the different tests we carried out. 

Another approach, perhaps more purist, would have 
consisted in giving the different possible definitions and 
comparing their mathematical properties. There is a lot of 
methodical work to be done here. 

3) Another point is about the concept of universal connector. 
For example, the difference between predicate logic and 
contextual logic is that the latter has no universal quantifier. 
In fact, Lc natively models a form of quantifier. For example, 
assume a knowledge base consisting of a single piece of 
information: {c → Bird → Flying}. This says that Birds fly. 
Given this piece of knowledge, it would be the same to say 
All birds fly. 



In Lc, the notion of universality is not carried by a 
syntactic quantifier. It is deduced from the semantic 
interpretation: a state is universal as long as it is not explicitly 
contradicted. 

The same applies to the modal connector of necessity: in 
a fallibilist approach, since nothing is certain, nothing can be 
written as universal in the syntax. This notion can only fall 
within the scope of semantic interpretation. 

4) As far as natural languages are concerned, the contextual 
postulate reinterprets their relationship with formal 
languages. Contrary to the most common opinion, our 
intuition is that a formal language is a language “like any 
other” as soon as it is used in its contextual form. 

In effect, the postulate repositions the medium of 
expression as the primary goal. 

The ability to reason takes a back seat, as an opportunity 
effect of the properties of the language. We are currently 
studying the work of J. Piaget [16] to challenge this intuition 
– and to move automatically from ELc to ENL. 

5) Contextual logic introduces the notion of stimulus. We use 
it in the different examples as an imposed external event. It 
generates a need for the system to react, and the semantic 
interpretation focuses on identifying the perspectives that 
verify the stimulus. 

It can also be used to analyze a hypothesis. In this case, 
the stimulus does not have to be in a form f, but in a form 
c → f. The semantic interpretation will then look for the 
different perspectives that verify or not verify c. Note that not 
checking c does not prejudge the truth value of f. 

6) In the example developed in paragraph XI, we have only 
brought in the notion of subject from formula 34. In absolute 
terms, this should have been done from the first sentence. We 
could have covered the different possible answers by 
extending the list of formulae. But this would have made the 
writing unreadable, without any contribution to what we want 
to demonstrate. 

In fact, this remark is not insignificant. It raises some 
questions as: are we saying the same thing with a → b and 
¬ b → ¬ a? The question is about the meaning of connectors. 
It has been extensively studied, notably by J. Lukaszewicz 
[13]. 

Without elaborating on the subject, let us point out to 
readers interested in this topic that Lc proposes an answer. 
c → f says that if c is true then f is true. But if c is false, f can 
be true or false: the fact that a thought is false does not imply 
that the expression that describes it is false in the sense of 
syntactic interpretation. 

7) We use some results from cognitive science to get around 
the problem of algorithmic complexity. In parallel, we are 
working on a technical solution that uses the properties of 
Horn clauses (A. Horn [9], used for example by A. 
Colmerauer and his teams [8] for the Prolog programming 
language). 

We have indicated that we transform the formulae to their 
normal form, and then consider the individual clauses. Each 
has a form f → g, for f a conjunction of positive literals and g 
a disjunction of positive literals. We propose to decompose 
f → g by a set of formulae f → ai, for ai each literal of g. 

Thus, a formula like a → (b ∨ c) is expressed by two 
distinct knowledges c1 → (a → b) and c2 → (a → c). The 
sense of this operation is: 

If a is true and if a → (b ∨ c) is true, then b and c are 
true or conceivable unless explicitly contradicted. 

It is a weakened modus ponens rule. Its use as it stands 
leads to the equivalent of the explosion principle. Its formal 
drafting therefore requires further study, limiting for example 
the application of this rule to minimal clausal forms. We 
analyze the level of loss of expression that this induces to 
evaluate its semantic relevance in the context of human 
reasoning. 

Its technical contribution would be considerable: at the 
cost of a linear multiplication of the size of the theory, we 
would benefit from a resolution algorithm of polynomial 
complexity – versus the exponential complexity of the 
original algorithms of Lp. 
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