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Abstract

Satisfiability problem for modal logic K with quantifier-free Presburger and regularity
constraints (EML) is known to be pspace-complete. In this paper, we consider its
extension with nonregular constraints, and more specifically those expressed by visibly
pushdown languages (VPL). This class of languages behaves nicely, in particular when
combined with Propositional Dynamic Logic (PDL). By extending EML, we show that
decidability is preserved if we allow at most one positive VPL-constraint at each modal
depth. However, the presence of two VPL-contraints or the presence of a negative
occurrence of a single VPL-constraint leads to undecidability. These results contrast
with the decidability of PDL augmented with VPL-constraints.

Keywords: Presburger constraint, context-free constraint, decidability

1 Introduction

Presburger modal logics. Graded modal logics are extensions of modal logic K
in which the modality 3 (see e.g. [5]) is replaced by 3>n; the formula 3>n p
states that there are at least n successor worlds satisfying the proposition p,
early works about such counting operators can be found in [15,4,10]. In [30],
the minimal graded modal logic, counterpart of the modal logic K, is shown
decidable in pspace. Recent complexity results can be found in [20], see also
enriched logics with graded modalities in [21,6]. Nevertheless, richer arith-
metical constraints about successor worlds are conceivable. For instance, in
the majority logic [25], one can express that more than half of the successors
satisfy a given formula. All of the above constraints, and many more, are ex-
pressible in Presburger arithmetic (PrA), the decidable first-order theory of
natural numbers with addition. In the sequel, Presburger modal logics refer
to logics admitting arithmetical constraints from PrA. Not only arithmetical
constraints from graded modal logics have been considered in several classes of
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2 Beyond Regularity for Presburger Modal Logics

non-classical logics, including epistemic logics [31] and description logics [18,9,3]
but also pspace-complete logics with richer arithmetical constraints have been
designed [27,13,11]. If the pspace upper bound is given up, modal-like logics
with more expressive Presburger constraints on the number of children can be
found in [21,34,28].

Assuming that the children of a node are ordered, it is possible to enrich
Presburger modal logics with regularity constraints related to the ordering of
siblings. This is particularly meaningful to design logical formalisms to query
XML documents viewed as finite ordered unranked labeled trees; such logical
and automata-based formalisms can be found, e.g., in [34,28]. For instance, a
logic with fixpoint operators, arithmetical and regularity constraints is intro-
duced in [28] and shown decidable with an exponential-time complexity, which
improves results for description logics with qualified number restrictions [9].
Similarly, the main goal of [13] was to introduce a Presburger modal logic
EML with regularity constraints as in the logical formalisms from [33,34,28]
with a satisfiability problem that could still be solved in polynomial space.

Our motivations: beyond regularity. The pspace upper bound established
in [13] for the satisfiability problem for EML is based on a Ladner-like algo-
rithm [22]. Moreover it takes advantage of the properties that the commutative
images of context-free languages (CFLs) are effectively semilinear [26] and sat-
isfiability for existential Presburger formulae can be solved in np thanks to
the existence of small solutions [7]. In this paper, our goal is to revisit decid-
ability and complexity results for Presburger modal logics when context-free
constraints are considered instead of regular ones. Usefulness of such contraints
is best witnessed by their use to define Document Type Definitions (DTDs) for
XML documents or to express nonregular programs as done in [23], but the
paper focuses on decidability issues. However, it is not reasonable to expect
that adding all context-free languages (CFLs) would preserve decidability. We
are aware of several situations in which such an extension does not preserve
decidability. For instance, PDL with regular programs augmented with the
context-free program {aibai : i > 0} is known to be undecidable [17]. On the
other hand, PDL augmented with context-free programs definable by semi-
simple minded pushdown automata is decidable [16]. In such pushdown au-
tomata, the input symbol determines the stack operation to be performed, the
next control state and the symbol to be pushed in case of a push operation.
The ultimate decidability result has been obtained for PDL augmented by pro-
grams definable by visibly pushdown automata (VPA) [23]. These automata
are introduced in [1] (see also the equivalent class of input-driven pushdown au-
tomata in [24]) and are motivated by verification problems for recursive state
machines. They generalize the semi-simple-minded pushdown automata since
we only require that the input symbol determines the stack operation.

The initial motivation for this work is to understand the decidability status
of EML augmented with context-free constraints from VPAs (VPL-constraints).
Also, the decidability proof for EML takes advantage of the Boolean closure of



Carreiro and Demri 3

regular languages, which is also the case for visibly pushdown languages [1]
(complementation can be performed in exponential time and causes -only- an
exponential blow-up [1]). Moreover, by [32], from a VPA, one can compute in
linear time a simple Presburger formula whose solutions are the Parikh image
of its language. This may allow us to extend [13]. Hence, boosted by the
decidability and complexity results from [23] for PDL with VPA and by the
nice properties of VPLs, we aim at understanding how much of the power of
context-free constraints can be added to EML while still preserving decidability.

Our contributions. We can distinguish three types of contributions: showing
that different extensions of EML have identical expressive power, proving un-
decidability results when context-free constraints are present in formulae and
establishing decidability for the satisfiability problem of EML extended with
restricted context-free constraints.

• EML extended with VPL-constraints such that at each depth, there are at
most i such constraints (written EMLi(VPL)) is expressively equivalent to
EML extended with CFL-constraints such that at each depth, there are at
most i such constraints (written EMLi(CFL)).

• We show that a strict fragment of EML2(CFL), with only positive CFL-
constraints, and a strict fragment of EML1(CFL), with a single CFL-cons-
traint occurring negatively, have undecidable satisfiability problems.

• Last, but not least, we show that EML+1 (CFL), a fragment of EML1(CFL)
but a substantial extension of EML, has a decidable satisfiability problem
by extending the proof technique from [13]. Herein, EML+1 (CFL) denotes
the fragment of EML1(CFL) in which at each depth, there is at most one
context-free constraint and it occurs positively plus additional more technical
conditions. Positive occurrences of constraints shall be defined in Section 2
and this notion slightly differs from the one that only counts the number of
negations. This is the best we can hope for in view of the previous results.

It was unexpected that EML2(VPL) is already undecidable. Decidability can
be regained if only one VPL-constraint occurs positively at each depth. If only
one VPL-constraint may occur negatively at each depth, then undecidability is
back. This contrasts with the decidability of PDL extended with VPAs [23] or
with the undecidability of LTL extended with a fixed VPA [12]. Since modal
logic K is a fragment of PDL, this seems to contradict the undecidability of
EML2(CFL). However, language-based constraints on PDL are related to paths
whereas in EML it is related to the ordering of successor worlds. Moreover, a
CFL-constraint L(p1, . . . , pn) on the children can be turned into an arithmetical
constraint by using Parikh’s Theorem [26]. In a sense, CFL-constraints on the
successor worlds can be handled by arithmetical constraints. Again, this seems
to contradict the undecidability of EML(CFL) fragments; this contradiction
vanishes if we recall that the Parikh image of L is not equal to the complement
of the Parikh image of L and the Parikh image of the intersection of two CFLs
is not equal to the intersection of the Parikh images of the languages. Hence,
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only isolated CFL-constraints (without other language-based constraints) can
be safely replaced by arithmetical constraints.

2 Preliminaries

In this section, we recall the extended modal logic EML and we present exten-
sions based on CFLs. In particular, we shall recall what VPLs are.

2.1 Extended Modal Logic EML

The logics studied in this paper extend the logic EML that has Presburger
and regularity constraints. Given a countably infinite set AT = {p1, p2, . . . }
of propositional variables, the set of terms and EML formulae is inductively
defined as follows

t ::= a× ]ϕ | t+ a× ]ϕ
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | t > b | t ≡k c | L(ϕ1, . . . , ϕn)

where

• b, c ∈ N, k ∈ N \ {0, 1}, a ∈ Z \ {0}.
• L is any regular language specified by a finite-state automaton.

A model for EML is a structure 〈T,R, (<s)s∈T , l〉 where T is the (possibly
infinite) set of nodes and R ⊆ T 2 such that the set {t ∈ T : 〈s, t〉 ∈ R} is finite
for each s ∈ T . Each relation <s is a total ordering on the R-succesors of s
and l : T → 2AT is the valuation function. We write R(s) = s1 < · · · < sm if
the children of s are s1, . . . , sm and they are ordered this way. The satisfaction
relation is inductively defined as follows (we omit Boolean clauses):

• M, s |= p iff p ∈ l(s),
• M, s |=

∑
i ai]ϕi ≡k c iff there is n ∈ N such that

∑
i aiR

]
ϕi(s) = nk + c

with Rϕi = {〈s′, s′′〉 ∈ T 2 : 〈s′, s′′〉 ∈ R, and M, s′′ |= ϕi} and R]ϕi(s) =
card(Rϕi(s)),

• M, s |=
∑
i ai]ϕi > b iff

∑
i aiR

]
ϕi(s) > b,

• M, s |= L(ϕ1, . . . , ϕn) iff the finite sequence of children of the node s induces
a finite pattern from L. More precisely, iff there is ai1 · · ·aim ∈ L such that
given the children of s, R(s) = s1 < · · · < sm, for every j ∈ [1,m], we have
M, sj |= ϕij (L is any regular language).

A formula ϕ is satisfiable iff there is a model M and a node s such that
M, s |= ϕ. The satisfiability problem is defined accordingly. Observe that
although arithmetical constraints are only allowed to use >, the operators
{=, <,6} can be easily defined using Boolean combinations and constants (no
exponential blow-up occurs if renaming is used). Hence, we will use them as
abbreviations.

Modalities from K and graded modal logic can also be defined in EML. We

use the abbreviation 2ϕ
def
= ¬(]¬ϕ > 0). Despite the fact that EML extends

graded modal logics with richer arithmetical constraints but also with regularity
constraints, the satisfiability problem for EML is pspace-complete [13].
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Now, let us recall what formula trees are. They will be used to define the
different fragments that we will be working with. A finite tree T is a finite
subset of (N \ {0})∗ such that ε ∈ T and if s·i ∈ T , then s ∈ T and s·j ∈ T
for j ∈ [1, i− 1]. The nodes of T are its elements. The root of T is the empty
word ε. All notions such as parent, child, subtree and leaf, have their standard
meanings. A formula tree is a labelled tree 〈T , `〉 representing a formula ϕ (the
label set being a set of subformulae), i.e.

• `(ε) = ϕ. If `(s) = ψ1 ⊕ ψ2 with ⊕ ∈ {∨,∧}, then s has two children,
`(s·1) = ψ1 and `(s·2) = ψ2 (¬ has a similar clause).

• If `(s) = L(ϕ1, . . . , ϕn), then s has n children and for all j ∈ [1, n], we have
`(s·j) = ϕj (formulae

∑
i ai]ϕi > b and

∑
i ai]ϕi ≡k c have similar clauses).

EML formulae are encoded as formula trees and occurrences of ψ in ϕ corre-
spond to nodes of the formula tree for ϕ that are labelled by ψ. Given a formula
tree 〈T , `〉, we define its polarity tree 〈T , `POL〉 as follows:

• `POL(ε) = 1. If `(s) = ¬ψ, then `POL(s·1) = (1− `POL(s)).

• If `(s) = ψ1 ⊕ ψ2 with ⊕ ∈ {∨,∧}, then `POL(s·1) = `POL(s·2) = `POL(s).

• If `(s) =
∑
i ai]ϕi > b or `(s) =

∑
i ai]ϕi ≡k c or `(s) = L(ϕ1, . . . , ϕn), then

for all j, we have `POL(s·j) = `POL(s).

Given a formula tree 〈T , `〉, we define its depth tree 〈T , `DEP〉 as follows:

• `DEP(ε) = 0. If `(s) = ¬ψ, then `DEP(s·1) = `DEP(s).

• If `(s) = ψ1 ⊕ ψ2 with ⊕ ∈ {∨,∧}, then `DEP(s·1) = `DEP(s·2) = `DEP(s).

• If `(s) =
∑
i ai]ϕi ≡k c or `(s) = L(ϕ1, . . . , ϕn) or `(s) =

∑
i ai]ϕi > b then

for all j, we have `DEP(s·j) = 1 + `DEP(s).

Intuitively, this last definition assigns the modal-arithmetical depth to the sub-
formula in each node. By way of example, we present the formula tree for
¬(]p > 3) ∨ ¬L(p, q) together with its polarity tree and its depth tree.

ε

1 2

2·1

2·1·1 2·1·2

1·1

1·1·1

¬(]p > 3) ∨ ¬L(p, q)

¬(]p > 3) ¬L(p, q)

L(p, q)

p q

(]p > 3)

p

formula tree

1

1 1

0

0 0

0

0

polarity tree

0

0 0

0

1 1

0

1

depth tree

2.2 Extensions with CFL-constraints

Let us briefly fix some notations about pushdown automata. A pushdown
automaton (denoted by PDA) M is a tuple 〈Q,Σ,Γ, δ, q0,⊥, F 〉 where Q is a
finite set of states, Σ (resp. Γ) is the finite input (resp. stack) alphabet, δ is
a mapping of Q × (Σ ∪ {ε}) × Γ into finite subsets of Q× Γ∗, q0 ∈ Q is the



6 Beyond Regularity for Presburger Modal Logics

initial state, ⊥ is the initial stack symbol, F ⊆ Q is the set of accepting states.
A configuration 〈q, α, γ〉 is an element of Q × Σ∗ × Γ∗. Initial configurations
are of the form 〈q0, ε,⊥〉. The one-step relation ` (with respect to M) between
configurations is defined as follows: 〈q, α, bγ〉 ` 〈q′, αa, γ′γ〉 whenever there is
〈q′, γ′〉 ∈ δ(q, a, b). As usual, `∗ is the reflexive and transitive closure of `.
We write L(M) to denote the language accepted by the pushdown automaton
M when acceptance is by final states, i.e. L(M) = {α ∈ Σ∗ : 〈q0, ε,⊥〉 `∗
〈q, α, γ〉 with q ∈ F}.

A pushdown alphabet Σ is an alphabet equipped with a partition 〈Σc,Σi,Σr〉
such that the letters in Σc are calls (corresponding to push actions on the stack),
the letters in Σi are internal actions (no action on the stack) and the letters in
Σr are returns (corresponding to pop actions on the stack). A visibly pushdown
automaton (VPA) over Σ is defined as a PDA except that the input letters in Σ
determine which actions are performing on the stack according to the partition
〈Σc,Σi,Σr〉. More precisely, a VPA M over a pushdown alphabet 〈Σc,Σi,Σr〉
is a PDA without ε-transitions and such that for all states q, input symbols
a ∈ Σ and stack symbols b ∈ Γ,

• a ∈ Σc and 〈q′, γ〉 ∈ δ(q, a, b) imply γ = b′b for some b′ ∈ Γ (call),

• a ∈ Σi and 〈q′, γ〉 ∈ δ(q, a, b) imply γ = b′ (internal action),

• a ∈ Σr and 〈q′, γ〉 ∈ δ(q, a, b) imply γ = ε (return).

A visibly pushdown language (VPL) is a language accepted by a VPA. By [1],
given two VPLs L1 and L2 over the same pushdown alphabet Σ, L1∪L2, L1∩L2

and Σ∗ \ L1 are also VPLs and one can effectively compute the corresponding
VPA.

Given a class C of languages (made of finite words from finite alphabets),
we define the modal logic EML(C) interpreted over finitely-branching Kripke
structures such that EML(C) is an extension of EML by allowing formula
L(ϕ1, . . . , ϕn) with L ∈ (C ∪ REG) where REG is the class of regular lan-
guages. In this paper, C is either the class of context-free languages (denoted
by CFL) or the class of visibly pushdown languages (denoted by VPL). Of
course, elements of C need to be represented finitely; to do so, when L ∈ CFL,
L is specified either by a PDA or by a context-free grammar (CFG). Moreover,
when L ∈ VPL, L is specified by a VPA. Obviously, EML = EML(REG). Let
EMLi(C) be the set of formulae ϕ in EML(C) such that for any depth j in its
depth tree, there are at most i nodes labelled by formulae of the form L(· · ·)
with L ∈ C. For example, L1(p, q) ∧ L2(p, q) ∧ ¬L3(p, q) ∈ EML1(CFL) with
L1,L2 ∈ REG and L3 ∈ CFL.

2.3 Properties expressible in EML(CFL)

It is obvious that EML(CFL) is at least as expressive as EML. However, the
fact that there are context-free languages that are not regular is not sufficient
to conclude that EML(CFL) is strictly more expressive than EML since the
languages are embedded in a logical context. In fact, in Section 3, we show
that EML(VPL) is as expressive as EML(CFL) even though VPL is strictly
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included in CFL. In the paragraphs below, we explore the relationships between
properties expressible in EML and those expressible in EML(CFL). Towards the
end of the section, we finally show that EML(CFL) is strictly more expressive.

Let us express in EML(CFL) that there are no children of distance exactly
2N+1 such that the first child satisfies p and the second one satisfies q. This
property can be instrumental for reducing tiling problems and, with it, establish
complexity lower bounds. Let L be the language defined by the context-free
grammar below (S is the axiom):

S → TaSNS
?
NbT, T → c, T → TT, T → ε,

SN → SN−1SN−1, S
?
N → SN−1S

?
N−1, · · · , S2 → S1S1, S

?
2 → S1S

?
1 ,

S1 → cc, S?1 → c

One can check that ¬L(p, q,>) whenever there are no children of distance
exactly 2N+1 such that the first child satisfies p and the second one satisfies
q. Note that L is a regular language (even though it is defined with a CFG)
and therefore such a property can be also expressed in EML. However, this can
be done much more succinctly in EML(CFL) since the context-free grammar is
of linear size in N . So, we can conclude that EML(CFL) is at least a succinct
version of EML.

Now, let us turn to a genuine context-free property: the sequence of children
can be divided into two sequences of equal cardinality such that every child of
the first part satisfies p and every child of the second part satisfies q which
is a quite natural property to express. In EML(CFL), this statement can be
expressed by L(p ∧ ¬q, q ∧ ¬p) with the context-free language

L = {aibi : i ∈ N}

However, it is not difficult to show that the formula (]p = ]q)∧L′(p∧¬q, q∧¬p)
in EML can also express exactly the same property where L′ = a∗b∗. In a sense,
formulae in EML(CFL) can be viewed as macros for formulae from EML. This
is analogous to the situation in modal logic K for which we may consider only
one of the operators 2 and 3 or both in order to make the formulae clearer.
So, EML(CFL) is at least a more friendly version of EML.

The key question remains whether EML(CFL) is strictly more expressive
than EML. By generalizing the above reasoning, one can show that context-
free constraints of the form L(· · ·) can be expressed in EML if there are a formula
ψ from PrA and a regular language L′ such that for every α ∈ Σ∗, we have
α ∈ L iff the Parikh image of α satisfies ψ and α ∈ L′. Note that {aibi : i ∈ N}
precisely satisfies this condition. Such context-free languages L definable by
a Presburger formula and by a regular language are exactly the context-free
languages definable by so-called Parikh automata, see e.g. [8].

The constraints on children that are expressible in EML are Boolean com-
binations of arithmetical constraints and regular constraints. Such formulae
can be reduced equivalently to a disjunction such that each disjunct is a con-
junction made of a Boolean combination of arithmetical constraints and made
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of a regular constraint of the form A(· · ·). Indeed, a conjunction of positive
or negative regular constraints can be equivalently turned into a single regular
constraint. Hence, EML(CFL) is strictly more expressive than EML if there is
a context-free language that cannot be recognized by a Parikh automaton. Let
us consider the language

LREV = {αcαrev : α ∈ {a, b}}

where αrev is the reverse of α. For instance

LREV (p ∧ ¬q ∧ ¬r, q ∧ ¬p ∧ ¬r, r ∧ ¬p ∧ ¬q)

roughly states that the sequence of children can be divided into three parts
such that the sequence of the first part is the mirror image of the sequence
of the third part and the second part is reduce to a single child satisfying
r ∧ ¬p ∧ ¬q. By adapting the proof of [8, Proposition 3], one can show that
LREV is a context-free language that is not definable by a Parikh automaton
and therefore EML(CFL) is stricly more expressive that EML, which is after all
not a big surprise.

3 On the Expressive Power of EML(VPL)

We show that the logic EML(VPL) has the same expressive power as
EML(CFL). It is clear that every VPL is a CFL and therefore EML(CFL)
is at least as expressive as EML(VPL). For the other direction, we state that
every CFL L over an alphabet Σ can be transformed into a VPL L′ over the
pushdown alphabet 〈Σ× {c},Σ× {i},Σ× {r}〉 such that π1(L′) = L where π1
is the projection over the first component, i.e. π1 erases the second compo-
nent whose value is among {c, i, r}. With this ‘embedding’ we will be able to
show that EML(VPL) is as expressive as EML(CFL) using a truth-preserving
reduction.

Theorem 3.1 ([2, Theorem 5.2]) For any CFL L over the alphabet Σ, we
can effectively build a VPA M over the alphabet ΣM = 〈Σ×{c},Σ×{i},Σ×{r}〉
such that for all α ∈ Σ∗, we have α ∈ L iff there is α′ ∈ L(M) s.t. π1(α′) = α.

Proof. Let M ′ = 〈Q,Σ,Γ, q0, δ,⊥, F 〉 be a PDA such that L(M ′) = L. With-
out loss of generality we can also assume that (i) no ε-transitions are used
and (ii) the net effect (on the stack) of any transition is null or it pushes
or pops one symbol. Define the VPA M = 〈Q,ΣM ,Γ, q0, δ′,⊥, F 〉 with
ΣM = 〈Σ×{c},Σ×{i},Σ×{r}〉 such that δ′ is the minimum relation satisfying

for every transition q → q′ in M ′ there is a transition q → q′ in M
reading w/stack top action reading w/stack top pushing

Call a b′ push b 〈a, c〉 b′ b′b
Return a b′ pop b′ 〈a, r〉 b′ ε
Internal a b′ – 〈a, i〉 b′ b′

Intuitively, we simulate the associated PDA by annotating the input word
with information on how the stack is managed. The proof follows from the fact
that there is a 1-to-1 correspondence between the transitions of M and M ′. 2
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Now we can show that the fragment EML(VPL) is at least as expressive
as EML(CFL). This result is surprising because, as we said before, the class
of VPLs is strictly included in the class of CFLs. To prove this claim, we
give a truth-preserving translation T : EML(CFL) → EML(VPL) defined in-
ductively over the terms and formulae. T is defined homomorphically for all
Boolean connectives; arithmetical and periodicity constraints are translated as

T(t > b)
def
= T(t) > b, T(t ≡k c)

def
= T(t) ≡k c and the terms are defined as fol-

lows T(a× ]ϕ)
def
= a× ]T(ϕ), T(t+a× ]ϕ)

def
= T(t)+a× ]T(ϕ). The translation

is handled differently for regular and context-free languages.

T(L(ϕ1, . . . , ϕn))
def
= L(T(ϕ1), . . . ,T(ϕn)) if L ∈ REG

T(L(ϕ1, . . . , ϕn))
def
= L′(T(ϕ1),T(ϕ1),T(ϕ1), . . . ,T(ϕn),T(ϕn),T(ϕn)) if L ∈ CFL.

where L′ is a VPL built thanks to Theorem 3.1. Note that this is only needed
if L is a CFL (hence represented by a PDA) whereas when L is in REG, the
translation is homomorphic. The different numbers of arguments are due to the
fact that the cardinal of the alphabet of M ′ is equal to three times the cardinal
of Σ. Assuming that the alphabet of M ′ is grouped by their first component,
the above translation assigns the same formula to symbols sharing the same
first component. So, T(ϕ) can be effectively computed from ϕ. Moreover, an
exponential blow-up is observed if formulae are encoded as formula trees, unlike
the case when formulae are encoded as directed acyclic graphs.

Lemma 3.2 Let ϕ ∈ EML(CFL). For all models M = 〈T,R, (<s)s∈T , l〉 and
nodes s ∈ T , we have M, s |= ϕ iff M, s |= T(ϕ).

Proof. We prove the result by structural induction. The base case as well as
the cases in induction step for Boolean connectives, regularity constraints and
arithmetical constraints are by an easy verification. We focus on the remaining
case with context-free constraints.

Left to right: Suppose that M, s |= L(ϕ1, . . . , ϕn) and the alphabet of L is
Σ = {a1, . . . , an}. There is a word α = aj1 . . . ajm ∈ L and children s1, . . . , sm
such that si |= ϕji for i ∈ [1,m]. Using the properties satisfied by L′ ∈ VPL,
we know that there is α′ ∈ L′ such that π1(α′) = α. It is enough to show that
for all i, if π1(α′(i)) = aj then si |= T(ϕj) and this is clearly satisfied byM by
induction hypothesis.

For the other direction, suppose that M, s |= T(L(ϕ1, . . . , ϕn)). Hence,
there exist α′ ∈ L′ and children s1, . . . , sm. Using again the properties satisfied
by L′ ∈ VPL, it is clear that π1(α′) ∈ L. Observe also that any child sjk
corresponding to a symbol (ajk , action) satisfies sjk |= T(ϕjk). With this
observation we conclude, by induction hypothesis, that s1, . . . , sm satisfy the
needed formulae and thus M, s |= L(ϕ1, . . . , ϕn). 2

Observe that the translation T preserves the number of context-free constraints
at each depth. Furthermore, polarity of the subformulae is preserved. Conse-
quently, we can state the following result for several fragments.

Theorem 3.3 There is a reduction from EML(CFL) [resp. EMLi(CFL)] sat-
isfiability to EML(VPL) [resp. EMLi(VPL)] satisfiability.
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The exponential blow-up in T for EML(CFL) formulae can be avoided using
the renaming technique, whence by introducing new propositional variables.
The formula and its translation would not be logically equivalent but they
would be equi-satisfiable. Theorem 3.3 states relationships between fragments
that will have an important impact on the expressive power and decidability
of the logic EML(VPL). Recall that the class of VPLs forms a Boolean algebra
and they behave nicely with other logics. Hence, we expected to be able to
get numerous positive decidability results as well. From Theorem 3.3, we can
conclude that adding VPLs to EML is as powerful as adding the full class of
CFLs. In the forthcoming section, we investigate the decidability status of
several extensions of EML with CFL-constraints or VPL-constraints.

4 Undecidable Extensions of Presburger Modal Logics

We start by extending EML with CFLs and VPLs and show that they are
already undecidable when we allow two positive language constraints to appear
simultaneously. Moreover, we show that if we allow negative occurrences of
language constraints, we already get undecidability with just one language
constraint.

Undecidability of WEML+2 (CFL). Let WEML+2 (C) be the fragment of
EML2(C) defined as the restriction of the set of formulae specified by

ϕ ::= p | ¬p | ϕ ∧ ϕ | L(ψ1, . . . , ψn)

where L ∈ C, ψi are propositional formulae and ϕ has at most two language
constraints from C.Observe that this fragment does not include arithmetical
constraints.

Theorem 4.1 The satisfiability problem for WEML+2 (CFL) is undecidable.

Proof. The proof is by reduction from the nonemptiness problem for the inter-
section of CFLs. Let L1,L2 be two CFLs. We assume that both languages share
the same alphabet Σ = {a1, . . . , an} (if it is not the case, we take Σ as the union
of their alphabets). Let ϕi be a formula stating that pi is the only propositional
variable holding among {p1, . . . , pn}. Let ψ = L1(ϕ1, . . . , ϕn)∧L2(ϕ1, . . . , ϕn).
We prove that ψ is satisfiable iff L1 ∩ L2 6= ∅.

For the ‘if’ direction suppose that M, s |= ψ and there exist a sequence of
children s1, . . . , sk and words α1 ∈ L1, α2 ∈ L2 such that |α1| = |α2| = k. Let
w1 = ai1 . . . aik and w2 = aj1 . . . ajk . Note that for ` ∈ {1, 2}, α`(i) = aj iff
si |= pj . As only one propositional variable can be true of a given child then
we can conclude that α1 = α2 and therefore L1 ∩ L2 6= ∅. For the ‘only if’
direction: Let α ∈ L1 ∩ L2 and |α| = k. Take the model M, s with children
s1, . . . , sk such that si |= pj iff α(i) = aj . It is easy to check that this model
satisfies ψ. 2

Undecidability of EML2(VPL). We show that the satisfiability problem for
EML(VPL) is undecidable. Moreover, the EML2(VPL) fragment is already un-
decidable. In contrast with CFLs, there is one more parameter to be taken
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into account in our analysis: every VPL is defined over a pushdown alpha-
bet. Therefore, given many VPLs occurring in a formula, we analyze how the
relationship among their partitions relates to the undecidability result.

Corollary 4.2 The satisfiability problem for WEML+2 (VPL) is undecidable,
even restricted to formulae such that every two distinct VPLs occurring at
the same depth share the same pushdown alphabet.

Proof. Undecidability is by reduction from the satisfiability problem for
the fragment WEML+2 (CFL) (see Theorem 4.1). Given a formula ϕ ∈
WEML+2 (CFL), we can use the translation T to obtain a formula T(ϕ) in
WEML+2 (VPL). By truth-preservation of T, we obtain that the satisfiability
problem for WEML+2 (VPL) is undecidable. Observe that we can always assume
that for ϕ ∈WEML+2 (CFL), if two distinct context-free languages occur at the
same modal depth, then they share the same pushdown alphabet. In this way,
we get a translation T(ϕ) in the fragment mentioned in the statement of the
theorem. 2

Considering T, the translation of a CFL provides the same pushdown alpha-
bet and formula arguments. One could argue that it is exactly this connection
through the pushdown alphabet that allows us to encode the nonemptiness
problem for the intersection of CFLs. In the following theorem we show that,
even if the VPLs do not share the pushdown alphabet, we can still encode the
same problem using propositional variables that play the role of ‘binders’.

Theorem 4.3 The satisfiability problem for WEML+2 (VPL) is undecidable
even restricted to formulae such that every two distinct VPLs occuring at the
same modal depth do not share the pushdown alphabet.

Proof. Let L1,L2 be CFLs over the alphabet Σ. By Theorem 3.1, one can build
two VPA M1 and M2 over the pushdown alphabet 〈Σ× {c},Σ× {i},Σ× {r}〉
such that for all words α ∈ Σ∗, we have (1) α ∈ L1 iff there is α′ ∈ L(M1) such
that π1(α′) = α and (2) α ∈ L2 iff there is α′ ∈ L(M2) such that π1(α′) = α.

Let Σ1 and Σ2 be two distinct alphabets of cardinality 3 × card(Σ) with
Σ1 ∩ Σ2 = ∅ and, σ1 : Σ × {c, r, i} → Σ1 and σ2 : Σ × {c, r, i} → Σ2 be
two bijective renamings. Recall that VPLs are closed under renamings and
one can easily compute VPA M?

1 and M?
2 such that L(M?

1 ) = σ1(L(M1))
and L(M?

2 ) = σ2(L(M2)). Note that M?
1 and M?

2 are defined over distinct
pushdown alphabets. Again, for all words α ∈ Σ∗, we have (1′) α ∈ L1 iff
there is α′ ∈ L(M?

1 ) such that π1(σ−11 (α′)) = α and (2′) α ∈ L2 iff there is
α′ ∈ L(M?

2 ) such that π1(σ−12 (α′)) = α.
Let Σ = {a1, . . . , an}, Σ1 = {s1, . . . , s3n} and Σ2 = {s′1, . . . , s′3n}. Let

ϕi be a formula that states that the only propositional variable true among
{p1, . . . , p3n} at a given node is pi. We define a function which identifies
each symbol from the original alphabet Σ with a propositional variable. Let
g : Σ× {c, r, i} → {ϕ1, . . . , ϕ3n} be defined as g((ai, action)) = ϕi and let
θij = g(σ−1i (sj)) then we define ψ = L(M?

1 )(θ11, . . . , θ
1
3n) ∧ L(M?

2 )(θ21, . . . , θ
2
3n).

It is easy to prove that ψ is satisfiable iff L(M1) ∩ L(M2) 6= ∅ using an argu-
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ment similar to that of Theorem 4.1. We conclude that L1 ∩ L2 6= ∅ iff ψ is
satisfiable. 2

Undecidability of WEML−1 (CFL). Let WEML−1 (CFL) be the restriction of
EML1(CFL) defined as a fragment specified by

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬L(p1, . . . , pn) | 2ψ

where L ∈ CFL, ψ is a propositional formula and ϕ has at most one context-
free constraint. Given a CFL L over the alphabet Σ = {a1, . . . , ak}, we
build a formula ϕL in WEML−1 (CFL) such that L 6= Σ∗ iff ϕL is satisfiable.
Since the universality problem for CFLs is undecidable (see e.g. [19]) we con-
clude that the satisfiability problem for WEML−1 (CFL) is undecidable too. Let
ϕuni(p1, . . . , pk) be a formula in WEML−1 (CFL) enforcing that any child satisfies
exactly one propositional variable among {p1, . . . , pk}, we define

ϕL = ϕuni(p1, . . . , pk) ∧ ¬L(p1, . . . , pk)

Theorem 4.4 The satisfiability problem for WEML−1 (CFL) is undecidable.

Proof. First, suppose that L 6= Σ∗; hence there is a word w = ai1 · · · ain /∈ L.
Let us consider the model M with a root node s and children s1 < · · · < sn
such that for every j ∈ [1, n], sj |= ϕij . It is clear thatM, s |= ϕuni(p1, . . . , pk).
The crucial observation is that, given a model where exactly one propositional
variable holds at each child, forming the sequence pi1 , . . . , pin then M, s |=
L(p1, . . . , pk) iff ai1 · · · ain ∈ L. Hence, M, s |= ¬L(p1, . . . , pk).

Now suppose that there is a model M and a node s such that M, s |= ϕL.
If s has no successor, then ε /∈ L, otherwise M, s |= L(p1, . . . , pk). In that case
L 6= Σ∗. Now suppose that s has children s1 < . . . < sn with n > 1. As before,
the propositional variables true at the children form a sequence pi1 , . . . , pin
and M, s |= L(p1, . . . , pk) iff ai1 · · · ain ∈ L. Therefore there exists a word
ai1 · · · ain /∈ L which implies L 6= Σ∗. 2

As a corollary, the satisfiability problem for EML−1 (VPL) is undecidable too.

5 Decidability of EML+
1 (CFL)

We saw that it is enough to have two positive occurrences (i.e., with nonzero
polarity) of CFL-constraints or one negative occurrence (i.e., with zero po-
larity) of a CFL-constraint to have an undecidable satisfiability problem. It
remains one interesting extension of EML to be studied: let EML+1 (CFL) be
the fragment in which there is at most one CFL-constraint at each depth, oc-
curring positively. EML+i (C) is defined as the subset of EMLi(C) such that every
formula’s tree node labelled by a formula of the form

1. L(· · ·) with L ∈ C has a positive polarity,

2.
∑
i ai]ϕi > b with a positive polarity has all ai, b > 0 or all ϕi ∈ EML(REG),

3.
∑
i ai]ϕi > b with a negative polarity has each ϕi ∈ EML(REG),
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4.
∑
i ai]ϕi ≡k c has ϕi ∈ EML(REG).

For example, L3(p, q) ∧ L1(L3(p, q), q) ∈ EML+1 (CFL) with L1 ∈ REG, L3 ∈
CFL. We show that the satisfiability problem for EML+1 (CFL) is decidable,
which is the main decidability result of the paper. Even though the above defi-
nition has been finely tailored for our proof to work, we think that it is probably
the only potentially interesting fragment left to be analyzed. Nonetheless, this
fragment adds extra power over EML: suppose you have an XML file containing
‘buy’ and ‘sell’ records. With EML+1 (CFL) you can require that for every ‘sell’
there is a matching ‘buy’ record before it whereas that cannot be done in EML.

We provide a decision procedure for EML+1 (CFL) generalizing the one for
EML [13]. A major difference is that we have to deal with CFL-constraints with
a fine-tuned procedure. Whereas EML satisfiability is in pspace, our algorithm
for EML+1 (CFL) requires strictly more space since we need to store the stack
content which can be of double exponential length in the worst-case, preventing
us from using an on-the-fly algorithm as done for EML. Our decidability result
is established thanks to a Ladner-like algorithm [22] (see also [29,13]). The
original algorithm from [22] allows to show that the satisfiability problem for
modal logic K is in pspace and it can be viewed as a tableaux-like procedure
with non-determinism but without tableaux rules. The beauty of Ladner-like
algorithms rests on their simple structure with fine-tuned recursivity; moreover
it does not use any specific formalism such as tableaux, automata, sequents etc.
Our algorithm below extends the one presented in [13] for the satisfiability of
the basic EML. We start by defining the closure for finite sets of formulae.
Intuitively, the closure cl(X) of X contains all formulae useful to evaluate the
truth of formulae in X.

Definition 5.1 Let X be a finite set of formulae, cl(X) is the smallest set
satisfying

• X ⊆ cl(X), cl(X) is closed under subformulae,

• if ψ ∈ cl(X), then ¬ψ ∈ cl(X) (we identify ¬¬ψ with ψ),

• let K be the least common multiple (lcm) of all the constants k occurring in
subformulae of the form t ≡k c. If t ≡k c ∈ cl(X), then t ≡K c

′ ∈ cl(X) for
every c′ ∈ [0, K− 1].

Observe that, since EML+1 (CFL) is not closed under negation, formulae
in cl(X) may not belong to EML+1 (CFL) even if X is a set of EML+1 (CFL)
formulae. A set X of formulae is said to be closed iff cl(X) = X. We refine
the notion of closure by introducing a new parameter n: each set cl(n, ϕ) is a
subset of cl({ϕ}) that corresponds to a closed set obtained from subformulae
of depth n. We have cl(0, ϕ) ⊇ cl(1, ϕ) ⊇ cl(2, ϕ) · · · and the sets are defined
by peeling of modalities layer by layer.

Definition 5.2 Let ϕ ∈ EML+1 (CFL); for n ∈ N, cl(n, ϕ) is the smallest set
such that

• cl(0, ϕ) = cl({ϕ}), for every n ∈ N, cl(n, ϕ) is closed,
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• for all n ∈ N and ]ψ occurring in some formula of cl(n, ϕ), ψ ∈ cl(n+ 1, ϕ),

• for all n ∈ N and L(ϕ1, . . . , ϕm) ∈ cl(n, ϕ), then {ϕ1, . . . , ϕm} ⊆ cl(n+ 1, ϕ).

We will concentrate on subsets of cl(n, ϕ) whose conjunction of elements
is EML+1 (CFL) satisfiable. A necessary condition to be satisfiable is to be
consistent locally, i.e. at the propositional level and at the level of arithmetical
constraints. Let K be the lcm of all the constants k occurring in subformulae
of ϕ of the form t ≡k c.

Definition 5.3 A set X ⊆ cl(n, ϕ) is said to be n-locally consistent iff:

• if ¬ψ ∈ cl(n, ϕ), then ¬ψ ∈ X iff ψ 6∈ X,

• if ψ1 ∧ ψ2 ∈ cl(n, ϕ), then ψ1 ∧ ψ2 ∈ X iff ψ1, ψ2 ∈ X,

• if ψ1 ∨ ψ2 ∈ cl(n, ϕ), then ψ1 ∨ ψ2 ∈ X iff ψ1 ∈ X or ψ2 ∈ X,

• if t ≡k c ∈ cl(n,X), then there is a unique c′ ∈ [0, K−1] such that t ≡K c
′ ∈ X,

• if t ≡k c ∈ cl(n,X), then ¬t ≡k c ∈ X iff there is c′ ∈ [0, K − 1] such that
t ≡K c

′ ∈ X and not c′ ≡k c,

The kernel of an n-locally consistent set X is ker(X) = X ∩ EML+1 (CFL).
As we have observed, the closure operation may introduce formulae outside
EML+1 (CFL). Negation of EML formulae is not a problem (since they are also
in EML) whereas negation of EML+1 (CFL) formulae may lead to undecidability
(e.g., because of a negative polarity). That is why, in our algorithm, we shall
only try to satisfy formulae from ker(X) and this shall be sufficient from the
way the fragment EML+1 (CFL) is designed. A slight variation in the definition
of EML+1 (CFL) may lead to undecidability of the satisfiability problem. Re-
garding size, observe that card(cl(X)) is exponential in card(X). Nevertheless,
consistent sets of formulae that are satisfiable contain exactly one formula from
the set {t ≡K c : c ∈ [0, K − 1]} for each constraint t ≡k c′ in X. Hence, as
explained in [13], encoding consistent sets will only require polynomial space.

Definition 5.4 Let ϕ be an EML+1 (CFL) formula, N be a natural number and
M be a finite tree model such that M, s |= ϕ for some node s. We say that
〈M, s〉 is N -bounded for ϕ iff for every node s′ of distance d from s, the number
of successors of s′ is bounded by nb(d+ 1)×N where nb(d+ 1) is the number
of distinct (d+ 1)-locally consistent sets (with respect to ϕ).

We define the function SAT (see below) such that ϕ is EML+1 (CFL) satisfi-
able in some N -bounded model iff there is X ⊆ cl(0, ϕ) such that ϕ ∈ ker(X)
and SAT(X, 0) has a computation returning true. Indeed, the function
SAT(X, d) is globally parameterized by some natural number N and by the
formula ϕ. These two parameters should be understood as global variables.
The main difference with the algorithm in [13] is related to the update of the
stack and we restrict ourselves to formulae in ker(X).
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function SAT(X, d)

(consistency) if X is not d-locally consistent then abort;

(base case) if X contains only propositional formulae then return true;

(initialization-counters) for every ψ ∈ ker(cl(d+ 1, ϕ)) that is not a period-
icity constraint of the form t ≡K c, Cψ := 0;

(initialization-fsa) for every FSA A(ψ1, . . . , ψα) ∈ ker(X), the state variable
qA(ψ1,...,ψα) := q0 for some initial state q0 of A;

(initialization-fsa-complement) for every FSA ¬A(ψ1, . . . , ψα) ∈ ker(X),
Z¬A(ψ1,...,ψα) := I where I is the set of initial states of A;

(initialization-pda) for every CFL-constraint C(ψ1, . . . , ψα) ∈ ker(X) where
C is a PDA, the state variable qC(ψ1,...,ψα) := q0 for some initial state q0 of C
and the stack variable SC(ψ1,...,ψα) := ⊥ for the initial stack symbol ⊥ of C;

(guess-number-children) guess NB in {0, . . . , nb(d+ 1)×N};
(guess-children-from-left-to-right) for i = 1 to NB do

(i) guess x ∈ {1, . . . , nb(d+ 1)};
(ii) if not SAT(Yx, d+ 1) then abort;

(iii) for every ψ ∈ ker(cl(d+1, ϕ)) different from some t ≡K c such that ψ ∈ Yx
do Cψ := Cψ + 1;

(iv) for every finite state automaton A(ψ1, . . . , ψα) ∈ ker(X),

a. guess a transition qA(ψ1,...,ψα)
ai−→ q′ in A with ΣA = a1, . . . , aα;

b. if ψi ∈ Yx, then qA(ψ1,...,ψα) := q′, otherwise abort;
(v) for every finite state automaton ¬A(ψ1, . . . , ψα) ∈ ker(X),

Z¬A(ψ1,...,ψα) := {q : ∃ q′ ∈ Z¬A(ψ1,...,ψα), q
′ ai−→ q, ψi ∈ Yx};

(vi) for every CFL-constraint C(ψ1, . . . , ψα) ∈ ker(X),
a. let SC(ψ1,...,ψα) = b1 . . . bk be the stack content of C, guess a transition

qC(ψ1,...,ψα)
ai−→ q′ poping b1 and pushing γ in C with ΣC = a1, . . . , aα;

b. if ψi ∈ Yx, then qA(ψ1,...,ψα) := q′ and SC(ψ1,...,ψα) := γb2 . . . bk, other-
wise abort;

(final-checking)

(i) for every
∑
i ai]ψi ∼ b ∈ X, if

∑
i ai×Cψi ∼ b does not hold, then abort,

(ii) for every
∑
i ai]ψi ≡k c ∈ X, if

∑
i ai × Cψi ≡k c does not hold, abort,

(iii) for every (either finite-state or pushdown) automaton A(ψ1, . . . , ψα) ∈ X,
if qA(ψ1,...,ψα) is not a final state of A, then abort;

(iv) for every FSA ¬A(ψ1, . . . , ψα) ∈ X, if Z¬A(ψ1,...,ψα) contains a final state
of A, then abort;

(return-true) return true.

We shall later fixN which will be doubly exponential in |ϕ| (see Lemma 5.9).
The first argument X is intended to be a subset of cl(d, ϕ) and the (d + 1)-
locally consistent sets are denoted by Yi for some 1 6 i 6 nb(d + 1). A call
to SAT(X, d) performs the following actions. First it checks whether X is d-
locally consistent and if the modal degree is zero, then it returns true in case
of d-locally consistency. In order to check that ker(X) is satisfiable, children
of the node are guessed from left to right (providing an ordering of the succes-
sors). For each ψ ∈ ker(X), there is a counter Cψ which contains the current
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number of children that should satisfy ψ. Similarly, we keep track of period-
icity constraints. For each subformula in ker(X) whose outermost connective
is automata-based, we introduce a variable that encodes the current state and
stack content. At the end of the guess of the children, this variable should
be equal to a final state of the automaton. By contrast, for each formula in
ker(X) whose outermost connective is the negation of some automata-based
formula, we introduce a variable that encodes the set of states that could be
reached so far in the automaton (simulating a subset construction of the un-
derlying automaton). We never have a negation of a CFL-constraint. At the
end of the guess of the children, this variable should not contain any final state
of the automaton. After guessing at most N × nb(d + 1) children, there is a
final checking which verifies that periodicity and arithmetical constraints are
satisfied. Keeping track of the stack may hurt a lot, i.e., the resulting size could
be linear on the number of children. Therefore, of exponential space.

Lemma 5.5 For all 0-locally consistent sets X and computations of SAT(X, 0)

(i) the recursive depth is linear in |ϕ|,
(ii) each call requires space polynomial in the sum of the space for encoding

0-locally consistent sets and N + 2|ϕ|,

Proof. Since cl(|ϕ|, ϕ) = ∅, the size of the stack of recursive calls to
SAT is at most |ϕ|. In the function SAT, the steps (consistency),
(base case), (initialization-counters), (initialization-fsa), (initialization-fsa-
complement) and (initialization-pda) can be obviously checked in polynomial
time in ϕ (and therefore in polynomial space). Indeed, every n-locally consis-
tent set has cardinal at most 2 × |ϕ| and can be encoded with a polynomial
amount of bits with respect of |ϕ|; moreover given X ⊆ cl(0, ϕ) of cardinal at
most 2× |ϕ| and n ∈ N, one can decide in polynomial-time in |ϕ| whether X is
n-locally consistent. In the step (guess-children-from-left-to-right), one needs
a counter to count at most until nb(d+ 1)×N . A polynomial amount of bits
in |ϕ| + log(N) suffices. All the non-recursive instructions in (guess-children-
from-left-right) can be done in time polynomial in |ϕ| + log(N). Since at the
end of the step (guess-children-from-left-right), the values of the counters are
less than or equal to nb(d + 1) × N , checking the points (i) and (ii) in (final-
checking) can be done in polynomial space in |ϕ|+ log(N) (remember that the
encoding of constants ai, b and c and k are already in linear space in |ϕ|). The
only variables that requires polynomial space in 2|ϕ| +N are those containing
stack contents since the number of children NB is bounded by nb(d+1)×N .2

An analogous of [13, Lemma 5] is shown below.

Lemma 5.6 Let X ⊆ cl(0, ϕ), if SAT(X, 0) has successful computation and
ϕ ∈ ker(X), then ϕ is EML+1 (CFL) satisfiable in an N -bounded model.

Proof. Assume that SAT(X, 0) has an accepting computation with ϕ ∈
ker(X). Let us build a model M = 〈T,R, (<s)s∈T , l〉 for which there is s ∈ T
such that for every ψ ∈ ker(X) we have M, s |= ψ.
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From an accepting computation of SAT(X, 0), we consider the follow-
ing finite ordered tree 〈T,R, (<s)s∈T , `〉 that corresponds to the calls tree of
SAT(X, 0).

• 〈T,R, (<s)s∈T 〉 is a finite ordered tree,
• for each s ∈ T , `(s) = 〈Y, d〉 for some d-consistent set Y ,
• the root node s0 is labelled by 〈X, 0〉,
• for each node s with s1 <s · · · <s sn, the call related to `(s) recursively

calls SAT with the respective arguments `(s1), . . . , `(sn) and in this very
ordering.

The modelM we are looking for, is preciselyM = 〈T,R, (<s)s∈T , l〉 for which
l(s) = Y ∩AT where `(s) = 〈Y, d〉 for each s.

By structural induction on ψ, we shall show that for all s ∈ T with labeling
`(s) = 〈Y, d〉 we have, ψ ∈ ker(Y ) implies M, s |= ψ. Consequently, we then
getM, s0 |= ϕ. The case when ψ is a propositional variable is by definition of l.

Induction hypothesis: for all ψ such that |ψ| 6 n, and for all s ∈ T with
`(s) = 〈Y, d〉, if ψ ∈ ker(Y ) then M, s |= ψ.

Let ψ be a formula such that |ψ| = n+ 1.

Basic boolean cases: ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2.
Observe that if ψ ∈ ker(Y ) then ψ1, ψ2 ∈ ker(Y ). These cases follow easily
with this observation and the definition of n-locally consistent set.

Negation of boolean operators: ψ = ¬(ψ1 ∧ ψ2) and ψ = ¬(ψ1 ∨ ψ2)
For the first case, by definition of n-locally consistent set, at least one of ¬ψ1

or ¬ψ2 belongs to Y . Suppose that ¬ψ1 ∈ Y . It is easy to check that, as
ψ ∈ ker(Y ) we also have ¬ψ1 ∈ ker(Y ). By the induction hypothesis, we get
that M, s |= ¬ψ1 and therefore M, s |= ψ. The case for ψ = ¬(ψ1 ∨ ψ2) is
similar.

Positive language: ψ = L(ψ1, . . . , ψk) with L ∈ REG ∪ CFL.
Let s ∈ T with `(s) = 〈Y, d〉 such that ψ ∈ cl(d, ϕ). By definition of T ,
SAT(Y, d) has an accepting computation. If ψ ∈ ker(Y ), then each call in the
sequence SAT(Yx1

, d+1), . . . , SAT(YxNB
, d+1) has an accepting computation.

Hence the children of s are, from left to right: s1, . . . , sNB such that `(si) =
〈Yxi , d+ 1〉. Then, it is not difficult to show that the steps (initialization-fsa),
(initialization-pda), (guess-children-from-left-to-right) and (final-checking)(iii)
guarantee that M, s |= ψ by using the induction hypothesis and the fact that
each ψi belongs to ker(Y ) too.

Negation of regular language: ψ = ¬L(ψ1, . . . , ψk) with L ∈ REG.
Let s ∈ T with `(s) = 〈Y, d〉 such that ψ ∈ cl(d, ϕ). By definition of T ,
SAT(Y, d) has an accepting computation. Suppose s has no children, then
ε /∈ L, otherwise (final-checking) would fail. This impliesM, s 6|= L(ψ1, . . . , ψk).

Suppose s has children s1, . . . , sNB such that `(si) = 〈Yxi , d + 1〉. Given
an arbitrary word γ = ψj1 . . . ψjNB

∈ L suppose that ψji ∈ Yji for all i. In
this case the step (guess-children-from-left-to-right) would finish with a set of
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states including a final state and therefore (final-checking) would abort. Hence,
there exists ψjk /∈ Yjk . By the definition of n-locally consistent set, this im-
plies that ¬ψjk ∈ Yjk . As ψ ∈ EML+1 (CFL) and going through language con-
straints preserve polarity we know that ¬ψjk ∈ EML+1 (CFL) too. We conclude
that ¬ψjk ∈ ker(Yjk) and using the induction hypothesis it is easy to see that
M, sk 6|= ψjk and therefore M, s 6|= L(ψ1, . . . , ψk).

Arithmetical constraint: ψ =
∑i=α
i=1 ai]ψi > b.

Let s ∈ T such that `(s) = 〈Y, d〉 and ψ ∈ cl(d, ϕ). By definition of T , SAT(Y, d)
has an accepting computation. If ψ ∈ ker(Y ), then each call in the sequence
SAT(Yx1

, d + 1), . . . , SAT(YxNB , d + 1) has an accepting computation. For
every i ∈ [1, α], there are exactly Cψi elements in Yx1

, . . . , YxNB that contain
ψi where Cψi is the value of the counter after the step (guess-children-from-left-
to-right) in the above-mentioned successful computation for SAT(Y, d). Hence
the children of s in M are the following (from left to right): s1, . . . , sNB with
`(si) = 〈Yxi , d+ 1〉.
Case 1: All the subformulae ψi belong to EML.

There are exactly Cψi children satisfying ψi by induction hypothesis and by
the fact that either ψi or ¬ψi belongs to Yxi . The sum of the terms will be
at least b + 1 and together with the steps (initialization-counters), (guess-
children-from-left-to-right) and (final-checking) guarantee that M, s |= ψ.

Case 2: Some formula ψi does not belong to EML.
There are at least Cψi children satisfying ψi by induction hypothesis. Ob-
serve that, given a formula ψi belonging to some set ker(Yxj ) we know
that M, sj |= ψi. On the contrary, if ψi /∈ ker(Yxj ) we cannot say that
M, sj 6|= ψi. Therefore, the values Cψi are lower bounds for the number of
children satisfying ψi. Since each ai is strictly greater than zero, the sum of
the terms will be at least b + 1 and together with the steps (initialization-
counters), (guess-children-from-left-to-right) and (final-checking) guarantee
that M, s |= ψ.

Negation of arithmetical constraint: ψ = ¬
∑i=α
i=1 ai]ψi > b.

First, observe that if ψ ∈ EML+1 (CFL), then all ψi ∈ EML(REG). In this case

we need to show that M, s |=
∑i=α
i=1 ai]ψi 6 b, which can be done with an

argument similar to the case of positive constraints.

Periodicity constraints: ψ =
∑i=α
i=1 ai]ψi ≡k c and ψ = ¬

∑i=α
i=1 ai]ψi ≡k c.

In this case, all ψi ∈ EML(REG), therefore, ψi ∈ EML+1 (CFL) which lets us
use the induction hypothesis on them. With this observation, these cases go
through exactly as in the original proof.

The current model M is of double exponential size in |ϕ| and it is easy to
show that it is N -bounded. 2

Lemma 5.7 If ϕ is EML+1 (CFL) satisfiable in some N -bounded model then for
some X ⊆ cl(0, ϕ), SAT(X, 0) has an accepting computation with ϕ ∈ ker(X).
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Proof. Assume that ϕ is EML+1 (CFL) satisfiable in some N -bounded model
M = 〈T,R, (<s)s∈T , l〉. So there is s ∈ T such that M, s |= ϕ and 〈M, s〉 is
N -bounded.

Given a formula ϕ and an EML+1 (CFL) model M′ we use X[s′, d] with
s′ ∈ T ′ and d ∈ [0, |ϕ|] to denote the set {ψ ∈ cl(d, ϕ) : M′, s′ |= ψ}. We
shall show that whenever 〈M′, s′〉 is N -bounded then SAT(X[s′, d], d) has
an accepting computation. We recall that X[s′, d] is d-locally consistent.
Consequently, we get that SAT(X[s, 0], 0) has an accepting computation and,
by definition, ϕ ∈ ker(X[s, 0]). The proof is by induction on dmax − d where
dmax is the maximum value such that cl(dmax, ϕ) 6= ∅.

Base case: d = dmax.
Any satisfiable set of literals included in cl(dmax, ϕ) is consistent and leads to
an accepting computation.

Induction hypothesis: for all 1 6 n 6 d′ 6 |ϕ| and X ⊆ cl(d′, ϕ)
such that there exist an model M′ = 〈T ′, R′, (<′s)s∈T ′ , l′〉 and s′ ∈ T ′

with Xd′ = {ψ ∈ cl(d′, ϕ) : M′, s′ |= ψ} and 〈M′, s′〉 is N -bounded,
SAT(X[s′, d′], d′) has an accepting computation.

Let d = n − 1 and M′ = 〈T ′, R′, (<′s)s∈T ′ , l′〉, with s′ ∈ T ′ such that 〈M′, s′〉
is N -bounded. The set X[s′, d] is, by definition, d-locally consistent and
EML+1 (CFL) satisfiable.

For i ∈ {1, . . . , nb(d+ 1)}, let Yi be the ith (d+1)-locally consistent set. We
write ni to denote the number of times that the set Yi holds in the children of
s′, i.e., ni = card({Yi = X[s′′, d+ 1] : s′′ ∈ T ′ and R′(s′, s′′)}). Observe that,
since M′ is N -bounded,

∑
i ni 6 nb(d+ 1)×N .

This is sufficient to establish that SAT(X[s′, d], d) has an accepting compu-
tation. Indeed, the step (consistency) is successful because X[s′, d] is d-locally
consistent. The guessed number NB is obviously

∑
i ni and each set Yi is

guessed ni times in the step (guess-children-from-left-to-right). Additionally,
the order in which the sets Yi are guessed is precisely given by the ordering
of the children of the root of M′. Since M′ is a model for X[s′, d], for every
i ∈ [1, nb(d′ + 1)], if ni 6= 0, then the set Yi is satisfiable in some N -bounded
model (namely 〈M, s′′〉). By the induction hypothesis, SAT(Yi, d+ 1) returns
true. Each passage to (guess-children-from-left-to-right) as well as the pas-
sage to (final-checking) are successful steps because the numbers of children is
computed from M′. Hence, SAT(X[s′, d], d) has an accepting computation. 2

Theorem 5.8 (Correctness) A formula ϕ is EML+1 (CFL) satisfiable in some
N -bounded model iff for some X ⊆ cl(0, ϕ), SAT(X, 0) has an accepting com-
putation and ϕ ∈ ker(X).

We are in position to establish that N is at most doubly exponential in |ϕ|.
Lemma 5.9 There is a polynomial q(·) such that for every formula ϕ, ϕ is

EML+1 (CFL) satisfiable iff ϕ is satisfiable in some 22
q(|ϕ|)

-bounded model.
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Proof. The proof extends that in [13, Lemma 7]. Only the main change is
explained below. Suppose that C,B1, . . . ,B`,¬B′1, . . . ,¬B′m are the automata-
based formulae (or their negation) occurring in some set ker(X) ⊆ X ⊆ cl(d, ϕ)
(C is the unique CFL-constraint, if any). First, we build a new PDA C+, over
the alphabet Σ = {Y1, . . . , Ynb(n+1)} where Y1, . . . , Ynb(n+1) are the only (n+1)-
locally consistent sets. The automata C+ and C have the same sets of states,

initial states, stack symbols and final states and q
Y−→ q′ in C+ iff q

ψ−→ q′ in C
for some ψ ∈ Y . For each transition, the action on the stack in the new PDA
should be the same as in the original one. The FSAs are also converted into
new FSA B+1 , . . . ,B

+
` ,B

−
1 , . . . ,B−m in the same way as before (obviously, without

handling the stack). Next we synchronize all the automata C+,B+1 , . . . ,B
+
` and

the complement of B−1 , . . . ,B−m into a product PDA C∗ over the alphabet Σ.
Observe that this can be done because the intersection of all the FSA yields a
FSA and the intersection of a PDA and a FSA provides a PDA. The automaton
C∗ is such that for every word α = Yj1 · · ·Yjα ∈ Σ∗, α ∈ L(C∗) iff (i) there are
ψ1 ∈ Yj1 , . . . , ψα ∈ Yjα such that ψ1 · · ·ψα ∈ L(C); (ii) for all i ∈ [1, `], there
are ψ1 ∈ Yj1 , . . . , ψα ∈ Yjα s.t. ψ1 · · ·ψα ∈ L(Bi); (iii) for all i ∈ [1,m], there
are no ψ1 ∈ Yj1 , . . . , ψα ∈ Yjα s.t. ψ1 · · ·ψα ∈ L(B′i).

Observe first that there is a CFG G such that L(G) = L(A∗) and the size
of G is polynomial in |A∗|. Moreover, there exists a FSA A∗ such that L(A∗)
and L(G) have the same Parikh image (see e.g. [26]) and |A∗| is exponential
in |G|, see e.g. [14]. Consequently, there is a FSA A∗ whose size is at most
of double exponential in |ϕ|, which is one exponential higher than the bound
obtained in [13, Lemma 7] for that part of the argument. The rest of the proof
follows that of [13, Lemma 7] except that we carry values with one exponential
higher. 2

Note that for CFGs in Chomsky normal form (every CFG can be converted
to such form in polynomial time) a lower bound for the size of an equivalent
FSA with identical Parikh image is Ω(2n), see e.g. [14]. Hence, the reasoning
performed in the proof sketch of Lemma 5.9 can be hardly improved. Another
technique would be needed for substantial improvement.

Theorem 5.10 The satisfiability problem for EML+1 (CFL) is in 2expspace.

Proof. By Theorem 5.8 and Lemma 5.9, ϕ is EML+1 (CFL) satisfiable iff

SAT(X, 0) has an accepting computation and ϕ ∈ ker(X) with N = 22
q(|ϕ|)

.
By Lemma 5.5, in that case SAT runs in space polynomial in 2|ϕ|+N , whence
the complexity upper bound 2expspace by Savitch’s Theorem. 2

Remark 5.11 The 2expspace bound can be shown alternatively. Indeed, by
Lemma 5.9, ϕ is satisfiable iff ϕ is satisfiable by a tree-like model whose depth

is bounded by |ϕ| and branching factor is at most 22
q(|ϕ|)

. A nondeterministic
2expspace algorithm consists in guessing a model of double exponential size
and then in performing a model-checking call on it, which can be done in
2expspace. Savitch’s Theorem allows to regain the 2expspace bound. Note
that running SAT consists in guessing the very large model by pieces while
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checking satisfaction of subformulae on-the-fly. The optimal complexity lower
bound remains unknown.

A natural question about the design of EML+1 (CFL) is if we need to simul-
taneously restrict the positive occurrences of CFL-constraints and the positive
occurrences of

∑
i ai]ϕi > b by imposing that either each ai > 0 and b > 0 or

each ϕi ∈ EML(REG). Indeed, if we give up this last requirement decidability
is lost again. As done in Section 4, we can show that a CFL L over Σ is different
from Σ∗ iff ¬2 ⊥ ∧ 2ϕuni(p1, . . . , pk) ∧ ]L(p1, . . . , pk) 6 0 is satisfiable where
Σ contains k letters (this formula is not in EML+1 (CFL)).

6 Conclusion

In this paper, we have investigated the decidability status of EML extensions
by adding CFL-constraints, especially those definable from VPLs. For in-
stance, VPLs have been used to express nonregular programs [23] for PDL.
Whereas PDL augmented with VPA is decidable, we have shown that the
satisfiability problem for EML2(VPL) is already undecidable. Also, almost
every interesting restriction of this logic still leads to an undecidable frag-
ment. By contrast, in Section 5, we establish that the satisfiability prob-
lem for EML+1 (CFL) can be solved in 2expspace by extending proof tech-
niques from [13] that essentially use a Ladner-like algorithm, see e.g. [22],
combined with the existence of small solutions for constraint systems. In
this fragment, only one CFL-constraint may occur at each modal depth
and it should have a positive polarity. Surprisingly, if only one CFL-
constraint may occur negatively at each modal depth, then undecidability
is back. Schema below contains the decidability status of fragments for

EML(C)

EML2(C)

EML+2 (C) WEML−1 (C)

WEML+2 (C) EML+1 (C)

EML

C ∈ {CFL,VPL}; decidable fragments appear in
frames. Our work can be pursued by considering
subclasses of VPA such as those definable by semi-
simple minded pushdown automata [16]. Such ex-
tension are still of interest and our techniques to
prove undecidability cannot be applied in that case.
Also, the exact characterization of the complexity
for the satisfiability problem for EML+1 (CFL) is still
open.
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