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ABSTRACT
Antimicrobial efficacy is traditionally described by a single value, the minimal inhibitory

concentration (MIC), which is the lowest concentration that prevents visible growth of the

bacterial population. As a consequence, bacteria are classically qualitatively categorized as

resistant if therapeutic concentrations are below MIC and susceptible otherwise. However,

there is a continuity in the space of the bacterial resistance levels. Here, we introduce a

model of within-host evolution of resistance under treatment that considers resistance as a

continuous quantitative trait, describing the level of resistance of the bacterial population.

The use of integro-differential equations allows to simultaneously track the dynamics of

the bacterial population density and the evolution of its level of resistance. We analyze this

model to characterize the conditions; in terms of (a) the efficiency of the drug measured by

the antimicrobial activity relatively to the host immune response, and (b) the cost-benefit of

resistance; that (i) prevents bacterial growth to make the patient healthy, and (ii) ensures the

emergence of a bacterial population with a minimal level of resistance in case of treatment

failure. We investigate how chemotherapy (i.e., drug treatment) impacts bacterial population
structure at equilibrium, focusing on the level of evolved resistance by the bacterial

population in presence of antimicrobial pressure. We show that this level is explained by

the reproduction numberR0. We also explore the impact of the initial bacterial population

size and their average resistance level on the minimal duration of drug administration in

preventing bacterial growth and the emergence of resistant bacterial population.

Keywords: Antimicrobial resistance; Evolutionary dynamics; Mathematical modelling; Non-linear dynamical system

Introduction
In addition to its impact on ecological dynamics, human activities are major drivers of the

evolution of species interacting with us [1]. An example of such impact, the evolution of

antimicrobial resistance (AMR) among parasites of medical importance, is a growing concern

across the world [2, 3]. An antimicrobial substance is a chemical agent that has the potential

to interfere with the physiology of a bacterial cell. Because of their relative size and mech-

anisms of action (at least for the antimicrobial families currently used to treat infections), a

single antimicrobial molecule does not cause any damage to a bacterium, while no bacterial

population can survive in a medium fully saturated with antimicrobials. In other words, the

negative effect of an antimicrobial substance on a given bacterium’s survival, referred to here

as the antimicrobial activity and denotedA, is an increasing function of its concentration in
the medium (denoted C), with boundaries A (C) = 0 when C = 0 and A (C) → Asat when

C → Csat, where Asat and Csat are saturating threshold levels. Here, A is measured as the
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antimicrobial-related mortality rate. From this intuitive approach, it follows that there exists C?

in (0, Csat) such thatA (C?) is equal to the intrinsic rate of increase and reverses the growth of
a bacterial population, all else being equal. This threshold concentration at which a bacterial

population does not grow in vitro is called the Minimum Inhibitory Concentration (MIC).

Resistance is then a continuous trait by nature referred to as antimicrobial quantitative

resistance (qAMR). Indeed, because of their short generation times and large population sizes,

bacterial populations show a great intraspecific genetic diversity generated through random

mutations. These mutations define distinct strains which therefore can differ by their relative

susceptibility to a given antimicrobial [4, 5]. As a consequence, the MIC can be seen as a

distributed variable within the same bacterial species, underpinned by a mapping of each

strain genome to a unique MIC. These MIC distributions are experimentally assessed on a

log2 -discretised scale (see e.g. the EUCAST database [6], usually with a low skewness that
spans over two or three order of magnitudes of antimicrobial concentrations). For instance, a

recent statistical model of MIC explained by genomic data has shown, in the case of Neisseria
gonorrhoeae, that independent exponential contributions of distinct substitutions provide a
good set of regressors for estimating MIC [7]. Therefore, we here use the log difference in MIC

as a phenotypic distance between bacterial strains, with respect to antimicrobial susceptibility.

This is particularly suitable because the log scale allows the additivity of independent mutation

effects, which will later support symmetric mutation kernels.

Quantitative resistance is key to better understand the within-host evolutionary dynamics

of AMR because intermediate resistance can allow bacterial populations to survive drug

concentrations below those considered therapeutic [8], and allows the coexistence of multiple

strains within the host. Here, we introduce a continuous phenotypic trait x ∈ R, describing
the level of resistance between −∞ and +∞. We also treat this quantitative descriptor x
as the label of the bacterial strain with resistance level x. Note that any interval (a, b) with

a < b and x ∈ (a, b) is also valid within the context of the model and results developed here.

However, it is important to keep in mind that, intuitively there exist two threshold levels x0

and x1 (called reference ’sensitive’ and ’resistant’ strains) such that each strain with resistance

level (labelled by x) can be classified as ’sensitive’, ’intermediate’, or ‘resistant’ depending on

whether x < x0, x0 < x < x1, or x > x1 respectively (Figure 1).

Figure 1. Classification of the resistance level x. Here x0 and x1 are reference ’sensitive’

and ’resistant’ strains.

Many mathematical models have been developed to study antimicrobial resistance evo-

lution within a treated host [9–20]. We also think that the literature is so vast that we would
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not know where to begin since the model used then strongly depends on the question asked.

However, most of the modelling approaches devoted to AMR tackling the case of qualitative

(or “binary”) resistance are generally based on the dynamical interaction between two par-

asite strains leading to a binary MIC formulation [9]. This analysis ignores the evolutionary

short-term transient dynamics which lead to the emergence of resistance.

To our knowledge, no study has considered the continuous nature of AMR as for the

approach developed here. However, a similar formalism has been developed in the context of

anticancer treatments [21]. There are also parallels with work on linking drug-target binding

kinetics with bacterial replication by modelling the number of target molecules per bacterial

cell as a positive continuous variable [22]. We use a system of integro-differential equations

modeling the dynamics of bacterial population with density b(·, x) and resistance level x ∈ R.
Resistance has a cost and thus growth and death rates depend on the bacterial resistance level

x. In addition to those effects on the death and birth rates, bacterial population resistance level

also mitigates the antimicrobial efficiency with respect to that population. From a theoretical

point of view, some of the properties of this model build on previous analytical quantitative

genetics results developed in [23, 24].

We first describe our model and its main parameters. Next, we investigate how chemother-

apy (i.e., drug treatment) impacts bacterial population structure at equilibrium. This includes
the characterization of the resistance level acquired by the bacterial population in the pres-

ence of antimicrobial pressure. We show that such a characterization is simply based on

the reproduction number R0 [25], which we prove to play the role of the invasion fitness

in evolution [26]. Next, we investigate in what conditions of the drug efficiency (measured

by the antimicrobial activity relatively to the host immune response) and the cost-benefit of

resistance; we can (i) prevent bacterial growth to make the patient healthy, and (ii) ensure the

emergence of a bacterial population with a minimal level of resistance in case of treatment

failure. This is called thereafter the treatment objective. Finally, we investigate the minimal

duration of drug administration to achieve our treatment objective as a function of the initial

bacterial population size and their average resistance level.

Description
Scaling considerations and model overview
Of course, anyone can claim to model resistance as a quantitative trait x but this is purely

a theoretical thought exercise unless it can be clearly linked with existing nomenclature

for sensitive and resistant strains, and with existing quantitative metrics related to drug

resistance, especially MIC and growth rate. A bacterial strain is said to be resistant to a

given antimicrobial if a treatment, the posology of which does not exceed tolerance limits,

is likely to fail [3, 6]. Therefore, each strain can be classified as “sensitive” or “resistant”

(R) respectively, depending on whether or not their MIC (i.e., the threshold concentration
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at which a bacterial population does not grow) is below or above a therapeutic threshold

C1 defined from clinical and pharmacokinetics investigations. Following the EUCAST 2019
nomenclature [6], sensitive strains can be classified as “normal exposure” (S) or “increased

exposure” (previously “intermediate”, but still denoted by I) depending on whether their

MIC is respectively below or above the pharmacologic threshold C0 corresponding to the
antimicrobial concentration reached by a standard posology. They respectively, correspond to

the concentration thresholds at usual (i.e. normal) and maximum tolerable posologies and
are known as the two clinical breakpoints.

Based on these definitions, for any strain of a given bacterial species exposed to a given

antimicrobial, we can define a scale-free quantitative descriptor of AMR varying in a symmetric

manner at each mutation step such that

x :=
log
(
Cx
C0

)
log
(
C1
C0

) ∈ R,

where Cx is the MIC of the strain with respect to this antimicrobial. With this definition, the
EUCAST 2019 typology [6] implies that S < 0 < I < 1 < R. With the above equation, notice

that having a negative value for the resistance level x (i.e. x < 0) just means that the given

bacterial strain is more sensitive than the reference ’sensitive’ strain (i.e. Cx < C0).
The model follows the dynamics of bacterial population and antimicrobial concentrations.

The bacterial population is assumed to be phenotypically (and genetically) diverse, with a

structuration through the level of antimicrobial resistance, here defined as a continuous trait

x and referred to as quantitative antimicrobial resistance. This quantitative antimicrobial

resistance level x ranges from−∞ to +∞, and affects different components of the bacterial
population life cycle, such as growth and death rate. Bacterial populations with a resistance

level x have a density b(t, x) at time t. The main variables and parameters of the model are

listed in Table 1.

Model parameters and general hypothesis
For our model formulation and analysis, the killing rate function of the antimicrobial k(·) will
be –quite naturally– a decreasing function with respect to the resistance level x. Our primary

goal here is to define the function k(·) with two parameters, namely, k0 and k1 representing

the antimicrobial activity undergone by strains the MIC of which are exactly C0 and C1 and
hereafter called reference strains 0 and 1. Therefore, we assume that the killing k(x) of the

antimicrobial on the bacterial population with resistance level x takes the form

k (x) = k0

(
k1

k0

)x
,

The qualitative shape of the curve k(x) is shown in Figure 2.
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Table 1. Model state variables and parameters
State variables Description

b(t, x) Density of bacterial population with resistance level x at time t.

B(t) Total density of bacterial population at time t.

Functional parameters Description (unit)

J(x− y) Mutation probability from resistance level x to y

per cell division (dimensionless).

p(x) Intrinsic growth rate of bacterial population with resistance level x

(cell/µg).

k(x) Killing rate of bacterial population with

resistance level x due to drug (1/day).

Fixed parameters Description (unit) Value/range

pm Upper bound of the intrinsic growth rate p 10

p0 Intrinsic growth rate of the reference sensitive strain 0.95× pm
R0

0(0) The reproduction number of the reference

sensitive strain without drug 10

α Limitation on bacterial growth factor 1

Variable parameters Description (unit) range

m0 Size of the initial bacterial population (0,∞)

σ2
0 Resistance variance of the initial bacterial population (0,∞)

k0 Antimicrobial activity on the sensitive reference strain x = 0 (0,∞)

p1/p0 Reference resistant and sensitive growth rate ratio (0,1)

k1/k0 Reference resistant and sensitive drug efficiency ratio (0,1)

With fixed and variables parameters defined in the table above, other model’s parameters are calculated

by: µ = p0
R0

0(0)
, p1 = p0 × (p1/p0) and k1 = k0 × (k1/k0).
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Likewise, one can define a bacterial intrinsic growth rate that incorporates the cost of

resistance (for empirical evidence of such costs (e.g., [27]). This intrinsic growth rate, denoted

p, should be upper bounded due to physiological constraints, otherwise, a strain not investing

at all in AMR would have an infinite growth rate p (−∞) =∞, which is biologically unrealistic.
Therefore, we set p (−∞) =: pm < ∞. On the other side, a strain that takes an infinite
concentration of antimicrobial to inhibit would pay an infinite cost then compromising its

growth itself, hence p (∞) = 0. Knowing p0 and p1, the intrinsic growth rate of reference

strains 0 and 1 (which can be expressed as function of k0, k1), a suitable expression for p is

p (x) =
pm

1 +
(
pm−p0
p0

)(
p0
p1
· pm−p1pm−p0

)x ,
with 0 < p1 < p0 < pm. The qualitative shape of the curve p(x) is shown in Figure 2.

Importantly, the above functional form for p is not strictly important for our model formulation

and analysis. The main important property is that p should be a decreasing function with

respect to the resistance level x.

Figure 2. (Left) Intrinsic growth rate p(x) of bacterial population with a level of resistance

x ∈ R. (Right) Drug activity k(x) on bacterial population with resistance level x ∈ R.

Bacterial population model with quantitative resistance level
We use an integro-differential equation to model the demographic and evolutionary dynamics

of the bacterial population. At any time t, the total bacterial population density is B(t) =∫
R b(t, y)dy. Next, bacterial population with resistance level y ∈ R give birth to the bacterial

population with resistance level x ∈ R at a per-capita rate J(x− y)
p(y)

(1 +B(t))
α b(t, y), where

J(x− y) is the probability for a bacterial population with resistance level y to mutate towards

a level x during the reproduction process, p(y) is the bacterial intrinsic growth rate, p(y)
(1+B(t))α

is the effective growth rate, and α > 0 is a scaling constant. Thus, the number of bacteria

produced at time t with resistance level x is 1
(1+B(t))α

∫
R J(x− y)p(y)b(t, y)dy. The clearance

of the bacterial population with resistance level x due to the immune system occurs at a

rate µ(x). Here, we assume that the immune response µ is constant in time. The presence
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of antimicrobials generates an additional mortality rate k(x), which depends on the level of

bacterial resistance. Therefore, the fraction
p(y)

(1+B(t))α accounts for the density dependence of

the reproduction rate. Such a formalism is a suitable alternative in regulating the growth of a

structured population without reference to the concept of carrying capacity, which we think is

not necessarily a measurable factor for this type of population. Thus, the parameter α > 0 is

introduced only to impose the population homeostasis and does not impact our downstream

results. Taking α = 0 leads to a population with infinite growth if no effect of the immune

response nor of the antimicrobial is taken into account. Overall, the bacterial evolutionary

dynamics is described by the following differential equation
∂tb(t, x) =

1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy − (µ(x) + k(x))b(t, x); t > 0,

b(t = 0, ·) = b0(·).
(0.1)

The mutation kernel J = Jε is such that J(x−y) is the probability of mutation from resistance

level y to x. We assume a Gaussian distribution with Jε(x) = 1
ε
√

2π
e−

1
2 ( xε )

2

, where ε > 0

represents the mutation variance in the phenotypic space. Other mutation kernels could

be considered provided that they satisfy some general properties such as positivity and

symmetry (Appendix A). Preliminary results on the model (0.1), including the existence of a

unique maximal bounded dissipative semiflow, are shown in Appendix E.

The formulation of model (0.1) allows to follow evolutionary parameters such as the average

level of resistance η(t) expressed by the whole bacterial population and the related variance

σ2(t) at any time t, as so:

η(t) =

∫
R
x
b(t, x)

B(t)
dx, and σ2(t) =

∫
R

(x− η(t))2 b(t, x)

B(t)
dx.

Furthermore, the model (0.1) can be used to recover the classical model formulation for the

qualitative (or "binary") resistance. Indeed, if we denoted by BS and BR the total densities of

highly sensitive (i.e. x = 0) and resistant (i.e. x = 1) bacterial populations, model (0.1) can be

rewritten as
ḂS =

1

(1 +BS +BR)α
[(1− ε0)p(0)BS + ε0p(1)BR]− (µ(0) + k(0))BS ,

ḂR =
1

(1 +BS +BR)α
[ε0p(0)BS + (1− ε0)p(1)BR]− (µ(1) + k(1))BR,

(0.2)

where ε0 is the mutation probability. We briefly sketch the interpretation of System (0.2), which

will also help in better understanding of Model (0.1). Sensitive bacteria BS growth at effective

rate p(0)/(1+BS+BR)α. Furthermore, while a proportion ε0 corresponds to amutant growth

(i.e. mutations away from the sub-population BS ), the remainder (1− ε0) corresponds to a

faithful growth. Next, the sensitive population BS is cleared at rate (µ(0) + k(0)) accounting

for actions of the immune response µ(0) and antimicrobial k(0). The same interpretation

holds for the resistant population BR. Finally, we refer to Appendix B for more details on the

derivation of System (0.2).
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Initial conditions
The initial bacterial population b0(x) (at t = 0) is assumed to be composed by a sensitive

bacterial population, with average resistance level x = 0. This population is characterized by

two parameters: its size (m0) and the variance (σ
2
0 ) of its level of resistance. The higher σ

2
0 , the

more frequent resistant bacteria are in the initial population. Formally, we set

b0(x) = m0 ×N (0, σ0, x),

whereN (0, σ0, x) stands for the normalized density function of the Gaussian distribution at

x with mean 0 and variance σ2
0 .

Results
We illustrate how to use the model to simultaneously capture the bacterial population dy-

namics and the evolution of antimicrobial resistance. The spread of a bacterial population in

a bacteria-free environment is classically determined by calculating the basic reproduction

number of this bacterial population. However, the outcome of the evolutionary dynamics of a

rare bacterial population with resistance level y in a resident population with resistance level

x is determined by the invasion fitness based on standard adaptive dynamics methodology.

Furthermore, we show that the level of the bacterial population at the evolutionary equilibrium

of Model (0.1) will coincide with the local maximum of the basic reproduction number. We

will also show how the outcome of the treatment (success or unsuccess) and the evolutionary

bacterial resistance level strongly relies on two parameters: (i) the resistance’s cost-benefit

ratio, and (ii) the drug efficiency of the reference sensitive strain, quantified relatively to the

host immune response. Finally, notice that for all simulations, we randomly set the parameters

(Table 1), with the only purpose to illustrate our theoretical results.

Basic reproduction numberR0 and invasion fitness
Following classical studies, we define the basic reproduction number R0 as the expected

number of bacteria arising from one bacterium in a bacteria-free environment [25, 28]. As

shown in Appendix C, for a bacterial population with resistance level x, this basic reproduction

number is

R0(x) =
p(x)

µ+ k(x)
. (0.3)

We useR0(x) to measure the fitness (or effective growing capacity) of a bacterial population

with resistance level x. This R0 can be seen as a product between (i) the intrinsic growth

rate of new bacterial population during their natural life time, p(x), and (ii) the lifespan of

a bacterial population with resistance level x, 1/(µ+ k(x)). In the following, we denote by

R0
0, the basic reproduction number as in model (0.1) in absence of antimicrobials (i.e. when

k ≡ 0).
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As state in the introduction, let us first recall that the quantitative descriptor x for the

bacterial resistance level is also treated as the label of the bacterial strain with resistance

level x. Then, the spread of a rare bacterial population with resistance level y in a resident

population with resistance level x is studied using adaptive dynamics. Quite naturally, we

assume R0(x) > 1, otherwise, the resident population x is not persistent, which a bit

contradicts the concept of ’resident population’. Next, to find the evolutionary attractors, we

calculate the invasion fitness fx(y), and the rare population with resistance level y will invade

the population x if and only if fx(y) > 0. The sign of this two-dimensional function fx(y) is

classically visualized using Pairwise Invasibility Plot (PIP) [26, 29–31]. As shown in Appendix C,

the invasion fitness fx(y) is written as

fx(y) =
1

(1 + bx)
α︸ ︷︷ ︸

feedback of

resident x

×R0(y)− 1. (0.4)

The environmental feedback of the resident with resistance level x conditions the ability of a

rare population with resistance level y to invade the resident population. It depends on the

conditions set out by the resident, and by (0.3), the equality (0.4) is rewritten

fx(y) =
1

(1 + bx)α
(R0(y)−R0(x)) . (0.5)

It follows that the model (0.1) admits an optimisation principle based on R0 [26, 29–31].

Indeed, the sign of the invasion fitness fx(y) is given by the sign of the difference between

R0(y) andR0(x) and thus, the evolutionary attractors of the model (0.1) coincide with the

local maxima of theR0

Typical dynamics simulated with the model
One of the parameters highlighted through our model’s analysis is the ratio

cb =
log ∆

log(1 + θ)
, (0.6)

where ∆ = (pm−p1)/p1
(pm−p0)/p0

> 1, and θ = k0−k1
k1

> 0. The ratio cb can be interpreted as the

average fitness cost-benefit ratio of the resistance for a given bacterial population. Indeed,

the parameter ∆ quantifies the relative cost of resistance of a given bacterial population,

whereas θ quantifies the fitness advantage of the reference resistant strain (x = 1) of that

bacterial population. Note that∆ ≈ 1 corresponds to cases where the cost of resistance of

the given bacterial population is negligible, and θ ≈ 0 to cases where the fitness advantage of

resistance of that bacterial population is negligible.

Before antimicrobial treatment onset, the fitness of a bacterial population (measured by its

basic reproduction number in the absence of antimicrobial,R0
0(x)) decreases with the level of
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resistance x, such that wild type sensitive bacteria (x = 0) overgrow resistant ones. This is

due to the cost∆ (which assumes∆ > 0) of being resistant (Figure 3A).

The initiation of chemotherapy induces an average benefit (measured by θ) in the resis-

tant bacterial population. Indeed, the drug efficiency (k) decreases as the level of bacterial

resistance x increases (Figure 3D). Therefore, the treatment can modify the fitness landscape

(which obviously will have a very rapid effect on the distribution of x values in the popula-

tion) by shifting the maximum point of the basic reproduction number R0 from x = 0 to

x = x∗ > 0 (Figure 3A).

The model captures the evolutionary dynamics of the system following treatment onset by

tracking, at the same time, the bacterial population dynamics and the evolution of antimicro-

bial resistance (Figures 3B,C,E). In the first phase, the treatment causes a decrease in the total

bacterial population density. At the end of this phase, the infection is seemingly under control

(Figure 3B). The second phase begins with an increase in both the population density and the

level of resistance. This phase occurs when the average drug resistance reaches an optimum

evolutionary threshold x∗ that depends on the amount of drug and on the fitness cost. Finally,

the bacterial population is not controlled (Figure 3B), and even worse, it completely escapes

treatment having evolved a high level of resistance (Figures 3C). Figure 3E illustrates the joint

dynamics of bacterial population density and resistance.

Evolutionary equilibrium and global dynamic
As shown above, the evolutionary attractor (x∗) of the model (0.1), in the set of resistance

level R, coincides with the local maximum of the basic reproduction numberR0 (Appendix C).

Furthermore, the evolutionary attractor (x∗) characterizes the bacterial evolutionary resistance

level, which is the level of the bacterial population at the equilibrium.

An explicit expression of x∗ is difficult to obtain with our parameter setting. However, using

the EUCAST 2019 nomenclature [6] and defining the cost-benefit ratio cb by (0.6), we find that

low values of cost-benefit ratio (i.e. cb ≤ (1− p1/pm)
−1
) can lead to either high resistance

levels (i.e. x∗ ≥ 1), intermediate (i.e. 0 ≤ x∗ ≤ 1), or low (i.e. x∗ ≤ 0) at the evolutionary

attractor. Next, intermediate cost-benefit ratios (i.e. (1− p1/pm)
−1

< cb < (1− p0/pm)
−1
)

are associated with a low (i.e. x∗ ≤ 0) or intermediate (i.e. 0 ≤ x∗ ≤ 1) levels of resistance

at the evolutionary attractor. Finally, high cost-benefit ratios (i.e. cb ≥ (1− p0/pm)
−1
)

correspond to a low resistance levels at the evolutionary attractor (i.e. x∗ ≤ 0). See figure 4

and we refer to Appendix D for more details.

Next, we simultaneously study the epidemio-evolutionary dynamics of model (0.1) by

relaxing the time-scale separation assumption. Indeed, our analysis allows to jointly perform

(i) the asymptotic behavior of the model’s state variable b(t, ·), and (ii) the long-term behavior
of the system in relation to the space of resistance level x ∈ R. We find that the global
dynamics of model (0.1) are fully described byR0(x∗) as follows:

(i) IfR0(x∗) < 1, all strains asymptotically die out and the bacterial population cannot persist,
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Figure 3. Typical dynamics simulated with themodel. (A) The basic reproduction numbers
R0(x) andR0

0(x) with and without drug respectively. (D) Drug efficiency k(x) and the initial

bacterial population with average level of resistance x = 0. (B) Time evolution of the total

bacterial population
∫
R b(t, x)dx. (C) Distribution of the bacterial population b(t, x) with

respect to time t and resistance level x. A logarithmic time scale is used to better highlight

transient dynamics of the bacterial population density (B,E), and the increase of the bacterial

population resistance level (C). Here, we have set σ0 = 0.05,m0 = 0.05, k0 = 3, p1/p0 = 0.5,

k1/k0 = 0.01 and other parameters are given by Table 1.

i.e., limt→∞
∫
R b(t, x)dx = 0 (Appendix F-G).

(ii) If R0(x∗) > 1, model (0.1) exhibits a unique positive stationary state b∗(·) = b∗ε(·) and
the bacterial population is persistent, meaning that there exists ν > 0 such that,

lim inft→∞
∫
R b(t, x)dx > ν (Appendix H-I).

(iii) Further, ifR0(x∗) > 1 and the mutation variance ε in the phenotypic space is small, the

unique positive stationary state b∗(·) is concentrated around the evolutionary attractor
x∗ in the space of resistance level x ∈ R. In other words, the average bacterial resistance
level at equilibrium is x∗ and we have b∗(·) → δx∗(·) when ε → 0. This convergence

holds for the narrow topology, that is, for any continuous function u ∈ C (R) one has

limε→0

∫
R u(x)b∗(x)dx = u (x∗) .
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Figure 4. Evolutionary resistance level (x∗) with respect to the resistance’s cost-benefit
ratio (log(∆)/ log(1 + θ)) and drug efficiency (k0/µ) on the reference sensitive strain,
quantified relatively to the host immune response (µ). Areas R, I , and S correspond to
parameter combinations where the evolutionary level of resistance x∗ is such that x∗ ≥ 1,

0 < x∗ < 1, and x∗ ≤ 0 respectively. The treatment success holds above the level set

{R0(x∗) = 1}, that is, for the zone in gray. The treatment is unsuccessful below the level set
{R0(x∗) = 1}, that is, for zones R, I and S (below the purple curve). The curves labelled
‘x∗ = 0’ (in yellow) and ‘x∗ = 1’ (in red) indicate ’sensitive’ and ’resistant’ thresholds.
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Achieving a successful treatment
Combining the asymptotic results described above (Figure 3) with the classification of the

evolutionary bacterial resistance level x∗ allows us to identify a path to achieve successful

treatment, that prevents bacterial growth. In fact, for a given cost-benefit ratio to drug

resistance (cb), our analysis allow us to determine the minimum level of drug activity on

the reference strain (k0/µ), quantified relatively to the host immune response (µ), that is

required to achieve a successful treatment. This can be done because we showed that in

the plane (cb, k0/µ) it is possible to characterize three level sets {(cb, k0/µ) : R0(x∗) = 1},
{(cb, k0/µ) : x∗ = 0}, {(cb, k0/µ) : x∗ = 1} that determine the potential persistence of a
bacterial population with an evolutionary resistance level x∗ (Figure 4).

We find that the threshold value of k0/µ for which a successful treatment holds increases

non-linearly when the cost-benefit ratio cb becomes small (Figure 4). Interestingly, the treat-

ment is successful if and only if (cb, k0/µ) > {R0(x∗) = 1}, which means this can happen
if the evolutionary resistance level x∗ is ‘sensitive’ (cb, k0/µ) ≤ {x∗ = 0}, ‘intermediate’
{x∗ = 0} < (cb, k0/µ) < {x∗ = 1} or even ‘resistant’ (cb, k0/µ) ≥ {x∗ = 1} (Figure 4, gray
area). The corresponding evolutionary dynamics are similar to that shown in Figure 5 where

the total bacterial population dies out. Note that the treatment results in the acquisition of

an intermediate level of resistance x∗ by the bacterial population (Figure 5C). However, this

population is unable to grow because the treatment imposes, at the evolutionary resistance

level x∗, a fitness smaller than unityR0(x∗) < 1 (Figure 5D).

Failure in achieving a successful treatment leads to the emergence of a
resistant bacterial population whatever the cost-benefit ratio
The treatment is unsuccessful when the point (cb, k0/µ) is below the level set {R0(x∗) = 1}
(Figure 4). Overall, for a given cost-benefit ratio (cb), therapeutic failure occurs when the drug

activity (k0/µ), quantified relatively to the host immune response (µ), is below a threshold

characterized by the level set {R0(x∗) = 1}. Depending on the order of magnitude of cb,
such therapeutic failure leads to the emergence of a bacterial population with high (Figure 4,

area R), moderate (Figure 4, area I ), or low (Figure 4, area S) levels of resistance. Indeed, with

high cost-benefit ratio values, cb > (1− p0/pm)−1
, therapeutic failures is always associated

with the persistence of bacteria with low resistance levels (Figure 6, zone S). A therapeutic

failure with intermediate values of cost-benefit ratios, (1− p1/pm)−1 < cb < (1− p0/pm)−1
,

leads to the emergence of bacterial populations with either low resistance level (Figure 6,

area S) or intermediate (Figure 6, zone I). Finally, when the cost-benefit ratio is relatively

low, cb < (1− p1/pm)−1
, a therapeutic failure regimen can lead to the evolution of bacterial

population with low (as in Figure 6, area S), intermediate (as in Figure 6, area I ), or high (Figure

6, zone R) resistance level.
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Figure 5. Evolutionary dynamics with lethal treatment. Parameter values are

(σ0,m0, k0, p1/p0, k1/k0) = (0.05, 0.05, 20, 0.5, 0.3) or default as shown in Table 1. The

vertical dashed line in panel (B) shows the time from which the total bacterial population is

always≤ 10−10
.

Discussion
Optimizing antimicrobial treatment dosage is important in preventing bacterial growth and the

emergence of resistant bacteria (the Twofold Treatment Objective – TTO). Antimicrobial efficacy

is traditionally described by a single value, the minimal inhibitory concentration (MIC) for a

given bacterial population. The distribution of MICs across bacterial strains is often bimodal

and this metric is therefore used to create a qualitative (or ‘binary’) classification in the two

discrete categories sensitive ‘S’ and resistant ‘R’. Most modelling studies model drug resistance

as a binary trait but, as shown by the MIC, it is a continuous trait with varying degrees of

intermediate resistance. This antimicrobial quantitative resistance (qAMR) is associated with a

reduction in the bacterial killing rate of an antimicrobial and fitness cost.

The first achievement of this work is that we introduce a continuous trait x ∈ R that
describes the normalized level of resistance –using clinical breakpoints– between −∞ and
+∞. By simultaneously addressing the population and evolutionary dynamics, the model with
qAMR does not ignore the evolutionary and epidemic short-term transient dynamics which

lead to the emergence of resistance. Furthermore, such a continuous level of resistance is

shown to be strongly linked to the MIC or growth rate, which means it can be informed from

actual data.

Using an integro-differential model, we precisely investigate how chemotherapy impacts
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Figure 6. Evolutionary dynamics under sub-inhibitory drug concentrations. (Zone
S) sub-lethal dose without emergence of resistance in the bacterial population.

(Zone I) sub-lethal dose with emergence of intermediate resistance in the bac-

terial population. (Zone R) sub-lethal dose with emergence of high resistance

in the bacterial population. Parameter values are (σ0,m0, k0, p1/p0, k1/k0) =

(0.05, 0.05, 0.03, 0.5, 0.01), (0.05, 0.05, 3, 0.5, 0.01), (0.05, 0.05, 55, 0.5, 0.01) for zones S, I, and

R respectively. Other parameters are shown by Table 1.
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bacterial population structure at equilibrium. We first characterize the level of acquired

evolutionary resistance by bacterial populations in the presence of antimicrobial pressure.

We show that this level is governed by a single metric, the reproduction numberR0, which

we prove to play the role of invasion fitness in evolution. We then build on our analysis to

show which levels of both drug activity on the wild-type sensitive bacterial population and

the bacterial resistance cost-benefit ratio are required to achieve our TTO objective. Finally,

we compare the effect of lethal and sub-lethal treatments on achieving our TTO objective,

and investigate the impact of the initial bacterial population characteristics (i.e., size, initial
resistance frequency) on the minimal duration of drug administration to achieve our TTO.

Our analysis emphasizes that the potential success of the treatment does not depend

on the antimicrobial activity (k0) alone but should we assessed with respect to the level

of host immunity (µ) as well. These results suggest that treatments with low antimicrobial

activity should be limited to infections which elicit a weak immune response (e.g. respiratory

infections). They also echoed earlier studies on the synergy between chemotherapy and

immune response, e.g. [13, 15]. Our model formulation assumes that the immune response
µ is constant in time, which allows getting some precise analytical insights into the model’s

evolutionary dynamics. Furthermore, this assumption of constant immunity is quite plausible

in the early moments after the initiation of treatment. However, it is a potential limitation and

constitutes one possible extension of the model presented here.

The antimicrobial concentration in the host must not be too low, to clear the bacterial

population efficiently, but it cannot be too high without toxic effects in a patient [32]. A sub-

lethal treatment is defined here as a treatment where the drug activity k0/µ is not sufficient

to avoid the persistence of bacterial population with the evolutionary resistance level x∗.

Mathematically, we haveR0(x∗) > 1. Such a configuration can occurs whatever the value of

cost-benefit ratio cb for which the point (cb, k0/µ) is below the level set {R0(x∗) = 1} (Figure
4). The corresponding evolutionary dynamics are similar to that shown in Figure 6.

We define a lethal treatment when the drug activity k0 is enough to ensure that no bacterial

population is persistent, i.e. thatR0(x∗) < 1. The threshold of this feasible range with respect

to the initial drug activity k0 and cost-benefit ratio of resistance cb is such that (cb, k0/µ) is

above the level set {R0(x∗) = 1} (Figure 4), and our TTO objective always holds in such
configurations. In other words, for any value of cost-benefit ratio cb (low, intermediate, or

high), there exists a minimum drug activity k0/µ that guarantees a lethal treatment (Figure 4,

gray area). The corresponding evolutionary dynamics are similar to that shown in Figure 5

where the total bacterial population dies out.

As pointed by some theoretical studies [12, 33, 34], a high drug dose (‘hitting hard’ or

‘aggressive chemotherapy’) is not necessarily the best strategy to limit the spread of resistant

strains. We find that a high antimicrobial dose is necessarily to achieve our TTO objective if and

only if antibiotic resistance comes with little cost cb, quantified by the threshold (1−p1/pm)−1

(Figures 4, gray zone). However, if the treatment fails for aggressive chemotherapy, it will favor

the emergence and spread of a bacterial population with a high resistance level (Figure 4, zone
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R). This phenomenon is in accordance with the strong relationship between the resistance

level of the emerging bacterial population and the antimicrobial dose [10, 11].

The minimal duration of antimicrobial treatment to achieve our TTO objective is a debated

question in the literature [13, 33, 35, 36]. Longer treatment duration is associated with a

higher frequency of resistance at the end of the experiment [37–40], leading to the suggestion

that short antimicrobial courses may limit the evolution of resistance at the population level,

and studies to determine whether such short course duration would lead to good infection

outcomes [37–40]. We quantify the minimal duration (Top) of drug administration to achieve

our TTO objective when cost-benefit ratio cb and drug activity k0/µ (relatively to the host

immune response µ) on the initial bacterial population lie in the plane (cb, k0/µ) > {R0(x∗) =

1}(Figure 4). We define Top as the time t from which the total bacterial population
∫
R b(t, x)dx

is always≤ 10−10
(for example the vertical dashed line in Figure 5B). This threshold can be

view as the point at which the immune response µ prevents further expansion of the bacterial

population. Overall, for a fixed initial bacterial population density, our analysis shows that the

minimal duration of drug administration to achieve our TTO objective is relatively short as

soon as (cb, k0/µ) lies in regions that guarantee the TT0 (Figure 4, gray area). This combined

effect of the cost-benefit ratio (cb) and drug activity (k0/µ) on the time Top is shown Figure 7.

We see that, Top is relatively large around threshold values of k0/µ that guarantee our TTO

objective. Next, Top decreases exponentially with a slight increase in k0/µ compared to the

threshold values for our TTO objective. Finally, except around the threshold values of k0/µ

that guarantee our TTO objective, the time Top very short and barely varies with cb.

The characteristics of the initial bacterial population (sizem0 and the frequency of resis-

tance σ0) are important for treatment success [10, 13, 36]. We assess the combined effect of

m0 and σ0 on the minimal duration (Top) of drug administration to achieve our TTO objective

(Figure 7). Overall, the sizem0 of the initial bacterial population has a marginal effect on Top

as soon as the cost-benefit ratio cb and the initial drug activity k0/µ (relatively to the host

immune response µ) is such that the pair (cb, k0/µ) lies above the level set {R0(x∗) = 1} of
Figure 4. Whatever the initial population size, our analysis suggests that our TTO objective

always holds in a relatively short time period, once the pair (cb, k0/µ) lies above the level

set {R0(x∗) = 1}. By contrast, the frequency of resistant strains initially present σ0 has

a strong impact on the minimal duration (Top) of drug administration to achieve our TTO

objective (Figure 7). Even if our TTO objective is still achieved as soon as (cb, k0/µ) lies above

the level set {R0(x∗) = 1}, the time Top increases nearly exponentially with the frequency of
resistance (Figure 7).

The within-host dynamics is often ignored by classifying hosts according to whether they

are infected with a given strain or not [19]. A such simplification fails to take into account the

genetic diversity of the bacterial resistant population [4, 5] and the short-term evolutionary

transient dynamics which lead to the emergence of resistance at the within-host level. Adopt-

ing a nested models approach [41–43] is one option to simultaneously track the level of qAMR

within the host and the between-host evolutionary epidemiology. Our precise description of
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the within-host bacterial dynamics, coupled with antimicrobial activity, immune response, and

qAMR, can significantly improve the understanding of how bacteria populations adapt to their

host at the between-host scale [44].

The concentration property of model (0.1) around the evolutionary attractor x∗ is subject

to the assumption of a small mutation variance ε in the phenotypic space. More generally,

this result holds as soon as the mutation kernel distribution J verifies item 3 of Assumption A.

However, that assumption does not mean the mutation kernel has a very fast decay at infinity.

We emphasize that the decay of the mutation kernel distribution considered here (namely,

Assumption A, item 3.) allows considering the tails of a wide variety of distributions. Indeed,

the shape of the distribution of mutational effects can belong to the domain of distributions

with exponential tails, truncated tails, or heavy tails that decay as a power law [45].

Finally, in the model proposed here, mutations are assumed to be sufficiently frequent

during replication (i.e., new mutants occur during growth), and randomly displace strains
into the phenotype space at each generation according to a mutation kernel. However, this

constitutes another potential limitation in the model formulation. Indeed, in exponentially

growing cells, mutations usually occur during replication [46], but some studies indicate that

mutations can be substantially higher in non-growing than growing cultures [47]. Thus, the

occurrence of new mutants depends either on the abundance of parental cells or both the

abundance and growth rate of the parental cells [48]. Therefore, another potential extension

of the model would be to allow both processes for the occurrence of new mutants.

Figure 7. The minimal duration (Top) of drug administration to achieve our TTO objec-
tive. (Left) Combined effect of the cost-benefit ratio (cb) and drug activity (k0/µ), quantified

relatively to the host immune response µ, on the time Top. (Right) Combined effect of the

initial bacterial population size (m0) and the initial frequency of resistance (σ0) on the time

Top.
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A Model general assumptions
Model (0.1) is defined on the set L1 (R,R) and its parameters satisfy the following general

assumptions:

1. Functions µ, k, and p are always positive over R. Furthermore, p is a bounded function
onR and α > 0. Finally, the functionR0 defined in (0.3) is continuous onR and satisfies
R0 6≡ 0 and lim

|x|→∞
R0(x) = 0.

2. The mutation kernel J is bounded and integrable on R+
, positive almost everywhere,

and satisfies
∫
R+ J(x)dx > 0, J(−x) = J(x).

3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) =

O
(

1
‖x‖∞

)
as ‖x‖ → ∞. In other words, lim

|x|→∞
|x|nJ(x) = 0, for all n ∈ N.

B Model formulation for the qualitative resistance
Recalling that totally sensitive and resistance bacterial levels are respectively x = 0 and x = 1,

we set b(t, x) = BS(t)δ0(x) + BR(t)δ1(x), wherein BS and BR are the total densities of

highly sensitive and resistance bacterial population. From the b-equation, we have

ḂS(t)δ0(x) + ḂR(t)δ1(x) =− (µ(x) + k(x))(BS(t)δ0(x) +BR(t)δ1(x))

(1 +BS(t) +BR(t))
−α

[p(0)BS(t)Jε(x, 0) + p(1)BR(t)Jε(x, 1)] .

(B.1)

Evaluating the equation (B.1) successively at point x = 0 and x = 1, we find{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[p(0)Jε(0, 0)BS(t) + p(1)BR(t)Jε(0, 1)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[p(0)Jε(1, 0)BS(t) + p(1)BR(t)Jε(1, 1)]− (µ(1) + k(1))BR(t).
(B.2)

Since Jε(0, 0) +Jε(0, 1) = 1 and Jε(1, 0) +Jε(1, 1) = 1, setting ε0 = Jε(1, 0) = Jε(0, 1), (B.2)

yields{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[(1− ε0)p(0)BS(t) + ε0p(1)BR(t)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[ε0p(0)BS(t) + (1− ε0)p(1)BR(t)]− (µ(1) + k(1))BR(t).
(B.3)

C The basic reproduction numberR0 andmaximization prin-
ciple

By formally taking the limit ε→ 0 into (0.1), this system becomes

∂tb(t, x) =
1

(1 +B(t))α
p(x)b(t, x)− (µ(x) + k(x))b(t, x). (C.4)
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Assume that system (C.4) reaches a monomorphic epidemiological equilibrium Ez = bzδz ,

for some level of resistance z, before a new mutation with the level y occurs. Note that Ez is

the environmental feedback of the resident z. We introduce a small perturbation in (C.4) with

level y, such that b(t, x) = bzδz(x) + u(t)δy(x) and such that the perturbation u is governed

by the linearized system of (C.4) around Ez . This reads as

u̇(t) =

[
p(y)

(1 + bz)α
− (µ(y) + k(y))

]
u(t). (C.5)

It follows from the classical adaptive dynamics results [26, 29, 49] that bacterial reproduction

number,R(y,Ez), of a rare mutant strategy, y, in the resident z-population are given by

R(y,Ez) =
1

(1 + bz)α
p(y)

µ(y) + k(y)
,

The invasion fitness fz(y) of a mutant strategy y in the resident z-population is then given by

fz(y) = R(y,Ez)− 1. (C.6)

When the environmental feedback Ez is reduced to the bacteria-free environment, we have

bz = 0. Then, the epidemiological basic reproduction number of the bacterial population with

resistance level y is calculated as

R0(y) =
p(y)

µ(y) + k(y)
.

Once a bacterial strain has spread and reached a monomorphic equilibrium, the endemic

(feedback) environment Ez becomes

bz = (R0(z))
1/α − 1, (C.7)

which is defined whenR0(z) > 1 and satisfies

fz(z) = 0. (C.8)

Let us give some details on the derivation of (C.7). At the monomorphic equilibrium Ez , from

(C.4) we have,

1

(1 +
∫
R b(y)dy)α

p(x)b(x)− (µ(x) + k(x))b(x) = 0, ∀x ∈ R, (C.9)

where b(x) = bzδz(x). Taking x = z, (C.9) gives

1

(1 + bz)α
p(z)bz − (µ(z) + k(z))bz = 0.

Since bz > 0, it comes

(1 + bz)α =
p(z)

µ(z) + k(z)
= R0(z),
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and (C.7) follows.

Next, we show that the model (0.1) admits a maximization principle [30, 31] based on

theR0, such that model’s evolutionary attractors (or levels of resistance at equilibrium) are

characterized by local maximums points of R0. This point is important since, usually, the

identification of evolutionary attractors tends more to follow a mini-max procedure on an
adaptive fitness landscape (see [50] for further discussion). Indeed, by (C.6) and (C.8) we have

fz(z) =R(y,Ez)− 1

=R(y,Ez)−R(z, Ez)

=
1

(1 + bz)α
p(y)

µ(y) + k(y)
− 1

(1 + bz)α
p(z)

µ(z) + k(z)

=
1

(1 + bz)α
(R0(y)−R0(z)) .

TheR0 maximization principle then holds because sign(fz(y)) = sign (R0(y)−R0(z)) .

D Maximum point ofR0

Recall that R0 = p/(µ + k). From the definition of p and k, it follows that sgn(R′0(y)) =

sgn [f(y)− g(y)] , where f and g are positive function defined on R by

f(x) =
k(x) ln d

µ+ k(x)
, and g(x) =

bax ln a

1 + bax
,

with d = k0/k1, b = pm/p0 − 1 and a = p0(pm − p1)/(p1(pm − p0)). Functions f , resp. g, are

decreasing, resp. nondecreasing, monotonously on R. Therefore, there exists a unique global
maximum ofR0 at x

∗ ∈ R: R0(x∗) = max
x∈R
R0(x). Further, we know that x∗ ≥ 1 if and only if

f(1) ≥ g(1), i.e.

x∗ ≥ 1 iff

(
1− p1

pm

)(
1 +

µ

k1

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
Similarly, we also have

x∗ ≥ 0 iff

(
1− p0

pm

)(
1 +

µ

k0

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
We now search for conditions such thatR0(x∗) < 1. Note that

R0(x∗) =
p(x∗)

µ+ k(x∗)
=

pm
(µ+ k(x∗))(1 + bax∗)

.

Since f(x∗) = g(x∗) it comes

1 + bax
∗

=
(µ+ k(x∗)) log(a)

(µ+ k(x∗)) log(a)− k(x∗) log(d)
.
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We then rewrite

R0(x∗) = pm
(µ+ k(x∗)) log(a)− log(d)k(x∗)

(µ+ k(x∗))2 log(a)
.

Therefore,

R0(x∗) < 1⇐⇒(µ+ k(x∗))2 log(a) > pm(µ+ k(x∗)) log(a)− pm log(d)k(x∗)

⇐⇒µ+ k(x∗)

pm
>

1

2

(
1− log(d)

log(a)

)
+

√
1

4

(
1− log(d)

log(a)

)2

+
µ

pm

log(d)

log(a)
.

(D.10)

Next, setting R0
0 = R0|k≡0, the basic reproduction number of the model without any

treatment, we haveR0
0(0) = p0/µ, that is, µ = p0

R0
0(0)

and so, (D.10) becomes

R0(x∗) < 1⇐⇒k(x∗) >
pm
2

(
1− log(d)

log(a)

)
+

√
p2
m

4

(
1− log(d)

log(a)

)2

+
p0pm
R0

0(0)

log(d)

log(a)
− p0

R0
0(0)

.

Setting

γ =
pm
2

(
1− log(d)

log(a)

)
− p0

R0
0(0)

,

the above condition becomes

R0(x∗) < 1⇐⇒k(x∗) > γ +

√
γ2 +

p0

R0
0(0)

(
pm −

p0

R0
0(0)

)
. (D.11)

E Dissipativity and positivity
Let b(t, x) be the solution of (0.1) for the initial condition b(t = 0, ·) = b0(·). Setting ζ(x) =

µ+ k and introducing the locally Lipschitzian function

f(b(t, ·))(x) =
1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy,

equation (0.1) becomes

∂tb(t, x) = −ζ(x)b(t, x) + f(b(t, ·))(x). (E.12)

Theorem E.1 Let Assumption A be satisfied. Let b0 ∈ L1
+. Then

1. There exists a unique global solution v(·, b0) : [0,∞)→ L1
+(R) of (0.1) with v(0, b0) = b0

and v(t, b0) = b(t, ·) for all t > 0.
2. The semi-flow defined by {v(t, b0)}t is bounded dissipative and asymptotically smooth, and
hence, it admits a global attractor in L+(R).

3. The semi-flow {v(t, b0)}t is such that for any b0 ∈ L1
+(R) \ {0}

b(t, x) > 0, for all t > 0, x ∈ R.
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Proof. 1. Since f : L1 → L1
is locally Lipschitz, for any b0 ∈ L1

, there exists TM = TM (b0) > 0

such that (0.1) has a unique solution b ∈ C
(
[0, TM )× R, L1

)
∩C1

(
[0, TM )× R, L1

)
, see [51].

Further, if b0 ∈ L1
+, by (E.12), we easily find that b(t, ·) ∈ L1

+ for all t ∈ (0, TM ). This gives the

local well-posedness and positivity of (0.1). Next, we have

Ḃ(t) ≤ ‖J‖∞‖p‖∞
B(t)

(1 +B(t))
α − inf

R
ζ B(t),

which gives

B(t) ≤ max

(
‖b0‖L1 ,

[
‖J‖∞‖p‖∞

infR ζ

]1/α

− 1

)
, for all t ∈ [0, TM ). (E.13)

From where we establish the global well-posedness and bounded dissipativity in L1
+.

2. We now show that the semi-flow is asymptotically smooth, i.e., for any closed, bounded and

positively invariant setK ⊂ L1
+, there exists a compact setΩ ⊂ L1

+ such that dh(v(t,K),Ω)→
0 as t→∞ where uK = and dh is the Hausdorff semi-distance [52]. By (E.12) we have

b(t, ·) = e−ζ(x)tb0(·) +

∫ t

0

e−ζ(x)(t−s)f(b(s, ·))ds, for t ≥ 0, b0 ∈ L1
+.

Then, the compacity of f gives that {v(t, ·)}t is asymptotically smooth [53].
3. Let u be the unique solution of

∂tu(t, x) = −ζ(x)u(t, x) +

∫
R
J(x− y)p(y)u(t, y)dy,

u(0, ·) = b0.

By the comparison principle, we have b(t, x) ≥ u(t, x) ≥ 0 for all t ≥ 0 and x ∈ R. Therefore,
item 3. follow if show u(t, x) > 0 for all t > 0 and x ∈ R. Setting U [u](x) =

∫
R J(x −

y)p(y)u(y)dy on L1(R), we find that U is continuous and generates an uniformly continuous

and positive semigroup {eUt}t on L1(R). Then, for each t ≥ 0,

eUt[b0] =

∞∑
l=0

tlU l[b0]

l!
, (E.14)

where the series converges in the operator norm. Since b0 6= 0,
∫
R J(x)dx > 0 and

U l+1[b0](x) =

∫
R
J(x− y)p(y)U l[b0](y)dy,

an iteration argument ensures the existence of l0 such that U
l[b0](x) > 0 for x ∈ R and for

all l ≥ l0. From where, (E.14) gives that e
Ut[b0](x) > 0 for all x ∈ R. Setting ζ̄ = supR ζ(x),

we then have

u(t, ·) = e−ζ̄teUt[b0] +

∫ t

0

e−ζ̄(t−s)eU(t−s)[(ζ̄ − ζ)u(s, ·)]ds ≤ e−ζ̄teUt[b0] > 0.

PEER COMMUNITY IN MATHEMATICAL AND COMPUTATIONAL BIOLOGY 24 of 35



F Linearization at the bacteria-free equilibrium
At the bacterial-free equilibrium, the linear system of (0.1) writes

∂tb(t, x) = Lε[b(t, ·)](x),

with

Lε = Uε + T, (F.15)

and Uε[b] =
∫
R Jε(x− y)p(y)b(y)dy, T [b] = −ζb.

Proposition F.1 Let s(Lε) = sup{Reλ : λ ∈ σ(Lε)} the spectral bound of Lε.

• If s(Lε) > s(T ), then s(Lε) is an isolated and simple eigenvalue of Lε, whose eigen-space
is spanned by 0 < φ ∈ L1(R), and if λ ∈ σ(Lε) and λ 6= s(Lε), then Reλ < s(Lε).

• If there exist λ ∈ R and 0 < φ ∈ L1(R) such that Lε[φ] = λφ, then s(Lε) = λ > s(T ).

• s(Lε) > 0 (resp. = 0,< 0) if and only if r(Hε) > 1 (resp. = 1,< 1).

Proof. By the same argument as in the proof of Lemma H.2, we find the compacity and
irreducibility of U , and the first item follows from [54](Theorem 2.2).

For the second item, let λ ∈ R and φ ∈ 1(R) such that L[φ] = λφ. Since T generates a

uniformly continuous, positive and uniformly exponentially stable semigroup, by Lemma H.2

and a general perturbation result, note that the semigoup {eLt}t is positive. Let v ∈ L1(R)

such that ‖v‖L1 ≤ 1, then for all t ≥ 0

eLtv ≤ 1

infR φ
eLtφ =

1

infR φ
eλtφ ≤ supR φ

infR φ
eλt,

from where ‖eLt‖ ≤ supR φ
infR φ

eλt. Since the growth bound of {eLt}t coincides with s(L) it

comes s(L) ≤ λ and hence, s(L) = λ. We now show that λ > s(T ). Indeed, λφ = L[φ] =

H[φ]− ζφ > −ζφ and hence λ > − supR ζ = s(T ), from where the second item follows.

It remains to prove the last item. Assume s(L) = 0. Then s(T ) = − supR ζ < 0 = s(L). From

the first item, we find φ > 0 such that L[φ] = 0. HenceH[
√
ζpφ] = ωL[φ] +

√
ζp φ =

√
ζp φ,

that is, (1,
√
ζp φ) is an eigen-pair of H . Hence, by Lemma H.2 it comes r(H) = 1. Next,

assume that r(H) = 1. Let φ > 0 such thatH[φ] = φ. Then L[φ/
√
ζp] = ω−1/2(H[φ]− φ) =

0, and the second item gives s(L) = 0.

To conclude on the last item of the proposition, it is sufficient to prove that s(L) > 0 iff

r(H) > 1. Assume s(L) > 0, then we can find φ > 0 such that L[φ] = s(L)φ. Hence,

H[
√
ζp φ] = ωL[φ]+

√
ζp φ = (s(L)/ζ+1)

√
ζp φ ≥ (1+k)

√
ζp φ, with k = infR ζ

−1 > 0. By

iterating, it comesHn[
√
ζp φ] ≥ (1+k)n

√
ζp φ for all n ≥ 1. This gives that ‖Hn‖1/n ≥ (1+k)

an hence r(H) ≥ 1 + k > 1. Conversely, let r(H) > 1 and φ > 0 the corresponding

eigenfunction. ThenL[φ/
√
ζp] = ζ(r(H)−1) φ/

√
ζp ≤ cφ/

√
ζp, with c = (r(H)−1) infR ζ >
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0. By contradiction, assume that s(L) < 0. Then, 0 /∈ σ(L) and (−L)−1
is positive as L

generates a positive semigroup. Hence,

φ/
√
ζp = (−L)−1(−L)[φ/

√
ζp] ≤ −c(−L)−1[φ/

√
ζp].

As (−L)−1[φ/
√
ζp] ≥ 0, we find φ/

√
ζp ≤ 0, which leads to a contradiction. Hence, s(L) ≥ 0,

and so s(L) > 0.

G Stability results when r(Hε) < 1

Theorem G.1 1. The bacteria-free equilibrium E0 is asymptotically stable if r(Hε) < 1 and
unstable if r(Hε) > 1.

2. When r(Hε) < 1, the bacteria-free equilibrium E0 is globally asymptotically stable in
L1

+(R), that is, for any solution b(t, ·) with initial b0 ∈ L1
+(R) \ {0}, we have

b(t, ·)→ 0 in L1
+(R) as t→∞.

Proof. 1. Proposition F.1 allows us to derive the following threshold result on the local stability
of the bacteria-free equilibrium.

2. By Theorem E.1 it suffices to prove item 2. for any b0 ∈ L1
+(R) \ {0} with ‖b(t, ·)‖L1 ≤ C

for all t ≥ 0, where C � 1. By (0.1), we have ∂tb(t, x) ≤ L[b(t, ·)](x), and by comparison

principle, we find 0 ≤ b(t, ·) ≤ eLtb0, where {eLt}t is the positive semigroup generated by
L. Next, by Proposition F.1, we have s(L) < 0 because r(Hε) < 1. Furthermore, since the

growth bound of {eLt}t is the same as s(L), we conclude that

‖b(t, ·)‖L1 ≤ c0e−c1t‖b0‖L1 , ∀t ≥ 0,

for the constants c0 > 1 and c1 > 0. This ends the proof of the theorem.

H Equilibrium
The bacteria-free environment E0 = 0 is always an equilibrium of Model (0.1). In this section,

we discuss the existence of a nontrivial equilibrium b∗(·) > 0. From System (0.1) we find, for

all x ∈ R
ω(x)

∫
R
Jε(x− y)ω(y)

√
pζb∗(y)dy = (1 +B∗)

α
√
pζb∗(x).

where ω(x) =
√
R0(x), andB∗ =

∫
b∗(x)dx. Setting v∗ =

√
pζb∗, it comes that v∗ is solution

of the following system

ω(x)

∫
R
Jε(x− y)ωv∗(y)dy = (1 +B∗)

α
v∗(x). (H.16)
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Therefore, the existence of b∗(·) > 0 is strongly related to the spectral property of the linear

integral operatorHε defined on L
p(R), for any p ≥ 1, by

Hε[v](x) = ω(x)

∫
R
Jε(x− y)ω(y)v∗(y)dy. (H.17)

We then have the following theorem

Theorem H.1 Let Assumption A be satisfied. Let r (Hε) the spectral radius of operatorHε and
φε > 0 the associated eigenfunction normalized such that ‖φε‖L1 = 1. Define the quantity

Kε0 =
(r (Hε))

1/α − 1∫
R

φε√
pζ

dy
. (H.18)

When r (Hε) ≤ 1, the the bacteria-free equilibrium E0 = 0 is the unique equilibrium of Model
(0.1).
When r (Hε) > 1, in addition to E0, Model (0.1) has a unique nutrient-bacteria equilibrium
E∗ > 0 such that

E∗(x) = Kε0
φε(x)√
p(x)ζ(x)

. (H.19)

Furthermore, an explicit formula for the spectral radius r (Hε) ofHε reads r (Hε) = rε0, where

rε0 = sup
v∈L2,‖v‖L2=1

∫
R2

Jε(x− y)ω(x)ω(y)v(x)v(y)dxdy. (H.20)

Proof of Theorem H.1. Here, we deal with the existence of the principal eigenpair for the
linear operatorHε, and we proceed by several steps. For simplicity, we do not emphasize the

ε-dependency. First, we introduce the following lemma

Lemma H.2 The following statements hold under Assumption A.
1. For each p ≥ 1, the operatorHε is compact and irreducible on Lp(R) with positive spectral
radius, r(Hε) > 0. Further, there exists a function up ∈ Lp(R) such that up > 0 a.e. and
H[up] = r(Hε)up. Furthermore, if u ∈ Lp+(R) \ {0} is such thatH[u] = cu with c ∈ R,
then u > 0 a.e., u ∈ span(up) and c = r(H).

2. The common spectral value of the operatorH is characterized by r(H) = r0 for all p ≥ 1;
where r0 is defined by (H.20).

Before giving details on the proof of Lemma H.2, let us quickly end with the proof of Theorem

H.1. Obviously, E0 = 0 is always an equilibrium point of the model. We now check nontrivial

solution b∗ > 0 of system (H.16). Using above notations, (H.16) rewrites H[v∗](x) = (1 +

B∗)αv∗(x). From Lemma H.2 we find r(H) = (1 + B∗)α > 1 and v∗ ∈ span(φ∗), wherein
φ∗ ∈ L1(R) ∩ L∞(R) is the principal eigenfunction of H with φ∗ > 0 a.e. and normalized
by ‖φ∗‖L1 = 1. We then write v∗ = ηφ∗, for some constant η > 0; i.e. b∗ = ηφ∗√

pζ
and

B∗ = η
∫

φ∗√
ζp

dy. This completes the proof of Theorem H.1. It remains to proof Lemma H.2.
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Proof of Lemma H.2. The proof is mostly based on the Frobenius theorem, which generalizes
the Krein-Rutmann theorem for positive, irreducible, and compact linear operators in Banach

lattices.

H is a bounded operator. Since the kernel operator J ∈ L1(R) ∩ L∞(R), the operatorH

is a bounded operator. Indeed,∫
|H[u](x)|p dx ≤

∫ [
ω(x)

∫
J(x− y)ω(y)|u(y)|dy

]p
dx

≤‖ω‖p∞‖J‖p∞||u||
p
Lp .

H is a compact operator in Lp (R) for any p ≥ 1. Denote by τhf , the translation of
f : R→ R by h, and defined by τhf(x) = f(x+ h) for all x ∈ R. Let p ∈ [1,∞) be given. Let

u ∈ Lp(R) and h ∈ R be given. We have

‖τhH[u]−H[u]‖pLp(R) =

∫
R

∣∣∣∣∫
RN

[τhω(x)J(x− y)− ω(x)J(x− y)]ω(y)u(y)y
.

∣∣∣∣p dx.

Then Young inequality yields

‖τhH[u]−H[u]‖Lp(R) ≤ ‖τhωJ − ωJ‖L1(RN )‖Ψ‖∞‖u‖Lp(R).

Since ‖τhωJ − ωJ‖L1(R) → 0 as h→ 0 one gets that

lim
h→0

τhH[u] = H[u] in Lp(R),

wherein the above convergence holds uniformly on bounded sets on Lp(R).

Next, let u ∈ Lp(R) and s > 0 be given. Then we have∫
|x|>s

|H[u](x)|p dx ≤
∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|dy

]p
dx. (H.21)

Let R > 0 be given. Consider a smooth and nonnegative function χR such that 0 ≤ χR ≤ 1,

χR(y) = 1 if |y| ≤ R and χR(y) = 0 if |y| ≥ R + 1. Then, there exists some constant

C = Cp > 0, such that equation (H.21) becomes∫
|x|>s

|H[u](x)|p dx ≤Cp
∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

+Cp

∫
|x|>s

[
ω(x)

∫
RN

J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx.

Now, note that there exists some constant C > 0 independent of u (and R) such that∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

≤ C‖J‖p−1
∞ ||u||pLp(R)

∫
|x|>s

[
sup

|x−y|≤R+1

J(y)

]
dx.
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Since the function x 7→ sup|x−y|≤R+1 J(y) belongs to L1(R), we then find a constant C > 0

such that the previous inequality becomes∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx ≤ C‖J‖p−1

∞ ||u||pLp(R).

On the other hand, since ‖J‖L1(R) = 1, Young inequality ensures that∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx ≤ sup

|y|≥R
|ω(y)|p||u||pLp(R).

Now, setting Bp(1) the unit ball in Lp(R), it comes that for all R > 0

lim sup
s→+∞

sup
u∈Bp(1)

∫
|x|>s

|H[u](x)|p dx ≤ Cp sup
|y|≥R

|ω(y)|p.

Finally, by Assumption A, we have ω(x)→ 0 as |x| → ∞. From where

lim
s→+∞

sup
u∈Bp(1)

‖H[u]‖Lp({|x|≥s}) = 0.

Therefore, the Fréchet-Kolmogorov theorem applies and ensures thatH is a compact operator

on Lp(R).

The spectral radius of H is positive. By Assumption A, the function ω is positive on R,
then the operatorH is irreducible on Lp(R), for all p ≥ 1. Then, Frobenius theorem (Theorem

4.2.13 and Corollary 4.2.15 in [55]) applies and ensures that its spectral radius r (H) is positive

and it is a simple eigenvalue associated to an eigenvector ψ > 0 a.e. in (0, 1). Furthermore,

if ζ ∈ R is an eigenvalueH associated to an eigenvector w ∈ Lp+(0, 1) \ {0} then ζ = r (H)

and w > 0 a.e. in (0, 1). This ends with the proof of Lemma H.2, item 1..

We now prove that for all p ≥ 1, r(H) = r0, with r0 defined by (H.20). Denote by
rp(H) the spectral radius of H defined on Lp(0, 1), for p ≥ 1. Then, with p = 1, by item

1. there exists a function u1 ∈ L1(0, 1) with u1 > 0 a.e. such that r1(H)u1 = Hu1. Let

q ≥ 1 be given. Again by item 1., to show that rq(H) = r1(H), it is sufficient to show that

u1 ∈ Lq(0, 1). Since u1 ∈ L1(0, 1) and J ∈ L1(0, 1)∩L∞(0, 1), then the convolution product

FJ ∗ (Fu1) ∈ L1(0, 1) ∩ L∞(0, 1) and the result follows from Young inequality. Finally, due

to the symmetry hypothesis on the mutation kernel J ,H is self-adjoint operator and then,

the Rayleigh quotient formulation for the principal eigenvalue ofH ensures that r2 (H) = r0.

This completes the proof of 2. and so the proof of Lemma H.2.

I Persistence results when r(Hε) > 1

Theorem I.1 Suppose r(Hε) > 1, then the semi-flow {v(t, b0)}t is uniformly persistent, that
is, there exists a constant ν > 0 such that, for any b0 ∈ L1

+(R) \ {0}, the unique solution
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v(t, b0) = b(t, ·) of (0.1) with initial data b0 satisfies

lim inf
t→∞

‖b(t, ·)‖L1 > ν.

Proof. We first establish the weak uniform persistence, that is, there exists ν1 > 0 such that

lim sup
t→∞

‖b(t, ·)‖L1 > ν1. (I.22)

By contradiction, suppose that for τ > 0, there exists bτ0 ∈ L1
+(R) \ {0} such that the unique

solution bτ (t, x) of (0.1) with initial data bτ0 satisfies

lim sup
t→∞

‖bτ (t, ·)‖L1 ≤ 2τ.

Replacing bτ0 by b
τ (tτ ) for some tτ � 1 and applying item 3. of Theorem E.1, without loss of

generality, we may assume that 0 < ‖bτ (t, ·)‖L1 < τ for all t ≥ 0. Then,

∂tb
τ (t, ·) ≥ Lτ [bτ (t, ·)], (I.23)

whereLτ is the operator defined byLτ [u(·)](x) = −ζ(x)u(x)+(1+τ)−α
∫
R J(x−y)p(y)u(y)dy.

We also introduce the operatorHτ [u(·)](x) = −ζ(x)u(x)+(1+τ)−α
∫
R J(x−y)p(y)u(y)dy.

Note thatHτ → H in the operator norm as τ → 0 and whereH is the operator introduced

by (H.17). Since r(H) > 1, we can choose τ0 sufficiently small that r(H
τ0) > 1, as the spectral

radius is a continuous function of compact linear operators. By Proposition F.1, s(Lτ0) > 0

and it is an isolated and simple eigenvalue with corresponding eigenfunction φτ0 > 0 and

normalized such that ‖φτ0‖ = 1. Let c > 0 be a constant such that cφτ0(x) ≤ bτ00 (x) for all

x ∈ R. By Lemma H.2 and general perturbation results, Lτ0 the semigroup {eLτ0 t} generated
by Lτ0 is uniformly continuous and positive. It comes

eL
τ0 tbτ00 ≥ eL

τ0 tcφτ0 = es(L
τ0 )tcφτ0 .

From where ‖eLτ0 tbτ00 ‖L1 → ∞ as t → ∞, since s(Lτ0) > 0. By the comparison principle,

(I.23) gives ‖bτ0(t, ·)‖L1 ≥ ‖eLτ0 tbτ00 ‖L1 →∞ as t→∞ and leading to a contradiction.

It remains to show that there exists a constant ν > 0

lim inf
t→∞

‖b(t, ·)‖L1 > ν.

The function χ(u) = ‖u‖L1 is continuous and the compactness assumption to apply Theorem

A.34 of [56] is satisfied because the semiflow v(t, b0) induced by the nonnegative solutions

of (0.1) has a compact attractor of bounded sets by Theorem E.1. By Theorem E.1, χ(b0) > 0

implies χ (v(t, b0)) > 0 and the result follows from [56].
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Supplementary material
The code (with the MatLab Programming Language) used to simulate the model can be

accessed through the Zenodo platform at http://doi.org/10.5281/zenodo.5508202
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