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Abstract

This work is divided in two papers (Part I and Part II). In Part I, we
study a class of polymodal logics (called herein the class of “Rare-logics”)
for which the set of terms indexing the modal operators are hierarchized
in two levels: the set of Boolean terms and the set of terms built upon
the set of Boolean terms. By investigating different algebraic properties
satisfied by the models of the Rare-logics, reductions for decidability are
established by faithfully translating the Rare-logics into more standard
modal logics. The main idea of the translation consists in eliminating
the Boolean terms by taking advantage of the components construction
and in using various properties of the classes of semilattices involved
in the semantics. The novelty of our approach allows us to prove new
decidability results (presented in Part II), in particular for information
logics derived from rough set theory and we open new perspectives to
define proof systems for such logics (presented also in Part IT).

Key-words: polymodal logic, relative accessibility relation, translation.

1 Introduction

Background. During the last decade, the information logics derived from
Pawlak’s information systems [Paw81] have been the object of active research
(see for example [Orto84, OP84, Vak91c]). An information system can be seen
as a structure (OB, AT') such that

e OB is a non-empty set of objects;

e AT is a non-empty set of attributes;

e each attribute at € AT, is a mapping at : OB — P(Vals) where Valy,
is a non-empty set of values.

*This work has been partly done during a visit of S. Demri at the Imperial College in
the group ”Logic and Automated Reasoning”. The visit has been financed by Action COST
#15 “Applications of Many-Valued Logics to Computer Science”.



For each object o and for each attribute at, at(0) is the set of possible values
of o with respect to the attribute at. Usually, at(o) is non-empty. Such
structures are relevant to capture some aspects of incomplete information. In
that setting, various relations between objects can be found in the literature.
We recall some of them below. For any 01,00 € OB, A C AT,

e oyind(A)oy & for any at € A, at(01) = at(os) (see e.g. [Orlo84, Raus4,
Kon87, DO97]);

o o1sim(A)oy & for any at € A, at(o1) Nat(oz) # O (see e.g. [Vak9lb,
Vak91la, Kon97a, Vak97]);

e o1fin(A)os E for any at € A, at(o1) C at(oz) (see e.g. [Orto97]).

o1ind(A)oz can be read as follows: the objects o; and o2 cannot be distin-
guished modulo the set of attributes A. Similarly, ojsim(A)oq iff 01 and o9
are similar modulo A. These relations are said to be strong because the quan-
tification used in the definition is universal (see e.g. [Orlo97]). The relations
wind(A), wsim(A),wfin(A) are defined by using the existential quantifica-
tion (weak relations) instead of the universal quantification. Observe that for
each r € {ind, sim, fin} and for A, B C AT,

(S) (AU B) =r(A)Nr(B) and r(0) = OB x OB;
(W) wr(AU B) = wr(A) Uwr(B) and wr(}) = (.

The polymodal logics obtained from the information systems are multimodal
logics such that the relations in the Kripke-style semantical structures cor-
respond to relations between objects in the underlying information systems.
Hence, the relations are interdependent; for instance, if B C A C AT, then
ind(A) Cind(B). Moreover, ind(A) [resp. sim(A)] is an equivalence relation
[resp. a reflexive and symmetric relation].

The paper consists in studying the class of Rare-logics that contains dif-
ferent information logics from the literature. Some comments are in order
to recall the pecularities of such logics. First, recall that numerous propo-
sitional modal logics can be defined from semantical structures of the form
M = (W,(Rc)ceM,: V). M is a Kripke-style structure where W is a non-
empty set, (Rc)cepm, is a family of binary relations over W, My is the set of
modal constants (under which is built the set of modal expressions, say M)
and V is a meaning function. V is usually towfold: for each propositional
variable p, V(p) C W and for any a € M, V(a) € P(W?) with for any c € My,
V(c) = Rc. When M is a set of terms, there may be additional conditions to
be satisfied, for instance

V(e(a,...,an) = fo(V(ar),...,V(an))

where @ is a n-ary operator under which M is closed and fg is a mapping
fo : P(W?)" — P(W?) interpreting the syntactic operator ®. The proposi-
tional dynamic logic PDL (see e.g. [Har84]) is one of the most known logics
of this type. In the sequel, such logics are called standard modal logics.

By adding a Boolean dimension'® to the standard modal logics we obtain a
class of logics that includes numerous information logics described above. In

!This is different from the sense understood in [GV98].



order to define the logics of such a class, at the syntactical level, we replace Mg
by a set of expressions of the form 7(A) with A € P where the set P is built upon
a set Py = {C,D,...} of parameter constants and is closed under the syntactic
operators N, U, —. A is a Boolean term and is called a parameter expression.
The symbol 'r’ is an arbitrary symbol announcing a Boolean expression A
in a modal expression. For instance, a modal expression (c1 o ¢2) U c3 can
generate the modal expression (r(C N —D)or(DU —D))Ur(CN —-DN —C) for
some Rare-logic. The semantical structures of such logics are of the form
(W,PAR, (Rp)pcpar, V) where PAR is a non-empty set of parameters, V
homomorphically maps every Boolean expression A to a subset of PAR and
V(r(A)) = Ry ). By providing a richer structure to P(PAR) and P(W?),
the family (Rp)pcpagr can be seen as a mapping

R:(P(PAR),u,n,—,0, PAR) — (P(W?),u,n, -, 0, W?)

According to the algebraic properties of R, different types of logics are defined
(see e.g. [Orto95]). For instance, we may require that R is a homomorphism
of Boolean algebras but weaker conditions are also possible and relevant. For
instance, R can be seen as a mapping from the lattice (P(PAR),C) into the
meet-semilattice ({R(P) : P C PAR},C) with top element W? such that
R(PUP') = R(P)NR(P') and R(()) = W? (see the condition (S) above). As
announced previously, logics of such a kind shall be called logics with Relative
Accessibility RElations (Rare-logic for short) and as far as we know this term
first appeared in [Orlo88a]. Numerous logics from the literature can be seen
as Rare-logics (see for example [Orto85, Kon87, Orto89, Kon97b]).

Our objectives. Our prime objective is to compare various classes of Rare-
logics with their corresponding classes of standard modal logics. The criteria
of comparison range from (un)decidability of satisfiability (finite model prop-
erty, ...) to complete and sound axiomatization (presented in [DG]). By
achieving such a comparison, we claim that we provide a framework for study-
ing Rare-logics that allies generality and sheds a new light on the Rare-logics
themselves. For instance by defining satisfiability-preserving transformation
from Rare-logics into standard modal logics, we shall solve open problems
about decidability issues (presented also in [DG]).

Our contribution. The main result of the paper states that there exist
satisfiability-preserving transformations between Rare-logics from a large class
(including most known Rare-logics from the literature) and corresponding
standard modal logics. As a side-effect, the uniform proof of such a result
provides the finite model property and the finite parameter set property. In
[DG] we show that refinements are also proved to be correct in order to elimi-
nate the universal modal operator for some cases. Furthermore, the extension
of the proof technique is performed in order to define satisfiability-preserving
transformations when nominals are added for atomic parameters and atomic
propositions [DG]. By taking advantage of such translations, we define a
general construction that allows to define an axiomatization of Rare-logics
from calculi for the corresponding standard modal logics [DG]. Last, but not
least, we provide a uniform proof of decidability for various Rare-logics from
[Orlo84, Orto93, Orto89, Orto88b, Bal96a, Bal97] for which the issue has been



open up to now. Indeed, the decidability of the corresponding standard modal
logics is used with possibly some adequate adjustments.

Related work. As far as we know, the notion of Rare-logic appeared in
the literature in [Orto88a]. Different Rare-logics are described in [Orlo88a]
to model reasoning in presence of incomplete information. Proof systems
for some Rare-logics can be found in [Bal96a, Bal96b, Bal97, Kon97a, Dem99,
DGI8]. Recently, in [BO99], a classification of logics with relative accessibility
relations have been proposed. None of these works tackle the problem of relat-
ing Rare-logics with more standard modal logics in a systematic way. More-
over, in these works, decidability issues are not their main concern whereas in
the present paper this is a crucial consequence of the faithful translations. In
[GP90], the Boolean Modal Logic BML also admits in the language a family
of operators [a] where « is a Boolean term interpreted as a binary relation.
Like BML, a great deal of existing logics (PDL for instance) are determined by
classes of multimodal frames such that the respective binary accessibility re-
lations satisfy equations of the form Ra, = f(Ra,,-..,Ra,) where aj, ..., a,
are subexpressions of the modal expression ag (possibly equal to ag) and f is
a mapping of binary relations. Unlike these logics, the models of Rare-logics
may satisty the equation Ry (p gy = Ry (a) N Ry (g but nothing else might be
said about Ry (_py or Ry pnB- This is in sharp contrast with BML.

Plan of the paper. The rest of the paper is structured as follows. In Section
2, the class of standard modal logics into which the Rare-logics are translated
is defined. In Section 3 the class of Rare-logics is introduced and we propose
a rough classification. In Section 4, satisfiability-preserving transformations
between Rare-logics and standard modal logics are defined. Section 5 contains
concluding remarks.

2 Modal logics

We borrow (or adapt) various definitions from [Ven91]. Let OP = {1, ..., ®s}
be a (possibly empty) finite set of operators. An OP-signature Sop is a triple
Sop = (OP, pbp, php) such that for i = 1,2, pi,p is a map OP — w \ {0}.
pop [resp. pdp] assigns to each operator a finite arity [resp. a finite modal
arity] -when OP = ), pbp and p3 p take dummy values. A set M = {a,b,...}
of modal expressions is the smallest set that contains a non-empty countable
set of basic modal expressions My and it is closed under OP with respect to
the arity map pdp.

A modal similarity type S is a pair S = ({(a) : a € M},p) (depending
on Spp) with p : M — w \ {0} assigning a finite modal arity for each modal
expression such that p(®(ai,...,a,)) = pHp(®) (here pbp(®) = n).

A modal language L is defined as a pair (S, Forg) where S is modal similarity
type and Forg = {p,q,...} is a countable set of propositional variables. The
formulae F of L are inductively defined as follows:

F u=p | FiAF2| —F| (a)(Fy,...,Fp)

for p € Forg, a € M with p(a) = n. The set of L-formulae is denoted For.
Standard abbreviations include L, T, [a], V, =, <. For instance, when



def

p(a) = n, [a](Fy,...,Fp) = 2(a)(=F1,...,F,). In the proofs on induction on
the structure of formulae, we might use [a] instead of (a).

DEFINITION 2.1. As usual, we call £ C For an L-normal modal logic &

e L is closed under modus ponens, uniform substitution and universal gen-
eralization, i.e. if F € L, then [a](Fy,...,Fi—1,F,Fit1,...,Fy) € £ with
p(a) =n and Fy1,Fy,...,Fi_1,Fit1,...,F, € For;

e L contains all tautologies from propositional calculus and
[a](plv <o P15 P = plvpi+1v cee 7pn) = ([a](Pla cee inflvpapi-i-lﬂ e 7pn) =

[a]<p17 - vpiflvplvpi—i—lv i 7pn)) with p(a) =mnandpy,... yPi—15Pig1r-- - ,pn,p,p’ €
Forg.

\Y

In what follows, we consider L-normal modal logics having Kripke-style
semantics. In order to interpret the operators from OP, some preliminary
definitions are needed. A relation operation ¢ maps any set U to a mapping

(b(U) : P(Uil) X ... X 'P(Ul") — 'P(Uin+1)

with i1,...,9,41 > 1 and 41,...,ip+1 do not depend on U. (i1,...,in+1)
is the profile of ¢ and n is its arity. Moreover, we require that if there is
an 1-1 mapping f : U — U’, then for any (X1,...X,) € P(U") x ... x
PU™), f(o(U)(X1,..., Xp)) = o(U)(f(X1),-.., fF(Xn))). A set operation ¢
is defined as a relation operation such that for any set U, ¢(U) has the profile
(1,...,1). By abusing our notation, we often write ¢(Xy,...,X,) instead of
(b(U)(Xla v 7Xn)~

DEFINITION 2.2. A dimension map D for a modal language L is a partial
function MUOP — (w\ {0}) U (w\ {0})" such that

e for any c € My, D(c) = p(c) + 1 (c € MP);

e forany @ € OP, D(®) = (i1, ..., in,in+1) € (W\{0})T with p})p(®) = n,
int1 = pop(®) +1;

e forany @ € OP and ay, ..., a, € MP suth that D(®) = (D(a1),...,D(an),int1),
we have D(®(a1,...,a,)) = iny1 (B(ay,...,a,) € MP).

\Y

In the above Definition 2.2, MP denotes the set of well-formed modal ex-
pressions with respect to L and D. For the sake of economy, M? is written M
since we shall only deal with well-formed expressions in the sequel.

DEFINITION 2.3. Let D be a dimension map for L. An operator interpretation
7 maps the set OP into the set of relation operations such that for any @ €
OP, the profile of Z(®) is D(D). \Y

Let L be a modal language and D be a dimension map for L. An L-frame
F is a structure (W, (Rc)cey,) such that W is a non-empty set and for any
c €My, Re € WP(©), An L-model M under some operator interpretation T is
a structure (W, (Rc)ceM,, V) such that F = (W, (Rc)cep,) is an L-frame (M
is said to be based on F) and V is a mapping (Foro UM) — J;~; P(W?") such
that



V(p) € P(W) for any p € Fory;

) €

V(c) = Rc for any ¢ € My; V(a) € P(WP®) for any a € I;

. V(@(al, coan))=Z(@)(W)(V(ar),...,V(ay)) for any &(ay,...,a,) €
M.

The structure ({V(a) : a € M},Z(®1)(W),...,Z(®s)(W)) is therefore
a sorted relation algebra of similarity type (pOP(EBl), s pop(Bs)) where
the sort of V(a) for any a € M is its dimension D(a) (see e.g. [Orlo88b]).
Moreover, {V(a) : a € M} is uniquely generated from {V(c) : ¢ € My} and
I(@l)(W)a e 71(@8)(W)'

Let (W, (Rc)ceM,, V) be an L-model under some Z. As usual, the formula
F is satisfied by the world u € W in M & M, u E F where the satisfaction
relation = is inductively defined as follows:

def

M,ul=Ep & u € V(p), for any p € Fory;
M,u = -F & not M,ul=F
MuEFAG E Mu=Fand M,u=G;

M,u = (a)(F1,...,Fp) & Juq,...,u, € W such that (u,ug,...,uy) €
V(a) and for ¢ € {1,...,n}, M,u; =F; (p(a) =n).

A formula F is true in an L-model M (denoted by M = F) & for any
uwe W, M,u |=F. Fis valid in an L-frame F (denoted by F =F) & M EF
for any L-model based on F (under some Z).

DEFINITION 2.4. Let D be a dimension map for the modal language L and 7
be an operator interpretation. Let £ be an L-normal modal logic and F be
an L-frame. F is an L-frame for £ & every formula F in £ is valid in . V

A more standard notion of L-frame would be to consider the structures of
the form (W, (Ra)acm). This is not done here since all the logics treated in
the paper are determined: the structure (W, (Ra)acy) is uniquely generated
from (W, (Rc)cem,) using the operator interpetation Z.

DEFINITION 2.5. An L-normal modal logic £ is said to be semantically deter-
mined & there exists a structure (D, Z,C) such that D is a dimension map
for L, Z is an operator interpretation, C is a non-empty class of L-frames for L
and D, and for any L-formula F, F € £ iff F is valid in all L-frames in C. V

A semantically determined L-normal modal logic £ is also represented by
(L,D,Z,C). An L-model is an L-model under Z based on some F € C. An

L-formula F is said to be L-valid & F E L’ iff F is true in all £-models.
An L-formula F is said to be L-satisfiable & there exist an L-model M =

(W, (Rc)cem,, V) and u € W such that M,u = F. We say that G is a logical

L-consequence of the formula F (in symbols F =, G) & for any £-model M,
M = F implies M = G.

As usual, we say that the modal logic £ has the finite model property (fmp)
iff for each L-satisfiable formula F has an £-model such that W is finite. £ is
said to be decidable iff there is a decision procedure that for each L-formula
F outputs “yes” if F € £ and “no” otherwise. As usual, for semantically
determined logics, satisfiability is decidable iff validity is decidable.



DEFINITION 2.6. A standard modal logic is a semantically determined L-normal
modal logic such that the set of basic modal expressions is a countable set
My = {c,d,...} of constants. \Y

EXAMPLE 2.1. Let DAL = (L,D,Z,C) be the standard modal logic (see e.g.
[FACO85]) such that OP = {N,U*} (respectively interpreted by Z as the
set intersection and the reflexive and transitive closure of the union). Mgy
is a countably infinite set {cg,...,cpn,...} of modal constants. Moreover,
Pop(N) = ppp(U*) = 1 and ppp(N) = ppp(U*) = 2. For any frame F =
(W, (Rc)cem,)» F € C & each Rc is an equivalence relation on W. It is
easy to see that for any DAL-model (W, (Rc)cey,, V), and for any modal
expression a, V(a) is an equivalence relation on .

A standard modal logic £ = (L,D,Z,C) is said to be closed under dis-
joint unions & for any L-model M! = (WL, (RE)cem,- V') and M? =
(W2, (RE) cemy» V), if WINW? = (), then the structure M = (W, (R¢)cem,. V)
defined below is an £-model:

o WEW!IUWS? for p € Forg, V(p) = V(p) UV%(p);

o for c €My, Rc & RLURZ: for any a € M, V(a) = V(a) U V?2(a).

Similarly, a standard modal logic £ = (L,D,Z,C) is said to be closed under
isomorphic copies & for any L-model M = (W, (Rc)cep,, V) and for any
1-1 mapping f : W — W' (naturally extended to P(W™) for n > 1), the
structure M' = (W', (R¢)cem,, V') defined below is an £-model:

o for p € Fory, V'(p) = f(V(p));
o for c € My, Ry & f(Rc); for any a e M, V'(a) £ f(V(a)).

The condition for a € M immediately follows from the corresponding condition
for ¢ € My due to the corresponding condition in the definition of the relation
operation. On the contrary, for disjoint unions the corresponding condition
for a € M is not so immediate and provides some requirement to the operation
interpretation. Observe also that for any L-formula F, for u € {1,2} and for
w € WY, M,w |=F iff M*,w = F. Hence M = F iff M! = F and M? = F.
An analogous property holds true for isomorphic copies. Assuming that a
standard modal logic is closed under disjoint unions and isomorphic copies
is not a strong assumption (see e.g. [GT75]) and all the particular standard
modal logics considered in the paper enter in this category. For instance, DAL
is closed under disjoint unions and isomorphic copies. Every standard modal
logic can be replaced by one closed under copies with the same set of valid
(and satisfiable) formulas; and analogously for the closedness under disjoint
unions but only under natural requirement on the operator interpretation.

A standard modal logic £ = (L, D,Z,C) is said to be closed under restric-
tions & for any L-model M = (W, (Rc)cey,, V) and for any 0 # W’ C W,
the structure M’ = (W', (R¢)cem,, V') defined below is an £-model:

e for p € Forgy, V'(p) = V(p) N W/
o for c € My, R & Rc N (W')P(O);
o for any a € M, V'(a) £ V(a) N (W')P@),

The model M’ is also denoted M. DAL is also closed under restrictions.

7



3 Modal logics with relative accessibility relations

3.1 Definitions

A set of modal expressions is said to be dedicated to Rare-logics if each basic
modal expression is of the form r(A) where A is a parameter expression and ‘r’
is an arbitrary symbol fixed in the rest of the paper. The set P = {A,B,...}
of parameter expressions is the set [J{P; : 1 < i < j} such that each P;
is the smallest set containing a countable set Pj = {C,D,...} of parameter
constants and it is closed under the Boolean operators N,U, —. We assume
that {P; : i € {1,...,5}} is a partition of P. We write? J to denote the set
{1,...,7}. A modal similarity type S = ({(a) : a € M}, p) dedicated to Rare-
logics is defined as in Section 2 except that for any ¢ € J and for any A,B € P;,
p(r(A)) = p(r(B)). A modal language dedicated to Rare-logics is defined in
the natural way.

Notational convention For any syntactic category X and any syntactic
object 0, we write X(0) to denote the set composed of elements of X occurring
in 0. For instance P (A) denotes the set of parameter constants from P} that
occur in the parameter expression A € P;.

ExaAMPLE 3.1. Let L be a modal language dedicated to Rare-logics such that
{N,U*} € OP, ppp(N) = pbp(U*) = 2, ppp(N) = ppp(U*) = 1 and for
A € Py, p(r(A)) = 1. Here is an L-formula: ([r(C) U* 7(C)]p = [r(CNC)N
r(C)lp) A ([r(=C)lp & [r(=(cUC)) Nr(=(CNC))p).

The notions of dimension map D, operator interpretation Z, L-normal
modal logic £ are defined for the languages dedicated to Rare-logics as in

Section 2, with possibly some obvious adaptations. For any i € J, we write
D(i) to denote the natural number such that for any A € P;, D(r(8)) = D(i).

DEFINITION 3.1. Let L be a modal language dedicated to Rare-logics and
D be a dimension map for L. An L-frame (for Rare-logics) is a structure
(W, (PAR;)ics, (Rb)PCPARys - - - » (Rb) pcpar,) such that

e IV is a non-empty set;

e for any i € J, PAR; is a non-empty set of parameters;

e for any P C PAR;, R}, C WP,

N <

DEFINITION 3.2. A P-valuationV isamapV : P — P(PAR)U...UP(PAR;
such that for any ¢ € J and for any A1, Ay € P;, V(A1) € P(PAR;); V(—4;)
PAR; \ V(Al); V(A1 N AQ) = V(Al) N V(AQ); V(Al U AQ) = V(Al) U V(AQ). \%

By an L-model M under the operator interpretation T dedicated to Rare-
logics, we understand a structure (W, (PAR;)ic . (Rp) PCPAR,» - - - » (Rp)PcPaR;: V)
such that F = <VV, (PARi)ieJ, (R}J)PQPARI, ey (R]P))PQPAR]-> is an L-frame
dedicated to Rare-logics and V' is a mapping (ForoUPUM) — (U;c; P(PAR;)U
Uis1 P(W?)) such that

2Numerous results in the paper can be straightforwardly extended when .J is countable.
For the sake of clarity, herein we omit these results.



V(p) € P(W) for any p € Fory;

V(A) € UijcsjP(PAR;) for any A € P and V restricted to P is a P-
valuation (see Definition 3.2);

V(a) € P(WP®@) for any a € M; V(r(h)) = RZ{/(A) for any A € Py, i € J;
e V(d(al,...,ay)) =Z(@)(W)(V(a1),-..,V(an)).

For the sake of comparison the models dedicated to Rare-logics are richer
than those for standard modal logics since the sets of parameters are struc-
tured: the Boolean algebra (P(PAR;),U,N,—,0, PAR;) is explicitly used in
the conditions involved to define the different Rare-logics (see Definition 3.3
below). This could be related to the various parameter signatures that can
be found in the literature for polymodal logics (see e.g. [HO91, dG94]).

REMARK. Each basic modal expression is of the form r(A) where A € P
and ‘r’ is an arbitrary symbol. Other symbols replacing 'r’ can be found in
the literature: ‘ind’ [resp. ‘sim’] where V (r(A)) is an indiscernibility relation
[resp. a similarity relation] -see e.g. [Orlo90]. It is possible to partially get rid
of this symbol announcing a Boolean expression by decorating the operators
N, U, — used to build the elements of P (by considering for instance ne,ub, —b).
Alternatively, we could have written {A} instead of r(A). Indeed, the role of the
syntactic construction r(.) is to express a parameter expression that represents
an index of a relation in the models. So, the syntactic construction r(.) plays
the role of parantheses since it makes the reading of modal expressions non
ambiguous. In the modal expression r(C; N Cy) N7 (Cs), the first occurrence of
N represents intersection of sets of parameters represented by C; and Cs, but
the second occurrence of N represents intersection of relations indexed with
C1 N Cq2 and C3 respectively.

In the sequel we shall omit to specify the operator interpretation Z for
the models when it is clear from the context or when it is irrelevant. For
any i > 1, we write Fr! to denote the class of structures (W, R) where W is
a non-empty set and R C W' The relation = with L-models dedicated to
Rare-logics is defined as in Section 2 as well as the other related notions.

DEFINITION 3.3. Let L be a modal language dedicated to Rare-logics. An
L-normal modal logic £ is said to be a Rare-logic of type T & there is a
structure (D,Z,C, (X;)ics) such that

e D is a dimension map for L;

e 7 is an operator interpretation;

e C is a non-empty class of L-frames for L and D such that for any F € For,
Fe Liff forany F € C, F EF;

o forany i € J, 0 # X; C FrP(;

for any L-frame F, F € C iff for any ¢ € J and for any P C PAR;,
(W, Rb) € X; and F satisfies the condition Ct.

\Y

The condition C7 is simply a technical means to capture various kinds
of possible requirements on F. Most of the time, it encodes that for i € J,



(RZP)PQPAP%. has a certain algebraic structure. So, T is just a label to name a
condition Cr.

A Rare-logic of type T is also noted (L, D,Z,C, (X;)ics, T). There is some
redundancy in the definition of such a structure since the class C is uniquely
determined by (X;)ies and Cp. This is done for the sake of clarity.

The other definitions for the Rare-logics are natural adaptations of those
for standard modal logics except for the notion of finite model property. A
Rare-logic £ has the finite model property & every L-satisfiable formula is
satisfied in some L-model (W, (PAR;)ics,(Rp)PCPAR,,--- . (Rp)pcpar;, V)
such that W is finite and for any ¢ € J, there is a finite subset Z; C PAR;
such that for any P C PAR;, R% = jDﬂZi' This does not necessarily implies
that each PAR; is finite.

The conditions C't can be of different kinds as defined below
(.7: = <VV, (PARi)ieJ, (R}D)PQPARl’ R (RJP)PQPAR]-> is an L—frame):

e F always satisfies the condition Cp (equivalent to true);

e Let ¢1 be a set operation of arity n > 1 and for any i € J, ¢} be a
relation operation of profile (D(4),...,D(i)) and of arity n. F satisfies
the condition C[¢>1 6L l] & for any ¢ € J and for any Pp,..., P, C

1Py Po

PAR;, Rébl(pARi)(p17,,,7pn) = qﬁé(W)(Rle, RRR) RiPn)-

o Let k € {0,1}. F satisfies the condition Cyr & for any ¢ € J,if k=0,
then Ré = () otherwise Ré) = WPU _ F satisfies the condition C g &
for any ¢ € J, if £ =0, then R%ARi = () otherwise R%ARi = WP,

e Let {Ty,..., Ty} be a finite set of types. F satisfies the condition Cit, _ T,)
& for any | € {1,...,k} F satisfies the condition Cr,- Each T;,
1<i<k,is called a component of (Tq,...,Tg).

e As particular cases of the types defined above can be found the following
types that shall be central in our investigations:

— F satisfies the condition C; & for any i € J and any P, P’ C
PAR;, R p) = RpNRY, and Ry = WPO). ({R}, : P C PAR;},C)
is a meet-semilattice with a top element (see e.g. [DP90])

— F satisfies the condition Cy & for any i € J and any P, P’
PAR;, Ry p = R, URY, and Ry = 0. ({R}, : P C PAR;},C) is
a join-semilattice with a bottom element.

N

— F satisfies the condition C5 & for any ¢ € J and for any P, P’
PAR;, Rpp = R N Ry, and Rpyp = WPO. ({R, . P
PAR;}, Q) is a meet-semilattice with a top element.

NN

— F satisfies the condition Cy & for any i € J and for any P, P’
PAR;, Rpnpy = RpbURY, and Rpyp = 0. ({Rp: P C PAR;},C)
is a join-semilattice with a bottom element.

N

— F satisfies the condition C5 & for any i € J and for any P C
PAR;, Rp = R}ARi\P;

def

— F satisfies the condition Cs < for any ¢ € J and for any P C
PAR;, Rp = WPO\ Ry p;

10



— F satisfies the condition C; & for any i € J and for any P, P’ C
PAR;, R, p = Rb u* t,, (U* is the transitive and reflexive closure
of the union) and Rf = 0.

So, for instance Definition 3.3 and the conditions above imply that for any
Rare-logic £ of type 1, (W, WP®) e X; for any £-model

M = (W, (PAR;)ics,(Rp)PcPaR, .- - (Rp)pcpar;, V),

and i € J since (W, WP®) = (W, Rjj). So, there is no logic of type 1 such
that for some i € .J, (W, WP®) ¢ X;. Similarly, for any Rare-logic £ of type
7, the relation R% of the £L-models are reflexive and transitive since for any
i € J and any P C PAR;, R%, = R%, U* R,

From the above list of conditions, one can easily imagine other algebraic
structures (see e.g. [Pag97, Diin97)), for instance

e F satisfies the condition C,; & for any i € J, ({Rﬁ; : P C PAR;}, Q)
is a complete lattice;

e F satisfies the condition ¢}, & for any i € J,
({Rp: P C PAR;},u,n,—,0,| J{Rp : P C PAR;})
is a Boolean algebra.

In [Bal97], particular cases of the type [¢1, 3, . .. ,qﬁé] are considered. Con-
ditions with one-way inclusion are also considered in [Bal97] (for instance,
%u pr C RbHN Rég,). These conditions are out of the scope of the present pa-
per. Various obvious generalizations of the above conditions are possible. This
is not considered here in order to avoid the boredom of repetitive definitions.
The relations in the frames dedicated to Rare-logics have to satisfy lo-
cal conditions (for instance, each R} is an equivalence relation) and global
conditions (for instance, ({R% : P C PAR;},C) is a complete lattice). The
Rare-logics of type 1-7 can be found in [Orl093, Kon97b, Bal96b, Bal97]. By
way of example, in [Orto95] the condition C; corresponds to the families of
strong relations (see also [Orto88a]).

DEFINITION 3.4. Let £ be the Rare-logic (Lg, Dy, Iy, Ci, (XF)ics, Tx) for k =
1,2. £1 and L9 are similar & all their components are equal except possibly
their types T; and the Cp’s. Vv

So, if £1 and L5 are similar, then (X});c; = (X?);cs. However, C; and Co

may be different since Cj, is uniquely determined by (X¥);c; and by Ty.

EXAMPLE 3.2. Consider the Rare-logic (L,D,Z,C, (X;)ics,T) of type 1 such
that OP = {U,0,"}, j = 1, D(1) = 2, plOP(U) = P})P(O) = 2, p})P(*) =
1, pp(U) = pdp(c) = p3p(*) = 1 and X; = Fr? Its language is that
of Propositional Dynamic Logic PDL (see e.g. [Pra80]) where the program
constants have been substituted by basic modal expressions of the form r(A).
T is defined such that U [resp. o, *] is interpreted as union [resp. composition,
Kleene star].

11



A Rare-logic £ has the [resp. strong] finite parameter sets property (fpsp)
[resp. (sfpsp)] & for any L-satisfiable formula F, there exist an £-model

M = (W, (PAR))ics, (Rp)PcPAR,, - - -, (Rp)Pcpar,. V)

and w € W such that M, w | F and for any i € J, PAR; is finite [resp. and
PAR, = ... = PARj].

Proposition 3.1 below can be easily proved and shall be often used in the
rest of the paper.

PROPOSITION 3.1. Let L1, L be two logics semantically determined (either
standard modal logics or Rare-logics) and F; be an L;-formula for i = 1,2.
Assume there exists a map ® between the set {ai, ..., a,} of modal expressions
in F1 and the set of modal expressions in Fy such that Fs is obtained from F; by
substituting simultaneously every occurrence of a; by ®(a;) fori € {1,...,n}.
Let M; be an L;-model for i = 1,2 such that Wy = Ws; for any propositional
variable p occurring in Fq, Vi(p) = Va(p) and for any ¢ € {1,...,n}, Vi(a;) =
V2(®(a;)). Then, for any u € Wy, My, u = Fy iff Mo, u | Fa.

Similarly, Proposition 3.2 below shall be used in the sequel and it can be
easily proved.

PROPOSITION 3.2. Let £ be a logic semantically determined (either a stan-
dard modal logic or a Rare-logic) and let a,b € M such that for all £-models
(..., V), V(a) = V(b) (in the sequel noted a =¢ b). Let F be an L-formula
and G obtained from F by substituting some occurrences of a by b. Then,
F & G is L-valid.

3.2 Dual types of Rare-logics: a simplification

The classes of Rare-logics of type T € {1,...,4} are central in this paper
since they contain various logics from the literature: the so-called information
logics (see e.g. [Orlo88b]) that have been defined to capture some aspects
of reasoning with incomplete information. In the sequel we shall show that
various properties relevant for the mechanization of such logics are identical
between Rare-logics of type 1 [resp. 2] and Rare-logics of type 3 [resp. 4].

ProprosITION 3.3. (Duality of types) Let £; be the Rare-logic (L, D, Z,Cy, (X;)ics, T1)
of type 1 [resp. 2] and L be the Rare-logic (L, D,Z,Co, (X;)ics, T2) of type 3

[resp. 4] such that £; and L9 are similar in the sense of Definition 3.4. There

exists a linear-time mapping fguq from the set of L-formulae into the set of
L-formulae such that,

(I) any L-formula F is £;-satisfiable [resp. Lo-satisfiable] iff fj,q(F) is Lo-
satisfiable [resp. L;-satisfiable];

(IT) £; has the fmp [resp. fpsp, sfpsp| iff Lo has the fmp [resp. fpsp, sfpsp].

The map fiua is actually simple. fg,q(F) is obtained from F by substitut-
ing every occurrence of r(A) by r(—A). Actually, from a complete and sound
proof system for £ [resp. L£2] one can build a complete and sound proof sys-
tem for Lo [resp. £1] by using the mapping fg, under reasonable hypothesis.
In the sequel the Rare-logics of type 3 and 4 are not treated in the technical
developments.
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3.3 Rare-logics versus standard modal logics

This section is devoted to the definition of standard modal logics from Rare-
logics.

DEFINITION 3.5. Let £ be the Rare-logic (L, D,Z,C, (X;)ics, T). The standard
modal logic Ly from L is the structure (Ly, Dy, T4, Cq) defined below:

e L; (whose set of modal constants is M) is obtained from L by replacing
the set {r(A) : A € Pj} (partial set of basic modal expressions) by a
countably infinite set of modal constants Mf) = {cf), ... ct ...} such
that for k € w, p(c),) =D(i) — 1 and {Mp : ¢ € J} is a partition of My;
o Iy def T,
e D, is the unique dimension map for Ly that agrees with D for OP;
1,1 1,j 1,1 1,j
o Let F = (W, (Rc)cen,) be an Lo-frame and [o}, 6%, .., 657], ... [0, 5%, .., ¢b]
be components of T. F € Cy4 & for i € J, the relations generated from
{Rc : c € Mi} with ¢5* (W), ..., ¢5 (W) belong to X;.

\Y

The standard modal logic from the Rare-logic defined in Example 3.2 is
the logic PDL.

Two standard modal logics are said to be similar & there exist two
similar Rare-logics for which they are the respective standard modal logics.
Equivalently, they share the same L, D and Z.

EXAMPLE 3.3. Let £; be the Rare-logic (L,D,Z,C;, X1,1) [resp. Lo be the
Rare-logic (L, D,Z,Cy, X1,2)] with OP = {N,U*} (respectively interpreted as
the intersection and the reflexive and transitive closure of the union on binary
relations), X7 be the set of S5-frames (equivalence relations), j = 1, D(1) = 2.
The corresponding standard modal logic £14 is the logic DAL (see Example
2.1) whereas the corresponding standard modal logic Lo4 is the logic DALLA
defined in [Gar86]. Hence DAL and DALLA are similar standard modal logics
in the sense above.

We have seen that various conditions C't use universal and empty relations
WP and (. In the rest of this section, we shall introduce definitions about
universal operators -see e.g. [GP92]- that shall simplify some forthcoming
developments.

DEFINITION 3.6. Let L4 be a standard modal logic. For any finite subset Y
of {0;:i>2}U{U;:i> 2}, we write L) to denote the standard modal logic
obtained from L; where the nullary modal operators in Y have been added to
the language and by extending the Ly-frames with the conditions V(0;) = 0
and V(U;) = W' (p(U;) = p(0;) = i — 1). Moreover, we denote by LY~ the
logic obtained from Eg by only allowing in the language the occurrences of
the U;’s of the form [U;] or (U;) and the occurrences of the 0;’s of the form [0;]
or (0;). \v

The elements of Y are therefore considered in ﬁg as nullary modal oper-
ators and not as basic modal expressions. However, we need to extend the
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definition of set of operators from Section 2 to allow nullary operators. The
notion of operator interpretation has also to be extended appropriately.
Just one more definition about the universal operators.

DEFINITION 3.7. Let EdY be a standard modal logic and ¢ be in Y. Ezl/ is said

to be c-simplifiable & there exists an effective procedure fc : For — For
such that for any F € For:

e the only occurrences of ¢ in fc(F) are in the context [c] or (c);

e fc(F) & Fis £Y-valid (which entails fc(—F) < —fc(F) is £ -valid).
\Y

Definition 3.7 does not state that if E}{ is c-simplifiable, then for any
a € M such that a =y G for any formula F, a occurs in fc(F) in the context
of [a] or (a). The standard universal operator [U] that can be found in the
literature (see e.g. [GP92]) corresponds to [U] in our terminology. We usually
omit the indices in U; or in 0; when the context is clear. For instance, for
the standard modal logic DAL -see Example 3.3 and Example 2.1 - DALY}
is U-simplifiable. This is simply due to the fact that for all R C W x W,
RUWXW=WxWU*R=WxWand ROWxW =W xWNR=R. In
this case, fy(F) can be computed in quadratic time in the size of the DALY-
formula F.

4 Satisfiability-preserving maps

4.1 Preliminary constructions on semilattices

We consider algebras (D, L) of similarity type (2) such that U is commuta-
tive, associative, idempotent with a zero element e. In particular, any join-
semilattice [resp. meet-semilattice] (D, <) with a bottom element L [resp.
with a top element T], can be seen as an algebra of that kind by defining for
any a,be D, alUb ™= a Vb [resp. allb™ ¢ AD]. Similarly, any algebra (D, L)
of the above kind can be seen for instance as a join-semilattice by defining for
any a,b € D, a <b & alb=b. By abusing our notation, we write (D, L, ¢)
to denote the algebras of the above class and we call them semilattices with
zero element e. We establish results about semilattices that are useful to
show the correctness of transformations from satisfiability for Rare-logics into
satisfiability for the corresponding standard modal logics (see Section 4.3).
Indeed, we shall mainly investigate Rare-logics for which the sets of relations
of the models are semilattices with zero element. In [Nov97, Jar97], simi-
lar algebraic structures are considered for studying dependence spaces and
information systems.

Let L be a modal language dedicated to Rare-logics (we mainly use the

notations from Section 3) and let Mog = {co,...,¢n,...} be a countable set of
modal constants. Let Cy,...,C, be elements of Pj for some ¢ € J. For any
integer k € {0,...,2" — 1}, we write A}* to denote the Boolean expression

(also called a component)

1% def

AFE AN, N4,
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where for any s € {1,...,n}, A, & C, if bity(k) = 0 (bits(k) denoting the
sth bit in the binary representation of k) otherwise A & _¢,. For instance,

def

A¥, 5= —C1N...N—=Cpy 1 NC,. For any P-valuation V, the family
V(A : ke {0,...,2" — 1}}

is a partition of PAR;. We write A =B [resp. A =1] for A,Be P; & for any
P-valuation V', V(4) = V(B) [resp. V(A) = (]. For any parameter expressions
A € P; such that Pj(A) C {Cy,...,C,} either A =L or there is a unique non-
empty set ¥ = {A,... A} such that A = A}* U... UA. There exists an
effective procedure that computes Y in deterministic exponential-time in the
size of A (for some reasonably succinct encoding). Proposition 4.1 below states
how to transform a family (Xp)pcpar, into a family (Yc)cey,, when both

families can be seen as the carrier sets of some semilattices.

ProOPOSITION 4.1. (From semilattices to families) Let Cy,...,C, be dis-
tinct elements of P for some i € J (n > 0), V be the restriction to P; of a
P-valuation and ({Xp : P C PAR;}, U, e) be a semilattice with zero element
e such that
(Hl) Xp=-eand (H2) for any P, P' C PAR;, Xpup = Xp U Xpr.

Then, there is a family (Yc)cep,, such that

(I) {Yc : ¢ €My} is a finite subset of {Xp: P C PAR;};
(IT) If Ais a parameter expression built upon the parameter constants Cy,...,Cp

such that A = A% U... UAY, then Xy, ) = Ye, U...UYc, .

177
ProOF:The family (Yc)cep,,is easy to define.

o forany k€ {0,...,2" — 1}, Y., & XV(A};*);

e for any ¢ € Mog \ {co,...,con 1}, Yo & Yg, (arbitrary value).

By way of example we check that (II) holds ((I) is immediate). Take
A=AFU.. UA

Xyny = XV(AjI)u...uV(Ajl*) (V is the restriction of a P-valuation)
= XV(AﬁI) ... XV(A:;:) (by hypothesis (H2) and by the properties of LI)
=Yc, U...UYc, (by definition)

Q.E.D.

Proposition 4.1 and Proposition 4.2 below are used for defining faithful
translations between Rare-logics of type 1,2,3,4 and 7 and their corresponding
standard modal logics.

Proposition 4.2 below states how to transform a family (Yc)cey,, into
a family (Xp)pcpar, when both families can be seen as the carrier sets of
semilattices with zero element.

PROPOSITION 4.2. (From families to semilattices) Let Cy,...,C, be dis-
tinct elements of P} for some i € J (n > 0), (Y, U, e) be a semilattice with zero
element and (Yc)cep,, be a family such that {Yc : ¢ € Mo} C Y. Then, there
is a subalgebra ({Xp : P C PAR;},U,e) of (Y,L, e) satistying (H1)-(H2) from
Proposition 4.1 and there is a restriction V' of a P-valuation to P; such that
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(I) PAR,; is finite and card(PAR;) = 2™;
(IT) The statement (II) from Proposition 4.1 holds;

(III) for any P C PAR;, there exists a (possibly empty) finite subset {z1,..., a2}
of PAR,; such that Xp = X{xl} ... X{zk} U Xg.

PRrROOF: Let ({Xp: P C PAR;},e,U) and V be defined as follows:

e PAR; £{0,...,2" —1};

e Xj 4 ¢ and for any ) # P C PAR;, Xp £ UkepYe, (U is commutative,
associative and each P is finite);

def

o for any s € {1,...,n}, V(Cs) = {k € PAR; : bits(k) = 0} (for the other
parameter constants V' is not constrained provided it is the restriction
of a P-valuation which is always possible).

({Xp: P C PAR;},U,e) and V satisfy the required conditions. (I) and
(III) are by an easy verification.
(II) First, observe that for any k € {0,...,2" — 1}, V(A¥) = {k}.

XV(A) = XV(MIU---UAZ*) (normal form of A)
= XV(AﬁI)U...UV(AZ‘) (V is the restriction of a P-valuation)

Q.E.D.
In Proposition 4.1 and in Proposition 4.2 the Xp’s and Y¢’s are not nec-

essarily relations. We are going to take advantage of these propositions when
dealing with possible-world semantics for polymodal modal logics.

4.2 The normalization process N

In the rest of Section 4, unless otherwise stated, £ is a Rare-logic of type
T = ([U.¢3,...,¢3],0) such that

e ir €{0,1} and U is the binary set operation for union;

e for i € J, ¢} is a binary relation operation of profile (D(i),D(i), D(4))
such that for any set W, (P(WD(i)),¢§(W),eiL> is a semilattice with
zero element; el = ) if i, = 0 otherwise e/, = WP();

e for i € J, for any non-empty set W, (W, eiﬁ) € X; (we omit to write that
e’ depends on W);

o for i € J, there is @ € OP such that Z(®') = ¢i, in particular
pop(®') =2 and p3p(&') = D(i) — 1.

The assumptions capture Rare-logics of type 1,2 and 7. Moreover, by Propo-
sition 3.3 results for Rare-logics of type 3 and 4 can be obtained easily.

Let F be an L-formula such that for any i € J, P)(F) = {Ci,... ,Cf%_}
The degenerate case when Pj(F) = () is omitted herein but it poses no ex-
tra difficulties. Indeed, assume that P)(F) = () for some i € J. Then

D(i)—1 times
. ———
FA[r(C)]( T,..., T )< Fis L-valid. So, for the forthcoming developments
we can assume that n; # 0 for i € J.
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As done in Section 4.1, for any i € J and any k € {0,...,2" —1} we write

A};* to denote the Boolean expression A;N...NA,,, where for any s € {1,...,n;},
def def

A; = CUif bits(k) = 0 otherwise A, = —C.. Let 7(A) be a basic modal
expression occurring in F such that A € P; for some i € J and A = Aj*U.. . UA}*
for some {iy,...,4} C€{0,...,2" —1}. The first normal form of r(A), written
Ni(r(4)), is the basic modal expression r(A* U ... U AZ“) It is similar to
the canonical disjunctive normal form for the propositional calculus (see e.g.
[Lem65]). In the case when A =1, Ni(r(A)) & 7(C; N —C}). We write N1 (F) to
denote the formula obtained from F by substituting r(A) by Ni(r(4)). Ny (F) is
unique modulo associativity and commutativity of U and N (which is harmless
in the sequel). Observe that F < Ny (F) is £-valid.

Until now, we did not use any assumption about £. The second normal
form of F, written No(F), is the formula obtained from Ny (F) where each oc-
currence of 7(A* U... U Ail*) has been substituted by r(A%) @ ... @' r(AZ*)
One can easily show that F < No(F) is L-valid. The second normalization
process No depends on the type of the Rare-logic £ (because of the specificity
of the operator ©). We are now in position to define the mapping N from the

EleD(l)v---vUD(j)}

set of L-formulae into the set of -formulae if i, = 1 and into

the set of ﬁ;{lov(l)""’OD(j)}—formulae in case iz = 0 where Ly is the standard
modal logic from £ -see Definition 3.5. For the sake of simplicity, the logic
EiUD(I)’""UD(j)} [resp. EiOD(l)""’OD(j)}] is denoted L}.

Without any loss of generality (see Definition 3.5), we can assume that for
any i € J we have in the language of L% the following stock {ci,...,chn; 1}
of distinct modal constants such that for k € {0,...,2"% — 1}, D(ci) = D(i)
(here we keep the notations of the previous sections). The normal form of
F, written N(F), is the £}j-formula obtained from N»(F) by substituting every
occurrence of r(Ci N —Cﬁ)' by Up(;) if iz = 1 [resp. by Op(;) if iz = 0] and every
occurrence of r(A;*) by cj, for any k € {0,...,2" —1}. N(F) is defined modulo
the renaming of modal constants (which is harmless in the sequel). Observe
that N(F) can be computed by an effective procedure.

EXAMPLE 4.1. Let £ be a Rare-logic of type 1 such that OP = {N,U} with
i=1,DQ1) =3, pbp(N) = pbp(U) =2 and p3p(N) = p3p(U) = 2. Let F be
the following L-formula:
F=[r(C)](p,r) A[r(CND)](q,p) A[r(CNDN —C) Ur(D)](p, )
Here are the successive normal forms of F:
e Ny(F) = [r((CND)U(CN=D))|(p,x) A[r(CND)](q,p) Alr(CN—-C)Ur((CN
D) U (—=CND))|(p,x):
e No(F) = [r(CND)Nr(CN=D)](p,r) A[r(CND)](q,p) Alr(CN—=C)U(r(CN
D) Nr(—CND))|(p,x):

e N(F) = [co N c1](p,T) A [col(a,P) A [Us U (co N c2)l(p, T)-

Example 4.1 should not mislead the reader about the complexity of the
normalization process. Actually the normal form mapping may increase ex-
ponentially the size of the formulae although the number of subformulae is
constant. The technique of components has been firstly used for information

logics by Konikowska (see e.g. [Kon97a]) in order to define Rasiowa-Sikorski-
style proof systems (dual tableaux) for relative similarity logics.
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4.3 The satisfiability-preserving map N

Proposition 4.3 is one of the main results of the paper. Indeed it states
that N is a satisfiability-preserving transformation from L-satisfiability into
L-satisfiability. It shall be extended to a larger language and it has various
consequences related to the finite model property, to complexity upper bounds
and to the design of proof systems for Rare-logics.

ProOPOSITION 4.3. (Faithfulness of N) Let F be an L-formula. The state-
ments below are equivalent:

(I) F is L-satisfiable;
(IT) N(F) is L}-satisfiable.

The proof of Proposition 4.3 consists in taking advantage of the semilattice
structure of the families of relations in the £-models.
ProOOF: (I) — (IT) Assume that F is L-satisfiable. So there exist an L-
model M = <VV, (PARZ')Z'EJ, (R}))PQPAR17 caey (R;;)pgpARj,V> and w € W
such that M, w = F.

For any i € J, ({R% : P C PAR;}, ¢45(W),e%) and the restriction of V to
P; satisfy the hypotheses of Proposition 4.1 with the set P§(F) of parameter
constants -if P)(F) = (), then take {C}}. Hence, by Proposition 4.1, for any
i € J there is a family (Yci)ceMé satisfying the conditions (I) and (II) from
Proposition 4.1. Let M’ be the Lj-model (W, (Rc)cey,, V') such that,

def

e for any p € Forg, V/(p) = V(p) and for any i € J and for any c € M)

def ;
Re £ V¢

o for any well-formed modal expression & (a1, .. ., as), V/(®(ay,...,a,)) &

Z(@)(W)(V'(a1),-..,V(an))-

For i € J, any relation generated from {Rc¢ : ¢ € M)} with ¢4(W) is equal to
R}; for some P C PAR;. Therefore M’ is really an £}-model. Moreover, for
any A € P;(F) such that A 1, V(r(4)) = V'(c}, &"...®"c} ) where A*U.. .UA}*
is the normal form of A. Consider the surjective map @ : M(F) — Mz(N(F)) (Mg
denotes the set of modal expressions of £}j) such that for a € M(F), ®(a) is
obtained from a by substituting simultaneously,

e cach r(A) such that L= A € P;(F) by Upy;) if iz = 1 [resp. by Op(; if
ic =0
e cach r(A) such that Al U...UA* = A€ P;i(F) by c} &' ... & cl.
By Proposition 3.1, M,w EF iff M’, w = N(F). Hence M, w |= N(F).
(I) — (I) Now assume that N(F) is Lj-satisfiable. So there exist an L}-

model M = (W, (Rc)cey,, V) and w € W such that M, w |= N(F). For any
1€ J, (Rc)ceMé satisfies the hypothesis of Proposition 4.2 with the semilattice

(P(WPW), ¢4(W),el). By Proposition 4.2, for any i € J, there exist a struc-
ture ({R% : P C PAR;}, ¢5(W), e.) and the restriction V; of some P-valuation
such that

e PAR; is finite and card(PAR;) = 2™;
e the range of V; is P(PAR;);
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e ({Rh: P C PAR;},$5(W),e%) is a semilattice with zero element el. =
WP [resp. = @] when iy = 1 [resp. when iz = 0];

. Ré) = e, and for any P, P' C PAR;, R pr = ¢4(W)(Rp, R)).

Let M' = <VV, (PARi)ieJ, (R}))pgpARl, cee (Rgg)pgpARj,V/> be the £-model
such that

def

e V' restricted to P; is V;; for any p € Forg, V'(p) = V(p);

o for any well-formed modal expression ®(ay,...,as),
V(@(ar,...,a:)) £ Z(@)(W)(V'(@1),.... V' (as)

It is easy to check that M’ is an £-model. It is a routine task to check
that for any A € P;(F) such that A #L, V'(r(A)) = V(c}, @' ... @' c}) -with
the usual notation for the normal form of A. Hence by applying Proposition
3.1 (with the map ® described in the proof (I) — (II)), we conclude that

M w =F iff M,w E=N(F). Q.E.D.

Proposition 4.3 entails that £ is decidable only if £ is decidable. Propo-
sition 4.4 will help stating the converse.

PRrROPOSITION 4.4. (Reducing £}, to £) There exists a polynomial-time trans-
formation (“many-one reduction” [Pap94]) from L}-satisfiability into L-sati-
sfiability.

PrOOF: We define a map N~! from the set of Lj-formulae into the set of
L-formulae such that F is L%-satisfiable iff N71(F) is L-satisfiable. So, let F be
an Lj-formula such that for any i € J, My(F) = {cp,...,cly,}. Let n; be the
smallest natural number such that 2" —1 > N;. Take n; parameter constants
from the language of £, say Ci,...,C. . If My(F) = ), then we just consider

Ci. For any k € {0,..., N;} we define the parameter expression A" as follows:
AZ = AyN...NA, where for any s € {1,...,n}, Ay = C if bits(k) = 0 otherwise

Ay = —CL. N~!(F) is obtained from F by substituting each occurrence of ci, by

r(A) and each occurrence of Uy [resp.0;] by r(C} N —C4) where D(I') = | and
ic = 0 [resp. iz = 1]. It is easy to see that No(N7!(F)) = N™L(F) and N(N~1(F))
is L*-satisfiable iff F is L%-satisfiable since F and N(N~!(F)) are equal modulo
the renaming of modal constants. Hence N(N~1(F)) is £%-satisfiable iff N~1(F)
is L-satisfiable (by Proposition 4.3) iff F is £}j-satisfiable. Q.E.D.

Using the construction of the proof of Proposition 4.3, one can prove the

proposition below.

COROLLARY 4.5. (Decidability and finite model property correspon-
dences)

(I) L 1is decidable [resp. has the fmp] iff £} is decidable [resp. has the fmp].

(IT) If ig = 1 [resp. iz = 0] and for any i € J, L} is Up(;)-simplifiable [resp.
OD(i)—simpliﬁable] then £ is decidable iff £}~ is decidable and £ has the
fmp iff £~ has the fmp.
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EXAMPLE 4.2. Let £ be the Rare-logic (L,D,Z,C, X;,1) such that OP =
{n,0,*,U,71}, X1 = Fr? and N [resp. o, *, U, ~1] is interpreted as the inter-
section [resp. composition, Kleene star, union, converse]. The Propositional
Dynamic Logic PDL with the operators o,* ,U,” 1, N is a fragment of L. Since
such an extension of PDL does not have the finite model property -see e.g.
[Vak92]-, by Corollary 4.5, £ does not have the finite model property.

By way of example, we present some sets of operators that allow the sim-
plifications assumed in Corollary 4.5(1I).

PROPOSITION 4.6. (Particular cases for simplification) Let £; = (L, D,Z,C)
be a standard modal logic such that OP C {N,U,U*, o, —,*1} (interpreted
respectively as intersection, union, reflexive and transitive closure of union,
composition, complement and converse) and any relation of the £4-models is
binary.

1) If o € OP, then £} is Up-simplifiable;
(I d
(IT) If for any L£g-model (W, (Rc)¢epm,. V) and any a € M, V(a) and V(a)~*

are serial, then £§U2} is Ug-simplifiable;

(IT) If — ¢ OP, then £°?) is 0y-simplifiable.

Observe that since [02]G < T is L’gog}—valid, in Proposition 4.6(IIT), one
can effectively get rid of any occurrence of 0s.
Proor: (I) E;{iUZ} is Up-simplifiable is a consequence of the C;{lU
the following formulas:

2} validity of

(i) [a]F < [2']F where a’ is obtained from a by replacing some occurrences
of U3 N'b by b [resp. U3 Ub by Uy, Us U* b by Uy, (U2)~! by Us];

(i) [a]F < [a]F where a’ is obtained from a by replacing some occurrences
of —Us N'b by —Us [resp. —Us Ub by b, —Us U* b by bU* b, (=U3)~! by
—Us, —(=U2) by Us];

Observe that the above replacements in (i) and (ii) do not introduce new
modal operators. Now, using (i) and (ii), one can show that for any modal
expression a, [a]F is equivalent to a formula [a']F such that either a’ = Us or
a’ = —Ujy or a’ does not contain any occurrence of Us. Now, since [UH& T
is Lg-valid, we can easily prove that £§U2} is Ug-simplifiable.

(IT) In the present case, o € OP. We shall complete the points (i) and (ii)
from (I).

(iii) [a]F < [a']F where a’ is obtained from a by replacing some occurrences

of —Us ob by —Us [resp. bo —Us by —Us, Uz o b by Us, b o Uy by Us].

The last two replacements are correct since by assumption, V' (b) and V (b)~1
are serial binary relations.

(III) The fact that E({ioZ} is 0g-simplifiable follows from the 5302}—validity of
the following formulas:

(iv) [a]F < [2']F where a’ is obtained from a by replacing some occurrences
of 02 N'b by 09 [resp. 02 Ub by b, 02 U* b by b U* b, (02)~! by 0]
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Q.E.D.

EXAMPLE 4.3. The Rare-logic £ defined by (L,D,Z,C, Xy,2) with j = 1,
D(1) =2, OP = {U,0,*, —} (interpreted in the standard way) and X; = Fr?
is undecidable (consequence of the undecidability of PDL with complement
[Har84]).

Strong finite parameter set property Proposition 4.7 below states that
the families (PAR;);c.; of parameters can be strongly constrained.

PROPOSITION 4.7. (Strong finite parameter set property) Let F be an
L-formula and for i € J, n; = maz (1, card(P{(F))). The following statements
are equivalent:

(I) F is L-satisfiable;

(II) for any equivalence relation S on J there is an £-model

(W, (PAR;)ics, (Rp)PCPARy: - - -+ (Rb)pcPaR;: V)
such that:

e for some w € W, M,w =F;

e for any i,i’ € J, (i,i') € S implies PAR;, = PAR;;

e for any i € J, card(PAR;) = maz{2"' : 7' € S(i)} (and therefore
PAR; is finite).

Proor: (II) — (I) Obvious.

(I) — (II) Suppose F is L-satisfiable. So, there exist an £-model M =
<VV, (PARi)ieJ, (R};)pgpARl, RN (Rgp)pgpARj,V> and w € W such that M, w '=
F. Let M’ be the £3-model built in the proof of Proposition 4.3 (for the part
(I) — (II)). By construction, M',w |= N(F). Now, let

M" = (W" (PAR)icy, (R;})PQPARQ’» e (Rpj)PgPAR;." V")

be the £-model built in the proof of Proposition 4.3 (for the part (II) —
(I)) from M’. M [resp. M'] in the proof of Proposition 4.3[(II) — (I)] is
replaced here by M’ [resp. M"]. By construction, M"”,w = F and for i € J,
card(PAR]) = 2™. Now let us build the £-model

U "

M" = (W" (PAR")ics,(Rp")pcparys---+ (Rp’ ) pcpary, V")
as follows:

def
° WII/ < W//;

e for ¢ € J, we write rep(i) to denote some element of J such that
2%rer = max{2"" : 4" € S(i)}. Since card(PAR}) < card(PAR, )

and PAR’T’ep(i) is finite, there is a surjective map f; : PAR;,’EP(Z.) — PARY.

rep(i) is defined as a canonical representant of the class S(i) and there-
fore for ¢/,i" € S(i), rep(i’) = rep(i"). As is usual, for z € PAR/,
i z) € {y e PAR], ) ¢ fily) = «} and for X C PARY, ix) =

{y € PAR]_, : fily) € X}.

rep(i
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o fori € J, PAR]'“ PAR!,_;
1m1; def "

o forie J, for P C PAR;, Rp' = Py

e the restriction of V" to Fory is defined as the restriction of V" to Fory.
/I’Z'

Consequently one can check that for any P C PAR!, R 1Py

111 111 ; 11

check that Rp! p, = Rpl¢s(W")Rpt:

= RIIIJ. Let us

/115

Rpiup, = Rp(pups) = Bppous () = Bip) @ (W) R(p,)

11 /1 /11

Now since, R;E(Pn = Rp!, Ry p,) = Rp, and W" = W", we are done.

The valuation V" is defined as follows: for C € P}(F) (i € J) V" (C)
7 HV"(C)). Observe that for any P, P’ C PAR;,

def

PAR!\ P) = PAR;’ép(i) \ £, 1(P) (fi is surjective);

o fil(
d fi_l(PU P/) = fz'_l(P) U fi_l(Pl)§
o fFH(PNP)=fN(P)NFTHPY;

So, for A € P;(F), V(&) = f71(V"(n)). So,

ua

V" (r(8)) = RV?"(A) = Rfi_il(V”(A)) = RVi,,(A) =V"(r(a))

From Proposition 3.1, it follows that M" w EF.
Q.E.D.

By fixing S = J x J in Proposition 4.7 we obtain that,

COROLLARY 4.8. L has the strong finite parameter set property.

Rare-logics of type 0 Until now, we have not dealt with the Rare-logics
of type 0, the reason being that we can easily translate them into standard
modal logics. We can show using the normal form N; that for any Rare-logic
L of type 0, £ is decidable [resp. has the fmp] iff £, is decidable [resp. has
the fmp]. As a corollary of the proof, £ have the sfpsp.

Rare-logics and Boolean homomorphisms In this paragraph, consider
a Rare-logic £ of type® (1,4,6) [resp. (2,3,6)] such that for any i € J,
there is an intersection operator N; € OP such that the profile of Z(N;) is
(D(7),D(7),D(i)), there is a union operator U; € OP such that the profile of
Z(Y;) is (D(i),D(i),D(i)) and there is a complement operator —; such that
the profile of Z(—;) is (D(i),D(i)). Moreover, we assume that for i € J,
X; = FrP0_ n; [resp. U;, —;] are indeed interpreted as set intersection [resp.
set union, set complement]. Analogous types of logics have been introduced
in [Bal97]. It is worth observing that either C'; 4 or Cla3) entails Cs.

Let F be an L-formula such that for any i € J, Py(F) = {C,...,C}, }.
The first normal form of r(A) occurring in F is Ny (r(4)) inductively defined as
follows:

e Ni(r(C)) = r(C) for C € P§; Ny (r(—A)) = —Ny(r(B));

3The Rare-logics of type (2,4) and (1, 3) collapse to degenerate cases.
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o Ny(r(A; UAs)) =Ni(r(A1)) NNy(r(As)) [resp. = Ni(r(A1)) UNy(r(A2))];

] N1<7’(A1 N AQ)) = Nl(T(Al)) U Nl(’I“(AQ)) [resp. = Nl(r(Al)) N Nl(T(AQ))].

We write Ni(F) to denote the formula obtained from F by substituting
every occurrence of 7(A) by Ny(r(A)). For any ¢ € J, we can assume that in the
language of L4, the following stock {ci,..., cﬁh} of distinct modal constants

exists. N(F) is obtained from Ny (F) by substituting every occurrence of r(C)
by c};.

ProPOSITION 4.9. (Faithfulness of N) Let F be an L-formula. The state-
ments below are equivalent:

(I) F is L-satisfiable;
(IT) N(F) is Lg-satisfiable.

PrOOF: (I) — (II) Assume that F is L-satisfiable. So there exist an £-model

. 1 J
c 1 C .
(W,(PAR;)ic,(Rp)PCPAR:: - - - (Rp)pcrar;,V)

and w € W such that M,w | Nyi(F) (by Proposition 3.2). Let M’ be the
Lg-model (W, (Rc)cem,, V') such that,

def

e for any i € J, for any k € {1,...,n;}, RC}; = Rl"/(ci);
k
o forany c € M)\ {ci,....ci }, Re & Ri/(C") (if P§(F) = 0, then take some
. . 1
arbitrary C} € Py);
o for any well-formed modal expression ®(ay,...,as),

V' (®(aLs...,a:) LZ(@)(W)(V'(a1),...,V'(as))

e for any p € Fory, VI(P) = V(p).

One can check that M’ is an L4-model (see the conditions of closure under N,
U, —). It is a routine task to check that M’ w = N(F).

(II) — (I) Assume that N(F) is Lg-satisfiable. So there exist an £;-model
M = (W, (Rc)cey,, V) and w € W such that M,w | N(F). Let M’ =
<VV, (PARi)ieJ, (RIP)PQPAR17 Cee (R‘;)PQPAR]-7VI> be the £-model such that

e for any i € J, PAR; & WP,

def

e for any p € Forg, V'(p) = V(p);

WP\ P if £ is of type (1,4, 6)

. - i def
e foranyi € Jand P C PAR;, R} { Pif £ is of type (2,3, 6)

. WP\ Rei if L is of type (1,4,6)
. . 1/ ~i d:ef Ck »
foranyie J, ke {1,...,n;}, V'(C}) { RC}; if £ is of type (2,3, 6)

for any well-formed expression ®(a,...,as),

V(®(a,...,a,) EZ(@)(W)(V'(a1),..., V' (as))
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The originality of the construction of M’ rests on the definition of the
PAR;’s. Observe that R;'(Ci) = RCZ' Indeed, for instance when L is of type
A k
(2,3,6), each family (R%)pcpar, can be seen as the identity isomorphism on
the Boolean algebra (P(WPW), N, U, —, 0, WP, It is easy to check that M’
is an £-model and M’ w = N(F). Q.E.D.

Moreover, using arguments similar to those in Proposition 4.4, one can
show that there is a polynomial-time transformation from Lj-satisfiability
into L-satisfiability.

ProOPOSITION 4.10. (Decidability and finite model property correspon-
dences) Let £ be a Rare-logic satisfying the conditions at the beginning of
the present paragraph. Then, £ is decidable [resp. has the fmp and the fpsp]
iff £4 is decidable [resp. has the fmp].

EXAMPLE 4.4. Let £ = (L,D,Z,C, X1, T) be the Rare-logic of type (1,4,6)
[resp. (2,3,6)] such that j = 1, D(1) = 2 and OP = {N,U, —} respectively
interpreted as intersection, union and complement operators. The logic Ly
is the Boolean Modal Logic BML defined in [GP90] that is known to be
decidable and satisfies the fmp [GP90]. By Proposition 4.10, £ has the fpsp
and the L-satisfiability problem is decidable. If we add to O P the composition
operator o and the Kleene star x, then the L-satisfiability problem becomes
undecidable since L4 is an extension of PDL with complement that is known

to be undecidable [Har84].

5 Concluding remarks

In the paper, we have studied a class of polymodal logics with relative ac-
cessibility relations, the Rare-logics. Particular instances are the information
logics from [Orlo84, Orto88a, Orto95, Kon97a, Bal97]. We have shown how
to translate Rare-logics into more standard modal logics (see extensions into
combinatory dynamic logics in [DG]) and the other way around. Various
kinds of algebraic properties for the families of relations in the models have
been taken into account. The translations are interesting for their own sake,
for instance they help understanding what is brought by adding a Boolean
dimension to a logic.

In [DG] we are able to prove new decidability results about some Rare-
logics in a unifying framework. The flexibility of the translations allows an
extension when nominals are included in the language for atomic propositions
and above all for atomic parameters (it is technically more involved). Some
refinements to eliminate the universal operator are also presented in [DG].
Most of our results have a semantical flavour except that we shall also define
translations of calculi between Rare-logics and corresponding standard modal
logics.

Acknowledgements: The authors warmly thank the anonymous referee
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this work improving very significantly the quality of the paper. In particular,
we are thankful to the referee for finding a major flaw in the proof of previous
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