

Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp Complex: a Literature Review

Hadjichristou Christina1, Imad About, Koidis Petros3, Bakopoulou Athina4

▶ To cite this version:

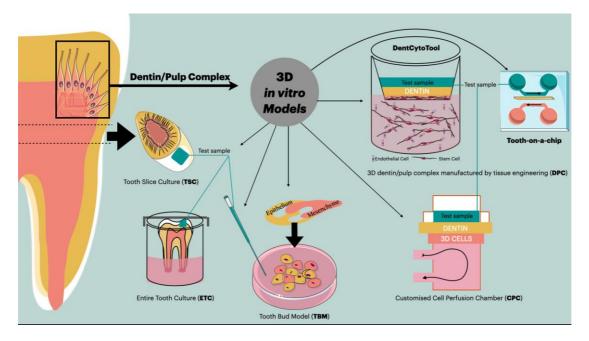
Hadjichristou Christina
1, Imad About, Koidis Petros
3, Bakopoulou Athina
4. Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp
 Complex: a Literature Review. Stem Cell Reviews and Reports, In press,
 10.1007/s12015-020-10069-8 . hal-03191588

HAL Id: hal-03191588 https://hal.science/hal-03191588

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **Title**: Advanced *in vitro* experimental models for tissue engineering-based reconstruction of a 3D dentin/pulp complex: a literature review.

Hadjichristou Christina1, About Imad2, Koidis Petros3, Bakopoulou Athina4


1 Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece. Electronic address: cchatzic@dent.auth.gr

2 Aix Marseille University, Centre National de la Recherche Scientifique, Institute of Movement Sciences, Marseille, France. Electronic address: imad.about@univ-amu.fr

3 Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece. Electronic address: pkoidis@dent.auth.gr

4 Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece. Electronic address: abakopoulou@dent.auth.gr.

Abstract

Objective: Experimental procedures have been used to monitor cellular responses at the dentin/pulp interface. Aiming to divert from *in vivo* studies and oversimplified two-dimensional assays, three-dimensional (3D) models have been developed. This review provides an overview of existing literature, regarding 3D *in vitro* dentin/pulp reconstruction.

Material & Methods: PubMed, Scopus, Cochrane Library and Web of Science- were systematically searched for attributes between 1998-2020. The search focused on articles on the development of three-dimensional tools for the reconstruction of a dentin/pulp complex under *in vitro* conditions, which were then screened and qualitatively assessed. Article grouping according to mode of implementation, resulted in five categories: the customised cell perfusion chamber (CPC) (n=8), the tooth bud model (TBM) (n=3), the 3D dentin/pulp complex manufactured by tissue engineering (DPC) (n=6), the entire tooth culture (ETC) (n=4) and the tooth slice culture model (TSC) (n=5).

Results: A total of 26 publications, applying nine and eight substances for pulp and dentin representation respectively, were included. Natural materials and dentin components were the most widely utilized. The most diverse category was the **DPC**, while the **CPC** group was the test with the highest longevity. The most consistent categories were the **ETC** and **TSC** models, while the **TBM** presented as the most complete *de novo* approach.

Conclusion: All studies presented with experimental protocols with potential upgrades. Solving the limitations of each category will provide a complete *in vitro* testing and monitoring tool of dental responses to exogenous inputs.

Clinical Relevance: The 3D dentin/pulp complexes are valid supplementary tools for *in vivo* studies and clinical testing.

Keywords: dentin pulp complex, three-dimensional, tissue engineering, tissue manufacturing, regeneration, bioengineering.

Introduction

Dentin and the dental pulp are two components of the dental tissue, which function as a complex. Odontoblasts, lining the circumference of the pulp, give rise to predentin and eventually to dentin and in turn dentin -being more robust- protects the dental pulp [1]. Stimuli from the external environment are transferred from dentin to the pulp and in return the pulp responds accordingly [2]. This sensitive system, which is a structure lying within the dental cavity, is constantly exposed to acids, sugars and thermal shocks [3]. The scientific community has been occupied with experimental setups in order to recapitulate cellular mechanisms underlying certain functions or to monitor reactions to external stimuli and materials^[4]. These efforts were addressed to solely pulp components, neglecting the synergistic effect of dentin and probably altering the output. With this in mind, investigations were directed in 2-dimensional experiments incorporating slices of dentin [5–8]. However, this was also troublesome, as it did not recapitulate the complexity or the structural anatomy of the natural 3D tissue. The factor of dimensionality is also degraded as cells are organized in complex three dimensional (3D) extracellular matrices (ECM) interacting with surrounding cells [9]. For these reasons, researchers have focused on developing 3D matrices to host cells, in a way that better mimics their physical environment. Threedimensional analogues of the dentin/pulp complex include the customised cell perfusion chamber test with particular reference to the artificial pulp chamber and cell seeding in 3D polyamide meshes, instead of the initial 2D cell cultures on coverslips [10–13].

Another example is "the entire tooth culture" presented in 2005, in which extracted teeth with undeveloped roots were suspended in polystyrene well plates using metal wires to keep the roots in culture medium [14]. The

ability of these teeth to behave similarly to the clinical situation when placed in culture, (i.e. the ability of the cells to proliferate and migrate to injury sites after pulp exposure) was evaluated [14–17]. Another example is the tooth bud model illustrating organ germs representing a revival of the natal structure of the human tooth [18–20]. This attempt has been brought to life by culturing distinct mesenchymal and epithelial cell populations as representatives of pulp and dentin, respectively, in the form of *de novo* synthesis based on the embryological derivative of the complex tooth tissue.

More recently, a new advancement has been proposed in the medical field, the microfluidic devices, lined with living human cells. These small devices -microchips- that fit between the two fingers are constructed by PDMS and they replicate the microarchitecture and basic functions of human organs such as kidney [21], blood-brain barrier [22], lung [23], liver [24]. Dentistry followed this trend and devised the "tooth on a chip" [25]. This model would serve as a biocompatibility assessment tool by combining a pulp and a cavity chamber in two compartments separated by a dentin fragment. Other examples utilising 3D tissue engineering for this purpose are met through stiffness modulation, bioprinting, hanging culture inserts, and will be discussed later in detail.

For the scope of this review, studies on the *in vitro* 3D dentin/pulp complex reconstruction were identified and analysed regarding the recapitulation of the pulp component, the dentin component, the modes of the assembly of the two components, the interventions and intentions of use of these devices, as well as the biological endpoints and the actual efficacy of each method.

There is still much to learn from the *in vitro* testing, although it is accepted that this will not totally replace the *in vivo* and clinical tests prior to material market release. There are several reasons that enforce seeking alternatives to *in vivo* animal models and clinical trials. These are the limited number of test subjects as well as the limited availability of donor tissue, the high cost of purchase and maintenance as well as the ethical concerns of pain and discomfort to living subjects. Adding to this notion, the predictive value of animal models and the projection of the results to humans and donor specific factors -such as disease or genetics- may still influence the outcome [26]. As in other medical fields -such as cancer research- a bridging vehicle is sought, halfway between unrealistic and oversimplified 2D *in vitro* models and animal models[27]. Nonetheless, *in vitro* methods should be used for initial screening purposes offering high throughput information, aiding in the apprehension of cellular mechanism responses through an *in vitro* environment that closely mimics the natural tissue. The aim of this review is to reveal and analyze the studies and experimental setups which have been

implemented with a 3D *in vitro* rational with the ultimate purpose to mimic the dentin/pulp complex as closely as possible and therefore to be used as monitoring tools for the biological processes and reactions of this complex tissue to external stimuli.

Material & Methods

Study Design

All authors involved in this study developed a protocol for a qualitative review of the literature based on recommended methods. The main research question of this study was: Do *in vitro* 3D studies, regenerating the dentin/pulp complex, resemble the native tissue successfully? The review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-statement.

Inclusion and exclusion criteria

Literature research was performed by applying specific search terms, aiming to find publications with the purpose to device a 3D analogue of the dentin/pulp complex. Eligibility criteria included journal articles published until February 2020 in peer-reviewed journals regarding *in vitro* studies. The attributes which did not provide information for both the pulp and the dentin component as well as their assembly method were eliminated. Case reports, finite element analysis studies, review articles, and *in vivo* studies were also excluded.

Search strategy

Four scientific databases - Pubmed, Scopus and Cochrane Library and Web of Science- were used for the search. The key words for this search were: "(dentin pulp complex OR pulp dentine OR tooth) AND (3D OR three dimensional) AND (tissue engineering OR tissue manufacturing OR regeneration OR bioengineering)". The search was limited to articles written in English, published until February 2020. Additional articles from paper references were added manually.

Study selection

After removing duplicates, the full content of the resulting papers was screened manually. Inclusion and exclusion criteria were applied for the final selection. The included studies were subdivided into studies performing customised cell perfusion chamber tests, tooth bud models, 3D dentin/pulp complex manufactured by tissue engineering studies, the entire tooth culture models and the tooth slice organ culture models.

Data extraction

Two independent reviewers assessed the titles and abstracts of the collected studies and data were extracted from the full texts of the finally included studies. The data collected were: author(s) and year of study, method for pulp representation, method for dentin regeneration, assembly manner for dentin/pulp complex, intervention - aim(s), methods, biological end-points, and efficacy measurement (outcomes or main findings). Disagreements during study selection, data extraction, and quality assessment were resolved by discussion between the two reviewers.

Risk of bias and quality assessment

Studies were not evaluated for risk of bias as there is no published risk - of - bias approach for mechanistic studies or framework for rating confidence in bodies of evidence for *in vitro* studies.

Results

Search results and study characteristics

The initial search procedure using PubMed (n=812), Web of Science (n=385), Scopus (n=40), and Cochrane (n=41). Another six records were added through other sources, leading to an overall of 1284 search results. After screening titles and abstracts, the total findings remaining were 88. The excluded studies involved evaluation of tissues other than dentin/pulp complex (n= 154), review articles (n=51), *in vivo* (n=64) or clinical testing (n=54), case reports (n=31) not written in English (n=82) or irrelevant to the subject (n=763). Out of the 88 articles remaining, 42 were duplicates, and as a result, the total findings were reduced to 46 unique journal articles. Following the inclusion and exclusion criteria, 20 studies had to be excluded leading to a total of 26, which were further probed and later synthesized in this review (Figure 1).

The retrieved studies were first found in 1998. In the past 22 years, the interest in the subject has been steady as the timeline reveals, on average 4 publications per 5 years, until 2018. In the last two years, 2019-2020, 6 relevant studies have already been published, indicating an increase in the interest towards this subject.

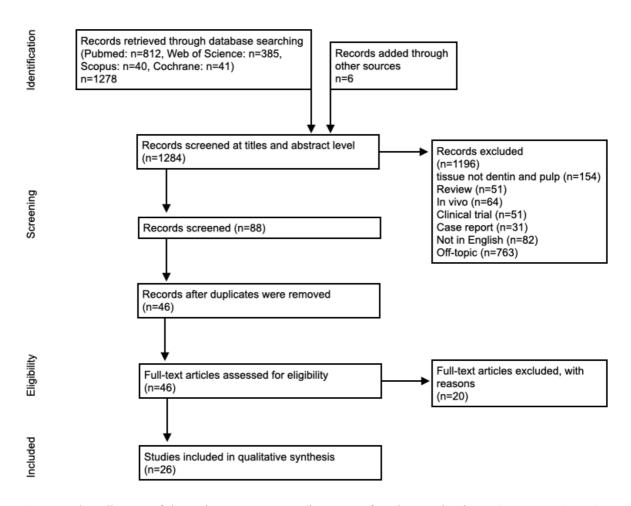


Figure 1: Flow diagram of the review process according to "Preferred Reporting items for systematic reviews and meta-Analyses: The Prisma Statement" [28]

Types of Three-dimensional dentin/pulp complexes

All of the 26 included studies were assigned to subgroups according to their defined category: customised cell perfusion chamber (n=8), tooth bud model (n=3), 3D dentin/pulp complex manufactured by tissue engineering (n=6), entire tooth culture (n=4) and the tooth slice organ culture model (n=5).

In total, nine materials were used as a 3D substrate for the representation of the dental pulp, with polyamide meshes and the natural pulp being the most frequently utilized. Other natural materials were gelatin, collagen, fibrinogen, and their combinations. Synthetic materials consisted of nylon, polyamide, polystyrene meshes and GelMa.

The dentin analogue was mostly represented by natural dentin discs, dentin fragments or cavities in dentin, of either human or bovine origin. Others employed the same gels used for manufacturing the pulp, but at higher

concentrations (e.g. higher stiffnesses of GelMa or Gelatin). A few studies used cell sheet layers of appropriate cell lines or single-cell suspensions in a 3D arrangement (Table 1). The most popular assembly method for the development of dentin/pulp complex was through a customized cell perfusion chamber. Other methods were 3D printing of the two tissues, hanging culture inserts, compartmentalized PDMS molds and direct cell sheet layering. In the case of the entire tooth culture and the tooth slice organ culture, the two tissues (dentin and the dental pulp) were naturally in contact beforehand.

Pulp analogue material	Number of studies	Dentin analogue materials	Number of studies
	(reference)		(reference)
Nylon mesh	1 [10]	Dentin disc	16 [10,12,29–42]
Polyamide mesh	6 [12,39–43]	Dentin fragments	1 [25]
Polystyrene scaffold	1 [38]	Tooth cavities	4 [14,15,17,44]
Cell matrix	1 [18]	Single cell suspension	1 [18]
GelMa	2 [19,20]	Cell sheet layers	1 [19]
Gelatin	1 [45]	GelMA	1 [20]
Natural pulp	10 [14,15,46,17,30- 34,37,44]	Gelatin	1 [45]
Fibrin/fibrinogen	2 [36,47]	Fibrinogen	1 [35]
Collagen and Fibrin	1 [35]		

Table 1: Overview of the materials used for manufacturing the three-dimensional dentin/pulp complexes.

Customised Cell perfusion chamber.

The included studies in this sector used customized cell perfusion chambers. Animal-derived cells were seeded in three-dimensional scaffolds, such as nylon meshes [10], polyamide meshes [11,12,29,40,41] or polystyrene [38]. In all studies, cells were bovine-derived fibroblasts except from Jiang et al. who used mouse fibroblasts. All studies used dentin discs as dentin analogues to separate the pulp compartment from the exposed dentin side, and the most commonly found dentin thickness was 500 μ m [10,11,39,40]. Two studies tested variations of dentin thicknesses ranging from 100-1000 μ m [12,38]. All dentin discs followed a similar protocol for smear removal (50% citric acid for 30'') and sterilization by autoclave (121C/25') except from Jiang et al., who used 70% ethanol for disinfection purposes. All experimental designs consisted of dynamic cultures, as perfusion was incorporated in the setup, within the limit of 0.3-5ml/h. Lower flow values (0.3ml/h) were used for the first 24h of culture. The perfusion was then arrested during the incorporation of the test specimens and the perfusion was re-initiated for another 24h period at higher flow values. The aim of these studies was to test the cytocompatibility of dental materials via MTT assay, 24h post-exposure to: dental adhesives, resin cements, primers, resin-modified glass ionomer cements, zinc oxide eugenol, zinc phosphate cements. Outcomes of these studies indicated the importance of incorporating the dentin barrier. Indeed, the lower dentin thicknesses were insufficient in terms of protecting the cells against cytotoxic effects by various bonding agents [12,38]. The parameter of perfusion, also simulating the natural condition in the natural tooth, gave controversial results. This parameter was material-dependent as some studies revealed an increase in the cytotoxicity caused by glass ionomer cements (Vitrebond, Ketac-Fil) by increasing the perfusion rate from 0.2 to 3 or 5ml/h [10,48]. Conversely, high perfusion rates (2ml/h) caused a decrease in cytotoxicity caused by a bonding agent, Syntac, where the authors noted that this open-test system may have simulated the natural tooth more closely as these materials have not been found to exert adverse reactions in vivo where the material is being washed away by the bloodstream [41]. Among different bonding agents, Sengun et al. reported that the contents of each material had different cytotoxic effects. However, they were introduced in identical conditions in the cell perfusion chambers, stating that bis-GMA and UDMA containing bonding agents were more cytotoxic than those containing TEGDMA and HEMA [39]. Recently, Jiang et al. mentioned that the type of adhesive, whether totaletch or self-etch, also had an effect, with the former being more cytotoxic than the latter [38]. These parameters: dentin thickness, perfusion, the material under investigation, reinforced the importance of employing a threedimensional system to mimic the natural situation better.

Author,	Pulp analogue	Dentin	Assembly	Intervention	Methods/	Efficacy
year	(Scaffold/cells)	analogue			Biological	measurement /
					endpoints	outcomes
Schmalz	nylon mesh/	Dentin discs	Customised	Insertion of	MTT assay	Vitrebond was
1999	fibroblasts	-(500 µm) -	Cell	dental filling	24h after	cytotoxic w/o
		bovine	perfusion	materials	exposure to	perfusion.
		incisors.	chamber	(cements):	sample	
		-treatment:		Zinc		0.3 ml/h
		etching 50%		phosphate	±perfusion	perfusion: no

		citric 30"		cement	(0.3 or 5	significant
		for smear		(Harvard)	ml/h)	difference from
		removal,				w/o perfusion.
		autoclaved		Zinc oxide-		
		(121°C, 25		eugenol		
		min)		cement		0.3 → 5 ml/h
						significant
				Glass ionomer		difference
				cement		(except ketac
				(Ketac-fil)		silver) but still
						not cytotoxic.
				Resin		
				modified glass		
				ionomer		
				cement		
				(Vitrebond)		
Schuster	Polyamide	Dentin discs	Customised	Insertion of	MTT assay	lower survival
2001	meshes/bovine	-(500 µm) -	Cell	dental filling	24h after	rates at
	pulp-derived	bovine	perfusion	materials	exposure to	perfusion
	cells	incisors.	chamber	(cements):	sample	conditions,
		-treatment:		Zinc		compared with
		etching 50%		phosphate	±perfusion	static
		citric 30"		cement	(0.3 or 2	experiments.
		for smear		(Harvard)	ml/h)	However, not
		removal,				statistically
		autoclaved		Zinc oxide-		significant.
		(121°C, 25		eugenol		
		min)		cement		Only Vitrebond
						was cytotoxic
				Glass ionomer		

				cement		
				(Ketac-fil,		
				ketac-silver)		
				Ketue Shiver)		
				Resin		
				modified glass		
				ionomer		
				cement light		
				cured		
				(Vitrebond)		
Schmalz	Polyamide	Dentin discs	Customised	Insertion of	MTT assay	Only Syntac
2002	meshes/bovine	-(500 µm) -	Cell	dental	24h after	Classic
	pulp-derived	bovine	perfusion	materials: All-	exposure to	significantly
	cells	incisors.	chamber	Bond 2, Prime	sample	decreased
		-treatment:		& Bond NT,		the cell
		etching 50%		Syntac SC,	±perfusion	activities.
		citric 30"		Syntac	(0.3 or 2	
		for smear		Classic, and	ml/h)	0.3ml/h
		removal,		Prompt L-Pop		perfusion
		autoclaved		r		increased
		(121°C, 25				cytotoxicity, but
		min)				2ml/h perfusion
						reduced the
						cytotoxicity
						low pH dentin-
						bonding agents
						have
						no effect when
						with a

						0.5-mm dentin
						barrier
Galler	Polyamide	Dentin discs	Customised	Insertion of	MTT assay	Cell survival
2005	meshes/calf-	-(100, 200,	Cell	dentin	24h after	rates for Syntac
	bovine dental	300, and 500	perfusion	contacting	exposure to	Classic were
	papilla derived	μm)	chamber	materials:	sample,	significantly
	cells	-bovine		Syntac Classic	±perfusion	lower under
		incisors.		(Primer),	0.3-2ml/h	perfusion
		-treatment:		Prompt L-Pop		conditions, no
		etching 50%		(adhesive),		sign diff
		citric 30"		Vitrebond		regarding dentin
		for smear		(Resin		thickness.
		removal,		modified glass		
		autoclaved		ionomer		Vitrebond and
		(121°C, 25		cement)		Prompt L-Pop
		min)				no statistical
						difference
						between static
						and perfusion
						conditions or
						different dentin
						thicknesses.
						Cytotoxicity
						Syntac>
						Vitrebond> L-
						Рор
Ulker	Polyamide	Dentin discs	Customised	Insertion of	MTT assay	Maxcem was
2009	meshes/calf-	-(500 µm) -	Cell	composite	24h after	similar to the
	bovine dental	bovine	perfusion	resin cements:	exposure to	negative control

	papilla-derived	incisors.	chamber	Rely X,	sample	group (P>.05)
	cells	-treatment:		Clicker,		
		etching 50%		MaxCem,	0.3-2ml/h	all other tested
		citric 30"		Panavia F 2.0,	perfusion	materials were
		for smear		BisCem,		cytotoxic
		removal,		Bistite II DC		
		autoclaved				
		(121°C, 25				
		min)				
Sengun	Polyamide	Dentin discs	Customised	Insertion of	MTT assay	UB and CDCB
2010	meshes/bovine	-(500 µm) -	Cell	dentin bonding	24h after	were similar to
	fibroblast	bovine	perfusion	agents:	exposure to	the control
	pulp- derived	incisors.	chamber	G-Bond,	sample	group (P<0 .05).
	cells	-treatment:		Adper Prompt		
		etching 50%		Self-Etch,	0.3-2ml/h	All other tested
		citric 30"		Clearfil DC	perfusion	materials were
		for smear		Bond		cytotoxic
		removal,		System, and		
		autoclaved		Quadrant		
		(121°C, 25		University-1-		
		min)		Bond.		
Schmalz	Collagen	Dentin discs	Dentin	Insertion of	WST-1 cell	The resin-based
2014	hydrogel on	–(200 μm)-	barrier test	resin-based	proliferation	composites
	polyamide	bovine lower		composites	assay.	±dental
	meshes/human	anterior		and adhesive:		adhesive were
	fibroblast -	teeth.		Tetric		non-toxic with
	pulp derived			EvoCeram,	0.3ml/h	values similar to
	(SV40 large T			N'Durance,	perfusion	the non-toxic
	antigen			Clearfil SE		control.
	transfected)			Bond.		

Jiang	3D polystyrene	Dentin discs	Customised	Insertion of	MTT assay	Self-etch
2016	scaffolds	-(300, 500,	Cell	dental	24h after	materials are
	/L929 mouse	1000µm) -	perfusion	adhesives:	exposure to	non-toxic.
	fibroblasts	human	chamber	Vitrebond,	sample	
		molars.		Gluma bond 5,		Vitrebond and
		-treatment:		Gluma Self	0.3ml/h	gluma bond 5
		70% EtoH		Etch, Single	perfusion	(for 300 µm
				bond		dentin
				Universal		thickness) are
				(self-etch)		more cytotoxic
						than the positive
						control.

Table 2: Customised Cell perfusion chamber studies.

Tooth bud model.

For this category of experiments, a model for the developing tooth was assembled de novo using mesenchymal cells for the pulp and epithelial cells for dentin. The three articles retrieved used different techniques for the assembly. This was achieved either by encapsulating the cells in a gel drop (CellMatrix) and injecting epithelial cells adjacent to the mesenchymal cells within the CellMatrix [18], or by using GelMa and layering cell sheets of epithelial cells over cells sheets of epithelial cells [19] or by superimposing different concentrations of GelMa: 5% for the pulp analogue containing mesenchymal cells, and 3% for the dentin analogue containing epithelial cells layered on top of the 5% GelMa [20]. Most studies used osteogenic medium for the tooth bud model culture [19,20], the observation period varied from 1 day to 6 weeks, and the cells utilised were all of animal origin. The evaluation of the success of this attempt was performed mostly by histological analysis via Hematoxyline & Eosin (H&E) staining, Immunohistochemistry (IHC), immunofluorescence (IF), Polarised Light imaging (Pol) and Atomic Force Microscopy (AFM). The primary outcomes were the successful cell to cell compaction and interactions between epithelial and mesenchymal cells [18,19]. Expression of angiogenic markers, such as CD31, mesenchymal marker Vimentin, dentin markers, such as DSPP, and cell-cell marker E cadherin, were expressed by the interacting cellular populations [20]. The ultimate purpose of these attempts was to present a viable 3D method for tooth replacement through biomimetic tooth formation.

Author,	Pulp analogue	Dentin	Asse	Interventio	Methods/	Efficacy measurement
year	(Scaffold/cells)	analogue	mbly	n	Biological	
					endpoints	
Nakao	Cellmatrix type	Epithelial	Pipett	Organ	H&E	1 d of organ culture:
2007	I-A / Mice	single cells	ing	culture for		-formation of a
	mesenchymal	injected	cells-	2+14d		tooth germ
	cells	adjacent to	direct			-appropriate
		the	cell-			compartmentalization between
		mesenchym	cell			epithelial and mesenchymal cells
		al cell	conta			-cell-to-cell compaction
		aggregate	ct			
Montei	5% GelMA	The Dental	Layer	Osteogeni	H&E, IHC	in vitro cultured multilayered DE-
ro 2016	/Porcine dental	Epithelial	ing	c medium	and IF	DM CSs expressed appropriate
	mesenchymal	(DE) Cell	cell	1,4,7,12sd	analyses	tooth marker expression patterns
	(DM)	sheet layers	sheets			including SHH, BMP2, RUNX2,
	progenitor cells		(CS)		IHC (H&E,	tenascin and
			of		FAK, TEN	syndecan, which normally direct
			DM-		and SYN4	-DE-DM interactions,
			DE			-DM cell condensation, and
			over		Pol	-dental cell differentiation.
			polym		(polarized	
			erised		light	
			DM		imaging)	
			5%			
			GelM		IF (Sonic	
			А		Hedgehog,	
					BMP-2,	
					RunX2)	

Smith	5% GelMA /	pDE–	Layer	preculture	AFM	H&E: ECM increase over time
2017	Porcine Dental	HUVECs	ing	d in vitro	(atomic	(cell differentiation)
	mesenchymal-	(1:1)	GelM	in	Force	
	HUVECs (1:1)	3% GelMA	A on	osteogenic	Microscopy	IHC:
			top of	media for	, H&E, IF,	-(Ecad)-expressing pDE cells,
			each	2 weeks→	IHC (CD31,	vimentin (Vm)-expressing
			other	evaluated	E-cadherin,	pDM cells, and CD31-expressing
			and	after 1 or	OC, DSPP,	HUVEC cell populations
			photo	6weeks	Amelogenin	present throughout the constructs
			crossl)	-robust expression of the DM
			inking			(DSPP) after both 1 week
						and 6 weeks of culture
						-(OC) and AM were
						faintly detected in
						6-week.

Table 3: Tooth bud model studies.

3D dentin/pulp complex manufactured by tissue engineering.

This group is the most diverse, with the most recent studies in terms of year of publication. The dentin/pulp complexes of this category are comprised of: spheres within rings with different stiffness values [45], slices of dentin with the preservation of the dental pulp [37], cells encapsulated in fibrin including Growth factors enhancing angiogenesis (*VEGF*) accompanied with *BMP-2* coated dentin discs [36], stacking fibrinogen - of various concentrations - in a bioprinting process within a polycaprolactone frame for dentin and the pulp [47], hanging culture inserts dividing two compartments - a dentin analogue and a pulp analogue - through a membrane with a dentin slice [35] and lastly, a three-dimensional tooth on a chip assembly with two perfusable compartments representing dentin and the dental pulp. In this category cellular populations were all of human origin, mostly DPSCs [35,36,45,47] and SCAP [25], while Hadjichristou et al. used a combination of HUVEC and SCAP for the pulp compartment and DPSCs for the dentin compartment [35]. The observation period of these experiments varied from 3 days [37] up to 4 weeks [45] and the main outcome of these studies was to evaluate the feasibility of a dentin/pulp complex implementation via mineral deposition quantification [45,47],

marker gene expression for angiogenic (*vWF*, *VEGF*, *PECAM-1*, *VEGFR-2*, *ANGPT-1*, *TIE-2*) [35–37] as well as odontogenic markers (*BSP*, *DMP-1*, *OCN and CBFA*, *DSPP*, *RunX2*, *BMP-2*) [35,36,47] and thyrotropin-releasing hormone degrading enzyme (*TRHDE*) and syndecan3 which are highly expressed in the natural pulp [45]. Some of the constructs were further utilised to deduce the cytotoxicity of dental materials such as eluates of resin monomers (*HEMA*, *TEGDMA*) [35] or of resin monomer (*HEMA*) and phosphoric acid [25] using techniques such as MTT, LDH and Live cell imaging. All results seemed promising in their utilisation as 3D biocompatibility investigation tools, all with potential improvements and high output capabilities.

Author	Pulp	Dentin	Assembly	Intervention	Methods/	Efficacy measurement
, year	analogue	analogue			Biological	
					endpoints	
Qu	low	high	Mechanica	differential	H&E,	cell density in the central
2015	stiffness	stiffness	l seamless	medium for	Von kossa,	area was higher than in
	nanofibrou	(NF) gelatin	assembly	4 weeks	thyrotropi	the peripheral area of the
	s (NF)	scaffold	of the		n-releasing	construct.
	gelatin	/DPSCs	sphere		hormone	
	scaffold	(ring shape)	within the		degrading	von Kossa:
	/DPSCs		ring		enzyme	mineralization in the
	(sphere)				(TRHDE),	high-stiffness area
					syndecan3	
					(SDC3)	the expression of
						(TRHDE) and (SDC3),
						(highly expressed in
						natural pulp) were
						significantly higher in the
						central area than in
						the peripheral area.

Natural	Dentin discs	Natural	slices were	Confocal	Cells viability was
pulp	(2mm thick)	slices from	cultured	microscop	unaffected at 1 and 3
	from human	parts of	without	у	days
	3 rd molars	tooth	(control) or	(live/dead	
		containing	with iloprost	staining)	Iloprost promoted
		both	for 1 or 3		angiogenesis
		dentin and	days.	IHC and	vWF and vEGF
		pulp.		IF (vWF,	demonstrated a
			Serum-free	VEGF,	significant increase
			DMEM was	Col-1),	at both 1 and 3 days.
			used as the	H&E	
			culture	counterstai	Iloprost Stimulated
			medium in	ning	Collagen Synthesis
			all		shown by masson's
			experimenta		trichrome staining and
			l conditions		Col-1 IF.
Fibrin gel	BMP-2	Fibrin gel-	DPSCs in	MTT and	Higher expressions of
+VEGF/	coated	VEGF	the absence	Live&Dea	PECAM as an angiogenic
Human	demineraliz	inserted	or presence	d assays	factor, and BSP, DMP-1,
DPSCs	ed human	into dd-	of VEGF		OCN and CBFA as
and VEGF	dentine	BMP-2	and BMP-2	ELISA for	odontogenic factors were
	discs (dd-		for 28d	release	observed in 3D culture
	BMP-2).			profiles of	model as compared to the
				VEGF and	other fg/dd combinations
	Dentin			BMP-2	and the monolayer
	treatment:				control group
	betadine for			RT-qPCR	
	30 min and			analysis:	
	1.5%			angiogenic	
	sodium			and	
	pulp Fibrin gel +VEGF/ Human DPSCs	pulp (2mm thick) irom human 3rd molars	pulp(2mm thick)slices fromfrom humanparts of3 rd molarstooth3 rd molarstooth1Itooth <td>pulp(2mm thick)slices fromculturedfrom humanparts ofwithout3rd molarscontainingwith iloprost3rd molarscontainingfor 1 or 3bothfor 1 or 3dentin anddays.pulp.pulp.pulp.seapulp.pulp.seafor 1 or 3pulp.pulp.pulp.seapulp.pulp.seafor 1 or 3pulp.pulp.seafor 1 or 3pulp.pulp.pulp.seapulp.pulp.pulp.seapulp.<</td> <td>pulp(2mm thick)slices fromcultured)microscopicirom humaparts of(cintron)(diverdat)3^m molarscontaining(cintron)(diverdat)10^m molarsforf 1 or 0(diverdat)(diverdat)10^m molarsforf 1forf 1(diverdat)10^m molarsforf 1forf 1(diverdat)10^m molarsforf 1forf 1forf 110^m molarsforf 1for 1forf 110^m molarsforf 1for 1forf 110^m molarsforf 1forf 1<</td>	pulp(2mm thick)slices fromculturedfrom humanparts ofwithout3 rd molarscontainingwith iloprost3 rd molarscontainingfor 1 or 3bothfor 1 or 3dentin anddays.pulp.pulp.pulp.seapulp.pulp.seafor 1 or 3pulp.pulp.pulp.seapulp.pulp.seafor 1 or 3pulp.pulp.seafor 1 or 3pulp.pulp.pulp.seapulp.pulp.pulp.seapulp.<	pulp(2mm thick)slices fromcultured)microscopicirom humaparts of(cintron)(diverdat)3 ^m molarscontaining(cintron)(diverdat)10 ^m molarsforf 1 or 0(diverdat)(diverdat)10 ^m molarsforf 1forf 1(diverdat)10 ^m molarsforf 1forf 1(diverdat)10 ^m molarsforf 1forf 1forf 110 ^m molarsforf 1for 1forf 110 ^m molarsforf 1for 1forf 110 ^m molarsforf 1forf 1<

		hypochlorite			odontogen	
		for 10'			ic	
		10r 10				
					differentiat	
		Soaked in			ion	
		17% EDTA/			markers	
		15'.				
	T ''1 ·	C'1 .	25	1. 1	.	
Han	Fibrinogen	fibrinogen	3D	cultured	Live	mineral deposition was
2019	(5mg/ml) -	(20mg/ml)-	construct	with	&dead	locally observed only in
	bio-	bio-ink	produced	odontogenic	staining	the outer region, and not
	ink/human		by	differentiati		in the central region of
	DPSCs	(Polycaprola	repeated	on medium	Alamar	the pulp tissue. This
		ctone for 3D	printing	for 15 days	blue	result confirmed that the
		overall	process			designed 3D bioprinting
		shape of the	with		Alizarin	process could induce
		tooth)	stacking.		red S	localized odontogenic
					staining	differentiation in a
					C	designed 3D space,
					mRNA	specifically patient-
					expression	specific shaped 3D
					of	dentin– pulp complexes.
					(DMP-1)	
					and	
					(DSPP)	

					SEM	
Hadjic	Collagen	Human	Mechanica	resin	MTT	MTT: time- and
hristou	I/Fibrin	DPSCs on	1	monomers		concentration-dependent
2019	hydrogel	membranes	placement	(TEGDMA/	LDH	increase of cell
	/human	of hanging	of the	HEMA) and		cytotoxicity was
	HUVEC/S	culture	hanging	Bacterial	Real time	observed after application
	CAP co-	inserts	culture	endotoxin	PCR for	of monomers HEMA or
	cultured	covered by a	insert	(LPS)	angiogene	TEGDMA ± LPS.
	cells	disc-shaped	(dentin	inserted	sis-related	
		human	analogue)	through the	genes	LDH: time- and
		treated	in 24-well	hanging	(VEGFa,	concentration-dependent
		dentin	plates	culture	VEGFR-2,	decrease of cellular
		matrix	containing	insert	ANGPT-1,	viability was observed
		(hTDM)	pulp		TIE-2 and	after application of
			analogue		PECAM-	monomers HEMA or
					1)	TEGDMA ± LPS.
						PCR: resin monomers
						and LPS caused
						significant decrease in
						angiogenesis related
						genes at 7 days of
						observation.

França	Perfusable	500µm	Separation	a. 10 mM,	Live-cell	Live-cell imaging: Each
2019	chamber	human	of pulp	(b) 37%	imaging to	tested material elicited
	in PDMS	dentin	side and	phosphoric	test	apparent cellular injury
	mold/	fragments	cavity side	acid gel	cytotoxicit	with as early as 24 h,
	SCAP	(17% EDTA	by the	(PA)	у	visible reduction in cell
		for 45" to	dentin	used to etch	(incubatio	number relative to the
		remove the	fragment	the dentin	n with 50	untreated controls
		smear layer,	within the	for 15 s, and	nM of	
		thoroughly	PDMS	(c) 35% PA	Helix NP	Green fluorescence,
		rinsed with	mold	plus Adper	NIR).	indicative of MMP
		water)		Single Bond		activity, was visible after
				2 (SB)	Gelatinoly	24 h and peaked after 48
				applied	tic activity	h.
				through the	by	
				cavity side	fluoresce	
				of the		
				device.		

Table 4: 3D dentin/pulp complex manufactured by tissue engineering.

Entire tooth culture.

The four studies utilising the entire tooth culture have followed a similar implementation protocol based on the first reported study by Téclès et al. [14]. In this case, freshly extracted teeth with open apical foramens were fixed and cultured in tissue plates with their apical parts immersed in culture medium, allowing the diffusion of the medium to the dental tissues for up to 4 weeks [14]. After the efficacy of the method was sufficiently studied through histological analyses and IHC [14], additional studies followed, aiming to investigate the reaction of the pulp after the application of dental materials within cavities of the suspended teeth. Among the tested materials, the retrieved articles included Mineral Trioxide (MTA) [15,17], Calcium hydroxide [15], and Biodentine [44]. The methods of evaluation for the pulp response after the application of dental materials comprised a histological (H&E staining, Gram staining) [17,44] and an IHC evaluation for *collagen I, Osteonectin,* dentine

sialoprotein (DSPP), nestin [15,44]. Through the results, it was possible to show that this method -the entire tooth culture- was able to recapitulate some of the responses of the natural teeth to the same materials when applied *in vivo* [15]. It could be recognised that this is an easily reproducible method without the need to regenerate the natural tooth *de novo*, as is the case with most of the other categories in this review. It also comprises a smart tool to test dental materials in direct contact with the three-dimensional native tissue for the amount of time that the tooth can uptake nutrients from the surrounding culture medium.

Author,	Dentin/Pulp complex	Intervention	Methods/	Efficacy measurement
Year	preparation		Biological	
			endpoints	
Téclès	Teeth were cultured in	± cavities	Histology: H&E	1 day, the BrdU was localised to
2005	four-well-tissue plates.		staining	the nuclei of cells in the
	The crowns were fixed			perivascular area and decreased
	to the cover with sterile		IHC: BrdU	in those away from the cavity.
	wax and the apical part			2 weeks: labelled cells were
	of the teeth was dipped			seen in the vicinity of the cavity.
	in the culture medium.			4 weeks: the immunolabelling
				was localised to the cavity area
				only.
				Control teeth without cavities or
				with shallow dentine cavities
				did not show any perivascular
				labelling after culture.
Téclès	After cavities	Cavity was	Histology: H&E	Histological staining after direct
2008	preparations and	gently dried	staining	pulp capping with Calcium
	restorations, the teeth	and		Hydroxide XR1 or
	were fixed by the	immediately	IHC: Collagene	MTA revealed early and
	crowns to a wire and	with:	type I, Dentin	progressive mineralized foci
	were suspended in the	-Mineral	sialoprotein, and	formation containing BrdU-
	culture medium in 12-	Trioxide	Nestin	labeled sequestered cells.

well tissue plates,	Aggregate		The molecular characterization
permitting the diffusion	(MTA)	BrDU	of the matrix and the
of the medium through	-calcium		sequestered cells by
the apex without any	hydroxide		IHC (Collagene type I, Dentin
direct contact between			sialoprotein, and Nestin) clearly
the biomaterial and the			demonstrates that these areas
medium.			share common characteristics of
			the mineralized matrix of
			reparative dentin formed by
			odontoblast-like cells.
			This reproduces some features
			of the pulp responses after
			applying these materials in vivo
A cavity was performed	Cavity was	Histology: H&E	Biodentine induced mineralized
ex vivo with a truncated	gently dried	staining	foci formation early after its
diamond bur mounted	and		application. The mineralization
on a high-speed hand-	immediately	IHC: collagen I,	appeared under the form of
piece and under sterile	restored with	Osteonectin,	osteodentine and expressed
saline cooling until the	Biodentine	dentine	markers of odontoblasts
pulp exposure was		sialoprotein,	
obtained		nestin	
The tooth crown was	Cavity was	Histology: H&E	Histology of the teeth subjected
gently dried with a	gently dried	staininig and	to the pulp-capping assay
sterile cotton swab,	and restored	Gram-Twort	showed the formation of
upon which the occlusal	with ProRoot	bacteria staining	mineralized tissue after 4-week
surface was locally	MTA		exposure to ProRoot MTA and
etched for 30" with			normal histological features in
phosphoric acid, rinsed			the control teeth.
with distilled water			
	permitting the diffusion of the medium through the apex without any direct contact between the biomaterial and the medium. A cavity was performed ex vivo with a truncated diamond bur mounted on a high-speed hand- piece and under sterile saline cooling until the pulp exposure was obtained The tooth crown was gently dried with a sterile cotton swab, upon which the occlusal surface was locally etched for 30'' with phosphoric acid, rinsed	permitting the diffusion (MTA) of the medium through -calcium the apex without any hydroxide direct contact between the biomaterial and the medium. A cavity was performed Cavity was ex vivo with a truncated gently dried diamond bur mounted and on a high-speed hand- immediately piece and under sterile restored with saline cooling until the Biodentine pulp exposure was obtained The tooth crown was Cavity was gently dried with a gently dried sterile cotton swab, and restored upon which the occlusal with ProRoot surface was locally MTA	permitting the diffusion (MTA) BrDU of the medium through -calcium hydroxide direct contact between the biomaterial and the medium. A cavity was performed Cavity was Histology: H&E ex vivo with a truncated gently dried staining diamond bur mounted and immediately IHC: collagen I, piece and under sterile restored with Osteonectin, galine cooling until the Biodentine dentine saline cooling until the Biodentine dentine pulp exposure was Cavity was Histology: H&E gently dried staining and the tooth crown was Cavity was Histology: H&E gently dried staining and sterile cotton swab, and restored Gram-Twort upon which the occlusal with ProRoot bacteria staining surface was locally MTA

an	nd gently dried. The		
cro	owns were hanged in		
the	e wells of a 24 plate,		
usi	sing steel wire and		
flo	owable composite,		
co	ontaining tooth-culture		
me	edium.		

Table 5: Entire tooth culture studies.

Tooth slice organ culture.

The tooth slice organ culture, has been implemented by a research group at the university of Birmingham. This group has come up with a protocol where teeth of rat or human origin, were embedded in a semisolid medium, firstly mentioned by Sloan et al. in 1998[30]. This embedded tissue was then transferred to a Millipore membrane and was let to float on culture medium. Following a certain time period, the embedded tissue was fixed in paraffin and histologically examined. After the investigation of the performance of this method in terms of cell viability and maintenance of the morphological characteristics of the dentin/pulp complex without any exogenous additions, this model received further additions. This development consisted of the introduction of growth factors, dental materials or even an award winning tensile/compressive force testing assembly. The endpoints of evaluation were mainly through histomorphometric analyses and H&E staining [30-32,34,46] and in one occasion, through Semi-quantitative reverse transcriptase polymerase chain reaction (Sq-RT-PCR) analysis [34]. Through the results, it was possible to show that this method -the tooth slice organ culture - was able to maintain the histological characteristics of the natural dentin/pulp tissue for up to 14 days when interventions were excluded [30]. This model has proved to be of multiple uses. By the introduction of different exogenous stimuli, it was possible to monitor tissue repair responses after the introduction of growth factors [31]. The same model was also useful as an *in vitro* cytotoxicity screening tool for dental materials [46] or even as a dentin/pulp response model to orthodontic force application [34]. In this experimental setup, similar to the entire tooth culture model, the natural tissues are utilized eliminating the need to recapitulate the dentin/pulp complex from scratch.

Author,	Dentin/Pulp	complex	Intervention	Methods/	Efficacy	measurement	/
year	preparation			Biological	outcomes		

		endpoints	
Tooth slice -(2mm)-		Histological	The integrity of the dentin/pulp
from maxillary and		examination.	complex was maintained for
mandibular rat incisors.			the total experimental period
		Viability	(14d).
The tooth slices were		assessment with	
embedded in low		acridine orange.	Pulp cells and odontoblasts
melting point agar, in			were vital after all culture
96-well plates.		Radiolabelling	periods.
		with proline for	
When the agar was		ECM synthesis.	At 14d in culture,
semisolid, the slices			radiolabelling was greater than
were transferred on		TEM (transmission	at 7d within predentin.
Millipore filters, floating		electron	
in DMEM in Trowel-		microscopy)	TEM: cell architecture
type cultures in Petri			appeared to correlate well with
Dishes.			that seen in control
			uncultured tissues.
2-14 days incubation			
37C/5% CO2 followed			
by: paraffin embedment			
Tooth slice -(2mm)-	Introduction of:	Histological	At areas without agarose
from rat incisors.	Agarose beads	examination:	beads, the normal architecture
	with isoforms of	hematoxylin and	of dentin/pulp complex was
The tooth slices were	TGF-β 1, 2 or 3	eosin (H&E)	maintained.
embedded in low	were placed on	staining.	Similar to controls, TGF- β_2 ,
melting point agar, in	the edge of the		caused no significant
96-well plates.	mineralized	Morphometrical	differences.
	tissue	analysis:	
	from maxillary and mandibular rat incisors. The tooth slices were embedded in low melting point agar, in 96-well plates. When the agar was semisolid, the slices were transferred on Millipore filters, floating in DMEM in Trowel- type cultures in Petri Dishes. 2-14 days incubation 37C/5% CO2 followed by: paraffin embedment from rat incisors.	from maxillary and mandibular ratincisors. The tooth slices were embedded in low melting point agar, in 96-well plates. When the agar was semisolid, the slices were transferred on Millipore filters, floating in DMEM in Trowel- type cultures in Petri Dishes. 2-14 days incubation Jroth slice 10000 by: paraffin embedment Tooth slice -(2mm) Introduction of: from ratincisors. Mith isoforms of The tooth slices were imbedded in low Mith isoforms of The tooth slices were function of the edge of the melting point agar, in melting point agar, in forwell plates.	Image: Constraint of the state of the st

	When the agar was	corresponding	subodontoblast	$TGF-\beta_1$ and $TGF-\beta_3$ caused
	semisolid, the slices	to the	layer cell counting	similar differences such as an
	were transferred on	odontoblast	in areas with or	increased ECM secretion and
	Millipore filters, floating	layer.	without the agarose	subodontoblast cell density at
	in DMEM in 'Trowel-		beads.	the site of application which
	type' cultures in Petri			was observed for almost 70%
	Dishes.			of the samples. These two
				growth factors can stimulate
	7 days incubation			dentinogenic effects in
	37C/5% CO2 followed			odontoblasts in vitro.
	by: paraffin embedment			
Murray	Tooth slice -(2mm)-	Introduction of	Histological	For samples without dental
2000	from maxillary and	dental materials:	examination: H&E	materials, the normal
	mandibular rat incisors.	Salicylic acid,	staining.	architecture of dentin/pulp
		Calcium		complex was maintained for
	The tooth slices were	hydroxide,	Histomorphometric	the total study period.
	embedded in low	Kalzinol zinc	analysis: cell	
	melting point agar, in	oxide eugenol,	number counting	The dental materials caused
	96-well plates.	high-mercury	within the	cytotoxicity in the following
		Amalgam,	dentin/pulp	order (from highest to the
	When the agar was	Prime&Bond,	complex.	lowest):
	semisolid, the slices	Dycal, Barium		Salicylic acid, Calcium
	were transferred on	sulphate,		hydroxide, Kalzinol zinc oxide
	Millipore filters, floating	Hypocal,		eugenol, high-mercury
	in DMEM in Trowel-	Scotchbond,		Amalgam,
	type cultures in Petri	Calasept, Life		Prime&Bond, Dycal, Barium
	Dishes.	and One-step.		sulphate, Hypocal,
				Scotchbond, Calasept, Life and
	2 and 10 days of			One-step.
	incubation 37C/5% CO2			
	1			

	followed by: paraffin			These effects were only
	embedment.			detectable on the 10 th day of
				experimentation.
Dobie	Tooth slice -(0.5mm)-	Introduction of:	Histological	For samples without TGF-β or
2002	from human 3 rd molars.	alginate	examination: H&E	antibodies, the normal
		hydrogels with	staining.	architecture of dentin/pulp
	The tooth slices were	different		complex was maintained for
	cultured on the base of a	concentrations	Predentin width	the total study period.
	petri dish, with the	of TGF-β1,	measurement in	
	application of low	±acid treatment,	each tooth slice.	Acid treatment and TGF- β
	melting point agar.	\pm TGF-β1		caused reactionary and
		antibodies.		reparative dentinogenesis.
	7 days of incubation			
	37C/5% CO2 followed			
	by: paraffin embedment.			
Dhopatkar	Specimens from	Introduction of	Histological	When no forces were applied,
2005	mandibles of rat incisors	tensile or	examination: H&E	dental and supporting tissues
	-2mm thick sections	compressive	staining followed	maintained a healthy
	cultured in Petri Dishes.	forces (50g) to	by cell number	appearance.
		specimens	counting.	
	5 days of incubation	through springs.		Force application induced an
	37C/5% CO2 followed		Semi-quantitative	increase in pulp fibroblast
	by: paraffin embedment.		reverse	density.
			transcriptase	
	3 days of incubation		PCR for gene	Force application also induced
	37C/5% CO2 followed		expression	upregulation of Proliferating
	by: RNA isolation		analysis.	Cell Nuclear Antigen (PCNA),
				c-Myc, Collagen 1α, TGF-β1
				and
				alkaline phosphatase and

		downregulation of osteocalcin.
		The nature of force (tension or
		compression) did not alter the
		result.

Table 6: Tooth slice organ culture studies.

Discussion

The formation of a valid and easily reproducible 3D dentin/pulp complex holds a critical aspect in the tissue regeneration field in dentistry. Nine different materials have been devised for the representation of the dental pulp and eight for dentin tissue (Table 1). The timespan of the retrieved studies, more than 20 years, shows that this topic has continuously caught the interest of the research community. Well-established techniques that have received multiple publications, such as the perfusion chamber have been customized. New ideas have been further supported by other research groups; the methods were repeated and further validated, as was the case with the entire tooth culture. Furthermore, the field has been enriched with newly emerging ideas from different fields, e.g. 3D printing with bio-inks [47], and by incorporating state of the art with the latest updates in the research field, researchers have managed to include dentistry within these innovative ideas. Another example of this is the "tooth on a chip" which has borrowed the idea from the medical field through the "organ-on-a-chip", finding place also in dentistry [25]. It is essential to mention that some studies sought ways to modify already existing knowledge from two-dimensional studies and bringing insight into the three-dimensional environment [35]. One of the reasons for the high demand in this subject might be the plethora of dental materials aiming to be released in the market with the need for validation and prediction of biohazards before animal testing, or even animal testing with the minimum number of sacrificed animals. The biocompatibility of dental materials and studying the reaction of dental tissues against external stimuli and the similarity to the native tissue is of utmost importance. Improving the resemblance of the *in vitro* methodology to the natural dentin/pulp complex by combining positive aspects from each of the collected experimental setups seems like a wise option to Replace the use of animal studies, Reduce the number of sacrificed animals and Refine methodology [49].

Literature search and excluded studies

After the initial search of the four databases, 1196 studies had to be eliminated. Apart from the standard exclusion criteria, such as the type of study - being a review article, clinical trials, *in vivo* studies or case reports,

not written in the English language, other significant reasons for exclusion were the following: some studies were attempting to regenerate a three-dimensional analogue of tissues other than the dentin/pulp complex, such as the periodontal bone-ligament, cementum, alveolar bone, periodontium, cartilage, salivary glands etc; other studies were focusing solely on either the dental pulp or dentin but not on the construct of both dentin and pulp; other studies, although matching the keywords for inclusion, they did not offer a detailed report on the manufacturing process of the two tissues and were therefore excluded. As stated initially, the studies that would be included should have a detailed information on the manufacturing of a three-dimensional dentin/pulp construct, therefore after removing the duplicates and the excluded studies, 21 manuscripts were finally included.

Customised cell perfusion chamber

This system has been developed in a way that many aspects mimic the natural tissue and the pulp responses to external stimuli. In defence of this statement, factors like the introduction of perfusion 0.2-5ml/h derive from literature data regarding the pulp flow, which is believed to be 20-82ml/min/100g [10]. The results, as stated by the authors are closer to those retrieved from animal experiments, agar diffusion tests and millipore filter tests and are dissimilar to those found by 2D protocols or direct contact tests when referring to resin modified Glass Ionomer Cements (RMGIC) [41,42]. Furthermore, when considering eugenol containing materials the results agree with animal model studies and studies on human teeth but not with other 2D culture tests such as the agar diffusion and the Millipore test. The simulation to the actual situation may resemble the *in vivo* tests [38–40] and authors state that the cell perfusion chamber may even be more sensitive than the *in vivo* tests [12] as the defence mechanisms exerted in the form of immune response are absent in the *in vitro* situation. The variation of dentin disc is a matter of controversy, as this affects the diffusion of monomers, finally reaching the pulp, the process of sterilisation alters the diffusion potential and the substance absorption by the dental tubules compared to the original tissue [39]. Other decisive factors regarding dentin are the thickness of this tissue [12,38,39], permeability [50], and location [39]. Meaning that thicker dentin discs provide higher protection to the underlying tissue, and number of tubules vary from the centre to the horns of the pulp and from areas proximal to the pulp to more distant locations, thus studies should focus on the consistency with which the methodology is followed [38]. Another important aspect is the timing of observation, as the early time of observation results in higher cytotoxicity values compared to later time points [39]. These studies have shown that the system is quite efficient, as many researchers conclude that there is material-dependent cytotoxicity. This depends on the

chemical nature of the introduced material [12], some constituents of the materials -as was Dipheniliodonium Chloride for Vitrebond- [38,42], some resin monomers which were more cytotoxic than others– as was bis-GMA> UDMA> TEGDMA> HEMA, and also the etching type for bonding agents - where total etch bonding agents were found to be more cytotoxic than self-etch systems [38,39]. For these reasons, this 3D dentin/pulp complex is under consideration as a strong candidate for replacement of animal models [40–42]. Worthy to mention is the fact that this test has been utilised so extensively, to a point that it has been included in the ISO 7405, for the evaluation of biocompatibility of medical devices used in dentistry [51].

Tooth bud model

The tooth bud model is a radical method proposed for the regeneration of a biomimetic organ, which will ultimately be able to function in the oral environment as an alternative to synthetic dental implants. All studies stated the importance of Dental epithelial and dental mesenchymal cell communication in the form of crosstalk between the cell lines, as well as the cellular compartmentalization in order to obtain all distinct cell tissues constituting the natural tooth, namely: enamel, dentin, root, pulp, blood vessels, bone and periodontal ligament [18–20]. The developmental stage, the cell seeding density and the substrate of encapsulation were equally important, as cells at cap stage seemed to perform better than cells at bell stage towards the development into teeth, and certain cell-scaffold combinations seemed to perform better for their intended use [18]. These models are promising as they were able to develop normal teeth with complete structures, and they could potentially serve as tools to study organogenesis and the underlying molecular mechanisms as well as the cell interactions at the Dental Epithelial-Dental Mesenchymal interface. Although these are innovative and inspirational attempts, there are still issues to solve, offering space for evolution.

3D dentin/pulp complex manufactured by tissue engineering

In this section, the implementation process was diverse, as mentioned earlier. Nonetheless, specific goals were matched for all studies. All studies mentioned the superiority of a 3D dentin/pulp complex over a two-dimensional counterpart, forming complete pulp-dentin complexes. This was vastly proven by PCR results showing an increase in dentin specific markers, such as *DSPP* and others such as *RunX2*, *ALP* [35], and angiogenic markers such as *VEGF*, *Angiopoietin-1*, and *PECAM* [35,37]. The stiffness of the scaffold forming the pulp analogue was an important factor as there was a delicate fine-tuning procedure to obtain a pulp-like analogue. Qu et al. attempted this by keeping the concentration of gelatin constant and varying the crosslinking

density [45], other by varying the concentration of fibrin and fibrinogen [35,47], while this offered control over the differentiation potential of cells into the intended cell populations. Another important characteristic was the utilisation of natural biomaterials for the pulp analogues. Gelatin (a derivative of collagen), collagen, and fibrin or fibrinogen were the major components used for this purpose. The reason for this selection was that fibrin is a biodegradable material with the ability of prevascularization [36], biocompatible with angiogenic by-products [35]. Collagen on the other hand, is a natural constituent of the dental pulp [35]. Dentin was another component of the 3D assemblies which was able to release growth factors sequestered within the matrix that were able to promote cell differentiation into odontoblasts [36] and was also able to host SCAP better than 2D monolayers [25,35] being a source of growth factors, limiting diffusion and acting as a semipermeable membrane for the introduced restorative materials [25]. Isolated points that have to be mentioned here are the real-time monitoring capability of the tooth on a chip device, which offered the potential to track cellular and subcellular responses in an in vivo-like environment [25], the patient-specific capability of 3D printing processes presented by Han et al.[47] offering the potential for personalised tooth - tissue engineering due to the excellent printability of fibrin and DPSCs as a bio-ink, as well as the serum free approach aided by the angiogenetic incorporation of Iloprost, by Seang et al.[37], proposing a dentin/pulp slice as a viable 3D approach for the model to investigate therapeutic approaches towards dentin/pulp regeneration. All in all, these tools are introduced as candidates for risk assessment of restorative materials and monitoring tools for pulp reactions.

Entire tooth culture

Out of the five analysed categories of this paper, the entire tooth culture model is the most homogeneous in terms of implementation and the one with the maximum resemblance to the native tissue, as it uses the actual tooth in suspension from the cover of the culture dish, reflecting the *in vivo* situation. In support of this notion, the histological results, after the application of dental materials in cavities are similar to those observed in animal model studies or *in vivo* studies ([17,44]. The authors of the four retrieved studies propose that this is a valid model for the study of the early stages of dentinogenesis after inflammation, for the evaluation of responses to pulp capping material application and healing process monitoring [14,15,17,44]. So far, this has been evaluated for dental restorative materials such as MTA, calcium hydroxide, Biodentine and has proven that it is worth a spot in the *in vitro* experimental protocols. Nevertheless, it is not devoid of limitations, which are presented below.

Tooth slice organ culture

Similar to the previous category of this paper, the tooth slice organ model was also quite homogeneous in terms of implementation and resemblance to native tissue, since all attributes arose from the same research group. With time, each new publication included more refined information and details, adding valuable knowledge for other groups wishing to reproduce this experimental method. Indeed this method was able to sustain the native tissue morphology -as shown by the histomorphometric analyses- for an adequate time frame -up to 14 days-which is a valuable time span for experimentation [30]. This tool is said to be valuable for the injury and repair processes monitoring, as well as cell-matrix interactions and regulation of cell activity of the dentin/pulp tissue [30,31]. This is also the only tool that has evolved to the point that it may be used for the study of the effect of indirect external factors (tensile/compressive forces) to the dentin/pulp complex [34]. It is also mentioned as an alternative to in vivo animal cytotoxicity testing for some aspects of the exerted effects by dental materials (Murray), and generally similarities have been observed between the findings of their studies to in vitro and in vivo studies [32].

Limitations

The perfusion chamber has received multiple modifications through the years and still certain questions and concerns arise inevitably. One of these is the variation of dentin used in this model. This tissue has varying degrees of permeability, which is governed by the location from which the dentin discs have been harvested due to regional differences of the dental tubules. This means that it is so versatile that even within the same location (over the pulp chamber) there are variations between dentin covering the pulp horns and that over the area between the horns, where the former has higher permeability [38]. This could potentially influence the number of stimuli introduced in the system and, ultimately, the effect on the underlying tissue, namely the dental pulp. Another point of interest which could also alter the response compared to the natural tissue, concerning dentin, is the mode of sterilization before incorporation into cell cultures. Authors stated that autoclaving may cause protein denaturation, affecting mainly collagen, which is thermally denatured at 41 degrees Celsius and this may influence the reactions that would typically occur in the natural tissue. Examples of this could be the hydroxyapatite in dentin that would naturally neutralize acids contained in dental materials under investigation, but this altered form may act differently. Also, ingredients that would normally cross-react with collagen, such as glutaraldehyde, and consequently decrease the cytotoxicity of the adhesive are able to surpass this defensive

barrier and alter the final response since collagen may be destroyed during preparation procedures [38]. Adding to the issue of defensive mechanisms, the immune reactions taking place in the living tissue are also absent in the *in vitro* arrangement, namely the inflammation and immune responses of mechanisms of repair [12]. For this reason, the *in vitro* perfusion chamber is considered to be a more sensitive system than *in vivo* models, and the results should be regarded with these limitations in mind.

As mentioned earlier, the tooth bud model is an up-and-coming and innovative model, and although progress has been achieved, authors stated that there are still issues to solve. One of these was that although Dental epithelium (DE) and Mesenchyme (DM) were seeded in a distinct manner, they appeared as mixed populations at one week; thus, at certain occasions, no distinct enamel/dentin layer was observed [20]. To address this, the authors suggested that in the future, they should apply sequential photocrosslinking so that the developing tissues will retain compartmentalization. Another suggestion was the addition of dental differentiation growth factors to engage the cellular populations into targeted differentiation directions.

Certain limitations were also stated for the category 3D dentin/pulp complex manufactured by tissue engineering. Han et al. [47] reported that in the future, their 3D printed model should be able to incorporate surrounding tissues (cementum, periodontium) for better representation of the whole tooth. The contraction of the scaffold was another limiting factor when researchers were trying to experiment with the stiffness of the scaffold. The medium and low stiffness scaffolds were presented with contractions, though this was solved by providing a supportive framework made of b-TCP (Qu 2015). On the other hand, this was beneficial as it increased the cellular differentiation potential and cell density providing maximum cell-cell contact [45]. Others stated that since this model was established to represent a cytotoxicity assessment tool, it should incorporate dental restorative materials as a whole, not only constituents of the product. Meaning that studying solely monomers contained within the resin products may neglect other confounding factors that could cause further reactions when reaching the dental pulp analogue [35]. Adding to this notion, França et al.[25] stressed the importance of adding the factor of perfusion as well as the inclusion of immune cells, functional capillaries and innervation, a microbiome and salivary flow [25]. This was not possible at the time of experimentation as it would be difficult to track all the aspects of their device at once, and this could be facilitated by built-in biosensors in further attempts [25].

Regarding the while entire tooth culture model, although it uses the actual freshly extracted dental tissue and it closely simulates the *in vivo* situation, there are still certain limitations to it. Some of these are the limited duration of *in vitro* culture – up to four weeks - where the teeth seem to behave similarly to the living teeth

[17,44]. Further drawbacks of this model are the absence of clearance of noxious stimuli due to the absence of blood circulation, oxygen, and nutrient supply [15,17,44]. Lastly, as with many *in vitro* experiments, the inflammation reaction in not represented [44].

Limitations for the category tooth slice organ culture, were stated by the early studies [30]. This was referring to the observation of odontoblast de-polarization and detachment of odontoblasts from predentin, which was caused when mechanical trauma during the tooth sections to obtain the tooth slices.

Conclusions

To conclude, this paper gathers the evolution of 3D dentin/pulp complexes that are present in literature since 1998. This work aims to stress the increasing efforts through the years to device a tool that may be controllable and handy for the risk assessment of newly introduced biomaterials, minimising the need for animal studies and *in vivo* tests. Form the findings of these studies, it is evident that innovative ideas still arise, and certain limitations do exist, proving that there is still space for improvement and experimentation. As it is clear, it is not easy to conclude on the superiority of one category over the other as they all come with their strong points and weaknesses. The customised perfusion chamber, the tooth germ model, the different 3D dentin/pulp complexes manufactured by tissue engineering, the entire tooth culture and the tooth slice organ culture are all viable options, as long as their compromises are made clear and the developed protocols are followed closely to avoid pitfalls.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Funding

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 99344).

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

For this type of study, formal consent is not required.

References

- [1] Goldberg M, Hirata A. The Dental Pulp: Composition, Properties and Functions. JSM Dent 2017;5:1–
 10.
- [2] Mjör IA. Dentin permeability: The basis for understanding pulp reactions and adhesive technology.
 Braz Dent J 2009;20:3–16. https://doi.org/10.1590/S0103-64402009000100001.
- Yu C, Abbott P V. An overview of the dental pulp: Its functions and responses to injury. Aust Dent J 2007;52:S4–6. https://doi.org/10.1111/j.1834-7819.2007.tb00525.x.
- [4] Bakopoulou A, Papadopoulos T, Garefis P. Molecular toxicology of substances released from resinbased dental restorative materials. Int J Mol Sci 2009;10:3861–99. https://doi.org/10.3390/ijms10093861.
- [5] Hume WR. Restorative Materials and Procedures n.d.:1322–5.
- [6] Tyas MJ. A Method for the In Vitro Toxicity Testing of Dental Restorative Materials. J Dent Res 1977;56:1285–90. https://doi.org/10.1177/00220345770560103401.
- [7] Meryon SD, Jakeman KJ. An in vitro study of the role of dentine in moderating the cytotoxicity of zinc oxide eugenol cement. Biomaterials 1986;7:459–62. https://doi.org/10.1016/0142-9612(86)90035-9.
- [8] Hanks CT, Diehl ML, Craig RG, Makinen P -K, Pashley DH. Characterization of the "in vitro pulp chamber" using the cytotoxicity of phenol. J Oral Pathol Med 1989;18:97–107. https://doi.org/10.1111/j.1600-0714.1989.tb00744.x.
- [9] Fitzgerald KA, Malhotra M, Curtin CM, O'Brien FJ, O'Driscoll CM. Life in 3D is never flat: 3D models to optimise drug delivery. J Control Release 2015;215:39–54. https://doi.org/10.1016/j.jconrel.2015.07.020.
- [10] Schmalz G, Schuster U, Nuetzel K, Schweikl H. An in vitro pulp chamber with three-dimensional cell cultures. J Endod 1999;25:24–9. https://doi.org/10.1016/S0099-2399(99)80394-X.
- [11] Schuster U, Schmalz G, Thonemann B, Mendel N, Metzl C. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod 2001;27:259–65. https://doi.org/10.1097/00004770-200104000-00004.
- [12] Galler K, Hiller KA, Ettl T, Schmalz G. Selective influence of dentin thickness upon cytotoxicity of

dentin contacting materials. J Endod 2005;31:396–9. https://doi.org/10.1097/01.don.0000145428.26880.e5.

- [13] Van Landuyt KL, Krifka S, Hiller KA, Bolay C, Waha C, Van Meerbeek B, et al. Evaluation of cell responses toward adhesives with different photoinitiating systems. Dent Mater 2015;31:916–27. https://doi.org/10.1016/j.dental.2015.04.016.
- Téclès O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005;50:103–8.
 https://doi.org/10.1016/j.archoralbio.2004.11.009.
- [15] Téclès O, Laurent P, Aubut V, About I. Human tooth culture: A study model for reparative dentinogenesis and direct pulp capping materials biocompatibility. J Biomed Mater Res - Part B Appl Biomater 2008;85:180–7. https://doi.org/10.1002/jbm.b.30933.
- [16] Jeanneau C, Laurent P, Rombouts C, Giraud T, About I. Light-cured Tricalcium Silicate Toxicity to the Dental Pulp. J Endod 2017;43:2074–80. https://doi.org/10.1016/j.joen.2017.07.010.
- [17] Pedano MS, Li X, Jeanneau C, Ghosh M, Yoshihara K, Van Landuyt K, et al. Survival of human dental pulp cells after 4-week culture in human tooth model. J Dent 2019;86:33–40. https://doi.org/10.1016/j.jdent.2019.05.023.
- [18] Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, et al. The development of a bioengineered organ germ method. Nat Methods 2007;4:227–30. https://doi.org/10.1038/nmeth1012.
- [19] Monteiro N, Smith EE, Angstadt S, Zhang W, Khademhosseini A, Yelick PC. Dental cell sheet biomimetic tooth bud model. Biomaterials 2016;106:167–79. https://doi.org/10.1016/j.biomaterials.2016.08.024.
- [20] Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med 2017;11:3326–36. https://doi.org/10.1002/term.2246.
- [21] Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-Chip Technology for Drug-Induced Nephrotoxicity Screening. Trends Biotechnol 2016;34:156–70. https://doi.org/10.1016/j.tibtech.2015.11.001.
- [22] Wevers NR, Kasi DG, Gray T, Wilschut KJ, Smith B, Vught R, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 2018;15:1–12. https://doi.org/10.1186/s12987-018-0108-3.
- [23] Bovard D, Sandoz A, Luettich K, Frentzel S, Iskandar A, Marescotti D, et al. A lung/liver-on-a-chip

platform for acute and chronic toxicity studies. Lab Chip 2018;18:3814–29. https://doi.org/10.1039/c8lc01029c.

- [24] Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review. Micromachines 2019;10:1–26. https://doi.org/10.3390/mi10100676.
- [25] França CM, Tahayeri A, Rodrigues NS, Ferdosian S, Puppin-Rontani R, Ferracane JL, et al. The tooth on-a-chip: a microphysiologic model system mimicking the pulp-dentin interface and its interaction with biomaterials. BioRxiv 2019:748053. https://doi.org/10.1101/748053.
- [26] Elliott N, Yuan F. A review of Three-Dimensional In Vitro Tissue Models for drus discovery and transport studies. J Pharm Sci 2011;100:59–74. https://doi.org/10.1002/jps.
- [27] Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19010181.
- [28] Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6. https://doi.org/10.1371/journal.pmed.1000097.
- [29] Schmalz G, Gröppel F, Hiller KA, Galler KM. Trodimenzionalne kulture ljudskih stanica uzgojene radi testiranja citotoksičnosti stomatoloških materijala. Acta Stomatol Croat 2014;48:99–108. https://doi.org/10.15644/asc48/2.99.
- [30] Sloan AJ, Shelton RM, Hann AC, Moxham BJ, Smith AJ. An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Arch Oral Biol 1998;43:421–30. https://doi.org/10.1016/S0003-9969(98)00029-6.
- [31] Sloan AJ, Smith AJ. Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-β isoforms 1-3 in vitro. Arch Oral Biol 1999;44:149–56. https://doi.org/10.1016/S0003-9969(98)00106-X.
- [32] Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro. Connect Tissue Res 2002;43:387–90. https://doi.org/10.1080/03008200290000574.
- [33] Murray PE, Windsor LJ, Smyth TW, Hafez AA, Cox CF. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med 2002;13:509–20. https://doi.org/10.1177/154411130201300607.

- [34] Dhopatkar AA, Sloan AJ, Rock WP, Cooper PR, Smith AJ. British Orthodontic Society, Chapman Prize Winner 2003: Anovel in vitro culture model to investigate the reaction of the dentine-pulp complex to orthodontic force. J Orthod 2005;32:122–32. https://doi.org/10.1179/146531205225020979.
- [35] Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Dentin / Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2019:1–20. https://doi.org/10.1016/j.dental.2019.11.013.
- [36] Aksel H, Huang GTJ. Combined Effects of Vascular Endothelial Growth Factor and Bone
 Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells
 In Vitro. J Endod 2017;43:930–5. https://doi.org/10.1016/j.joen.2017.01.036.
- [37] Seang S, Pavasant P, Limjeerajarus CN. Iloprost Induces Dental Pulp Angiogenesis in a Growth Factor– free 3-Dimensional Organ Culture System. J Endod 2018;44:759-764.e2. https://doi.org/10.1016/j.joen.2018.02.001.
- [38] Jiang RD, Lin H, Zheng G, Zhang XM, Du Q, Yang M. In vitro dentin barrier cytotoxicity testing of some dental restorative materials. J Dent 2017;58:28–33. https://doi.org/10.1016/j.jdent.2017.01.003.
- [39] Engn A, Yaln M, Lker HE, Ztrk B, Hakk SS. Cytotoxicity evaluation of dentin bonding agents by dentin barrier test on 3-dimensional pulp cells. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology 2011;112:83–8. https://doi.org/10.1016/j.tripleo.2011.02.023.
- [40] Ulker HE, Sengun A. Cytotoxicity Evaluation of Self Adhesive Composite Resin Cements by Dentin Barrier Test on 3D Pulp Cellss. Eur J Dent 2009;03:120–6. https://doi.org/10.1055/s-0039-1697418.
- [41] Schmalz G, Schuster U, Koch A, Schweikl H. Cytotoxicity of low pH dentin-bonding agents in a dentin barrier test in vitro. J Endod 2002;28:188–92. https://doi.org/10.1097/00004770-200203000-00011.
- [42] Schuster U, Schmalz G, Thonemann B, Mendel N MC. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod 2001;27:259–65. https://doi.org/10.1097/00004770-200104000-00004.
- [43] da Silva JMF, Rodrigues JR, Camargo CHR, Fernandes VVB, Hiller KA, Schweikl H, et al. Effectiveness and biological compatibility of different generations of dentin adhesives. Clin Oral Investig 2014;18:607–13. https://doi.org/10.1007/s00784-013-1000-9.
- [44] Laurent P, Camps J, About I. Biodentine TM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45:439–48. https://doi.org/10.1111/j.1365-2591.2011.01995.x.

- [45] Qu T, Jing J, Ren Y, Ma C, Feng JQ, Yu Q, et al. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomater 2015;16:60–70.
 https://doi.org/10.1016/j.actbio.2015.01.029.
- [46] Murray PE, Lumley PJ, Ross HF, Smith AJ. Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomaterials 2000;21:1711–21. https://doi.org/10.1016/S0142-9612(00)00056-9.
- [47] Han J, Kim DS, Jang H, Kim HR, Kang HW. Bioprinting of three-dimensional dentin–pulp complex with local differentiation of human dental pulp stem cells. J Tissue Eng 2019;10.
 https://doi.org/10.1177/2041731419845849.
- [48] Schuster U, Schmalz G, Thonemann B, Mendel N MC. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod 2001;27:259–65. https://doi.org/10.1097/00004770-200104000-00004.
- [49] Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME. Toxicity testing in the 21st century: Defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 2011;6. https://doi.org/10.1371/journal.pone.0020887.
- [50] Schmalz G, Hiller KA, Nunez LJ, Stoll J, Weis K. Permeability characteristics of bovine and human dentin under different pretreatment conditions. J Endod 2001;27:23–30. https://doi.org/10.1097/00004770-200101000-00007.
- [51] ISO 7405: International Organization for Standardization, ISO 7405:2018 Dentistry— Evaluation of Biocompatibility of Medical Devices Used in Dentistry, ISO, Geneva
 2018http://www.iso.org/iso/store.htm. ISO 7405:2018 Dentistry— Evaluation of Biocompatibility ofMedical Devices Used in Dentistry, ISO,. ISO, Geneva 2018:7. http://www.iso.org/iso/store.htm.