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Verification of qualitative Z constraints

Stéphane Demri and Régis Gascon

LSV, ENS Cachan, CNRS, INRIA
email: {demri,gascon}@lsv.ens-cachan.fr

Abstract. We introduce an LTL-like logic with atomic formulae built
over a constraint language interpreting variables in Z. The constraint
language includes periodicity constraints, comparison constraints of the
form x = y and x < y, is closed under Boolean operations and admits a
restricted form of existential quantification. Such constraints are used for
instance in calendar formalisms or abstractions of counter automata by
using congruences modulo some power of two. Indeed, various program-
ming languages perform arithmetic operators modulo some integer. We
show that the satisfiability and model-checking problems (with respect
to an appropriate class of constraint automata) for this logic are decid-
able in polynomial space improving significantly known results about its
strict fragments. This is the largest set of qualitative constraints over Z

known so far, shown to admit a decidable LTL extension.

1 Introduction

Model-checking infinite-state systems. The verification of systems with an infi-
nite number of states has benefited from the numerous decidable model-checking
problems for infinite-state systems, including timed automata [AD94], infinite
transition graphs [MS85,Cau03], or subclasses of counter systems (see e.g. [CJ98]).
There exist numerous techniques to prove decidability such as finite partition of
the infinite domain, well-structured systems, Presburger definable reachability
sets or reduction to the monadic second-order theory of the binary tree. . . Since
it is often possible to find a reduction from the halting problem for Minsky ma-
chines [Min67], undecidability is often easy to prove. Decidability can sometimes
be regained by naturally restricting the class of models (see e.g. the flatness con-
dition in [CJ98,FL02]) or by considering fragments of the specification language
(for instance reachability questions). Symbolic representations of infinite sets of
states are often the key argument to get decidability (see e.g. [HMR05]).

Systems with variables interpreted in Z. Counter machines are operational mod-
els that have found numerous applications in the verification of infinite-state
systems, including broadcast protocols (see e.g. [EFM99,FL02]) and programs
with pointer variables [BFLS06,BBH+06]. They consist of a structure with a
finite set of control states augmented with a finite set of variables interpreted
either in Z or N (counters). Though this class of automata has numerous undecid-
able model-checking problems such as the reachability problem, many subclasses
have been shown to be decidable:



1. reversal-bounded multicounter machines [Iba78],

2. flat counter systems with affine update functions forming a finite monoid
(see e.g. [Boi98,FL02,BFLP03]),

3. flat counter systems [CJ98,BIL06] (weaker class of Presburger guards but no
condition on the monoid),

4. admissible Presburger counter systems [DFGvD06],

5. constraint automata with qualitative constraints on Z [DD07].

Our motivation. Constraint automata with qualitative constraints on Z are quite
attractive operational models since they can be viewed as abstractions of counter
automata where increments and decrements are abstracted by operations modulo
some power of two. Indeed, common programming languages perform arithmetic
operators for integers modulo 2k [MOS05], where k is typically equal to 32 or 64.
So, such an abstraction is well-suited to check safety properties about the original
counter system. In this paper, we introduce a class of constraint automata with
a language of qualitative constraints as rich as possible and a companion LTL-
like logic in order to perform model-checking on these models. Our framework
should be able to deal both with modulo abstractions (see e.g. [CGL94,LS01])
and with integer periodicity constraints used in logical formalisms to deal with
calendars [LM01]. By qualitative constraint, we mean constraints that are in-
terpreted as a non-deterministic binary relation, like x < y or x ≡2k y + 5 (the
relationship between x and y is not sharp).

Our contribution. We introduce CLTL(IPC⋆) as an extension of LTL over the
constraint language IPC⋆, whose expressions are Boolean combinations of IPC++

constraints from [Dem06] and constraints of the form x < y. The language inher-
its from IPC++ closure under Boolean operators and first-order quantification.
We impose that no constraint of the form x < y occurs in the scope of a quan-
tifier; otherwise incrementation is definable and this leads to undecidability. In
this paper, we show that adding the single type of constraints x < y leads to
many technical complications but not to undecidability. We also introduce the
class of IPC⋆-automata defined as finite-state automata with transitions labelled
by CLTL(IPC⋆) formula à la Wolper [Wol83]. Such structures can be viewed as
labelled transition systems obtained by abstraction of counter automata.

Constraint LTL over IPC++ is already known to be in pspace in [Dem06]
whereas constraint LTL over constraints of the form either x = y or x < y is
shown to be also in pspace in [DD07]. Though both proofs use reductions to the
nonemptiness problem for Büchi automata, following the approach in [VW94],
they are of different nature: in [Dem06] the complexity upper bound is obtained
by a finite model property argument whereas in [DD07] approximations of classes
of symbolic models are considered because some formulae can generate non ω-
regular classes of symbolic models. We show that the model-checking and sat-
isfiability problems for the logic CLTL(IPC⋆) are still pspace-complete which
generalizes and unifies these results. We improve what is done for constraint LTL
over the domain 〈Z, <,=〉 by considering both new constraints of the form x ≤ d
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with d ∈ Z and periodicity constraints. The optimal treatment of the constants
introduced in this language is our main technical contribution. As a corollary, we
establish that LTL model-checking over integral relational automata [Čer94] is
pspace-complete. Hence, even though IPC⋆ is a powerful language of qualitative
constraints, the pspace upper bound is preserved in CLTL(IPC⋆). Moreover,
past-time operators can be added for free in our formalism thanks to [GK03]
(the pspace bound is still preserved).

Related work. Reachability problems for subclasses of counter systems have been
addressed in numerous works [Iba78,CJ98,FS00,FL02,BFLP03] (see also richer
questions in [BEM97,DI02,DPK03,JKMS04]). In this paper, we consider a full
LTL-like language used as a specification language which is not restricted to
reachability questions, and we have no restriction on the structure of the mod-
els unlike [CJ98,DFGvD06]. However, the atomic formulae of the specification
language are restricted to qualitative constraints. If we give up the decidability
requirement, other extensions of LTL with Presburger constraints can be found
in [BEH95,CC00,ID01].

Extensions of LTL over concrete domains, not only restricted to variables in-
terpreted in Z, have also been considered in [WZ00,BC02,DD07,GKK+03,Dem06]
where often pspace-completeness results are shown. The idea of building LTL
over a language of constraints, although already present in first-order temporal
logics, stems from the use of concrete domains for description logics [BH91,Lut04].
The language CLTL(IPC⋆) extends the different LTL-like fragments from the
works [Čer94,LM01,Dem06].

The underlying constraint language of CLTL(IPC⋆) includes integer period-
icity constraints, a special class of Presburger constraints that have found appli-
cations in many logical formalisms such as abstractions with congruences modulo
an integer of the form 2k (see e.g. [CGL94,MOS05]), logical formalisms dealing
with calendars (see e.g. [LM01,Pup06]) and temporal reasoning in database ac-
cess control [BBFS98]. Such constraints can also be found in real-time logics,
see e.g. [AH94]. Our approach of constraint LTL makes explicit the constraints
on variables, similarly to the explicit clock approach from [HLP90]. Further-
more, the class of IPC⋆-automata we introduce generalizes the class of integral
relational automata from [Čer94] (see details in Appendix A).

Finally, the concept of symbolic models used in the paper has similarities with
untimed languages recognized by some classes of timed machines. In [Bér95],
sufficient conditions to get regular untimed languages from timed machines are
exhibited.

Plan of the paper. The rest of the paper is organized as follows. In Section 2,
we introduce the logic CLTL(IPC⋆) and the class of IPC⋆-automata. We present
the model-checking and satisfiability problems and discuss expressiveness issues.
In Section 3, we analyze the computational complexity of the satisfiability prob-
lem of the underlying constraint language IPC⋆. We also provide a symbolic
representation of the valuations that is used later in the decidability proof. Sec-
tion 4 contains a characterization of the sequences of symbolic valuations that
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admit concrete models (valuation sequence). We show that testing the existence
of some concrete model is an ω-regular property when considering ultimately
periodic sequences. In Section 5, we show that given a CLTL(IPC⋆) formula φ,
one can build a Büchi automaton Aφ over the alphabet of symbolic valuations
such that φ is CLTL(IPC⋆) satisfiable iff L(Aφ) is non-empty. Moreover, we es-
tablish that nonemptiness of L(Aφ) can be checked in polynomial space in |φ|.
Section 6 contains concluding remarks.

This paper is a completed version of [DG05].

2 The logic CLTL(IPC⋆)

2.1 Language of constraints

Let VAR = {x0, x1, . . .} be a countably infinite set of variables (in some places
for ease of presentation, VAR will denote a particular finite set of variables). The
language of constraints IPC⋆ is defined by the following grammar:

ξ ::= θ | x < y | ξ ∧ ξ | ¬ξ

θ ::= x ≡k [c1, c2] | x ≡k y + [c1, c2] | x = y | x < d | x = d |

θ ∧ θ | ¬θ | ∃x θ

where x, y ∈ VAR, k ∈ N\{0}, c1, c2 ∈ N and d ∈ Z. In the following, the symbol
∼ is used to mean either = or <. We write IPC++ to denote the restriction of
the language to constraints ranged over by θ, Zc to constraints of the form either
x ∼ y or x ∼ d and Z to constraints of the form x ∼ y where x, y ∈ VAR, d ∈ Z

and ∼∈ {<,=}. A valuation v : VAR → Z is a map that associates a value to
each variable and the satisfaction relation v |=⋆ ξ is defined in the standard way:

– v |=⋆ x ∼ y iff v(x) ∼ v(y);

– v |=⋆ x ∼ d iff v(x) ∼ d;

– v |=⋆ x ≡k [c1, c2] iff v(x)− c = kd for some c1 ≤ c ≤ c2 and d ∈ Z;

– v |=⋆ x ≡k y+[c1, c2] iff v(x)−v(y)−c = kd for some c1 ≤ c ≤ c2 and d ∈ Z;

– v |=⋆ ξ ∧ ξ′ iff v |=⋆ ξ and v |=⋆ ξ
′;

– v |=⋆ ¬ξ iff v 6|=⋆ ξ;

– v |=⋆ ∃x ξ iff there is d ∈ Z such that v[x← d] |=⋆ ξ

where v[x← d](x′) = v(x′) if x 6= x′ and v[x← d](x) = d.

We will shortly write x ≡k c instead of x ≡k [c, c] and x ≡k y + c instead of
x ≡k y + [c, c]. Given a set of IPC⋆-constraints X , we note v |=⋆ X whenever
v |=⋆ ξ for every ξ ∈ X . A constraint ξ is satisfiable iff there is a valuation v

such that v |=⋆ ξ. Two constraints are equivalent iff they are satisfied by the
same valuations.
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Lemma 1. (I) The satisfiability problem for IPC⋆ is pspace-complete.
(II) For every constraint in IPC⋆ there exists an equivalent quantifier-free con-
straint in IPC⋆.

Proof. (I) Satisfiability for IPC++ is pspace-complete [Dem06] whereas satis-
fiability for Z is nlogspace-complete. Since constraints in IPC⋆ are Boolean
combinations of IPC++ and Z constraints, IPC⋆ satisfiability is in pspace by
simply adapting the proof of [Dem06, Theorem 3]. pspace-hardness is a conse-
quence of the pspace-hardness of IPC++.
(II) IPC++ admits quantifier elimination [Dem06] and therefore so does IPC⋆

since Z is quantifier-free. ⊓⊔

2.2 Logical language

We consider the extension of the linear-time temporal logic LTL whose atomic
formulae are defined from constraints in IPC⋆ (denoted by CLTL(IPC⋆)). So,
the language includes boolean operators as well as the classical temporal op-
erators next (X) and until (U) of LTL. The atomic formulae are of the form
ξ[x1 ← X

l1xj1 , . . . , xr ← X
lrxjr

], where ξ is a constraint of IPC⋆ with free vari-
ables x1 . . . xr. We substitute each occurrence of the variable xi by X

lixji
, which

corresponds to the variable xji
preceded by li next symbols. Each expression of

the form X
lxj is called a term and represents the value of the variable xj at the

lth next state. For example, Xy ≡232 x + 1 and x < Xy are atomic formulae of
the logic.

The set of CLTL(IPC⋆) formulae φ is defined by the grammar below

φ ::= ξ[x1 ← X
i1xj1 , . . . , xr ← X

irxjr
] | ¬φ | φ ∧ φ | Xφ | φUφ,

where ξ belongs to IPC⋆. The integers are encoded with a binary representation
(this is important for complexity considerations).

A one-step constraint is a constraint where all the terms are of the form x

and Xx only (for some x ∈ VAR). Given a set of constraints X included in IPC⋆,
we write CLTL(X) to denote the restriction of CLTL(IPC⋆) in which the atomic
constraints are built over elements of X .

A model σ : N× VAR → Z for CLTL(IPC⋆) is an ω-sequence of valuations.
The satisfaction relation is defined as follows:

– σ, i |= ξ[x1 ← X
i1xj1 , . . . , xr ← X

irxjr
]

iff [x1 ← σ(i+ i1, xj1), . . . , xr ← σ(i+ ir, xjr
)] |=⋆ ξ;

– σ, i |= φ ∧ φ′ iff σ, i |= φ and σ, i |= φ′;

– σ, i |= ¬φ iff σ, i 6|= φ;

– σ, i |= Xφ iff σ, i+ 1 |= φ;

– σ, i |= φUφ′ iff there is j ≥ i s.t. σ, j |= φ′ and for every i ≤ l < j, σ, l |= φ.
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2.3 Satisfiability and model-checking problems

We define below the problems we consider in this paper. The definition of the
satisfiability problem is standard.

Satisfiability problem :
Given a CLTL(IPC⋆) formula φ, is there a model σ such that σ, 0 |= φ?

Note that if we extend IPC⋆ to allow constraints of the form x < y in the scope
of an existential quantifier, then the satisfiability problem for the corresponding
extension of CLTL(IPC⋆) is undecidable since the relation x = y + 1 is then
definable and the halting problem for Minsky machines can be easily encoded.

The model-checking problem which is defined in a moment rests on a partic-
ular class of constraint automata [Rev02]. An IPC⋆-automaton is defined as a
Büchi automaton over a finite alphabet made of CLTL(IPC⋆) formulae. In such
an automaton, letters on transitions may induce constraints between the vari-
ables of the current state and the variables of the next state as done in [CC00].
Hence, guards and update functions are expressed in the same formalism. We
are however a bit more general since we allow formulae on transitions as done
in [Wol83]. Formally, an IPC⋆-automaton is a structure A = 〈Q, I, F, δ〉 such
that:

– Q is a finite set of locations,
– I ⊆ Q is a set of initial locations and F ⊆ Q a set of final locations,
– δ ⊆ Q×Σ ×Q where Σ is a finite set of IPC⋆-constraints.

We say that A is a restricted IPC⋆-automaton when Σ is a set of Boolean combi-

nation of one-step constraints. A run is an infinite sequence q0
φ0

−→ q1
φ1

−→ q2
φ2

−→ . . .

such that for every i ∈ N, 〈qi, φi, qi+1〉 ∈ δ. Such a run is accepting iff there is
a state qf ∈ F such that qi = qf for infinitely many i ∈ N. In this case, the
word φ0 ·φ1 ·φ2 · . . . is accepted by A and we write L(A) to denote the language
recognized by A made of ω-sequences φ1 · φ2 · · · ∈ Σω obtained from accepting
runs. We say that a valuation sequence σ realizes a word φ0 · φ1 · φ2 · . . . in Σω

iff for every i ≥ 0, σ, i |= φi.

As an illustration, we present a (restricted) IPC⋆-automaton in Figure 1
which is an abstraction of the pay-phone controller from [CC00, Example 1]
(x is the number of quarters that have been inserted and y measures the total
communication time). An increment of a variable z is abstracted by Xz ≡232

z+ 1∧Xz > z. The formula φ= denotes Xx = x∧Xy = y. Messages are omitted
because they are irrelevant here (simplifications are then possible).

Model-checking problem :
Given an IPC⋆-automaton A and a CLTL(IPC⋆) formula φ, are there an ω-word
φ0 · φ1 · . . . accepted by A and a model σ for φ that realizes φ0 · φ1 · . . ..

Note that the equivalence problem for Extended Single-String automata [LM01]
can be encoded as a model-checking problem for CLTL(IPC⋆) (see [Dem06]).
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q1 q2 q3 q4

q6 q5

x = 0 ∧ y = 0 φ= x > 0 ∧ φ=

y ≤ x ∧ φ=
φ=

φ=

x = y ∧ Xx = 0 ∧ Xy = 0

Xx ≡
232

x + 1 ∧ Xx > x ∧ Xy = y

Xx ≡
232

x + 1 ∧ Xx > x ∧ Xy = y

y ≤ x ∧ Xy ≡
232

y + 1 ∧ Xy > y ∧ Xx = x

Xy ≤ x, Xy ≡
232

y + 1 ∧ Xy > y ∧ Xx = x

Fig. 1. A restricted IPC⋆-automaton

The satisfiability problem and the model-checking problem are reducible to each
other in logspace following techniques from [SC85]. Indeed, satisfiability can
be seen as a particular case of model-checking problem since one can build an
IPC⋆-automaton such that every valuation sequence realizes some execution of
this automaton (consider for instance the automaton that accepts the sequence
⊤ω). The converse reduction relies on a standard encoding of the executions
of an IPC⋆-automaton by a CLTL(IPC⋆) formula, possibly introducing a new
variable to encode the control states of the automaton. In the following, we
only refer to the satisfiability problem but the results we prove also hold for the
model-checking problem.

Let CCTL∗(IPC⋆) denote the CTL∗ extension of CLTL(IPC⋆). The model-
checking problem of the LTL fragment of the logic introduced in [Čer94] against
integral relational automata is a subproblem of the model-checking problem for
CLTL(IPC⋆). Full CCTL∗(IPC⋆) model-checking can be shown to be undecid-
able by using developments in Appendix A and [Čer94]. This is actually true
even for its CTL-like fragment. However in [BG06], it has been shown that its
existential and universal fragments are decidable even though the proof does not
allow to obtain any tight bound on the computational complexity of the prob-
lem. Here, we show that the LTL fragment is decidable in polynomial space, a
result not captured by these two works.

2.4 Expressive power and conciseness of the language

By definition, CLTL(IPC⋆)-models interpret variables but not propositional vari-
ables. However, it is not difficult to encode propositional variables by using
atomic formulae of the form x = 0 where x is a new variable introduced for
this purpose. The model-checking problems for CLTL(IPC++) and CLTL(Z)
are shown to be pspace-complete respectively in [Dem06] and in [DD07]. How-
ever, the proof for IPC++ uses an ω-regular property of the set of models that
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does not hold when introducing constraints of the form x < y. The problem for
CLTL(Zc) is shown to be in expspace in [DD07] by translation into CLTL(Z)
that increases exponentially the size of formulae with a binary encoding of the
integers.

Let WIPC⋆ (weak IPC⋆) denote the restriction of IPC⋆ to constraints of the
form either x ∼ y, x ∼ d or x ≡k c where x, y ∈ VAR, ∼∈ {<,=}, d ∈ Z and
k, c ∈ N. Though WIPC⋆ is a fragment of IPC⋆, the logic CLTL(WIPC⋆) is as
expressive as CLTL(IPC⋆).

Lemma 2. For every φ ∈ CLTL(IPC⋆), there exists an equivalent formula ψ ∈
CLTL(WIPC⋆).

Proof. This a direct consequence of the facts below:

– IPC⋆ admits quantifier-elimination.
– x ≡k [c1, c2] is equivalent to

∨

c1≤c′≤c2

x ≡k c

– x ≡k y + [c1, c2] is equivalent to
∨

c1≤c′≤c2

(

∨

{〈c′
1
,c′

2
〉∈{0,...,k−1}2|c′

1
+c′

2
≡kc′}

(x ≡k c
′
1 ∧ y ≡k c

′
2)

)

.

⊓⊔

The size of ψ is exponential in the size of φ in the worst case (for an infinite
amount of formulae φ). In spite of this exponential blow-up, we shall prove that
both CLTL(WIPC⋆) and CLTL(IPC⋆) have pspace-complete model-checking
problems.

Note also that adding constraints of the form ax+ by ≡k c with a, b, c ∈ Z in
CLTL(IPC⋆) does not add expressiveness since we can translate such constraints
in CLTL(IPC⋆). Let S = {〈cx, cy〉 ∈ {0, . . . , k− 1}2 | cx + cy ≡k c}. We have the
following logical equivalence:

ax+ by ≡k c⇔
∨

〈cx,cy〉∈S

(ax ≡k cx ∧ by ≡k cy).

Then we can translate the constraints of the form ax ≡k cx into CLTL(IPC⋆) by
solving a simple diophantine equation. The constraint ax ≡k cx reduces either
to false if gcd(a, k) does not divide cx or to x ≡k′ c′ with k′ × gcd(a, k) = k

for some c′ that can be computed in polynomial-time in the respective sizes of
a, k and cx. The addition of such constraints may cause a gain of conciseness.
However, because the sizes of k′ and c′ are bounded by the maximum of the sizes
of a, k and c and k is a multiple of k′, the forthcoming pspace upper bounds
for CLTL(IPC⋆) problems can be also obtained when constraints of the form
Σiaixi ≡k c are added.
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3 Properties of the constraint language

In this section, we establish results about the constraint language underlying
the logic CLTL(IPC⋆). We define a symbolic representation of the valuations in
order to build automata that recognize symbolic representations of CLTL(IPC⋆)-
models. Given a finite set X of IPC⋆ constraints, typically the set of constraints
occurring in a given CLTL(IPC⋆) formula, we introduce the following notations:

– K is the least common multiple of the integers k1, . . . , kn such that period-
icity constraints with relations ≡k1

, . . . , ≡kn
occur in X .

– CONS is the finite set of constants d occurring in the constraints of X of the
form x ∼ d (where ∼∈ {<,=}).

– m is the minimal element of CONS and M is its maximal element.

– CONS′ denotes the set of constants {m,m+ 1, . . . ,M}.

– VAR is the finite set of variables occurring in X .

In the remaining, we consider that the above objects are always defined (possibly
by adding dummy valid constraints in order to make the sets non-empty). In the
sequel, we write |O| to denote the size of the finite object O for some reasonably
succinct encoding (in particular binary encoding of integers). Observe that |K|
is in O(|k1|+ · · · + |kn|) and the cardinality of CONS is polynomial in the size
of X . The cardinality of CONS′ is in O(2|M|) and each element of CONS′ can
be encoded in binary representation with O(|M |) bits.

A maximally consistent set Y of Zc constraints with respect to VAR and
CONS is a set of Zc constraints using only the variables from VAR and the
constants from CONS such that there is a valuation v verifying v |=⋆ Y and
for any proper extension Z of Y , there is no valuation v′ verifying v′ |=⋆ Z. A
valuation is abstracted by three disjoint finite sets of IPC⋆ constraints similar
to regions for timed automata.

Definition 1. Given a finite set X of IPC⋆ constraints, a symbolic valuation
sv is a triple 〈Y1, Y2, Y3〉 such that

– Y1 is a maximally consistent set of Zc constraints with respect to VAR and
CONS.

– Y2 is a set of constraints of the form x = d with x ∈ VAR and d ∈ CONS′ \
CONS. Moreover, we impose that for every x ∈ VAR, (x = d) ∈ Y2 for some
unique d ∈ CONS′ \ CONS iff for every d′ ∈ CONS, (x = d′) 6∈ Y1 and
{m < x, x < M} ⊆ Y1. Note that, each x ∈ VAR occurs at most once in Y2.

– Y3 is a set of constraints of the form x ≡K c with x ∈ VAR and c ∈
{0, . . . ,K − 1}. Each x ∈ VAR occurs exactly once in Y3.

A consequence of Definition 1 is that in a symbolic valuation sv = 〈Y1, Y2, Y3〉,
no constraint occurs in more than one set. Given an IPC⋆ constraint ξ, we write
ξ ∈ sv instead of ξ ∈ Y1 ∪ Y2 ∪ Y3. A symbolic valuation is satisfiable iff there is
a valuation v : VAR→ Z such that v |=⋆ Y1 ∪ Y2 ∪ Y3.
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Lemma 3. Let X be a finite set of IPC⋆ constraints and sv = 〈Y1, Y2, Y3〉 be a
triple composed of IPC⋆ constraints such that Y1 is a set of Zc constraints built
over VAR and CONS, Y2 is a set of Zc constraints of cardinality at most |VAR|
built over VAR and CONS′\CONS, Y3 is a set of constraints of the form x ≡K c

of cardinality |VAR|. Checking whether sv is a satisfiable symbolic valuation can
be done in polynomial-time in the sum of the respective size of X and sv.

To prove this result, we have to check several things. Maximal consistency
of Y1 can be checked in polynomial-time by using developments from [Čer94,
Lemma 5.5]. A set Y1 of Zc constraints is maximally consistent w.r.t. VAR and

CONS iff the associated graph GY1
= 〈VAR ∪ CONS,

=
−→,

<
−→〉 such that n

∼
−→ n′

def

⇔ (n ∼ n′) ∈ Y1 (where ∼∈ {<,=}) satisfies the conditions below:

(MC1) For all n, n′, either n
∼
−→ n′ or n′ ∼

−→ n for some ∼∈ {<,=}.

(MC2)
=
−→ is a congruence relation compatible with

<
−→.

(MC3) There is no path n0
∼0−→ n1

∼1−→ . . .
∼α−1

−−→ nα such that n0 = nα and one
of the symbols ∼0, . . . ,∼α−1 is equal to < (no strict cycle).

(MC4) For all d1, d2 ∈ CONS, d1 ∼ d2 implies d1
∼
−→ d2.

(MC5) For all d1, d2 with d1 ≤ d2, there is no path n0
∼0−→ n1

∼1−→ . . .
∼α−1

−−→ nα

with n0 = d1 and nα = d2 such that the number of occurrences of the symbol
< in ∼0, · · · ,∼α−1 is strictly greater than d2 − d1.

Note that this graph does not take into account the constraints in Y2 and Y3.
Checking that a variable occurs at most once in Y2 or exactly once in Y3 can

be done in linear time. It is also easy to verify that the equality relations of Y2

do not contradict the constraints in Y1.
Finally, we need to check that the set of congruence relations Y3 is compatible

with the sets of constraints Y1 and Y2:

(MC6) (a) For all n, n′ such that n
=
−→ n′, for every c ∈ {0, . . . ,K − 1},

n ≡K c ∈ Y3 iff n′ ≡K c ∈ Y3.
(b) For all x = d in Y2, the corresponding constraint x ≡K c belonging to
Y3 is such that c ≡K d.

As illustrated by the following lemma, the symbolic representations of valu-
ations contain the relevant information to evaluate constraints.

Lemma 4. Let X be a finite set of IPC⋆ constraints.

(I) For every valuation v : VAR → Z there is a unique symbolic valuation
〈Y1, Y2, Y3〉 built w.r.t. X and denoted by sv(v) such that v |=⋆ Y1 ∪ Y2 ∪ Y3.

(II) For all valuations v, v′ such that sv(v) = sv(v′) and for every ξ ∈ X,
v |=⋆ ξ iff v′ |=⋆ ξ.

Proof. (I) Given a symbolic valuation sv , let Vsv be the set of tuples 〈d1, . . . , dn〉
in Z

|VAR| (viewed as maps VAR → Z) such that 〈d1, . . . , dn〉 |= sv . It is easy
to show that {Vsv : sv is a symbolic valuation built w.r.t. X and Vsv 6= ∅} is a
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partition of Z
|VAR|.

(II) By structural induction on ξ. The proof is similar to the proof of [Dem06,
Lemma 1]. ⊓⊔

Note that by Lemma 4, a symbolic valuation is an equivalence class of valuations.

Given a symbolic valuation sv and a constraint ξ, we write sv |=symb ξ
def

⇔ for
every valuation v such that sv (v) = sv , v |=⋆ ξ.

Lemma 5. Given a symbolic valuation sv built w.r.t. a set of constraints X
(fixing VAR, CONS and K) and a constraint ξ ∈ X, checking whether sv |=symb

ξ is pspace-complete.

Proof. pspace-hardness can be obtained by reducing QBF. The only constants
used are 0 and 1. Each QBF formula φ = Q1 p1 Q2 p2 . . . Qn pn φ′ with φ′ a
propositional formula in CNF built over the propositional variables {p1, . . . , pn}
and {Q1, . . . , Qn} ⊆ {∀, ∃} is translated via the map t as follows

– t(∃ pi φi) = ∃ xi (xi = 0 ∨ xi = 1) ∧ t(φi),
– t(∀ pi φi) = ∀ xi (xi = 0 ∨ xi = 1)⇒ t(φi),
– t is homomorphic for Boolean connectives,
– t(pi) = (xi = 1).

One can show that φ is QBF satisfiable iff for all symbolic valuations sv, sv |=symb

t(φ) which is equivalent to check that an arbitrary symbolic valuation symboli-
cally satisfies t(φ), since t(φ) has no free variable.

The proof for the upper bound is similar to the proof of the pspace up-
per bound for first-order model-checking [CM77]. We can define a function
MC(sv, ξ′, ξ) where

– ξ′ is a subconstraint occurring in the IPC⋆ constraint ξ,
– sv is a symbolic valuation over the syntactic resources of ξ′ (VAR,CONS,K

defined above),

which returns true iff sv |=symb ξ
′. Observe that if a variable occurs in sv but

is not free in ξ′ then the satisfaction of sv |=symb ξ
′ is independent of its value.

The function MC is defined as a case analysis on the form of ξ′. For instance,
MC(sv, ∃ x ξ′, ξ) returns true iff there is a satisfiable symbolic valuation sv′

extending sv by addition of x-constraints, such that MC(sv′, ξ′, ξ) returns true.
The symbolic valuations sv′ = 〈Y ′

1 , Y
′
2 , Y

′
3〉 and sv = 〈Y1, Y2, Y3〉 are related as

follows:

– sv′ is a satisfiable symbolic valuation over the free variables of ξ′. This can
be checked in polynomial-time in |ξ|.

– Y1 ⊆ Y
′
1 , Y2 ⊆ Y

′
2 and Y3 ⊆ Y

′
3 .

– The only variable in sv′ but not in sv is x.

Even if the number of symbolic valuations over the free variables of ξ′ is expo-
nential in |ξ|, it is possible to enumerate them in polynomial space in order to
check the existence of some sv′ verifying the above conditions. ⊓⊔
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4 Satisfiable ω-sequences of symbolic valuations

Given a CLTL(IPC⋆) formula φ, we write IPC⋆(φ) to denote the set of IPC⋆

constraints ξ such that some atomic formula of the form ξ[x1 ← X
i1xj1 , . . . , xr ←

X
irxjr

] occurs in φ. We associate to IPC⋆(φ) the objects relative to any finite
set of IPC⋆ constraints: the set VAR of variables and the set CONS of constants
occurring in φ, and K the least common multiple of the integers ki that occur in
the congruence relations. This induces a unique set CONS′ = {m, . . . ,M} where
m is the minimal element of CONS and M the maximal element.

We define the X-length of φ, denoted by |φ|X, as the maximal number i
such that a term of the form X

ix occurs in φ. In the following, we assume that
VAR = {x1, . . . , xs} and |φ|X = l ≥ 1. We write Terms(φ) to denote the set of
terms of the form X

βxα with β ∈ {0, . . . , l} and α ∈ {1, . . . , s}.
Let VAR′ be a set of fresh variables of cardinality |Terms(φ)|. For technical

convenience, we need to introduce a bijection f : Terms(φ)→ VAR′ such that f
and f−1 can be computed in polynomial time. By extension, for every subformula
ψ of φ, f(ψ) is obtained from ψ by replacing each occurrence of X

βxα by f(Xβxα).
The map f−1 is used in a similar fashion. A symbolic valuation with respect to
φ is a symbolic valuation built over the set of variables VAR′, CONS and K.

We say that a pair 〈〈Y1, Y2, Y3〉, 〈Y ′
1 , Y

′
2 , Y

′
3〉〉 of symbolic valuations with

respect to φ is one-step consistent iff for every j, j′ ≥ 1, xi, xi′ ∈ VAR, d ∈ CONS′

and c ∈ {0, . . . ,K − 1} we have

1. f(Xjxi) ∼ f(Xj′xi′ ) ∈ Y1 iff f(Xj−1xi) ∼ f(Xj′−1xi′) ∈ Y ′
1 ,

2. f(Xjxi) ∼ d ∈ Y1 ∪ Y2 iff f(Xj−1xi) ∼ d ∈ Y ′
1 ∪ Y

′
2 ,

3. f(Xjxi) ≡K c ∈ Y3 iff f(Xj−1xi) ≡K c ∈ Y ′
3 .

An ω-sequence ρ of satisfiable symbolic valuations w.r.t. φ is one-step consistent
iff for every j ∈ N, 〈ρ(j), ρ(j + 1)〉 is one-step consistent, where ρ(j) denotes
the jth symbolic valuation of the sequence. We say that a symbolic valuation
sequence ρ is satisfied by a CLTL(IPC⋆)-model σ iff for all j ∈ N and ξ ∈ ρ(j),
σ, j |= f−1(ξ). In order to simplify the future developments, we will write ρf (or
sometimes ρf−1) to denote the ω-sequence of IPC⋆-constraints obtained from ρ

by substituting each occurrence of x by f−1(x) for every variable x used in ρ.
One-step consistent ω-sequences of symbolic valuations w.r.t. φ define ab-

stractions of models for φ. We represent a one-step consistent sequence ρ by

an infinite labeled structure Gρ = 〈(VAR ∪ CONS′) × N,
=
−→,

<
−→,mod〉 where

mod : (VAR∪CONS′)×N→ {0, . . . ,K−1} and for all ∼ ∈ {<,=}, x, y ∈ VAR,
d′, d1, d2 ∈ CONS′ and i, j ∈ N such that |i− j| ≤ l we have:

〈x, i〉
∼
−→ 〈y, j〉 iff either i ≤ j and x ∼ X

j−iy ∈ ρf (i)
or i > j and X

i−jx ∼ y ∈ ρf (j),

〈x, i〉
=
→ 〈d, j〉 iff x = d ∈ ρf (i),

〈d, i〉
=
→ 〈x, j〉 iff x = d ∈ ρf (j),

〈x, i〉
<
→ 〈d, j〉 iff there is d′ ∼ d s.t. x ∼′ d′ ∈ ρf (i) for some ∼′ ∈ {<,=}

and either ∼ or ∼′ is equal to <,

12



〈d, i〉
<
→ 〈x, j〉 iff there is d ∼ d′ s.t. d′ ∼′ x ∈ ρf (j) for some ∼′ ∈ {<,=}

and either ∼ or ∼′ is equal to <,

〈d1, i〉
∼
−→ 〈d2, j〉 iff d1 ∼ d2,

mod(〈x, i〉) = c iff x ≡K c ∈ ρf (i),

mod(〈d, i〉) = c iff d ≡K c.

By construction of Gρ, the variables and constants are treated in a similar fash-
ion. It is worth observing that Gρ is well-defined because ρ is one-step consistent.
Moreover, the construction ensures that the “local” representation of every ρ(i)
verifies the conditions (MC1)–(MC6) introduced Section 3.

We say that a vertex represents the constant d ∈ CONS′ if it is of the form
〈d, i〉 for some i ∈ N. The level of a node n = 〈a, t〉 in Gρ is defined by lev(n) = t.
There is some redundancy in Gρ for the nodes of the form 〈d, i〉 but this turn
out to be helpful to establish tight relationships between ρ and Gρ.

As an example, assume that VAR = {y}, CONS = {2, 4}, K = 2, l = 1,
VAR′ = {x, x′} (f(y) = x and f(Xy) = x′) and l = 1. We consider the sequence
ρ = sv0 · (sv1 · sv2)ω where

– sv0 = 〈Y 0
1 , Y

0
2 , Y

0
3 〉 with

• Y 0
1 = {x = x, x′ = x′, x < x′, 2 < x, x < 4, 2 < x′, x′ = 4},

• Y 0
2 = {x = 3},

• Y 0
3 = {x ≡2 1, x′ ≡2 0},

– sv1 = 〈Y 1
1 , Y

1
2 , Y

1
3 〉 with

• Y 1
1 = {x = x, x′ = x′, x < x′, 2 < x, x = 4, 2 < x′, 4 < x′},

• Y 1
2 = ∅,

• Y 1
3 = {x ≡2 0, x′ ≡2 1},

– sv2 = 〈Y 2
1 , Y

2
2 , Y

2
3 〉 with

• Y 2
1 = {x = x, x′ = x′, x < x′, 2 < x, 4 < x, 2 < x′, 4 < x′},

• Y 2
2 = ∅,

• Y 2
3 = {x ≡2 1, x′ ≡2 1}.

The graph Gρ is presented in Figure 2. In order to simplify the representation,

closure by transitivity for
<
−→ and the fact that

=
−→ is a congruence are omitted.

The function mod is directly encoded in the node label.
A path in Gρ is a sequence (possible infinite) of the form n0

∼0−→ n1
∼1−→ n2

∼2−→

. . . (each∼i belongs to {<,=}). A finite path w = n0
∼0−→ n1

∼1−→ n2
∼2−→ . . .

∼α−1

−−→ nα

such that n0 = nα is called a cycle. For any finite path w = n0
∼0−→ n1

∼1−→ n2
∼2−→

. . .
∼α−1

−−→ nα, its strict length slen(w) is the number of indices i ∈ {0, . . . , α− 1}
such that ∼i is equal to <. We say that w is strict if slen(w) > 0. The strict
length between two nodes n1 and n2, written slen(n1, n2), is the least upper
bound (possibly equal to ω) of the strict lengths of finite paths between n1

and n2. By convention, if there is no path between from n1 to n2, slen(n1, n2)
takes the value −∞. For example, in Figure 2 slen(〈2, 2〉, 〈y, 3〉) = 4 (see the
transitions in boldface).
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〈2, 0〉

〈3, 0〉

〈4, 0〉

〈y, 0〉 ≡2 1

〈2, 1〉

〈3, 1〉

〈4, 1〉

〈y, 1〉 ≡2 0

〈2, 2〉

〈3, 2〉

〈4, 2〉

〈y, 2〉 ≡2 1

〈2, 3〉

〈3, 3〉

〈4, 3〉

〈y, 3〉 ≡2 1

. . .

<

<

=

<

<

<

=

<

=

<

=

<

=

=

<

=

<

=

<

=

<

<

<

<

<

=

<

=

<

=

<

<

<

<

<

Fig. 2. A graph Gρ

The one-step consistency of ρ implies global constraints on its graph rep-
resentation that already hold true locally. By a global constraint, we mean a
constraint on the whole graph and not only on the local representation of a
single symbolic valuation or on two successive satisfiable symbolic valuations.

Lemma 6. Let ρ be a one-step consistent symbolic valuation sequence. The fol-
lowing properties hold for Gρ.

(I) Gρ has no strict cycle.
(II) If there is a finite path w starting at 〈d, i〉 and ending at the node n of level

j, then: if w is strict then 〈d, j〉
<
−→ n, otherwise 〈d, j〉

=
−→ n.

(III) If there is a finite path w starting at the node n of level j and ending at

〈d, i〉, then: if w is strict then n
<
−→ 〈d, j〉, otherwise n

=
−→ 〈d, j〉.

(IV) For every pair of nodes n, n′ in Gρ such that slen(n, n′) = 0, we have
mod(n) = mod(n′).

Proof. (I) We show that for every path w = n0
∼0−→ n1

∼1−→ n2
∼2−→ . . .

∼α−1

−−→ nα,
n0 = nα implies slen(w) = 0. The proof is by induction on α. The base case with
either α = 1 or α = 2 is by an easy verification since the subgraph corresponding
to the symbolic valuation ρ(min{lev(ni) : 1 ≤ i ≤ α}) contains all the nodes of
the path and satisfies (MC3). In the induction step, suppose that w is a cycle
with α > 2 and let nβ be a node of the path with the greatest level. Without
any loss of generality, we can assume that 0 < β < α since one can choose
the first node of the cycle. As lev(nβ) is maximal, |lev(nβ−1) − lev(nβ+1)| ≤ l

and so the subgraph corresponding to ρ(min{lev(nβ−1), lev(nβ+1)}) contains
the nodes nβ−1, nβ and nβ+1. Since this subgraph satisfies (MC2), this implies

that nβ−1
<
−→ nβ+1 iff nβ−1

<
−→ nβ or nβ

<
−→ nβ+1. As a consequence, slen(w) = 0

iff slen(w′) = 0 where the path w′ is obtained from w by replacing the sub-
path from nβ−1 to nβ+1 by the edge nβ−1

∼
−→ nβ+1. By induction hypothesis,

slen(w′) = 0 and therefore slen(w) = 0.
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(II) We show that for every path w = n0
∼0−→ n1

∼1−→ n2
∼2−→ . . .

∼α−1

−−→ nα such that
n0 = 〈d, i〉, we have 〈d, lev(nα)〉

∼
−→ nα with ∼ equal to < if w is strict and to =

otherwise. The proof is by induction on α. The base case with α = 1 is obvious.

Let us consider a path w = n0
∼0−→ n1

∼1−→ n2
∼2−→ . . .

∼α−1

−−→ nα with n0 = 〈d, i〉 and
α > 1. Suppose that 〈d, lev(nα−1)〉

∼
−→ nα−1 with ∼ equals to < if n0

∼0−→ n1
∼1−→

n2
∼2−→ . . .

∼α−2

−−→ nα−1 is strict and ∼ equals to = otherwise. We only treat the case
lev(nα−1) ≤ lev(nα), the other case is similar. Since lev(nα) − lev(nα−1) ≤ l,
the nodes nα−1 and nα belong to the subgraph corresponding to ρ(lev(nα−1)).

This subgraph satisfies (MC2) and so 〈d, lev(nα−1)〉
∼′

−→ nα with ∼′ equal to

< if either 〈d, lev(nα−1)〉
<
−→ nα−1 or nα−1

<
−→ nα. Hence, by using induction

hypothesis we obtain that 〈d, lev(nα−1)〉
∼′

−→ nα and ∼′ is equal to < if w is
strict. Since 〈d, lev(nα−1)〉

=
−→ 〈d, lev(nα)〉 and using the property (MC2), we get

〈d, lev(nα)〉
∼′

−→ nα and ∼′ equals < if w is strict (and = otherwise).

(III) Similar to (II).

(IV) Suppose that two nodes n and n′ are such that slen(n, n′) = 0. So there is a
path, w = n

=
−→ n0

=
−→ . . .

=
−→ nα−1

=
−→ nα with nα = n′. We proceed by induction

on α. If α ≤ 1 then the local representation of ρ(min{lev(n0), lev(nα))} contains
both n0 and nα and we can conclude using (MC6). Otherwise, suppose that
α > 1 and mod(n0) = mod(nα−1). Since nα−1

=
−→ nα the local representation

of ρ(min{lev(nα−1), lev(nα))} contains both nα−1 and nα. Since, this symbolic
valuation satisfies (MC6), we have mod(nα) = mod(nα−1) = mod(n0). ⊓⊔

Corollary 1. Let ρ be a one-step consistent sequence of symbolic valuations
and Gρ its graph representation. Then, for all nodes 〈d1, i〉 and 〈d2, j〉 in Gρ

representing constants such that d1 ≤ d2, slen(〈d1, i〉, 〈d2, j〉) = d2 − d1.

Proof. Let 〈d1, i〉 and 〈d2, j〉 be vertices of Gρ representing respectively the con-
stants d1 and d2. Without any loss of generality, we can assume that i ≤ j (the
case j > i has a similar treatment). Obviously, slen(〈d1, i〉, 〈d2, j〉) ≥ d2 − d1 as
witnessed by the path below of strict length d2 − d1:

〈d1, i〉
=
−→ 〈d1, i+1〉

=
−→ 〈d1, i+2〉 · · · 〈d1, j〉

<
−→ 〈d1+1, j〉

<
−→ 〈d1+2, j〉 · · ·

<
−→ 〈d2, j〉.

Now suppose that there is a path w between 〈d1, i〉 and 〈d2, j〉 such that
slen(w) > d2 − d1. Consider the restriction of the transitive closure of

=
−→ to the

nodes appearing in w. This relation is an equivalence relation having exactly
slen(w)+1 equivalence classes. Let X0, . . . , Xslen(w) be an enumeration of these
equivalence classes. As a consequence of Lemma 6(II,III), every node n in w of

level j is such that 〈d1, j〉
∼
−→ n

∼′

−→ 〈d2, j〉 for some ∼,∼′ ∈ {<,=}. By definition
of CONS′ (which contains all the integers of the interval [m,M ]) and by maximal
consistency of the local representations, for every i ∈ {0, . . . , slen(w)}, there is
d′i ∈ CONS′ such that d1 ≤ d′i ≤ d2 and every node n of level j in Xi has
an outgoing edge n

=
−→ 〈d′i, j〉. Moreover the constants d′0, . . . , d

′
slen(w) should be
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mutually distinct since all the Xi represents distinct equivalence classes. This
leads to a contradiction since the cardinality of {d1, . . . , d2} is (d2 − d1) + 1. ⊓⊔

So far, we have stated properties about the graph Gρ. Below, we establish
simple conditions on Gρ equivalent to the existence of a CLTL(IPC⋆) model
satisfying ρ. An edge-respecting labeling for Gρ is a map lab : (VAR∪CONS′)×
N→ Z such that

– for all nodes n1, n2 and ∼ ∈ {<,=}, we have n1
∼
−→ n2 implies lab(n1) ∼

lab(n2),
– for every node n, lab(n) ≡K mod(n).

Additionally, lab is said to be strict if for every 〈d, i〉 in Gρ, lab(〈d, i〉) = d.

Lemma 7. A one-step consistent sequence of symbolic valuations ρ has a model
iff Gρ has an edge-respecting labeling.

Proof. Let σ be a model for ρ and lab : (VAR ∪ CONS′) × N → Z be the map
defined as follows:

lab(〈x, i〉) = σ(i, x); lab(〈d, i〉) = d for all x ∈ VAR, d ∈ CONS′ and i ∈ N.

It is not difficult to show that lab is a strict edge-respecting labeling for Gρ.
For instance, we have implications between the propositions below (x, y ∈ VAR,
i, j ∈ N, ∼ ∈ {<,=}):

– 〈x, i〉
∼

−→ 〈y, j〉 and i ≤ j,

– x ∼ X
j−iy ∈ ρf (i) (by definition of Gρ),

– f(x ∼ X
j−iy) ∈ ρ(i) (by definition of ρf ),

– σ, i |= f−1(f(x ∼ X
j−iy)) (since σ is a model for ρ),

– σ, i |= x ∼ X
j−iy (f is a bijection),

– σ(i, x) ∼ σ(j, y) (by definition of |=),

– lab(〈x, i〉) ∼ lab(〈y, j〉) (by definition of lab).

Hence, 〈x, i〉
∼

−→ 〈y, j〉 and i ≤ j implies lab(〈x, i〉) ∼ lab(〈y, j〉). Satisfaction
of periodicity constraints is based on the same development (x ∈ VAR, c ∈
{0, . . . ,K − 1}):

– mod(〈x, i〉) = c,

– x ≡K c ∈ ρf (i) (by definition of Gρ),

– σ, i |= x ≡K c (arguments as above),

– σ(i, x) ≡K c (by definition of |=),

– lab(〈x, i〉) ≡K c (by definition of lab).

Conversely, let lab be an edge-respecting labeling of Gρ. First, we build from
lab a strict edge-respecting labeling lab′ of Gρ. The values greater than M are
divided in consecutive blocks of K consecutive values in such a way that if
lab(n)− lab(〈M, lev(n)〉) = β > 0 then lab′(n) takes its value in the βth block.
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block 0
z}|{

M

block 1
z }| {

M + 1 · · ·M + K

block 2
z }| {

M + K + 1 · · ·M + 2K . . .

block γ

z }| {

M + (γ − 1)K + 1 · · ·M + γK . . .

Then the constraint mod(n) insures the unicity of lab′(n) such that lab′(n) ≡K

mod(n). A similar division is performed for the values smaller than m.

– For every n = 〈x, i〉 such that 〈x, i〉
<
−→ 〈m, i〉, then lab′(〈x, i〉)

def

= α with
• α ≡K mod(〈x, i〉),
• m− (lab(〈m, i〉)− lab(〈x, i〉))×K ≤ α ≤ m− ((lab(〈m, i〉)− lab(〈x, i〉)−

1)×K − 1.

– For every 〈x, i〉 such that 〈M, i〉
<
−→ 〈x, i〉, then lab′(〈x, i〉)

def

= α with
• α ≡K mod(〈x, i〉),
• M + ((lab(〈x, i〉) − lab(〈M, i〉) − 1) × K + 1 ≤ α ≤ M + (lab(〈x, i〉) −
lab(〈M, i〉))×K.

In both above cases, α is unique since it belongs to an interval of length K
with a periodicity constraint that forces a unique value in this interval.

– For every 〈x, i〉 such that 〈x, i〉
=
−→ 〈d, i〉 for some d ∈ CONS′, lab′(〈x, i〉) = d.

– For every 〈d, i〉, lab′(〈d, i〉) = d.

lab′ is well-defined because ρ is a sequence of satisfiable symbolic valuations
with respect to φ. Moreover, lab′ is a strict edge-respecting labeling. By way

of example, suppose that n
<
−→ n′, lev(n) ≤ lev(n′), 〈M, lev(n)〉

<
−→ n and

〈M, lev(n′)〉
<
−→ n′. We have lab(〈M, lev(n)〉) < lab(n) < lab(n′) because lab

is edge-respecting and so, since the values of the (lab(n) − lab(〈M, lev(n)〉)th
block after M are greater than the values of (lab(n′)− lab(〈M, lev(n)〉)th block,
lab′(n) < lab′(n′).

Now, we show that the model σ defined by σ(i, x) = lab ′(〈x, i〉) for all x ∈
VAR and i ∈ N satisfies ρ. By way of example, we show that X

jx ∼ X
ky ∈

ρf (i) and j ≤ k implies σ, i |= X
jx ∼ X

ky. We have implications between the
propositions below:

– X
jx ∼ X

ky ∈ ρf (i) and j ≤ k,

– 〈x, i+ j〉
∼

−→ 〈y, i+ k〉 in Gρ (by definition of Gρ),

– lab(〈x, i+ j〉) ∼ lab′(〈y, i+ k〉) (lab ′ is edge-respecting),

– σ(i+ j)(x) ∼ σ(i+ k)(y) (by definition of σ),

– σ, i |= X
jx ∼ X

ky (by definition of |=).
⊓⊔

Lemmas 7 states correspondences between ρ and its graphical representation
Gρ. We now define a more abstract characterization of the one-step consistent
sequences admitting a model.

Lemma 8. Let ρ be a one-step consistent sequence. The graph Gρ has an edge-
respecting labeling iff for all nodes n1, n2 in Gρ, slen(n1, n2) < ω.
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Note that, by construction of Gρ, for all nodes 〈d1, i〉 and 〈d2, j〉 representing
constants such that d1 ≤ d2 we have slen(〈d1, i〉, 〈d2, j〉) = d2 − d1 (see Corol-
lary 1). That is why it suffices to consider nodes n1 and n2 that are not both
constants.

Proof. If Gρ has an edge-respecting labeling lab, then one can easily show that
for all nodes n1, n2 in Gρ slen(n1, n2) ≤ lab(n2)− lab(n1).

Conversely, if for all nodes n1, n2 in Gρ, slen(n1, n2) < ω, we define the
following map lab : (VAR ∪ CONS′)× N→ Z:

– lab(〈d, i〉)
def

= d.

– If 〈x, i〉
=
−→ 〈d, i〉 then lab(〈x, i〉)

def

= d.

– Otherwise,

• If 〈x, i〉
<
−→ 〈m, i〉 then lab(〈x, i〉)

def

= α with
1. α ≡K mod(〈x, i〉).
2. m−slen(〈x, i〉, 〈m, i〉)×K ≤ α ≤ m−(slen(〈x, i〉, 〈m, i〉)−1)×K−1.

• If 〈M, i〉
<
−→ 〈x, i〉 then lab(〈x, i〉)

def

= α with
1. α ≡K mod(〈x, i〉).
2. M+(slen(〈M, i〉, 〈x, i〉)−1)×K+1 ≤ α ≤M+slen(〈M, i〉, 〈x, i〉)×
K.

Similarly to the proof of Lemma 7, each α is uniquely defined since it belongs to
an interval of length K and the map mod forces a unique value in this interval.

We now show that lab is a strict edge-respecting labeling of Gρ. If the labeling
is not edge-respecting, then one of the following cases arises:

– Suppose n
=
−→ n′. We treat the case lev(n) < lev(n′) (the symmetrical case

has an analogous treatment).

Case 1: 〈M, lev(n)〉
<
−→ n and 〈M, lev(n′)〉

<
−→ n′.

Since n
=
−→ n′ and 〈M, lev(n)〉

=
−→ 〈M, lev(n′)〉, we have

slen(〈M, lev(n)〉, n) = slen(〈M, lev(n′)〉, n′).

Hence lab(n) and lab(n′) belong to the same block of size K after M . More-
over, ρ(lev(n)) is maximally consistent which entails mod(n) = mod(n′) (by
(MC6)) and lab(n) = lab(n′).

Case 2: n
<
−→ 〈m, lev(n)〉 and n′ <

−→ 〈m, lev(n′)〉.
Similar to Case 1.

Case 3: 〈M, lev(n)〉
<
−→ n and n′ ∼

−→ 〈M, lev(n′)〉.
Since ρ(lev(n)) is maximally consistent, by (MC2) we have n

∼
−→ 〈M, lev(n′)〉.

So we obtain the path

〈M, lev(n)〉
<
−→ n

∼
−→ 〈M, lev(n′)〉

=
−→ 〈M, lev(n)〉,

which leads to a contradiction using (MC3).

Case 4: n
<
−→ 〈m, lev(n)〉 and 〈m, lev(n′)〉

∼
−→ n′.
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Similar to Case 3.

Case 5: n
=
−→ 〈d, lev(n)〉 and n′ =

−→ 〈d′, lev(n′)〉 with d < d′.
Since ρ(lev(n)) is maximally consistent, by (MC2) and (MC3) we have d = d′

which leads to a contradiction.

– The case n
<
−→ n′ can be done in a similar fashion.

⊓⊔

So we have a characterization of the set of sequences having a model but
what we really want is to recognize them with automata. The main difficulty
rests on the fact that the set of satisfiable one-step consistent ω-sequences of
satisfiable symbolic valuations is not ω-regular, as shown in [DD07] for the frag-
ment CLTL(Z). However, we can define an ω-regular condition such that every
one-step consistent ultimately periodic sequence ρ is satisfiable iff Gρ satisfies
this condition. An infinite word is ultimately periodic if it is of the form τ · δω

for some finite words τ and δ. We will see in the following section that this ap-
proximation condition is enough for our purpose since satisfiable CLTL(IPC⋆)
formulas always have a ultimately periodic (symbolic) model. Let ρ be a one-
step consistent symbolic valuation sequence and Gρ its graphical representa-
tion. An infinite forward (resp. backward) path in Gρ is defined as a sequence
w : N→ (VAR ∪ CONS′)× N such that:

– for every i ∈ N, we have w(i)
∼
−→ w(i+ 1) (resp. w(i+ 1)

∼
−→ w(i)) in Gρ,

– for every i ∈ N, we have lev(w(i)) < lev(w(i+ 1)).

The path w is infinitely often strict iff for every i ≥ 0, there is j ≥ i such that

w(j)
<
−→ w(j + 1) (resp. w(j + 1)

<
−→ w(j)).

Definition 2. A graph Gρ satisfies the condition (C) iff there do not exist
vertices n1 and n2 in Gρ with |lev(n1)− lev(n2)| ≤ l satisfying

(AP1) there is an infinite forward path wfor from n1,
(AP2) there is an infinite backward path wback from n2,
(AP3) either wfor or wback is infinitely often strict, and

(AP4) for all i, j ∈ N, whenever |lev(wfor(i)) − lev(wback(j))| ≤ l, wfor(i)
<
−→

wback(j) in Gρ.

A graph representation of some ρ not satisfying (C) is presented in Figure 3
where n1 is a constant node.

n1

n2

< < < < <

= = = = =

< < < <

Fig. 3. Gρ does not satisfy (C)
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If ρ admits a model, then necessarily Gρ satisfies (C). Indeed, if Gρ does
not satisfy (C), then slen(n1, n2) = ω which entails that ρ has no model by
Lemma 7 and 8. The converse does not hold in general. However, when ρ is
ultimately periodic, the condition (C) is sufficient.

Lemma 9. Let ρ be a one-step consistent ω-sequence of satisfiable symbolic val-
uations which is ultimately periodic. Then ρ admits a model iff Gρ satisfies (C).

Thanks to the way Gρ is built from ρ, (C) does not explicitly refer to the
constants in CONS and the constraints of the form x ≡K c. Hence, Lemma 9 can
be proved as [DD07, Lemma 6.2]: the map mod in Gρ is ignored and a uniform
treatment for all nodes in (VAR ∪ CONS′)× N is provided.

Let ρ = τ · δω be an ultimately periodic one-step consistent ω-sequence. If
ρ admits a model then by Lemma 8 it satisfies the condition (C). Conversely, if
ρ has no model then by Lemma 8 there exist two vertices n1 and n2 such that
slen(n1, n2) = ω. Intuitively, the proof uses this property to claim the existence
between these two nodes of a finite path w long enough so that two paths wfor and
wback satisfying the conditions (AP1)–(AP4) can be deduced. The construction
of wfor and wback from w uses the periodicity of ρ by repeating infinitely finite
subpaths and can be done smoothly by using the properties established in this
section (see e.g. Lemma 6). This witnesses that Gρ does not satisfy (C).

As the proof is not essentially different from [DD07, Lemma 6.2] modulo
slight changes mentioned above, we omit it here (see details in [Gas07]).

5 Büchi automata and PSPACE upper bound

Based on the previous results and following the approach in [VW94], we show
that given a CLTL(IPC⋆) formula φ, one can build a standard Büchi automaton
Aφ such that φ is CLTL(IPC⋆) satisfiable iff L(Aφ) is non-empty. Moreover, we
establish that nonemptiness of L(Aφ) can be checked in polynomial space in the
size of φ (denoted by |φ|). The automaton Aφ is precisely the intersection of
three Büchi automata and its construction can be done quite smoothly thanks
to the previous results. In the following, VAR, VAR′, CONS and CONS′ are the
sets of variables and constants associated to φ as defined in Section 4. Moreover,
K, m and M are constants with their usual meaning and we use the map f :
Terms(φ)→ VAR′ as previously.

Unlike LTL, the language recognized by the Büchi automaton Aφ is not a set
of models but rather a set of symbolic models. The alphabet Σ of this automaton
is the set of symbolic valuations w.r.t. φ. As a consequence, a symbolic model for
φ is an ω-sequence ρ : N→ Σ. We naturally extend the symbolic satisfaction to
sequences. The relation |=′ is defined as |= except at the atomic level: ρ, i |=′ ξ
def

⇔ ρ(i) |=symb f(ξ) where |=symb is the satisfaction relation between symbolic
valuations and constraints (see Section 3).

By Lemma 5 and using standard techniques for LTL [VW94], checking whether
there is a symbolic model ρ satisfying ρ |=′ φ can be done in pspace (see more
details below). Because every model for φ generates a unique symbolic model
for φ (consequence of Lemma 4), we obtain the result below.
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Lemma 10. A CLTL(IPC⋆) formula φ is satisfiable iff there is a one-step con-
sistent symbolic valuation ρ such that ρ |=′ φ and ρ has a model.

Proof. Let σ be a model that satisfies φ. Consider the symbolic valuation se-
quence ρ defined by: ρ(i) = sv(vi) where for every i ∈ N, vi is the valuation
such that vi(f(Xjx)) = σ(i + j)(x). By construction, we have σ |= ρ. Using
Lemma 4(II) we can show that for every v such that sv(v) = ρ(i) we have
σ(i) |= ξ iff v |= ξ for every atomic subformula ξ of φ. By definition of the sym-
bolic satisfaction relation, this implies that if σ |= ξ then ρ |=′ ξ. Consequently,
ρ |=′ φ (induction on the structure of φ).

Conversely, suppose that ρ |=′ φ and σ |= ρ for some σ and ρ. Since for every
i ∈ N we have σ, i |= ρ(i), ρ(i) is the symbolic valuation corresponding to the
valuation vi such that vi(f(Xjx)) = σ(i+ j)(x). By definition of |=′, this implies
that for every atomic subformula ξ of φ, if ρ, i |=′ ξ then σ, i |= ξ. Thus, we can
show that ρ |= φ and σ |= ρ imply σ |= φ. ⊓⊔

The automaton Aφ is formally defined as the intersection ALTL∩A1cons∩AC

of Büchi automata where

– L(ALTL) is the set of symbolic models satisfying φ,

– L(A1cons) is the set of one-step consistent sequences of symbolic valuations,

– L(AC) is the set of sequences of symbolic valuations verifying (C).

We briefly explain below how these different automata are built. All of them are
built over the alphabetΣ which is of exponential size in |φ|. The automatonALTL

is obtained from [VW94] with a difference for atomic formulae. We define cl(φ)
the closure of φ as usual, and an atom of φ is a maximally consistent subset
of cl(φ). We define ALTL = (Q,Q0, δ, F ) as the generalized Büchi automaton
below:

– Q is the set of atoms of φ and Q0 = {X ∈ Q : φ ∈ X},

– X
sv
→ Y is in δ iff

(atomic constraints) for every atomic formula ξ in X , sv |=symb f(ξ),
(one step) for every Xψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y ,

– let {φ1Uψ1, . . . , φrUψr} be the set of until formulas in cl(φ). We define F as
the set {F1, . . . , Fr} such that for every i ∈ {1, . . . , r},

Fi = {X ∈ Q : φiUψi 6∈ Xor ψi ∈ X}.

By Lemma 5, the condition about atomic formulae can be checked in pspace

and so the transition relation can also be computed in pspace.

We define A1cons = 〈Q,Q0, δ, F 〉 as a Büchi automaton such that Q = Q0 =

F = Q = Σ and the transition relation satisfies: sv
sv

′′

−→ sv ′ is in δ
def

⇔ 〈sv , sv ′〉
is one-step consistent and sv ′ = sv ′′. Since checking whether a triple of sets of
IPC⋆-constraints is a symbolic valuation and checking whether a pair of sym-
bolic valuations is one-step consistent can both be done in polynomial time (see
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Lemma 3), the transition relation of A1cons can be computed in polynomial time.

It remains to define AC that recognizes ω-sequences of symbolic valuations
satisfying (C). As done in [DD07], instead of building AC , it is easier to construct
the Büchi automaton A¬

C that recognizes the complement language of L(AC).
The automaton A¬

C is essentially the automaton B defined in [DD07, Sect.6]
except that we work with an extended alphabet. We need to consider vertices
in the graph that represent constants in CONS′ and equality between constants
does not need to be explicitly present in the symbolic valuations. Apart from
this point, the variables in VAR and the constants in CONS have a uniform
treatment in the definition of A¬

C .
The automaton A¬

C non-deterministically guesses in the first part of the run
the vertices n1, n2 and which path among wfor and wback is infinitely often strict.
Then it checks that the sequence fails to meet (C). The Büchi acceptance con-
dition guarantees that <-labeled edges are infinitely often visited. We store all
these pieces of information in the locations. For instance, if the automaton is in
the location 〈a, i, b, j, for , 0〉 at the position α ≥ 0 of the run, this means that:

– the position of the current vertex of the forward path is 〈a, α+ i〉,
– the position of the current vertex of the backward path is 〈b, α+ j〉,
– the forward path is infinitely often strict.

The last component is only used to note when the forward path visits a strict
edge. It takes the value 1 (respectively 0) when the previous transition is (re-
spectively is not) a <-transition.

Before defining formally A¬
C , for a, a′ ∈ VAR ∪ CONS′, ∼ ∈ {<,=} and

i, j ∈ {0, . . . , l}, we write (Xia
∼
−→ X

ja′) ∈ Gsv if there is an edge from the node
representing X

ia at the current position to the node representing X
ja′ (according

to the definition of the edge relation in Section 4) which means that one of the
following cases arises:

– a, a′ ∈ VAR and f(Xia) ∼ f(Xja′) ∈ sv (see definition of f in Section 4).
– a ∈ VAR, a′ ∈ CONS and f(Xia) ∼ a′ ∈ sv .
– a′ ∈ VAR, a ∈ CONS and a ∼ f(Xja′) ∈ sv .
– a, a′ ∈ CONS′ and a ∼ a′.
– a ∈ CONS′ \ CONS, a′ ∈ VAR and

either ∼ is equality and a = f(Xja′) ∈ sv
or there is d ∈ CONS such that a < d and d ∼ f(Xja′) ∈ sv
or there is d ∈ CONS′ such that a < d and d = f(Xja′) ∈ sv .

– a′ ∈ CONS′ \ CONS, a ∈ VAR and
either ∼ is equality and f(Xia) = a′ ∈ sv
or there is d ∈ CONS such that d < a′ and f(Xia) ∼ d ∈ sv
or there is d ∈ CONS′ such that d < a′ and f(Xia) = d ∈ sv .

Formally, A¬
C = 〈Q,Q0,→, F 〉 is defined as follows:

– Q = {q0} ⊎ {(VAR ∪ CONS′) × {0, . . . , l} × (VAR ∪ CONS′) × {0, . . . , l} ×
{for , back} × {0, 1}} where l = |φ|X,
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– I = {q0},

– The transition relation → is defined as follows.
(a) q0

sv
−→ q0 for every sv ∈ Σ.

(b) q0
sv
−→ 〈a, i, b, j, for , 0〉 and q0

sv
−→ 〈a, i, b, j, back , 0〉 for every a, b ∈ VAR ∪

CONS′, i, j ∈ {0, . . . , l}, sv ∈ Σ and X
ia < X

jb ∈ Gsv .

(c) 〈a, i, b, j, p, bin〉
sv
−→ 〈a, i − 1, b, j − 1, p, bin〉 for every p ∈ {for , back},

bin ∈ {0, 1}, i, j ≥ 1 and sv ∈ Σ.

(d) 〈a, 0, b, j, for , bin〉
sv
−→ 〈a′, i′ − 1, b, j − 1, for , bin ′〉 s.t. i′ > 0, j > 0 and

• (a
<
−→ X

i′a′) ∈ Gsv and bin ′ = 1;
or (a

=
−→ X

i′a′) ∈ Gsv and bin ′ = 0;

• (Xi′a′
<
−→ X

jb) ∈ Gsv .

These rules just check that there is a forward edge from the current node
to the next node of the forward path.

(e) 〈a, i, b, 0, for , bin〉
sv
−→ 〈a, i− 1, b, j′ − 1, for , bin ′〉 if i > 0, j′ > 0 and the

conditions of (d) are verified when doing the following substitutions

a← b, a′ ← b′, b← a.

This corresponds to check that there is a backward edge from the current
node to the next node of the backward path.

(f) 〈a, 0, b, 0, for , bin〉
sv
−→ 〈a′, i′, b′, j′, for , bin ′〉 if the obvious combination of

the constraints (d) and (e) is verified.

(g) Similar conditions are needed to consider the case where the backward
path is infinitely often strict.

– F is the set of states of the form 〈a, i, b, j, p, 1〉 for every a, b ∈ VAR∪CONS′,
i, j ∈ {0, . . . , l} and p ∈ {for , back}.

Lemma 11. A CLTL(IPC⋆) formula φ is satisfiable iff L(Aφ) is nonempty.

The proof of this lemma is similar to [DD07, Lemma 6.3]. The main trick
is to observe that if L(Aφ) is nonempty then Aφ accepts an ultimately periodic
ω-sequence so that Lemma 9 can be applied. Since given a formula φ we can effec-
tively construct Aφ and check whether L(Aφ) is nonempty, the model-checking
and satisfiability problems for CLTL(IPC⋆) are decidable. We also have all the
arguments to establish the pspace upper bound by using arguments from [Saf88].

Theorem 1. The satisfiability problem for CLTL(IPC⋆) is pspace-complete.

Proof. pspace-hardness is a consequence of the pspace-hardness of LTL [SC85].
As far as the pspace upper bound is concerned, the automata ALTL, A1cons and
A¬

C are of exponential size in |φ| and can be built in polynomial space in |φ|.
The automaton AC is obtained from A¬

C by Safra’s construction [Saf88] to
complement a Büchi automaton. A¬

C has a number of states polynomial in |φ|,
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say P (|φ|). From this, we can build a deterministic Streett automaton which ac-
cepts the complement of the language accepted by A¬

C and has O(2P (|φ|)×log(|φ|))
states. These are the same arguments as in the proof of [DD07, Theorem 6.6].
This automaton can be converted to an equivalent Büchi automaton AC with
the same order of states. Hence, AC can be built in polynomial space in |φ|.

So, computing the intersection automaton Aφ = ALTL ∩ A1cons ∩AC can be
done in polynomial space in |φ|. Since the emptiness problem for Büchi automata
is nlogspace-complete, by [BDG88, Corollary 3.36], we finally get that testing
emptiness of L(Aφ) can be done non-deterministically in polynomial space in
|φ|. As usual, by Savitch’s theorem we get the pspace upper bound. ⊓⊔

Note that, all the temporal operators in CLTL(IPC⋆) are definable in monadic
second order logic (MSO). By using [GK03], it is immediate that any extension
of CLTL(IPC⋆) obtained by adding a finite amount of MSO-definable temporal
operators remains in pspace. Only the automaton ALTL needs to be updated.

Another corollary is that the model-checking of the linear-time fragment
of the logic of [Čer94] against integral relational automata is in pspace (only
decidability is established by [Čer94]).

Corollary 2. The model-checking problem for integral relational automata re-
stricted to the LTL fragment of CCTL∗ introduced in [Čer94] is in pspace.

6 Conclusion

In this paper, we have introduced the logic CLTL(IPC⋆) extending formalisms
in [Čer94,LM01,DD07,Dem06] and we have shown that both model-checking over
IPC⋆-automata and satisfiability are decidable in polynomial space. The proof
heavily relies on a translation into the nonemptiness problem for standard Büchi
automata and on the approximation of non ω-regular sets of symbolic models. As
a by-product, the model-checking problem over the integral relational automata
defined in [Čer94] is also pspace-complete when restricted to its LTL fragment.
The logic CLTL(IPC⋆) supports a rich class of constraints including those of
the form x < y unlike periodicity constraints from [Dem06] (which are quite
useful to compare absolute dates) and comparison with constants unlike logics
shown in pspace in [DD07]. Abstraction of counter automata by performing
reasoning modulo can be encoded in CLTL(IPC⋆) thanks to the presence of
integer periodicity constraints.

To conclude, we mention a few open problems that are worth investigating.

– The model checking of CTL* for integral relational automata is undecid-
able [Čer94] whereas we have shown that its LTL fragment is pspace-
complete. Moreover, it is shown in [BG06] that the existential and univer-
sal fragments have a decidable model checking problem (complexity is not
known). It would be interesting to design other decidable branching-time
extensions of CLTL(IPC⋆).

– The decidability status of the satisfiability problem of the full CTL∗ exten-
sion is also an open question.
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– The decidability status of constraint LTL over the domain 〈{0, 1}∗,⊆〉 is
open either with the subword relation or with the prefix relation. Note that
constraint LTL over the domain 〈{0}∗,⊆〉 is already equivalent to constraint
LTL over 〈N, <,=〉 that is a strict fragment of CLTL(IPC⋆).
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A Integral relational automata are restricted
IPC⋆-automata

An integral relational automata (RA) is defined in [Čer94] as a program with a
finite amount of variables interpreted in Z. The set OP of operations is composed
of the following instructions and guards:

– comparisons of the form x < y, x < d, d < y,
– assignments of the form x← y, x← d,
– input value ?x,
– output value !x or !d,
– dummy operation NOP,

where x, y are variables and d is a constant in Z. A relational automaton A =
〈Q, δ, op, g〉 [Čer94] is a finite directed graph where

– Q is a finite set of control states,
– δ ⊆ Q×Q,
– op : Q→ OP,
– g : δ → {+,−}.

Let Var(A) and Cons(A) be respectively the sets of variables and constants
occuring in op. A configuration of A is a pair 〈n, v〉 where n ∈ Q and v is a
map v : Var(A)∪Cons(A)→ Z equal to identity for its restriction to Cons(A).
The configuration graph of A is defined as the pair 〈S,→〉 where S is the set of
configurations of A and 〈n, v〉 → 〈n′, v′〉 iff there exists e = 〈n, n′〉 ∈ δ such that

1. v and v′ are related depending on the nature of op(n):
– if op(n) is ?x, then for every y ∈ Var(A) \ {x}, v′(y) = v(y),
– if op(n) is an output value or the dummy operation, then v′ = v,
– if op(n) is x← a, then v′ = v[x← v(a)],
– if op(n) is a < b, then v = v′ and

either g(e) = + and v(a) < v(b),
or g(e) = − and v(a) ≥ v(b),

where a, b ∈ Var(A)∪Cons(A), v(x) denotes the value of x in v and v[x← a]
is such that v[x← z](y) = z if x = y and v[x← z](y) = v(y) otherwise.

Observe that equality between variables can be tested by performing two nega-
tive tests on a < b and b < a.

From a relational automaton A = 〈Q, δ, op, g〉, we build a restricted IPC⋆-
automatonA′, having an isomorphic configuration graph in a sense to be precised
below. GivenA = 〈Q, δ, op, g〉, the restricted IPC⋆-automatonA′ = 〈Q′, Q′

0, δ
′, F ′〉

is defined as follows:

1. Q′ = Q′
0 = F ′ = Q. Without any loss of generality, we can assume that Q is

a finite set of Z constants not occurring in op.

2. To each e = 〈n, n′〉 in A, we associate n
φe
−→ n′ in δ′, where φe is a conjunction

of constraints defined as follows:
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– Xic = n′ is a conjunct of φe where ic is a new variable taking care of the
instruction counter,

– if op(n) =?x then
∧

y∈VAR(A)\{x} y = Xy belongs to φe,

– if op(n) is an output or a dummy operation, then
∧

y∈VAR(A) y = Xy

belongs to φe,
– if op(n) = x← a then

∧

y∈VAR(A)\{x} y = Xy ∧ Xx = a belongs to φe,

– if op(n) = a < b then
if g(e) = + then a < b ∧

∧

y∈VAR(A) y = Xy belongs to φe,

g(e) = − then a ≥ b ∧
∧

y∈VAR(A) y = Xy belongs to φe.

The configuration graphs of A and A′ are isomorphic with the following
property. The transition 〈n, v〉 −→ 〈n′, v′〉 belongs to the configuration graph of
A iff 〈n, v〉 −→ 〈n′, v′〉 belongs to the configuration graph ofA′ where v : Var(A)∪
Cons(A) ∪ {ic} → Z is a conservative extension of v : Var(A) ∪ Cons(A) → Z

and v(ic) = n. The map v′ is defined similarly. As a corollary, the LTL fragment
of CLTL* defined in [Čer94] where the atomic formulae are of the form n, x < y

and x = y, can be reduced to the model-checking problem for restricted IPC⋆-
automata (just replace n by ic = n to obtain CLTL(IPC⋆) formulae).
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