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THE EFFECTIVE POTENTIAL OF AN M-MATRIX

MARCEL FILOCHE, SVITLANA MAYBORODA, AND TERENCE TAO

Abstract. In the presence of a confining potential V , the eigenfunctions of a con-
tinuous Schrödinger operator −∆ + V decay exponentially with the rate governed
by the part of V which is above the corresponding eigenvalue; this can be quan-
tified by a method of Agmon. Analogous localization properties can also be es-
tablished for the eigenvectors of a discrete Schrödinger matrix. This note shows,
perhaps surprisingly, that one can replace a discrete Schrödinger matrix by any
real symmetric Z-matrix and still obtain eigenvector localization estimates. In the
case of a real symmetric non-singular M-matrix A (which is a situation that arises
in several contexts, including random matrix theory and statistical physics), the
landscape function u = A−11 plays the role of an effective potential of localiza-
tion. Starting from this potential, one can create an Agmon-type distance function
governing the exponential decay of the eigenfunctions away from the “wells” of
the potential, a typical eigenfunction being localized to a single such well.

1. Introduction: history and motivation

The fundamental premises of quantum physics guarantee that a potential V in-
duces exponential decay of the eigenfunctions of the Schrödinger operator −∆ + V
(on either a continuous domain Rd or a discrete lattice Zd) as long as V is larger
than the eigenvalue E outside of some compact region. This heuristic principle
has been established with mathematical rigor by S. Agmon [1] and has served as a
foundation to many beautiful results in semiclassical analysis and other fields (see,
e.g., Refs 2, 3, 4, 5 for a glimpse of some of them). Roughly speaking, the modern
interpretation of this principle is that the eigenfunctions decay exponentially away
from the “wells” {x : V(x) ≤ E}.

In 2012, two of the authors of the present paper introduced the concept of the
localization landscape. They observed in Ref. 6 that the solution u to the equation
(−∆ + V)u = 1 appears to have an almost magical power to “correctly” predict the
regions of localization for disordered potentials V and to describe a precise picture
of their exponential decay. For instance, if V takes the values 0 and 1 randomly on a
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2 THE EFFECTIVE POTENTIAL OF AN M-MATRIX

two-dimensional lattice Z2 (a classical setting of the Anderson–Bernoulli localiza-
tion) the eigenfunctions at the bottom of the spectrum are exponentially localized,
that is, exponentially decaying away from some small region, but this would not
be detected by the Agmon theory because the region {V ≤ E} could be completely
percolating and there is no “room” for the Agmon-type decay, especially if the
probability of V = 0 is larger than the probability of V = 1. And indeed, the phe-
nomenon of Anderson localization is governed by completely different principles,
relying on the interferential rather than confining impact of V . On the other hand,
looking at the landscape in this example, we observe that the region {1u ≤ E} ex-
hibits isolated wells and that the eigenmodes decay exponentially away from these
wells. It turns out that indeed, the reciprocal of the landscape, 1

u , plays the role of
an effective potential, and in Ref. 7 Arnold, David, Jerison, and the first two authors
have proved that the eigenfunctions of −∆ + V decay exponentially in the regions
where { 1u > E} with the rate controlled by the so-called Agmon distance associated
to the landscape, a geodesic distance in the manifold determined by (1

u − E)+. The
numerical experiments in Ref. 8 and physical considerations in Ref. 9 show an as-
tonishing precision of the emerging estimates, although mathematically speaking
in order to use these results for factual disordered potentials one has to face, yet
again, a highly non-trivial question of resonances – see the discussion in Ref. 7.
At this point we have only successfully treated Anderson potentials via the local-
ization landscape in the context of a slightly different question about the integrated
density of states [10].

However, the scope of the landscape theory is not restricted to the setting of
disordered potentials. In fact, all results connecting the eigenfunctions to the land-
scape are purely deterministic, and one of the key benefits of this approach is the
absence of a priori assumptions on the potential V , which already in Ref. 7 allowed
us to rigorously treat any operator − div A∇ + V with an elliptic matrix of bounded
measurable coefficients A and any non-negative bounded potential V , a level of the
generality not accessible within the classical Agmon theory. These ideas and re-
sults have been extended to quantum graphs [11], to the tight-binding model [12],
and perhaps most notably, to many-body localization in Ref. 13.

This paper shows that the applicability of the landscape theory in fact extends
well beyond the scope of the Schrödinger operator, or, for that matter, even the
scope of PDEs, at least in the bottom of the spectrum where the region { 1u ≤ E}
exhibits isolated potential wells. Indeed, let us now consider a general real sym-
metric positive definite N × N matrix A = (ai j)i, j∈[N], which one can view as a
self-adjoint operator on the Hilbert space `2([N]) on the domain [N] B {1, . . . ,N}.
In certain situations one expects A to exhibit “localization” in the following two
related aspects, which we describe informally as follows:
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(i) (Eigenvector localization) Each eigenvector 1 φ = (φk)k∈[N] of A is local-
ized to some index i of [N], so that |φk| decays when |k − i| exceeds some
localization length L � N.

(ii) (Poisson statistics) The local statistics of eigenvalues λ1, . . . , λN of A asymp-
totically converge to a Poisson point process in a suitably rescaled limit as
N → ∞.

Empirically, the phenomena (i) and (ii) are observed to occur in the same matrix
ensembles A; intuitively, the eigenvector localization property (i) implies that A
“morally behaves like” a block-diagonal matrix, with the different blocks of A sup-
plying “independent” sets of eigenvalues, thus leading to the Poisson statistics in
(ii). However, the two properties (i), (ii) are not formally equivalent; for instance,
conjugating A by a generic unitary matrix will most likely destroy property (i)
without affecting property (ii).

Example 1.1 (Gaussian band matrices). Consider the random band matrix Gaussian
models A, in which the entries ai j are independent Gaussians for 1 ≤ i ≤ j ≤ N and
|i − j| ≤ W, but vanish for |i − j| > W, for some 1 ≤ W ≤ N. We refer the reader
to Ref. 15 (§2.2) for a recent survey of this model. If the matrix is normalized to
have eigenvalues E concentrated in the interval [−2, 2] (and expected to obey the

Wigner semicircular law
1

2π
(4 − E2)1/2

+ for the asymptotic density of states), it is
conjectured (see e.g., Ref. 16) that the localization length L should be given by the
formula

L ∼ min(W2(4 − E2),N);
in particular, in the bulk of the spectrum, it is conjectured that localization (in
both senses (i), (ii)) should hold when W � N1/2 (with localization length L ∼
W2) and fail when W � N1/2, while near the edge of the spectrum (in which
4 − E2 = O(L−2/3)) localization is expected to hold when W � N5/6 and fail when
W � N5/6. Towards this conjecture, it is known [17] in the bulk 4 − E2 ∼ 1
that (i), (ii) both fail when W � N3/4+ε for any fixed ε > 0, while localization in
sense (i) was established for W � N1/7 in Ref. 18 (see also Ref. 19). In the edge
4− E2 = O(L−2/3), both directions of the conjecture have been verified in sense (ii)
in Ref. 20, but the conjecture in sense (i) remains open. Finally, we remark that
in the regime W = O(1) the classical theory of Anderson localization [21] can be
used to establish both (i) and (ii).

We now focus on the question of establishing eigenvector localization (i). Can
one deduce any uniform bound on the eigenvectors of a general matrix A depicting,
in particular, a structure of the exponential decay similarly to the aforementioned

1One can also study the closely related phenomenon of localization of Green’s functions (A−z)−1.
This latter type of localization is also related to the spectrum of associated infinite-dimensional
operators consisting of pure point spectrum, thanks to such tools as the Simons–Wolff criterion [14].
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considerations for a matrix of the Schrödinger operator −∆+V? An immediate ob-
jection is that there is no “potential” that could play the role of V . Even aside from
the fact that the proof of the Agmon decay relies on the presence of both kinetic and
potential energy, as well as on many PDE arguments, it is not clear whether there is
a meaningful function, analogous to V , which governs the behavior of eigenvectors
of a general matrix. The main result of this paper is that, surprisingly, the landscape
theory still works, at least in the class of real symmetric Z-matrices (matrices with
non-positive entries off the diagonal). Furthermore, when A is a real symmetric
non-singular M-matrix (a positive semi-definite Z-matrix), the reciprocal 1

u of the
solution to Au = 1 gives rise to a distance function ρ on the index set [N] which
predicts the exponential decay of the eigenvectors.

2. Main results

We introduce an Agmon-type distance ρ on the index set [N] B {1, . . . ,N} as-
sociated to an N × N matrix A, a N × 1 “landscape” vector u, and an additional
spectral parameter E ∈ R:

Definition 2.1 (Distance). Let A = (ai j)i, j∈[N] be a real symmetric N ×N matrix, let
u = (ui)i∈[N] be a vector with all entries non-zero, and let E be a real number. We
define the effective potential V = (vi)i∈[N] by the formula

(2.2) vi B
(Au)i

ui
,

the shifted effective potential by the formula

(2.3) vi B (vi − E)+

(where x+ B max(x, 0)), the potential well set by the formula

KE B {i ∈ [N] : vi = 0} =

{
i ∈ [N] :

(Au)i

ui
≤ E

}
,

and the distance function ρ = ρA,u,E : [N] × [N]→ [0,+∞] by the formula

ρ(i, j) B inf
L≥0

inf
i0,...,iL∈[N]:i0=i,iL= j

(
L∑
`=0

ln

(
1 +

√
√vi`vi`+1

|ai`i`+1 |

))
where we restrict the infimum to those paths i0, . . . , iL for which ai`i`+1 , 0 for
` = 0, . . . , L − 1. To put it another way, ρ is the largest pseudo-metric such that

(2.4) ρ(i, j) ≤ ln

(
1 +

√
√viv j

|ai j|

)
whenever ai j , 0.

For any set M ⊂ [N] we denote by ρ(i,M) B inf j∈M ρ(i, j) the distance from a
given index i to M using the distance ρ (with the convention that ρ(i,M) = ∞ if M
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is empty). Similarly, for any set K ⊂ [N], we define ρ(K,M) B infi∈K ρ(i,M) for
the separation between K and M.

It is easy to see that ρ is a pseudo-metric in the sense that it is symmetric and
obeys the triangle inequality with ρ(i, i) = 0, although without further hypotheses2

on A, u, E it is possible that ρ(i, j) could be zero or infinite for some i , j. One
can view ρ as a weighted graph metric on the graph with vertices [N] and edges
given by those pairs (i, j) with ai j , 0, and with weights given by the right-hand
side of (2.4). We discuss the comparison between ρ and the Euclidean metric in
the beginning of Section 5.

We recall that a Z-matrix is any N×N matrix A such that ai j ≤ 0 when i , j, and
a M-matrix is a Z-matrix with all eigenvalues having non-negative real part. Our
typical set-up is the case when A is a real symmetric non-singular M-matrix, i.e., a
positive definite matrix with non-positive off-diagonal entries, and in that case we
will choose u as the landscape function, i.e., the solution to Au = 1, with 1 denoting
a vector with all values equal to 1. We say that a matrix A has connectivity at most
Wc if every row and column has at most Wc non-zero non-diagonal entries. If A is
a real symmetric non-singular M-matrix, all the principal minors are positive (see
e.g., Ref. 22), and hence by Cramér’s rule all the coefficients of the landscape u
will be non-negative. In this case, a simple form of our main results is as follows.

Theorem 2.5 (Exponential localization using landscape function). Let A be a sym-
metric N×N M-matrix with connectivity at most Wc for some Wc ≥ 2. Let u B A−11
be the landscape function. Assume that ϕ is an `2-normalized eigenvector of A cor-
responding to the eigenvalue E. Let ρ = ρA,u,E, K = KE be defined by Definition
2.1. Then ∑

k

ϕ2
k e

2ρ(k,K)
√

Wc

(
1
uk
− E
)

+

≤ Wc max
1≤i, j≤N

|ai j|.

Informally, the above inequality ensures that an eigenvector ϕ experiences ex-
ponential decay away from the wells of the effective potential V = ( 1

uk
)k∈[N] cut off

by the energy level E. This is what typically happens for the Schrödinger oper-
ator −∆ + V (according to some version of the Agmon theory); see for instance
[7, Corollary 4.5]. However, the existence of such an effective potential for an
arbitrary M-matrix is perhaps surprising.

In fact our results apply to the larger class of real symmetric Z-matrices A and
more general vectors u, and can handle “local” eigenvectors as well as “global”
ones. We first introduce some more notation.

Definition 2.6 (Local eigenvectors). Let M ⊂ [N]. We use IM to denote the N × N
diagonal matrix with (IM)ii equal to 1 when i ∈ M and 0 otherwise. If ϕ ∈ `2([N]),

2For instance, if we assume that A is irreducible in the sense that it cannot be expressed (after
permuting indices) as a block-diagonal matrix, then ρ(i, j) will always be finite.
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we write ϕ|M B IMϕ for the restriction of ϕ to M (extending by zero outside of M),
and similarly if A is an N × N matrix we write A|M B IMAIM for the restriction of
A to M × M (again extending by zero). We say that a vector ϕ ∈ `2([N]) is a local
eigenvector of A on the domain M with eigenvalue E if ϕ = ϕ|M is an eigenvector
of A|M with eigenvalue E, thus IMϕ = ϕ and IMAIMϕ = Eϕ.

To avoid confusion we shall sometimes refer to the original notion of an eigen-
vector as a global eigenvector; this is the special case of a local eigenvector in
which M = [N].

We can now state a more general form of Theorem 2.5.

Theorem 2.7 (Exponential localization). Let A be a symmetric N × N Z-matrix
with connectivity at most Wc for some Wc ≥ 2, and let u be some n × 1 vector of
non-negative coefficients. Let E > 0 be an energy threshold, and let ρ = ρA,u,E, vi,
and KE be defined by Definition 2.1. Then for any subset D of [N] and any local
eigenvector ϕ of A of eigenvalue E ≤ E on Dc = [N] \ D, one has

(2.8) (E − E)
∑
k<KE

|ϕk|
2e2αρ(k,KE\D)

+

(
1 −

α2Wc

2

)∑
k<KE

|ϕk|
2e2αρ(k,KE\D)vk

≤
Wc

2
‖ϕ‖2 max

i∈KE\D, j<KE\D
|ai j|,

for any 0 < α ≤
√

2/Wc. (Here and in the sequel we use ‖ · ‖ to denote the `2([N])
norm.)

In particular, if α =
√

1/Wc, E = E, D = ∅, and ϕ is an `2-normalized (global)
eigenvector of A on the entire domain [N] with the eigenvalue E, (2.8) implies that

(2.9)
∑
k∈[N]

ϕ2
k e

2ρ(k,KE )
√

Wc vk ≤ Wc max
i, j∈[N]

|ai j|.

There are two terms on the left-hand side of (2.8), corresponding to two different
lines in the display, and they serve different purposes. The bound for the term in
the second line (which in particular yields (2.9)) asserts roughly speaking that the
eigenvector ϕk experiences exponential decay in the regime where k is far from KE
in the sense that ρ(k,KE) �

√
Wc. Note that Theorem 2.5 is the special case of

(2.9) when A is a M-matrix and u = A−11.
By taking advantage of the term in the first line of (2.8), we can proceed fur-

ther and demonstrate an approximate diagonalization, or decoupling, of A on the
collection of disjoint subregions defined by the landscape function u, by following
the arguments from Ref. 7. The details are too technical to be put in the introduc-
tion, and we refer the reader to Section 5. In short, the idea is that viewing [N]
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as a graph induced by A (with the vertices connected whenever ai j , 0), we can
define a Voronoi-type splitting of this graph into subgraphs, Ω`, each containing an
individual connected component of KE (or sometimes merging a few components
if convenient). Then A can be essentially decoupled into smaller matrices A|Ω`

with
the strength of coupling exponentially small in the ρA,u distance between individ-
ual “wells”. Related to this, the spectrum of A will be exponentially close to the
combined spectrum of A|Ω`

’s.
Note how the geometry of the metric ρ is sensitive to the spatial distribution of

the matrix A, and in particular to the connectivity properties of the graph induced by
the locations of the nonzero locations of A. For instance, conjugating A by a generic
orthogonal matrix will almost certainly destroy the localization of the eigenvectors
ϕ, but will also heavily scramble the metric ρ (and most likely also destroy the
property of being an M-matrix or Z-matrix). On the other hand, conjugating A by a
permutation matrix will simply amount to a relabeling of the (pseudo-)metric space
([N], ρ), and not affect the conclusions of Corollary 2.5 and the decoupling results
in Theorem 5.2 and Corollary 5.5 in any essential way.

We will show some results of the numerical simulations in the next section, and
then pass to the proofs, but let us say a few more words about the particular cases
which would perhaps be of most interest.

Random band matrices. Here the connectivity is Wc = 2W. Strictly speak-
ing, the random Gaussian band matrix models A considered in Example 1.1 do not
fall under the scope of Corollary 2.5, because the matrices will not be expected
to have non-positive entries away from the diagonal, nor will they be expected to
be positive definite. However, one can modify the model to achieve these prop-
erties (at least with high probability), by replacing the Gaussian distributions by
distributions supported on the negative real axis, and then shifting by a suitable
positive multiple of the identity to ensure positive definiteness with high probabil-
ity. These changes will likely alter the semicircle law for the bulk distribution of
eigenvalues, but in the spirit of the universality phenomenon, one may still hope
to see localization of eigenvectors, say in the bulk of the spectrum, as long as the
width W of the band matrix is small enough (in particular when W � N1/2). In
this case Corollary 2.5 entails exponential decay of the eigenvectors governed by
the landscape 1

u and Theorem 5.2 and Corollary 5.5 yield the corresponding diag-
onalization of A. Of course, the key question is the behavior of the landscape. If
the set KE of wells is localized to a short interval, then this corollary will establish
localization in the spirit of (i) above; however, if KE is instead the union of several
widely separated intervals then an eigenvector could in principle experience a res-
onance in which non-trivial portions of its `2 energy were distributed amongst two
or more of these intervals. Whether or not this happens is governed to some extent
by Theorem 5.2 and Corollary 5.5. These results indicate that the resonances have
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to be exponentially strong in the distance between the wells, and our numerical
experiments suggest that such strong resonances are in fact quite rare.

Tight-binding Schrödinger operators. When A is a matrix of the tight-binding
Schrödinger operator (a standard discrete Laplacian plus a potential) in a cube in
Zd, the connectivity parameter Wc is now the number of nearest neighbors, 2d, and
the size of the matrix is the sidelength of the cube to the power d. If the potential
is non-negative, A is an M-matrix with the entries ai j equal to −1 whenever i , j
corresponds to the nearest neighbors in the graph structure induced by Zd, and aii =

2d + Vi. This particular case has been considered in Ref. 12 and our results clearly
cover it. However, the tight-binding Schrödinger is only one of many examples,
even when concentrating on applications in physics. We can treat any operator
in the form −divA∇ + V on any graph structure, provided that the signs of the
coefficients yield an M-matrix. We can also address long range hopping for a very
wide class of Hamiltonians.

Many-body system and statistical physics. Much more generally, in statisti-
cal physics, the probability distribution over all possible microstates (or the den-
sity matrix in the quantum setting) of a given system evolves through elementary
jumps between microstates. This evolution is a Markov process whose transition
matrix is a Z-matrix which is symmetric up to a multiplication by a diagonal ma-
trix. For a micro-reversible evolution, the matrix A is symmetric and is akin to a
weighted Laplacian on the high-dimensional indirect graph whose vertices are the
microstates and whose edges are the possible transitions.

One essential result of statistical physics is that, under condition of irreducibility
of the transition matrix, the system eventually reaches thermodynamical equilib-
rium. Our approach might open the way to unravel the structure of the eigenvec-
tors of the Markov flow, and thus to understand how localization of these eigen-
vectors can induce a many-body system to remain “frozen” for mesoscopic times
out of equilibrium. This effect is referred to as many-body localization. A first suc-
cessful implementation of the landscape theory in this context has been recently
achieved by V. Galitski and collaborators [13] for a many-body system of spins
with nearest-neighbor interaction. In this work, the authors cleverly use the ideas
of Ref. 23 to transfer the problem to the Fock space and to deduce an Agmon-type
decay governed by the corresponding effective potential. Once in the Fock space,
their results are also a particular case of Theorem 2.7 and Theorem 5.2. From that
point, however, the authors of Ref. 13 go much farther to discuss, based on physi-
cal considerations, deep implications of such an exponential decay on many-body
localization, but in the present paper we restrict ourselves to mathematics and will
not enter those dangerous waters.

Finally, we would like to mention that the idea of trying the localization land-
scape and similar concepts in the generality of random matrices has appeared be-
fore, e.g., in Refs 24 and 25. However, the authors relied on a different principle,
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extending the inequality |ϕ| ≤ Eu from Ref. 6 to these more general contexts, which
by itself, of course, does not prove exponential decay. Ref. 24 actually deals with
a different proxy for the landscape and different inequalities, but we (and the au-
thors) believe that these are related to the landscape and that, again, they do not
prove exponential decay estimates. However, we would like to mention that the
importance of M-matrices was already suggested in Ref. 25, and it was inspiring
and reassuring to arrive at the same setting from such different points of view.

3. Numerical simulations

We ran numerical simulations to compute the localization landscape u, the effec-
tive potential 1

u , and the eigenvectors for several realizations of random symmetric
M-matrices. The diagonal coefficients are random variables which follow a cen-
tered normal law of variance 1. The off-diagonal coefficients belonging to the first
Wc/2 diagonals of the upper triangle of the matrix are minus the absolute values of
random variables following the same law. The remaining off-diagonal coefficients
of the upper triangle are taken to be zero, and the lower triangle is completed by
symmetry. This creates A0, a Z-matrix of bandwidth Wc + 1 (and connectivity Wc).
To ensure positivity, we add a multiple of the identity

(3.1) A := A0 + a I where a = ε − λ0 ,

λ0 being the smallest eigenvalue of A0 and ε = 0.1. The smallest eigenvalue of
the resulting matrix A is thus ε. The matrices A and A0 clearly have the same
eigenvectors and their spectra differ only by a constant shift.

Below are the results of several simulations. We take N = 103. Figures 1-4
correspond to random symmetric M-matrices constructed as above of connectivity
Wc = 2, 6, 20, and 32. Each figure consists of two frames:

The top frame displays the localization landscape u superimposed with the first
5 eigenvectors plotted in log10 scale. The exponential decay of the eigenvectors
can clearly be observed on this frame for Wc = 2, 6, and 20. One can see that,
as expected, it starts disappearing around Wc = 32 (Wc being in this case roughly
equal to

√
N). It is important to observe that in all cases the eigenvectors decay

exponentially except for the wells of 1
u (equivalently, the peaks of u) where they

stay flat. This is exactly the prediction of Theorem 2.7.
The bottom frame displays the effective potential 1

u superimposed with the first
5 eigenvectors plotted in linear scale. The horizontal lines indicate the energies of
the corresponding eigenvectors. One can clearly see the localization of the eigen-
vectors inside the wells of the effective potential.

Figure 5 provides numerical evidence for finer effects encoded in Theorems 2.7
and 5.2. The two Theorems combined prove exponential decay away from the
wells of the effective potential governed the Agmon distance associated to 1/u, at
least in the absence of resonances. In Figure 5 we display, for several values of
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Figure 1. (a) Localization landscape (blue line) and the 5 first
eigenvectors (in log10 scale) for a random 3-band symmetric M-
matrix. (b) Effective potential (1

u ) and the first eigenvectors (in linear
scale). The baseline (the 0 of the vertical axis) is chosen differently
for each eigenvector so that it coincides with the eigenvalue of the
same eigenvector of the left axis. This convention will be used in
all Figures 1 to 4.

Figure 2. (a) Localization landscape (blue line) and the 5 first
eigenvectors (in log10 scale) for a random 7-band symmetric M-
matrix. (b) Effective potential ( 1

u ) and the first eigenvectors (in lin-
ear scale)
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Figure 3. (a) Localization landscape (blue line) and the 5 first
eigenvectors (in log10 scale) for a random 21-band symmetric M-
matrix. (b) Effective potential ( 1

u ) and the first eigenvectors (in lin-
ear scale).

Figure 4. (a) Localization landscape (blue line) and the 5 first
eigenvectors (in log10 scale) for a random 33-band symmetric M-
matrix. (b) Effective potential ( 1

u ) and the first eigenvectors (in lin-
ear scale).

connectivity Wc and several eigenvectors, the values − ln |ψi| against the distance
ρA,u,E(i, imax), taking as the origin the point imax where |ψ| is maximal, and using the
corresponding eigenvalue as the threshold E. The linear correspondence down to
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Figure 5. Scatter plots of the logarithm of the absolute value of
several eigenvectors against the corresponding Agmon distance, for
3 different values of the connectivity Wc = 2, 6, and 20 (frames (a),
(b), and (c)). For each eigenvector (eigenvectors #1, 2, and 5 in each
frame), we display − ln |ψi| at any given point i vs. the Agmon dis-
tance between the point i and the location where |ψ| is maximal. The
plots exhibit a strong linear relationship between these two quanti-
ties, down to values of |ψi| around e−40 (of the order of 10−18), which
is a signature of the exponential decay. The slope seems to depend
only on Wc.

e−40 is quite remarkable and shows that e−cρA,u,E(i,imax) is not only an upper bound,
but actually an approximation of the eigenfunction, and that the resonances are
indeed unlikely. On the other hand, the constant c does not appear to be equal to
1/
√

Wc which means that in this respect our analysis is probably not optimal, at
least in the class of random matrices. Indeed, we believe that the application of
the deterministic Schur test in the proof does not yield the best possible constant
for random coefficients, but since we emphasize the universal deterministic results,
this step cannot be further improved.

Finally, Figure 6 shows that Hypothesis 5.1 is actually fulfilled in some realis-
tic situations. The top frame displays the example already presented in Figure 2.
Superimposed to the eigenvectors, the set KE introduced in Definition 2.1 is also
drawn (grey rectangles) for E = 0.7 (horizontal dashed red line). The middle frame
displays the plot of the Agmon distance to KE. Thresholding this plot at S = 2
(green horizontal line) allows us to draw the S -neighborhood of KE (the orange
rectangles). The bottom frame shows a possible partition of the entire domain into
five subdomains (Ω1, · · · ,Ω5), each subdomain containing at least one well of the
effective potential 1/u. The distances ρ(∂−Ω`,K`) defined in Hypothesis 5.1 are
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Figure 6. (a) Eigenvectors in log scale, superimposed with the set
KE defined in 2.1 (grey rectangles) for the value E = 0.7 (indicated
by the red dashed line). (b) Plot of the Agmon distance of each
point to the set KE. The orange rectangles correspond to the S -
neighborhood of KE for S = 2 (indicated by the green horizontal
line). (c) Partition of the domain in five subdomains. All distances
ρ(∂−Ω`,K`) defined in 5.1 are larger than S . This partition thus
fulfills Hypothesis 5.1.

here respectively 48.1584, 2.8093, 4.2169, 3.6784, 9.3756. They all are larger than
S , thus satisfying Hypothesis 5.1 .

To be more precise, let us turn to the exact statements.
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4. The proof of the main results

In this section we prove Theorem 2.7. We will use a double commutator method.
Let [A, B] B AB− BA denote the usual commutator of N × N matrices, and 〈, 〉 the
usual inner product on `2([N]). We observe the general identity

(4.1) 〈[[A,D],D]u, u〉 =
∑

i, j∈[N]:i, j

ai juiu j(dii − d j j)2.

whenever A = (ai j)i, j∈[N] is a matrix, D = diag(d11, . . . , dnn) is a diagonal matrix,
and u = (ui)i∈[N] is a vector. In particular we have

(4.2) 〈[[A,D],D]u, u〉 ≤ 0

whenever A is a Z-matrix and the entries of u have constant sign. It will be this
negative definiteness property that is key to our arguments. One can compare (4.1),
(4.2) to the Schrödinger operator identity

〈[[−∆ + V, g], g]u, u〉 = −2
∫
Rd
|∇g|2|u|2 ≤ 0

for any (sufficiently well-behaved) functions V, g, u : Rd → R.
To exploit (4.1) we will use the following identity.

Lemma 4.3 (Double commutator identity). Let A,Ψ,G be N × N real symmetric
matrices such that ΨG = GΨ, and suppose that u is an N × 1 vector. Then

〈G[Ψ, A]u,GΨu〉 =
1
2
〈[[A,GΨ],GΨ]u, u〉 −

1
2
〈[[A,G],G]Ψu,Ψu〉.

Proof. By the symmetric nature of G we have

〈[[A,G],G]Ψu,Ψu〉 = 2〈GAΨu,GΨu〉 − 2〈AGΨu,GΨu〉

and similarly from the symmetric nature of GΨ we have

〈[[A,GΨ],GΨ]u, u〉 = 2〈GΨAu,GΨu〉 − 2〈AGΨu,GΨu〉.

The claim follows. �

We can now conclude

Corollary 4.4. Let A = (ai j)i, j∈[N] be a N × N real symmetric Z-matrix. Assume
that D is some subset of [N] and that ϕ is a local eigenvector of A corresponding
to the eigenvalue E on Dc = [N] \ D. Let u = (ui)i∈[N] be a vector with all positive
entries, and let G = diag(G11, . . . ,GNN) be a real diagonal matrix. Then

(4.5)
∑
k∈[N]

ϕ2
kG

2
kk

(
(Au)k

uk
− E
)
≤ −

1
2

∑
i, j∈[N]:i, j

ai jϕiϕ j(Gii −G j j)2.
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Proof. Writing [Ψ, A] = Ψ(A − EI) − (A − EI)Ψ, we apply Lemma 4.3 with Ψ B
diag(ϕ1/u1, . . . , ϕN/un), to get

〈GΨ(A − EI)u,GΨu〉 − 〈G(A − EI)Ψu,GΨu〉

=
1
2
〈[[A,GΨ],GΨ]u, u〉 −

1
2
〈[[A,G],G]Ψu,Ψu〉.

By (4.2) the first term on the right-hand side above is non-positive and hence, the
entire expression is less than or equal to

−
1
2
〈[[A,G],G]Ψu,Ψu〉 ≤ −

1
2

∑
i, j∈[N]:i, j

ai jϕiϕ j(Gii −G j j)2.

The latter inequality follows from (4.1) and the fact that by definition Ψu = ϕ.
Since G is diagonal, and ϕ = Ψu is a local eigenvector on Dc, the second term

on the left-hand side is equal to zero. Indeed, (Ψu)k = (GΨu)k = 0 for k ∈ D, and
hence

〈G(A − EI)Ψu,GΨu〉 = 〈G(A − EI)|DcΨu,GΨu〉 = 0.

Writing

Ψ(A − EI)u =

((
(Au)k

uk
− E
)
ϕk

)
k∈[N]

the claim follows. �

The strategy is then to apply this corollary with a sufficiently slowly varying
function G, so that one can hope to mostly control the right-hand side of (4.5) by
the left-hand side.
Proof of Theorem 2.7. We abbreviate KE as K for simplicity. We can of course
assume that ϕ is not identically zero. If K \D was empty we could apply Corollary
4.4 with Gkk = 1 to obtain a contradiction, so we may assume without loss of
generality that K \ D is non-empty. We apply Corollary 4.4 with

Gii B 1i<K\D eαρA,u,E(i,K\D),

where the indicator 1i<K\D is equal to zero for i ∈ K \ D and equal to 1 otherwise.
By construction, Gkk vanishes for k ∈ K \ D, and ϕ vanishes on D, so that Gkkϕk
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vanishes on K. Thus by (2.3)(
E − E

)∑
k<K

ϕ2
ke2αρ(i,K) +

∑
k<K

ϕ2
ke2αρ(i,K)vk

=
∑
k<K

ϕ2
kG

2
kk

(
E − E

)
+
∑
k<K

ϕ2
kG

2
kk

(
(Au)k

uk
− E
)

+

=
∑
k<K

ϕ2
kG

2
kk

(
E − E

)
+
∑
k<K

ϕ2
kG

2
kk

(
(Au)k

uk
− E
)

=
∑
k∈[N]

ϕ2
kG

2
kk

(
(Au)k

uk
− E
)

≤ −
1
2

∑
i, j∈[N]:ai j,0;i, j

ai jϕiϕ j(Gii −G j j)2.

(4.6)

Now we need to estimate the quantity Gii −G j j whenever ai j , 0. We first observe
from the triangle inequality and (2.4) that

|eαρ(i,K\D) − eαρ( j,K\D)| ≤ eαρ(i,K\D)
(
eαρ(i, j) − 1

)
≤ eαρ(i,K\D)

((
1 +

√
√viv j

|ai j|

)α

− 1

)

≤ eαρ(i,K\D)α

√
√viv j

|ai j|

and similarly with i and j reversed; in particular

|eαρ(i,K\D) − eαρ( j,K\D)|2 ≤ α2eαρ(i,K\D)eαρ( j,K\D)
√viv j

|ai j|
.

Thus we have

(4.7) (Gii −G j j)2 ≤ α2eαρ(i,K\D)eαρ( j,K\D)
√viv j

|ai j|

when i, j < K \ D.
Next, suppose that i < K \ D, j ∈ K \ D. Then G j j = 0, and from (2.4) we have

ρ(i,K \ D) ≤ ρ(i, j)

≤ ln

(
1 +

√
√viv j

|ai j|

)
= 0
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since v j = 0. We conclude that (Gii −G j j)2 = 1 in this case. Similarly if i ∈ K \ D
and j < K \ D. Finally, if i, j ∈ K \ D then Gii = G j j = 0, so that (Gii −G j j)2 = 0
in this case. Applying all of these estimates, we can bound the right-hand side of
(4.6) by

α2

2

∑
i, j<K\D:i, j; ai j,0

|ϕi||ϕ j|eαρ(i,K\D)eαρ( j,K\D)√viv j

+
1
2

∑
i∈K\D; j<K\D or i<K\D, j∈K\D; ai j,0

|ai j||ϕi||ϕ j|.

(4.8)

Since A has at most Wc non-zero non-diagonal entries in each row and column, we
see from Schur’s test (or the Young inequality ab ≤ 1

2a2 + 1
2b2) that∑

i, j<K\D:i, j; ai j,0

|ϕi||ϕ j|eαρ(i,K\D)eαρ( j,K\D)
√viv j

|ai j|
≤ Wc

∑
i<K\D

|ϕi|
2e2αρ(i,K\D)vi

and ∑
i∈K\D; j<K\D or i<K\D, j∈K\D;ai j,0

|ai j||ϕi||ϕ j| ≤ Wc( sup
i∈K\D; j<K\D

|ai j|)
∑
i∈[N]

|ϕi|
2.

Combining all of the above considerations, we arrive at the conclusion of the theo-
rem. �

5. Diagonalization

Let the notation and hypotheses be as in Theorem 2.7. We abbreviate ρ = ρA,u,E
and K = KE. To illustrate the decoupling phenomenon we place the following
hypothesis on the potential well set K:

Hypothesis 5.1 (Separation hypothesis). There exists a parameter S > 0, a parti-
tion K =

⋃
` K` of K into disjoint “wells” K`, and “neighborhoods” Ω` ⊃ K` of

each well K` obeying the following axioms:
(i) The neighborhoods Ω` are all disjoint.

(ii) The neighborhoods Ω` contain the S -neighborhood of K`, thus ρ(Ωc
`,K`) ≥

S .
(iii) For any `, we have ρ(∂−Ω`,K`) ≥ S , where the inner boundary ∂−Ω` is

defined as the set of all k ∈ Ω` such that ak j , 0 for some j < Ω`.

We remark that axioms (i), (ii), (iii) imply that the full boundary ∂Ω`, defined as
the union of the inner boundary ∂−Ω` and the outer boundary ∂+Ω` consisting of
those j < Ω` such that ak j , 0 for some k ∈ Ω`, stays at a distance at S from K,
since every element of an outer boundary ∂+Ω` either lies in the inner boundary of
another Ω`′ , or else lies outside of all of the Ω`′ . We also remark that axiom (iii) is
a strengthening of axiom (ii), since if there was an element k in Ωc

` at distance less
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than S from K` then by taking a geodesic path from K` to k one would eventually
encounter a counterexample to (iii), but we choose to retain explicit mention of
axiom (ii) to facilitate the discussion below.

Informally, to obey Hypothesis 5.1, one should first partition K into “connected
components” K`, concatenating two such components together if their separation ρ
is too small, so that the separation S B inf`,`′ ρ(K`,K`′) is large, and then perform
a Voronoi-type partition in which Ω` consists of those k ∈ [N] which lie closer to
K` in the ρ metric than any other K`′ . The axioms (i), (ii) would then be satisfied
for any S < S /2 thanks to the triangle inequality, and when S is large one would
expect axiom (iii) to also be obeyed if we reduce S slightly. It seems plausible that
one could weaken the axiom (iii) and still obtain decoupling results comparable to
those presented here, but in this paper we retain this (relatively strong) axiom in
order to illustrate the main ideas.

We have already demonstrated in Section 3 non-vacuousness of Hypothesis 5.1,
at least in typical numerical examples. Let us say a few more words in this di-
rection. Recall the simulations in Section 3. Much as there, let us assume for the
moment that we are working with a band matrix and W is the band width, that is,
ai j = 0 whenever |i − j| > W. One can deduce a rather trivial lower bound for the
Agmon distance associated to v as in Definition 2.1. If vi ≥ vmin for all i in an inter-
val I = [i1, iq] ∪ N of length q, then the Agmon distance between two components
of the complement of I

ρ(i1 − 1, iq + 1) ≥
⌊ iq − i1 + 1 −W

W

⌋
ln
(

1 +

√
vmin

maxi, j∈[N] ai j

)
.

Here, the lower bracket as usual stands for the floor function. The above inequality
follows directly from the observation that the number of non-trivial components
such that vi` , 0 and vi`+1 , 0 and ai`i`+1 , 0 of the path from i1 − 1 to iq + 1 is at

least
⌊

iq−i1+1−W
W

⌋
. Going back to our definitions, and fixing some E > E and the

respective partition of KE = ∪`K` into disjoint components, we denote by d the
minimal “Euclidean” distance between the components, i.e.,

d := min
`

min
i∈K`, j∈K`+1

|i − j|.

It is in our interest to make this distance (or rather the corresponding Agmon dis-
tance) substantial, so we might combine several disjoint components into one K`.
With this at hand, we choose Ω` to be maximal possible neighborhoods of K` which
are still disjoint. Since the inner boundary ∂−Ω` consists of i ∈ Ω` such that j < Ω`

and ai j , 0, that is, has “width” at most W, one can see that with the aforemen-
tioned choices the “Euclidean” distance between K` and ∂−Ω`

min
i∈K`, j∈∂−Ω`

≥
d
2
−W,
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or, to be more precise,
⌊

d+1
2

⌋
−W. By design, the complement of K` in Ω` consists of

points such that vi > Ē, that is, there is vmin > 0 such that v > vmin in Ω`\(∂−Ω`∪K`).
Hence, at the very least, for this vmin > 0 we have

ρ(∂−Ω`,K`) ≥
⌊d/2 − 2W − 1

W

⌋
ln
(

1 +

√
vmin

maxi, j∈[N] ai j

)
.

Clearly, we could take a smaller subinterval of Ω` \ (∂−Ω` ∪ K`) and make vmin > 0
larger, not to mention that this is a trivial lower estimate which does not take into
account high values of v. In any case, this demonstrates that Hypothesis 5.1 is
non-vacuous.

Let ψ j denote the complete system of orthonormal eigenvectors of A on [N]
with eigenvalues λ j. Let Ψ(a,b) denote the orthogonal projection in `2([N]) onto the
span of eigenvectors ψ j with eigenvalue λ j ∈ (a, b). For a fixed ` let ϕ`, j denote a
complete orthonormal system of the local eigenvectors of A on Ω` with eigenvalues
µ`, j, and let Φ(a,b) be the orthogonal projection onto the span of the eigenvectors ϕ`, j

with eigenvalue µ`, j ∈ (a, b), over all ` and j.
The goal of this section is to prove that under the assumption of Hypothesis 5.1,

A can be almost decoupled according to
⋃

` Ω`, with the coupling exponentially
small in S . More precisely, we have the following result, which is an analogue of
[7, Theorem 5.1] in the M-matrix setting.

Theorem 5.2 (Decoupling theorem). Assume Hypothesis 5.1. Fix δ > 0 and let ϕ
be one of the local eigenvectors ϕ`, j with eigenvalue µ = µ`, j and µ ≤ E − δ. Then

(5.3) ‖ϕ − Ψ(µ−δ,µ+δ)ϕ‖
2 ≤

Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc ‖ϕ‖2 .

Conversely, if ψ is one of the global eigenvectors ψ j with eigenvalue λ = λ j ≤ E−δ,
then

(5.4) ‖ψ − Φ(λ−δ,λ+δ)ψ‖
2 ≤

Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc ‖ψ‖2 .

Proof. We mimic the arguments from Ref. 7. Let us consider the residual vector

r B Aϕ − µϕ = (A − A|Ω`
)ϕ.

Note that the expression (A−A|Ω`
)ϕ only depends on the values of ϕ in the boundary

region ∂Ω`. From Schur’s test one thus has

‖r‖ ≤ Wc
1/2 max

i, j∈[N]
|ai, j| ‖ϕ‖`2(∂Ω`).

We apply Theorem 2.7 with E = µ and D = Ωc
`, so that K \ D = K ∩ Ω` = K` and

ρ(k,K \ D) = ρ(k,K`) ≥ S for all k ∈ ∂Ω` by Hypothesis 5.1, which then yields

‖ϕ‖2`2(∂Ω`) ≤ e−2αS 1
E − µ

Wc

2
max
i, j∈[N]

|ai, j| ‖ϕ‖
2.
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Taking α B
√

2/Wc and recalling that E − µ > δ, we have

‖r‖2 ≤
1
δ

Wc
2

2
max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc ‖ϕ‖2.

From the spectral theorem one has

‖r‖2 ≥ δ2‖ϕ − Ψ(µ−δ,µ+δ)ϕ‖
2

and the claim (5.3) follows.
The proof of (5.4) is somewhat analogous. Let us define the residual vector

r̃ B
∑
`

(A|Ω`
− λI)ψ|Ω`

=
∑
`

IΩ`
[A, IΩ`

]ψ

where the matrices IΩ`
were defined in Definition 2.6. The values (IΩ`

[A, IΩ`
])ik

are only non-zero when aik , 0 and i, k ∈ ∂Ω`. In particular, by Hypothesis 5.1,
we have ρ(k,K) ≥ S , and r̃ only depends on the values of ψ outside of the S -
neighborhood of K. Applying Theorem 2.7 with E = λ and D = ∅ and applying
Schur’s test as before, we conclude that

‖r̃‖2 ≤
1
δ

Wc
2

2
max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc ‖ϕ‖2.

On the other hand, from the spectral theorem we have

‖r̃‖2 =
∑
`

‖(A|Ω`
− λI)ψΩ`

‖2

≥ δ2‖ψ − Φ(λ−δ,λ+δ)ψ‖
2

and the claim (5.4) follows. �

The theorem above assures that A can be essentially decoupled on the union of
Ω`’s in the sense that the eigenvectors of A are exponentially close to the span of
the eigenvectors of A|Ω`

, and vice versa. A direct corollary of this result is that
the eigenvalues of A are also exponentially close to the combined spectrum of A|Ω`

over all `:

Corollary 5.5. Assume Hypothesis 5.1. Fix some δ > 0. Consider the counting
functions

N(λ) B #{λ j : λ j ≤ λ}; N0(µ) B #{µ`, j : µ`, j ≤ µ}.

Assume that µ ≤ E and choose a natural number N̄ such that

Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 N̄ < e

2S√
Wc .

Then

(5.6) min(N̄,N0(µ − δ)) ≤ N(µ) and min(N̄,N(µ − δ)) ≤ N0(µ).
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Proof. Consider the first p unit eigenvectors ψ1, . . . , ψp of A, where p B min(N̄,N(µ−
δ)). By definition of the counting function, the eigenvalues λ1, . . . , λp of these
eigenvalues are less than µ − δ. Applying the second conclusion of Theorem 5.2,
we conclude that

‖ψk − Φ(0,µ)ψ
k‖2 ≤

Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc

for k = 1, . . . , p, Hence, for any nonzero linear combination ψ =
∑p

j=1 α jψ j, we
have

‖ψ − Φ(0,µ)ψ‖ ≤
∑

j

|α j|‖ψ
j − Φ(0,µ)ψ

j‖

≤

(Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc

)1/2
‖ψ‖p1/2

≤

(Wc
2

δ3 max
i, j∈[N]

|ai, j|
3 e−

2S√
Wc N̄
)1/2
‖ψ‖

< ‖ψ‖.

It follows that the restriction of Φ(0,µ) to the span of the ψ j, j = 1, . . . , p, is injective,
and hence the rank N0(µ) of the matrix Φ(0,µ) is at least p. In other words, N0(µ) ≥
p. This establishes the latter inequality in (5.6); the former one is established
similarly. �
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