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Abstract

We introduce the extended modal logic EML with regularity constraints and full
Presburger constraints on the number of children that generalize graded modali-
ties, also known as number restrictions in description logics. We show that EML
satisfiability is only pspace-complete by designing a Ladner-like algorithm. This
extends a well-known and non-trivial pspace upper bound for graded modal logic.
Furthermore, we provide a detailed comparison with logics that contain Presburger
constraints and that are dedicated to query XML documents. As an application, we
provide a logarithmic space reduction from a variant of Sheaves logic SL into EML
that allows us to establish that its satisfiability problem is also pspace-complete,
significantly improving the best known upper bound.

Key words: modal logic, Ladner-like algorithm, arithmetical constraint, regularity
constraint, computational complexity

1 Introduction

Logics for XML documents. In order to query XML documents with arith-
metical and regular constraints, logical and automata-based formalisms have

1 This is an extended version of [DL06]
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been recently introduced [SSMH04,ZL06,BT05,OTTR05,SSM07] leading to
various expressiveness and complexity results about logics and specialized
tree automata. As usual, XML documents are viewed as labeled, unranked
ordered trees. For instance, a logic with fixpoint operators, arithmetical and
regularity constraints is introduced in [SSMH04] and shown decidable with
an exponential time complexity, which improves results for description log-
ics with qualified number restrictions [CG05]. At the same period, the sis-
ter logic SL (“Sheaves Logic”) is shown decidable in [ZL06, Section 4.4] (see
also [ZL03]) with a non-elementary decision procedure. The more expressive
logic GDL is however shown undecidable in [ZL06] since GDL can express
properties about disjoint sequences of children, as done also in Separation
Logic (see e.g. [Rey02]). More generally, designing modal logics for semistruc-
tured data, either for tree-like models [Mar03,ABD+05] or for graph-like mod-
els [ADdR03,BCT04] has been a fruitful approach since it allows to reuse
known technical machineries adapted to special purpose formalisms. A tem-
poral logic with counting can be also found in [MR03] but it has been intro-
duced for other purposes, namely to characterize the expressive power of MSO
in which second-order quantifications are over paths.

Our motivation. The main goal of this work is to introduce a modal logic
allowing Presburger constraints (more general than those in graded modal log-
ics [BC85,Tob01,PS04] or description logics [HB91,HST00,CG05]) and with
regularity constraints as in the logical formalisms from [Wol83,ZL03,SSMH04]
but with a satisfiability problem that can be solved in polynomial space. This
would refine decidability and complexity results from [Tob01,SSMH04,ZL06].
Such an hypothetical logic would be much more helpful than the minimal
modal logic K that is also known to be pspace-complete [Lad77] but K
has not the ability to express such complex arithmetical and regularity con-
straints. With such requirements, fixpoint operators are out of the game since
modal µ-calculus is already exptime-complete. Similarly, Presburger con-
straints should be in a normal form since full Presburger logic has already a
complexity higher than 2exptime, see e.g. [FR74,Ber77]. It is worth observing
that as far as memory ressources are concerned, no exptime-complete prob-
lem is known to be solved in polynomial space. Hence, the potential difference
between exptime-completeness and pspace-completeness remains, so far, a
significant gap in practice for running algorithms (pspace and exptime have
not been proved to be distinct classes).

Our contribution. We consider an Extended Modal Logic EML with full
Presburger constraints on the number of children and with regularity con-
straints. It is a minor variant of either the fixpoint free fragment of [SSMH04]
or the Sheaves Logic SL [ZL06] (extending also Presburger Modal logic from
[Dem03a]). Relationships between EML, SL and the logic from [SSMH04]
are provided in the paper. Our main result states that EML satisfiability
is in pspace. The complexity upper bound is proved with a Ladner-like
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algorithm, see the original one in [Lad77] and this is strongly related to
tableaux methods, see e.g. [Fit83,Gor99]. Such an algorithm can be also advan-
tageously viewed as a specialized depth-first strategy to find proofs in an ana-
lytic proof system. Our results generalize what is known about graded modal
logic [Fin72,BC85,Tob01] (including also the majority logic from [PS04]) and
apart from its larger scope, we believe our proof is also much more trans-
parent. A different approach introduced in [SP06] provides similar algorithms
for graded modal logic and majority logic. Our proof uses the fact that it is
simple to characterize the Parikh image of regular images in terms of semilin-
ear sets (see [SSMH04,SSM07]) and systems of linear equations admit small
solutions [Pap81], see also [BT76]. The use of small solutions for such systems
goes back to [Rac78] in which the boundedness problem for vector addition
systems is shown in expspace by taking advantage of small solutions to gen-
erate small paths. Our algorithm can be viewed as the optimal composition
between an algorithm that transforms an EML formula into a Presburger tree
automata and an algorithm that tests emptiness for these peculiar Presburger
tree automata. This provides us new and non-trivial pspace complexity up-
per bounds that are not direct consequences of [SSMH04] since composing a
polynomial space reduction with a polynomial space test does not imply the
existence of a direct polynomial space test for the composition. For exam-
ple, runs of linearly-bounded alternating Turing machines can be computed in
polynomial space and testing if a run is accepting can be done in polynomial
space in the size of the run. However, since apspace = exptime, it is unlikely
that the composition can be done in pspace. Additionally, our algorithm sub-
stantially refines results from [ZL06,SSMH04]. Indeed, as by-products of the
complexity results about EML, we show that

• there is a logarithmic space reduction from a slight variant of Sheaves logic
SL [resp. the fixpoint free fragment of the main logic from [SSMH04] (herein
called SSMH)] into EML.
• the satisfiability problem for this variant of SL [resp. SSMH] is pspace-

complete.
• the logic PDLtree from [ABD+05] is undecidable when extended with Pres-

burger constraints. Modalities in PDLtree are quite rich since they allow us
to navigate more freely in tree models, for instance sibling relations are
present.

The complexity upper bounds are established via a logspace reduction whereas
the pspace lower bound is proved by reducing satisfiability for the modal logic
K (with modal operators 2 and 3) restricted to the truth constants as the only
atomic formulae and characterized by the class of all the Kripke structures or
equivalently by the class of all finite trees. Indeed, pspace-hardness of this
very K fragment is already known [Hem01].

Plan of the paper. In Section 2, we introduce the extended modal logic EML
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and we show why it is safe for the satisfiability problem to restrict ourselves
to finite labeled, unranked ordered trees with a unique label on transitions
(using rather standard arguments). Section 3.1 contains preliminary defini-
tions and results for the forthcoming algorithm. The Ladner-like algorithm is
presented in Section 3.2 whereas its correctness and complexity are analyzed
in Sections 3.3 and 3.4, respectively. The appendix A contains the proof that
the branching factor of models can be bounded, essentially adapting develope-
ments from [SSM07]. In Section 4, we compare our result with related work
and it is the opportunity to establish complexity results about SL and SSMH.
Section 5 concludes the paper and states a few open problems.

2 Extended Modal Logic EML

2.1 Definition

Given countably infinite sets AT = {p1, p2, . . .} of propositional variables and
Σ = {R1, R2, . . .} of relation symbols, we define the set of formulae and terms
inductively as follows:

φ ::= p | ¬φ | φ ∧ φ | t ∼ b | t ≡k c | A
R(φ1, . . . , φn)

t ::= a× ♯Rφ | t+ a× ♯Rφ,

where

• p ∈ AT, R ∈ Σ,
• b, c ∈ N, k ∈ N \ {0, 1}, a ∈ Z \ {0},
• ∼ ∈ {<,>,=},
• A is a nondeterministic finite-state automaton over an n-letter alphabet

ΣA in which the letters are linearly ordered ΣA = a1, . . . , an. The language
accepted by A is denoted by L(A).

We write |φ| to denote the size of the formula φ with some reasonably succinct
encoding and md(φ) to denote the “modal degree” of φ defined as the greatest
number of nested occurrences of ♯ and automata-based operators in φ. We also
write sub(φ) to denote the set of subformulae of φ. We assume that the cardinal
of sub(φ) is bounded by |φ|.

An expression of form ♯Rφ should be understood as a variable in a Presburger
arithmetic formula interpreted as the number of immediate R-successors sat-
isfying the formula φ. A term of the form a1 × ♯R1φ1 + . . . + am × ♯Rmφm
is abbreviated by

∑i=n
i=1 ai♯

Riφi. Because of the presence of Boolean opera-
tors and quantifier-elimination for Presburger arithmetic (first-order theory
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of 〈N, <,=〉), any kind of Presburger constraints can be expressed in this
formalism, maybe less concisely with respect to an analogous language with
quantifiers. We assume in the following that the automata are encoded reason-
ably succinctly and the elements in Z are represented with a binary encoding.

A modelM for EML is a structure M = 〈T, (RR)R∈Σ, (<
R

s)s∈T,R∈Σ, l〉 where

• T is the set of nodes (possibly infinite),
• (RR)R∈Σ is a family of binary relations in T × T such that for all R ∈ Σ and
s ∈ T , the set {s′ ∈ T : 〈s, s′〉 ∈ RR} is finite (finite-branching),
• each relation <R

s is a total ordering on the RR-successors of s,
• l : T → 2AT is the valuation function where 2AT denotes the powerset of

AT.

At this stage, a model is not a tree-like structure but we shall argue later why
we can restrict ourselves to such structures, using standard arguments from
modal logics. In the rest of the paper, we write RR(s) = s1 < . . . < sα to
mean that RR(s)

def
= {s′ ∈ T : 〈s, s′〉 ∈ RR} = {s1, . . . , sα} and s1 <

R

s . . . <
R

s sα.
Given a finite-branching binary relation R ⊆ T × T , we write R♯(s) to denote
the cardinal of the set {s′ ∈ T : 〈s, s′〉 ∈ R} and R∗ to denote the reflexive
and transitive closure relation of R. The satisfaction relation |= is inductively
defined below where M is a model for EML and s ∈ T :

• M, s |= p iff p ∈ l(s),
• M, s |= ¬φ iff notM, s |= φ,
• M, s |= φ1 ∧ φ2 iffM, s |= φ1 andM, s |= φ2,
• M, s |=

∑

i ai♯
Riφi ∼ b iff

∑

i aiR
♯
Ri,φi

(s) ∼ b with RRi,φi
= {〈s′, s′′〉 ∈ T × T :

〈s′, s′′〉 ∈ RRi
, andM, s′′ |= φi},

• M, s |=
∑

i ai♯
Riφi ≡k c iff there is n ∈ N such that

∑

i aiR
♯
Ri,φi

(s) = nk + c,
• The relationM, s |= AR(φ1, . . . , φn) holds when the finite sequence of chil-

dren of the node s induces a finite pattern from L(A). There is a corre-
spondence between the letters a1, . . . , an from the alphabet of A and the
argument formulae φ1, . . . , φn (below each letter ai is associated with the
argument formula φi). More precisely, M, s |= AR(φ1, . . . , φn) iff there is
ai1 · · ·aiα ∈ L(A) such that
· RR(s) = s1 < . . . < sα,
· for every j ∈ {1, . . . , α},M, sj |= φij .

Observe that constraints of the form
∑

i ai♯
Riφi ≡k c can be expressed by regu-

larity constraints but less concisely because of the binary encoding of integers.
Moreover, these constraints are included so that by withdrawing regularity
constraints we still obtain arithmetical constraints that have the expressive
power of Presburger arithmetic.

Figure 1 illustrates the semantics of automata-based formulae.
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s1 |= φ1 s2 |= φ2 s3 |= φ2 s4 |= φ1

s

R R R R

|= AR(φ1, φ2) with L(A) = ab
∗
a

Fig. 1. Semantics for regular constraints

The automata in EML are used exactly as those defining temporal opera-
tors in extended temporal logic ETL [Wol83]. The modal operator 3 (see
e.g. [BdRV01]) is defined by 3φ ≈ ♯Rφ > 1 (and dually 2φ ≈ ♯R¬φ = 0)
whereas the formula 3>nφ from graded modal logic is defined by 3>nφ ≈
♯Rφ > n. A basic example of what EML can express and graded modal logic
cannot is that “there are twice more children satisfying p than children sat-
isfying q” which can be stated by ♯Rp− 2♯Rq = 0. Similarly, as in [PS04], one
can express that “more than half of children satisfies the formula φ” with the
formula 2♯φ− ♯⊤ > 0.

A formula φ is satisfiable whenever there exist a modelM = 〈T, (RR)R∈Σ, (<
R

s

)s∈T,R∈Σ, l〉 and s ∈ T such thatM, s |= φ.

Examples of formulae. We present below a few more examples of properties
that can be expressed in EML.

• The number of children obtained with relation R1 and satisfying p is equal
to the number of children obtained with relation R2 and satisfying q:

♯R1p = ♯R2q

• The number of children obtained with the relation R is even:

♯R⊤ ≡2 0 or AR(⊤) with L(A) = (a · a)∗

• For all the nodes of distance at most N obtained with the relation R
′, the

number of children obtained with the relation R and satisfying p is strictly
greater than the number of those satisfying ¬p:

N∧

i=0

i times
︷ ︸︸ ︷
2 . . .2(♯Rp > ♯R¬p),

with 2ψ
def
= ♯R

′
¬ψ = 0.
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2.2 Equivalence Between Graphs, Trees and Finite Trees

Even though EML models are defined from general Kripke structures (apart
from the fact that they are finite-branching), we show below that we can
restrict ourselves to finite unranked ordered trees. Given a finite set of relation
symbols X = {R1, . . . , Rn},M = 〈T, (RR)R∈Σ, (<

R

s)s∈T,R∈Σ, l〉 is said to be a tree
model with respect to X iff the restriction ofM to

⋃

iRRi
is a tree.

Lemma 1 For every EML formula φ, φ is satisfiable iff φ is satisfiable in a
finite tree model with respect to the set of relation symbols occurring in φ.

Proof. Suppose that φ has a EML modelM = 〈T, (RR)R∈Σ, (<
R

s)s∈T,R∈Σ, l〉 and
a node s ∈ T such that M, s |= φ. We build a model M′ satisfying the
tree condition by unfolding M in the standard way. However, it remains to
define the corresponding linear orderings. The model M′ = 〈T ′, (SR)R∈Σ, (<

′
R

s

)s∈T ′,R∈Σ, l
′〉 is defined as follows:

• T ′ is the set of finite non-empty sequences of the form s R1 s1 . . . Rk sk,
• (s R1 s1 . . . Rn sn) SR (s R1 s1 . . . Rn sn Rn+1 sn+1) iff 〈sn, sn+1〉 ∈ RR and
R = Rn+1,
• l′(s R1 s1 . . . Rn sn) = l(sn) for every s R1 s1 . . . Rn sn ∈ T

′,
• each ordering <

′
R

s′ is the one induced by <R

s′′ by considering the last element
s′′ of the sequence s′.

One can show that for every s R1 s1 . . . Rn sn ∈ T ′ and EML formula ψ,
M′, s R1 s1 . . . Rn sn |= ψ iff M, sn |= ψ. In particular M′, s |= φ. Since the
formula tree of φ is finite and, arithmetical or regular constraints only speak
about direct successors, we can truncateM′ in order to obtain a finite model
satisfying φ. 2

2.3 Restriction to One Relation

Additionally, one relation symbol suffices as a consequent of the result below.

Lemma 2 For every EML formula φ, one can compute in logspace an EML
formula φ′ with a unique relation symbol R such that φ is satisfiable on finite
trees iff φ′ is satisfiable on finite trees.

Proof. Let R1, . . . , Rn be the relation symbols occurring in φ. To each Ri, we
associate a new propositional variable pi. Intuitively, “pi” holds true whenever
the (backward) transition leading to the parent node is labelled by Ri. The
only relation symbol used in φ′ will be R. Figure 2.3 illustrates this type of
transformation.
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R1 R2

R2 R3 R1 R2
⇒

⇐
p1

p2 p3

p2

p1 p2

Fig. 2. Elimination of relation symbols

The formula φ′ is the conjunction φ′1 ∧ φ
′
2 where

• φ′1 states that a unique pi holds true at each non-root node:

φ′1 =
|φ|
∧

i=1

i times
︷ ︸︸ ︷

2 . . .2(
∨

j∈{1,...,n}

(pj ∧
∧

l∈{1,...,n}\{j}

¬pl))

with 2ψ
def
= ♯R¬ψ = 0,

• the formula φ′2 is obtained from φ by replacing each occurrence of ♯Riψ

by ♯R(pi ∧ ψ), and each occurrence of AR

i (ψ1, . . . , ψm) by (A′)R(¬pi, pi ∧
ψ1, . . . , pi ∧ ψm) where A′ is defined as follows. If the alphabet of A is
Σ = {a1, . . . , am}, the alphabet of A′ is Σ′ = {a0} ⊎ Σ and L(A′) = {σ ∈
(Σ′)∗ : σ\a0 ∈ L(A)} where σ\a0 is obtained from σ by erasing all occurrences
of the new letter a0. A

′ can be computed in logspace in the size of A by
adding self-loops.

One can check that φ is satisfiable iff φ′ is satisfiable. 2

In the rest of the paper, we assume that Σ is a singleton set {R}, we write
A(φ1, . . . , φn) instead of AR(φ1, . . . , φn) and ♯φi instead of ♯Rφi. Models are
simply written as tuples 〈T,R, (<s)s∈T , l〉. Furthermore, without any loss of
generality, we assume that formulae are satisfied at the root node of models.

3 An Algorithm for EML Satisfiability

In this section, we show that EML satisfiability can be solved in polyno-
mial space by using a Ladner-like algorithm [Lad77] and an analysis about
constraint systems using in some place a crucial argument from the proof
of [SSM07, Claim 7.3]. The original algorithm [Lad77] is designed for the
modal logics K and S4 and an extension to tense logic can be found in [Spa93]
(see also other extensions for multimodal logics in [Dem03b]).

8



3.1 Consistent Sets of Formulae

We define below a notion of closure à la Fischer-Ladner [FL79] for finite sets
of formulae. Intuitively, the closure cl(X) of X contains all the formulae useful
to evaluate the truth of formulae in X.

Definition 1 Let X be a finite set of formulae. cl(X) is the smallest set of
formulae such that

• X ⊆ cl(X), cl(X) is closed under subformulae,
• if ψ ∈ cl(X), then ¬ψ ∈ cl(X) (we identify ¬¬ψ with ψ),
• if t ∼ b ∈ cl(X), then t ∼′ b ∈ cl(X) for every ∼′∈ {<,>,=},
• let K be the least common multiple (lcm) of all the constants k occurring in

subformulae of the form t ≡k c. If t ≡k c ∈ cl(X), then t ≡K c′ ∈ cl(X) for
every c′ ∈ {0, . . . , K − 1}.

A setX of formulae is said to be closed iff cl(X) = X. Observe that card(cl(X))
is exponential in card(X), which is usually not a good start to establish a poly-
nomial space upper bound. Nevertheless, consistent sets of formulae that are
satisfiable contain exactly one formula from {t ≡K c : c ∈ {0, . . . , K − 1}} for
each constraint t ≡k c

′ in X. Hence, as explained below, encoding consistent
sets will require only polynomial space.

We refine the notion of closure by introducing a new parameter n: the distance
from the root node to the current node where the formulae are evaluated. Each
set cl(n, φ) is therefore a subset of cl({φ}).

Definition 2 Let φ be an EML formula. For n ∈ N, cl(n, φ) is the smallest
set such that:

• cl(0, φ) = cl({φ}), for every n ∈ N, cl(n, φ) is closed,
• for all n ∈ N and ♯ψ occurring in some formula of cl(n, φ), we have ψ ∈

cl(n+ 1, φ),
• for all n ∈ N and A(φ1, . . . , φm) ∈ cl(n, φ), we have {φ1, . . . , φm} ⊆ cl(n +

1, φ).

In the sequel, we consider EML formulae φ such that for every n, we have
cl(n, φ) 6= ∅, the lcm of all the constants k occurring in subformulae from
cl(n, φ) of the form t ≡k c is equal to the lcm of all k occurring in φ. Without
any loss of generality, we also assume that ≡K does not occur in φ. Given
an EML formula, one can compute an equivalent EML formula satisfying the
above requirements by at most doubling its size.

We are only interested in subsets of cl(n, φ) whose conjunction of its elements
is EML satisfiable. A necessary condition to be satisfiable is to be consistent lo-
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cally, i.e. at the propositional level and at the level of arithmetical constraints.
As far as these latter constraints are concerned, we are more interested to in-
troduce a notion of consistency that allows a polynomial space encoding of
consistent sets than to guarantee that the Presburger constraints in a given set
are indeed satisfiable. This latter property is checked with constraint systems
(see Appendix A) in the main algorithm. This is analogous to the requirement
to check maximal consistency at the propositional level but not EML satisfi-
ability at once. It is the adequate construction of locally consistent sets that
will guarantee that the initial set of formulae is EML satisfiable.

Definition 3 A set X ⊆ cl(n, φ) is said to be n-locally consistent iff the
conditions below hold:

• if ¬ψ ∈ cl(n, φ), then ¬ψ ∈ X iff ψ 6∈ X,
• if ψ1 ∧ ψ2 ∈ cl(n, φ), then ψ1 ∧ ψ2 ∈ X iff ψ1, ψ2 ∈ X,
• if t ∼ b ∈ cl(n,X) then there is a unique ∼′∈ {<,>,=} such that t ∼′ b ∈
X,

• if t ≡k c ∈ cl(n,X), then there is a unique c′ ∈ {0, . . . , K − 1} such that
t ≡K c′ ∈ X,

• if t ≡k c ∈ cl(n,X), then ¬t ≡k c ∈ X iff there is c′ ∈ {0, . . . , K − 1} such
that t ≡K c′ ∈ X and not c′ ≡k c,

• if t ∼ b ∈ cl(n,X) then ¬t ∼ b ∈ X iff there is ∼′∈ {<,>,=} \ {∼} such
that t ∼′ b ∈ X.

The last condition is obviously a consequence of the two first ones, but we
prefer to keep it for the sake of clarity. Observe that given an EML model
M and a node s, the set of subformulae {ψ ∈ cl(n, φ) : M, s |= ψ} is n-
locally consistent and it behaves as a type for the node s. Moreover, in the
above definition, maximal consistency is required and this will simplify a few
technical developements.

Lemma 3 Let φ be a EML formula and n ∈ N.

(I) Every n-locally consistent set has cardinal at most 2 × |φ| and can be
encoded with a polynomial amount of bits with respect to |φ|.

(II) cl(|φ|, φ) = ∅.
(III) Given a set X ⊆ cl(0, φ) of cardinal at most 2×|φ| and n ∈ N, one can

decide in polynomial-time in |φ| whether X is n-locally consistent.

Proof. (I) By Definition 2, cl(n, φ) ⊆ cl(φ). Let X ⊆ cl(n, φ) be an n-locally
consistent set.

(a) For each subformula ψ ∈ cl(n, φ) with Boolean outermost connective, either
ψ ∈ X or ¬ψ ∈ X.

(b) For each atomic subformula ψ ∈ cl(n, φ), either ψ ∈ X or ¬ψ ∈ X.
(c) For each atomic subformulae t ∼ b ∈ cl(n, φ), either ¬t ∼ b ∈ X and t ∼′ b
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for some ∼′∈ {<,>,=} \ {∼} or t ∼ b ∈ X,
(d) For each atomic subformulae t ≡k c ∈ cl(n, φ), there is a unique c′ ∈
{0, . . . , K − 1} such that t ≡K c′ ∈ X.

These are the only ways to obtain subformulae in X. Each subformulae in φ

contributes to at most one formula in X except the subformulae of the form
t ≡k c, that can contribute to at most two formulae in X (with the additional
subformulae of the form t ≡K c′ ∈ X). Consequently, the cardinal of X is
bounded by 2×|φ|. Each subformula with Boolean outermost connective, each
atomic subformula and their negations can be encoded with 1 bit. Similarly,
each atomic formula of the form t ∼′ b can be encoded with 2 bits. Finally,
each subformula of the form t ≡K c′ can be encoded with O(log(K)) bits, that
is at most quadratic in |φ|. Indeed, K is at most k1 × · · · × ku where each ki
occurs in some atomic formula of the form t ≡ki

ci in φ. Hence, each n-locally
consistent subset of cl(n, φ) can be encoded with O(|φ|2) bits.

(II) We define the modal degree of a finite set of formulae as the maximal
modal degree among the modal degrees of all formulae belonging to the set.
By convention, the modal degree of the empty set is zero. By Definitions 1
and 2, md(cl(0, φ)) = md(φ) < |φ|. Moreover, for each n ∈ N such that
md(cl(n, φ)) > 0, we have md(cl(n + 1, φ)) < md(cl(n, φ)). One can also
observe that whenever md(cl(n, φ)) = 0, we have cl(n, φ) = ∅. This allows us
to conclude that cl(|φ|, φ) = ∅.

(III) First, observe that since cl(n, φ) = ∅ for n > |φ|, n can be represented
with a binary encoding with no harm. By building the formula tree of φ, it
is possible to compute the formulae in cl(n, φ) whose outermost connective is
Boolean as well as the atomic formulae from sub(φ) that are also in cl(n, φ).
Such a computation mainly depends on the modal depth of the subformula
occurrences in the tree. An analogous analysis can be done with elements
of cl(n, φ) that are of the form t ∼′ b. This allows to check the conditions
(a)–(c) above. Finally, a visit of the formula tree also allows to decide which
terms should occur in subformulae of the form t ≡K c in cl(n, φ). It remains
then to check that if t ≡k c ∈ cl(n,X), then ¬t ≡k c ∈ X implies there
is c′ ∈ {0, . . . , K − 1} such that t ≡K c′ ∈ X and not c′ ≡k c, which can
be performed in polynomial-time in |φ|. Similarly, one needs to check that
t ≡k c ∈ X implies there is c′ ∈ {0, . . . , K − 1} such that t ≡K c′ ∈ X and
c′ ≡k c. 2

Before defining the main algorithm in Section 3.2, let us introduce the notion
of M-bounded models.

Definition 4 Let φ be an EML formula, M be a natural number and M be
a finite tree model such that M, s |= φ for some node s. We say that 〈M, s〉
is M-bounded for φ iff for every node s′ of distance d from s, the cardinal of
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1 2 < M × nb(d + 1)

s
depth d

· · · · · ·

Fig. 3. A schema for M -boundedness

R(s′) is bounded by nb(d + 1) ×M where nb(d + 1) is the number of distinct
(d+ 1)-locally consistent sets (with respect to φ).

Observe that nb(d + 1) is exponential in |φ| in the worst case and nb(d +
1) = ∅ as soon as d > |φ|. Figure 3 presents a schematic illustration for
M-boundedness.

3.2 An Algorithm for M-Bounded Satisfiability

We define the function SAT such that φ is EML satisfiable in some M-
bounded model iff there is X ⊆ cl(0, φ) such that X is 0-locally consistent
and SAT(X, 0) has a computation that returns true. Indeed, the function
SAT(X, d) defined in Figure 4 is parameterized by some natural number M
(see the step (guess-number-children)) and by the formula φ. These two pa-
rameters should be understood as global variables. We shall fix later the value
M that will be only exponential in |φ| (see Lemma 7 and Appendix A).

The first argument X is intended to be a subset of cl(d, φ). SAT is a non-
deterministic algorithm but it can be defined as a deterministic one by enumer-
ating possibilities instead of guessing, in the standard way. The (d+1)-locally
consistent sets are denoted by Yi for some 1 6 i 6 nb(d + 1).

A call SAT(X, d) performs the following actions. First it checks whether X is
d-locally consistent and if the modal degree is zero, then it returns true in case
of d-locally consistency. In order to check that X is satisfiable, children of the
node are guessed from left to right (providing an ordering of the successors)
and during the guess, auxiliary variables are updated. For each subformula
ψ, there is a counter Cψ and its current value contains the current number of
children that should satisfy ψ. Similarly, regularity constraints use auxiliary
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variables. For each subformula in X whose outermost connective is automata-
based, we introduce a variable that encodes the current state in the automa-
ton. At the end of the guess of the children, this variable should be equal to
a final state of the automaton. By contrast, for each subformula in X whose
outermost connective is the negation of some automata-based formula, we in-
troduce a variable that encodes the set of states that could be reached so far
in the automaton (simulating a subset construction of the underlying automa-
ton). At the end of the guess of the children, this variable should not contain
any final state of the automaton. Checking regularity constraints on-the-fly
as done herein goes back to [SSMH04]. After guessing at most M × nb(d+ 1)
children, there is a final checking that verifies that the regularity constraints
and the arithmetical constraints are satisfied. For instance, an atomic formula
of the form

∑
ai♯ψi ∼ b will lead to verify whether

∑
ai♯Cψi

∼ b holds true.
For each child, we guess in fact a (d + 1)-locally consistent set Y , which al-
lows us to update all the auxiliary variables. However, we apply recursively
SAT(Y, d+ 1) to ensure that not only Y is (d+ 1)-locally consistent but also
that Y is satisfiable. Hence, if we guess a set Y that contains some unsatis-
fiable formula with respect to M-bounded models then SAT(Y, d+ 1) has no
accepting computation which also induces a non accepting computation for
SAT(X, d).

The algorithm SAT described in Figure 4 is a typical example of Ladner-like
algorithm, see e.g. similar algorithms in [Lad77,Spa93,Dem03b]. Indeed,

• it does not rely on any machinery such as automata or tableaux/sequent
proof systems for checking satisfiability,
• the graph of recursive calls (here for SAT) induces a tree model for the

argument formula. Since EML models are precisely trees, we get the EML
model for free.

3.3 Complexity Analysis

Firstly, we characterize the space needed to run SAT.

Lemma 4 For all 0-locally consistent sets X, and computations of SAT(X, 0)

• the recursive depth is linear in |φ|,
• each call requires space polynomial in the sum of
· the space for encoding 0-locally consistent sets
· and log(M).

Consequently, only polynomial space is required when M is exponential in |φ|.
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function SAT(X, d)
(consistency) if X is not d-locally consistent then abort;
(base case) if X contains only propositional formulae then return true;
(witnesses)

(initialization-counters) for every ψ ∈ cl(d + 1, φ) that is not a period-
icity constraint of the form t ≡K c, Cψ := 0;

(initialization-states) for every A(ψ1, . . . , ψα) ∈ X, qA(ψ1,...,ψα) := q0 for
some initial state q0 of A;

(initialization-states-complement) for every ¬A(ψ1, . . . , ψα) ∈ X,
Z¬A(ψ1,...,ψα) := I where I is the set of initial states of A;

(guess-number-children) guess NB in {0, . . . , nb(d+ 1)×M};
(guess-children-from-left-to-right) for i = 1 to NB do

(1) guess x ∈ {1, . . . , nb(d + 1)};
(2) if not SAT(Yx, d+ 1) then abort;
(3) for every ψ ∈ cl(d+ 1, φ) different from some t ≡K c, if ψ ∈ Yx, then

Cψ := Cψ + 1;
(4) for every A(ψ1, . . . , ψα) ∈ X,

(a) guess a transition qA(ψ1,...,ψα)
ai−→ q′ in A with ΣA = a1, . . . , aα;

(b) if ψi ∈ Yx, then qA(ψ1,...,ψα) := q′, otherwise abort;
(5) for every ¬A(ψ1, . . . , ψα) ∈ X, Z¬A(ψ1,...,ψα) := {q : ∃ q′ ∈

Z¬A(ψ1,...,ψα), q
′ ai−→ q, ψi ∈ Yx};

(final-checking)
(1) for every

∑

i ai♯ψi ∼ b ∈ X, if
∑

i ai × Cψi
∼ b does not hold, then

abort,
(2) for every

∑

i ai♯ψi ≡k c ∈ X, if
∑

i ai × Cψi
≡k c does not hold, then

abort,
(3) for every A(ψ1, . . . , ψα) ∈ X, if qA(ψ1,...,ψα) is not a final state of A,

then abort;
(4) for every ¬A(ψ1, . . . , ψα) ∈ X, if Z¬A(ψ1,...,ψα) contains a final state

of A, then abort;
(return-true) return true.

Fig. 4. Satisfiability algorithm

Proof. By Lemma 3, the size of the stack of recursive calls to SAT is at most
|φ| since cl(|φ|, φ) = ∅. In the function SAT, the steps (consistency), (base
case), (initialization-counters), (initialization-states) and (initialization-states-
complement) can be obviously checked in polynomial time in φ (and therefore
in polynomial space), see e.g. Lemma 3(III). In the step (guess-children-from-
left-to-right), one needs a counter to count at most until nb(d + 1) × M .
A polynomial amount of bits in |φ| + log(M) suffices. All the non-recursive
instructions in (guess-children-from-left-right) can be done in time polynomial
in |φ| + log(M). Since at the end of the step (guess-children-from-left-right),
the values of the counters are less than or equal to nb(d + 1) ×M , checking
the points 1. and 2. in (final-checking) can be done in polynomial space in
|φ|+ log(M) (remember that the encoding of constants ai, b and c and k are
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already in linear space in |φ|). 2

3.4 Correctness

After having characterized the space needed to run the algorithm, it remains
to prove that it is correct as far as the M-bounded models are concerned.

Lemma 5 If for some X ⊆ cl(0, φ), SAT(X, 0) has a computation that re-
turns true and φ ∈ X, then φ is EML satisfiable in some M-bounded model.

Proof. Assume that SAT(X, 0) has an accepting computation with φ ∈ X. Let
us build an EML model M = 〈T,R, (<s)s∈T , l〉 for which there is s ∈ T such
that for every ψ ∈ X, we have M, s |= ψ iff ψ ∈ X.

From an accepting computation of SAT(X, 0), we consider the following finite
ordered tree 〈T,R, (<s)s∈T , L〉 that corresponds to the calls tree of SAT(X, 0).

• 〈T,R, (<s)s∈T 〉 is a finite ordered tree,
• for each s ∈ T , L(s) = 〈Y, d〉 for some d-consistent set Y ,
• the root node s0 is labelled by 〈X, 0〉,
• for each node s with s1 <s · · · <s sn, the call related to l(s) recursively

calls SAT with the respective arguments l(s1), . . . , l(sn) and in this very
ordering.

The modelM we are looking for, is preciselyM = 〈T,R, (<s)s∈T , l〉 for which
l(s) = Y ∩AT where L(s) = 〈Y, d〉 for each s.

By structural induction on ψ, we shall show that for all s ∈ T with L(s) =
〈Y, d〉, for all ψ ∈ cl(d, φ), we have ψ ∈ Y iffM, s |= ψ. Consequently, we then
getM, s0 |= φ. The case when ψ is a propositional variable is by definition of
l.

Induction hypothesis: for all ψ ∈ cl(φ) such that |ψ| 6 n, for all s ∈ T with
L(s) = 〈Y, d〉, if ψ ∈ cl(d, φ), then ψ ∈ Y iffM, s |= ψ.

Let ψ be a formula in cl(φ) such that |ψ| = n+ 1. The cases when the outer-
most connective of ψ is Boolean is a consequence of the d-local consistency of
Y and the induction hypothesis. Let us treat the other cases.
Case 1: ψ = A(ψ1, . . . , ψk).
Let s ∈ T with L(s) = 〈Y, d〉 such that ψ ∈ cl(d, φ). By definition of T ,
SAT(Y, d) has an accepting computation. If ψ ∈ Y , then each call in the
sequence SAT(Yx1, d + 1), . . . , SAT(YxNB

, d + 1) has an accepting computa-
tion. Hence the children of s are the following (from left to right) s1, . . . , sNB
such that L(si) = 〈Yxi

, d + 1〉. Then, it is not difficult to show that the
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steps (initialization-states), (guess-children-from-left-to-right)(4) and (final-
checking)(3) guarantee that M, s |= ψ. If ψ 6∈ Y , then by consistency of
Y , ¬A(ψ1, . . . , ψk) ∈ Y and by following a reasoning as above we also get
M, s 6|= A(ψ1, . . . , ψk).

Case 2: ψ =
∑i=α
i=1 ai♯ψi ∼ b.

Let s ∈ T such that L(s) = 〈Y, d〉 and ψ ∈ cl(d, φ). By definition of T ,
SAT(Y, d) has an accepting computation. If ψ ∈ Y , then each call in the
sequence SAT(Yx1, d + 1), . . . , SAT(YxNB

, d + 1) has an accepting computa-
tion. Moreover, for every i ∈ {1, . . . , α}, there are exactly Cψi

elements in
Yx1, . . . , YxNB

that contain ψi where Cψi
is the value of the counter after the

step (guess-children-from-left-to-right) in the above-mentioned successful com-
putation for SAT(Y, d). Hence the children of s inM are the following (from
left to right): s1, . . . , sNB with L(si) = 〈Yxi

, d+ 1〉. It is not difficult to show
that the steps (initialization-counters), (guess-children-from-left-to-right)(3)
and (final-checking)(1) guarantee thatM, s |= ψ.

If ψ 6∈ Y , then by consistency of Y , there is ∼′∈ {<,>,=} \ {∼} such that
∑α
i=1 ai♯ψi ∼

′ b ∈ X by following a reasoning as above this means thatM, s |=
∑i=α
i=1 ai♯ψi ∼

′ b which entails M, s 6|=
∑i=α
i=1 ai♯ψi ∼ b.

Case 3: ψ =
∑i=α
i=1 ai♯ψi ≡k c.

The proof is similar to the cases 1 and 2.

The current modelM is in exponential size in |φ| and it is easy to show that
M is M-bounded. 2

The converse property holds.

Lemma 6 If φ is EML satisfiable in some M-bounded model then for some
X ⊆ cl(0, φ), SAT(X, 0) has an accepting computation.

Proof. Assume that φ is EML satisfiable in some M-bounded model M =
〈T,R, (<s)s∈T , l〉. So there is s ∈ T such that M, s |= φ and 〈M, s〉 is M-
bounded. We shall show that whenever 〈M′, s′〉 is M-bounded and X =
{ψ ∈ cl(d, φ) : M′, s′ |= ψ} for some d ∈ {0, . . . , |φ|} and X ⊆ cl(d, φ),
then SAT(X, d) has an accepting computation. We recall that X is d-locally
consistent. Consequently, we get that SAT({ψ ∈ cl(0, φ) :M, s |= ψ}, 0) has
an accepting computation.

The proof is by induction on dmax − d where dmax is the maximal value such
that cl(dmax, φ) 6= ∅.
Base case: d = |φ|.
Since cl(|φ|, φ) = ∅, the property holds.
Induction hypothesis: for all |φ| > d′ > n > 1, and X ⊆ cl(d′, φ) such that
there exist an EML model M′ = 〈T ′, R′, (<′s)s∈T ′, l′〉 and s′ ∈ T ′ verifying

16



X = {ψ ∈ cl(d′, φ) :M′, s′ |= ψ} and 〈M′, s′〉 is M-bounded, SAT(X, d′) has
an accepting computation.

Let d′ = n − 1 and X be a subset of cl(d′, φ) for which there exist an EML
model M′ = 〈T ′, R′, (<′s)s∈T ′, l′〉 nd′ ∈ T ′ verifying X = {ψ ∈ cl(d′, φ) :
M′, nd′ |= ψ} and 〈M′, s′〉 is M-bounded. The set X is therefore d′-locally
consistent and EML satisfiable, i.e.

∧

ψ∈X ψ is EML satisfiable.

For i ∈ {1, . . . , nb(d′ + 1)}, we write ni to denote the number of children nd′′

of nd′ such that Yi = {ψ ∈ cl(d+1, φ) :M, s′′ |= ψ}. SinceM′ is M-bounded,
∑

i ni 6 nb(d′ + 1)×M . This is sufficient to establish that SAT(X, d′) has an
accepting computation. Indeed, the step (consistency) is successful because X
is d′-locally consistent. The guessed number NB is obviously n1+· · ·+nnnb(d′+1)

and each set Yi is guessed ni times in the step (guess-children-from-left-to-
right). Additionally, the order in which the sets Yi are guessed is precisely given
by the ordering of the children of the root ofM′. SinceM′ is a model for X,
for every i ∈ {1, . . . , nb(d′+1)}, if ni 6= 0, then the set Yi is satisfiable in some
M-bounded model. By the induction hypothesis, SAT(Yi, d

′+1) returns true.
Each passage to (guess-children-from-left-to-right)(4,5) as well as the passage
to (final-checking) are successful steps because the numbers of children is
computed fromM′. Consequently, SAT(X, d′) has an accepting computation.
2

So, we have established that a formula φ is EML satisfiable in a M-bounded
model iff for some X ⊆ cl(0, φ), SAT(X, φ, 0) has a computation that returns
true.

3.5 A Sharp Bound for EML Models

In this section, we state the following lemma which provides a bound on the
size of minimal models for EML. The proof of the lemma is partly based
on [SSM07] and Appendix A provides all technical details that are missing in
the proof sketch below.

Lemma 7 There is a polynomial p(·) such that for every formula φ, φ is EML
satisfiable iff φ is satisfiable in some 2p(|φ|)-bounded model.

Proof.(sketch) Given a d-locally consistent set X, the main part of the proof
consists in building a Boolean combination of arithmetical constraints, say
SX , such that X is EML satisfiable iff SX has a solution. In the system SX ,
the atomic constraints are of the form

∑

j aj × xij = b (aj ∈ Z, b ∈ N, xi,j is a
variable). By [Pap81] (see also [BT76]), a finite set S of atomic constraints has
a positive solution iff there is a positive solution such that all the coefficients
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are bounded by

n× (ma)2m+1

where n is the number of variables, a is the maximal absolute value among
constants in S and m is the number of atomic constraints in S. In the system
SX , to each (d + 1)-locally consistent set Yi, there is a variable xi counting
how many children of the node satisfying X satisfy Yi. Hence, small solutions
for SX would imply that the number of children for that node satisfying X

is bounded. The statement of the lemma is then obtained by applying such a
reasoning at any depth of the tree model.

Let us briefly sketch how the system SX is built. For each ψ ∈ cl(d+1, φ), we
write tψ to denote the sum

∑

{i : ψ∈Yi} xi. Remember that the (d + 1)-locally
consistent sets are denoted by Y1, . . . , Ynb(d+1) and each variable xi is related to
the number of children satisfying the subformulae in Yi. First, we require that
the sum of the xi’s such that Yi is not EML satisfiable is zero. This constraint
will be checked on-the-fly in SAT by using recursive calls. Moreover, an atomic
formula

∑

i ai#ψi = b ∈ X leads to the atomic constraint
∑

i aitψi
= b in SX .

The other arithmetical constraints are treated in a similar way. The automata-
based formulae in X or the negation of such formulae in X are treated in the
following way. Let A1(. . .), . . . ,Al(. . .),¬A

′
1(. . .), . . . ,¬A

′
l′(. . .) ∈ X be such

formulae in X for which the argument subformulae are in {ψ1, . . . , ψP} ⊆
cl(d + 1, φ). We consider the enriched alphabet Σ = {Y1, . . . , Ynb(d+1)} made
of (d+1)-locally consistent sets. Using the subset construction for finite-state
automata, one can build an exponential-size automaton B over the alphabet
Σ such that for every w = Yj1 · · ·Yjα ∈ Σ∗, w ∈ L(A) iff the conditions below
hold:

• For all i, there exist formulae ψ1 ∈ Yj1, . . . , ψα ∈ Yjα such that ψ1 · · ·ψα ∈
L(Ai).
• For all i, there are no formulae ψ1 ∈ Yj1, . . . , ψα ∈ Yjα such that ψ1 · · ·ψα ∈

L(A′i).

The set of atomic constraints obtained from B is obtained from the char-
acterization of its Parikh image, that is a subset of N

|Σ|. A Parikh image
of a finite word built over the alphabet Σ is a tuple in N

|Σ| that contains
for each letter in Σ, its number of occurrences. The Parikh image of a lan-
guage is defined as a set of such tuples in N

|Σ| obtained from the Parikh
image of words from the language. We recall that given a finite-state automa-
ton A = 〈Σ, Q, δ, I, F 〉, its Parikh image π(L(A)) is a finite union of linear
sets {σ0 +

∑m
i=1 yiσi : yi > 0}. By [SSMH04], we can enforce that each σj is

in {0, . . . , |Q|}|Σ| and m is bounded by (|Q| + 1)|Σ|. So, π(L(B)) is equal to
some union L1 ∪ · · · ∪ Lm with Li = {σ0 +

∑h
j=1 yjσj : yj > 0}. Each σj

is in {0, . . . , |Q′|}|Σ| where Q′ is the set of states for B and h is bounded by

(|Q′| + 1)|Σ| 6 2p(|φ|)×2|φ|
. The set of atomic constraints obtained from B is
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then 











x1

x2

. . .

x|Σ|













= σ0 +
h∑

j=1

yjσj .

It contains |Σ| + h variables and it admits a (small) solution whose values
are at most doubly exponential in |φ|. This is too large for the bound we
aimed to. In order to get a constraint system with small solutions of adequate
size, we take advantage of [SSM07, Claim 7.3]. Full details are provided in
Appendix A. 2

By Lemmas 4, 5, 6 and 7 (and pspace-hardness of modal logic K), we obtain
the main result of the paper. Indeed, M can be choosen exponential in |φ|.

Theorem 1 EML satisfiability is pspace-complete.

pspace-hardness follows from the fact that 3 can be encoded as a simple
regularity constraint, whence the reduction from modal logic K.

4 Complexity results for similar logics

In this section, we compare EML with other logics dealing with Presburger
constraints. We clarify the relationships between EML and the different logics
from [ZL06,SSMH04,ABD+05] and to state some new pspace-completeness
and undecidability results.

4.1 Graded Modal Logics

Graded modal logics are obviously the modal ancestors of EML where the
formulae with Presburger constraints are of the form 3>nφ, are considered,
see e.g. the early works [Fin72,BC85,Cer90,vdH92,vdHdR95].

Such logics have been extended to fit more specific motivations, giving epis-
temic logics [vdHM91] and description logics (see e.g. [HB91,CG05]) with
graded modalities. It is only in [Tob01] that minimal graded modal logic, coun-
terpart of the modal logic K, is shown decidable in pspace, various decidability
results being earlier established in a systematic way in [Cer94]. Our complexity
result about EML extends the main result from [Tob01]. Various extensions
of known logics by adding graded modalities have been considered and unde-
cidability is often obtained because the ability to count allows sometime to
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encode a grid, see e.g. [BP04]. However, the exptime-completeness of graded
µ-calculus [KSV02] remains a major complexity result. Furthermore, there ex-
ist various attempts to encode concisely logics with counting into logics with
no explicit counting mechanism, see e.g. [OSH96,MP97,Kaz04], but none of
them implies a pspace upper bound, even for the poor minimal graded modal
logic counterpart of K. Modal-like logics with more expressive Presburger con-
straints on the number of children can be found in [SSMH04,ZL06,SSM07] and
are the subject of the two next sections.

4.2 Sheaves Logic

4.2.1 Definition

In this section, we recall the syntax and semantics of the Sheaves Logic
SL [ZL06, Section 4.4] that is shown decidable in [ZL06] with a non-elementary
algorithm. For the sake of uniformity, we adopt a presentation of SL models
similar to the one for EML models whereas the mode of representation for
regular languages and semilinear sets is the same as for EML. Hence, reg-
ular languages are represented by finite-state automata (instead of regular
expressions in [ZL06] that are less concise) and arithmetical constraints are
represented by quantifier-free Presburger formulae as in EML (instead of Pres-
burger formulae in [ZL06] that are much more concise). We admit that our
choice of representations for such objects is crucial to obtain the forthcoming
pspace upper bound and we thought that it is fair to use the same encodings
as in EML. Apart from the mode representation, the logic presented below
differs from the one in [ZL06, Section 4.4] since herein we allow Boolean op-
erators at the level of element formulae (denoted by E) as done for document
formulae (denoted by D).

The major difference between SL and EML rests on the evaluation of quantifier-
free Presburger formulae. In EML, in order to evaluate a Boolean combination
of atomic formulae of the form either

∑

i ai♯φi ∼ b or
∑

i ai♯φi ≡k c, each suc-
cessor node can contribute to the interpretation of more than one expression of
the form ♯φi. By contrast, in order to evaluate the analogous formula in SL (see
below the formulae of the form ∃x1, . . . , xp :

∑

i aixi ∼ b : x1E1& · · ·&xpEp),
each successor node contributes to the interpretation of exactly one analogous
expression of the form ♯φi, namely xi.

The element and document formulae are inductively defined as follows:

• E := α[D] | δ | ¬E | E ∧ E | true,
• D := A(E1, . . . , Ep) | ∃x1, . . . , xp : φ(x1, . . . , xp) : x1E1& · · ·&xpEp |
true | ¬D | D ∧D,
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where

• α belongs to a countably infinite set TAGS of tags,
• δ belongs to a countably infinite set DATATYPES of datatypes, disjoint

from TAGS,
• A is a nondeterministic finite-state automaton over an p-letter alphabet ΣA

in which the letters are linearly ordered ΣA = a1, . . . , ap.
• φ(x1, . . . , xp) is a Boolean combination of Presburger formulae built over the

variables x1, . . . , xp of the form either t ∼ b with ∼∈ {<,>,=} or t ≡k c
with t =

∑

i aixi.

A modelM for SL is a structure M = 〈T,R, (<s)s∈T , l〉 where

• T is a finite set of states,
• 〈T,R〉 is a tree and each <s is a total ordering on R(s),
• l : T → TAGS ∪DATATYPES is a labeling function such that
· for every s ∈ T , if s is a leaf of 〈T,R〉 then l(s) ∈ DATATYPES,
· for every s ∈ T , if s is not a leaf of 〈T,R〉 then l(s) ∈ TAGS.

The satisfaction relation |= is inductively defined below where M is a model
for SL and s ∈ T (we omit the clauses for Boolean operators):

• M, s |= δ iff δ = l(s),
• M, s |= α[D1 ∧D2] iff M, s |= α[D1] andM, s |= α[D2],
• M, s |= α[¬D] iff α = l(s) and notM, s |= α[D],
• M, s |= α[true] iff α = l(s),
• M, s |= α[∃x1, . . . , xp : φ(x1, . . . , xp) : x1E1& · · ·&xpEp] iff α = l(s),
R(s) = s1 < · · · < sk, and there exist i1, . . . , ik such that for every j ∈
{1, . . . , k}, M, sj |= Eij and [x1 ← n1, . . . , xp ← np] |= φ(x1, . . . , xp) with
ni = card({s ∈ {1, . . . , k} : is = i}),
• M, s |= α[A(E1, . . . , Ep)] iff α = l(s), R(s) = s1 < · · · < sk, and there is
i1, . . . , ik such that for every j ∈ {1, . . . , k}, M, sj |= Eij and ai1 · · ·aik ∈
L(A) with ΣA = a1, . . . , ap.

As said earlier, the major difference with the semantics of EML (see also [SSMH04])
is that in Presburger constraints each child counts only once.

4.2.2 PSPACE-completeness

Let φ be an SL formula with tags {α1, . . . , αn} and datatypes {δ1, . . . , δn′}. We
define a EML formula φ′ built over the propositional variables (plus others,
see below)

AP = {pα1 , . . . , pαn
, pαnew

} ∪ {pδ1 , . . . , pδn′ , pδnew
}.
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Given an EML formula ϕ, we write ∀mϕ as an abbreviation for
∧m
i=0

i times
︷ ︸︸ ︷

2 . . .2ϕ.

The formula φ′ is defined as the conjunction φ′val ∧ t(φ) where t(φ) is defined
recursively on the structure of φ and φ′val states constraints about the valuation
of datatypes and tags in SL models. For each document formula of the form
D = ∃x1 · · ·xp : φ(x1, . . . , xp) : x1E1 & · · ·& xpEp in φ, we introduce new
propositional variables p1

D, . . . , p
p
D.

The formula φ′val is defined as the conjunction of the formulae below

• ∀|φ|
∨

p∈AP (p ∧
∧

q∈AP\{p}¬q) ∧

internal nodes labeled by tags
︷ ︸︸ ︷

∀|φ|(3true⇒
∨

α∈{α1,...,αn,αnew}

pα)

• ∀|φ|(2false⇒
∨

δ∈{δ1,...,δn′ ,δnew}

pδ)

︸ ︷︷ ︸

leaves labeled by datatypes

• ∀|φ|(
∧

D is of the form ∃...Ep
(
∧

i6=j∈{1,...,p} ¬(piD ∧ p
j
D) ∧ (piD ⇒ t(Ei))).

where |φ| is the size of φ (an optimal construction would consider md(φ)) and
t is the reduction from SL formulae to EML formulae defined below.

• t is homomorphic for Boolean operators and t(true) = true,
• t(αi[D]) = pαi

∧ t(D), t(δi) = pδi,
• t(A(E1, . . . , Ep)) = A(t(E1), . . . , t(Ep)),
• t(∃x1 · · ·xp : φ(x1, . . . , xp) : x1E1 & · · ·& xpEp) equals the formula below:

φ(x1, . . . , xp)[x1 ← ♯(p1
D), . . . , xp ← ♯(ppD)] ∧ ¬♯(¬p1

D ∧ · · · ∧ ¬p
p
D) > 0.

where φ(x1, . . . , xp)[x1 ← ♯(p1
D), . . . , xp ← ♯(ppD)] is obtained from φ(x1, . . . , xp)

by replacing each occurrence of xi by ♯(piD).

New propositional variables need to be introduced and a constraint on them
needs to be stated because in SL in Presburger constraints each child can
count only once. It is not difficult to show that t is sound.

Lemma 8 t is a logspace reduction such that φ is satisfiable iff φ′ is satisfiable.

Proof. First, suppose that φ is SL satisfiable. There exist an SL model M =
〈T,R, (<s)s∈T , l〉 and s ∈ T such that M, s |= φ. Let M′ be the EML model
M′ = 〈T ′, R′, (<′s)s∈T ′, l′〉 defined by:

• 〈T ′, R′, (<′s)s∈T ′〉 = 〈T,R, (<s)s∈T 〉,
• for every s ∈ T ′, pl(s) ∈ l′(s). Moreover, l′(s) may contain other proposi-

tional variables of the form piD as explained below. Let D = ∃x1 · · ·xp :
φ(x1, . . . , xp) : x1E1 & · · ·& xpEp be a document formula occurring in φ.
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If M, s |= α[D], then by definition R(s) = s1 < · · · < sk, and there
are i1, . . . , ik such that for every j ∈ {1, . . . , k}, M, sj |= Eij and [x1 ←
n1, . . . , xp ← np] |= φ(x1, . . . , xp) with ni = card({s ∈ {1, . . . , k} : is = i}).

So for every j, we require that p
ij
D ∈ l

′(sj).
IfM, s 6|= α[D] andM, s |= α[∃x1 · · ·xp : ¬φ(x1, . . . , xp) : x1E1 & · · ·& xpEp],
then by definition R(s) = s1 < · · · < sk, and there are i1, . . . , ik such that
for every j ∈ {1, . . . , k}, M, sj |= Eij and [x1 ← n1, . . . , xp ← np] |=
¬φ(x1, . . . , xp) with ni = card({s ∈ {1, . . . , k} : is = i}). So for every j, we

require that p
ij
D ∈ l

′(sj).

IfM, s 6|= α[D] andM, s 6|= α[∃x1 · · ·xp : ¬φ(x1, . . . , xp) : x1E1 & · · ·& xpEp],
then this means either there is one child of s, say s′, satisfies none of the
Ei or l(s) 6= α. So, we require that none of the piDs belongs to l(s′′) for
s′′ ∈ R(s).

By structural induction, one can show thatM′, s |= t(φ).

Now suppose that φ′val ∧ t(φ) is EML satisfiable. There exist a EML model
M = 〈T,R, (<s)s∈T , l〉 and s ∈ T such that M, s |= φ. Let M′ be the SL
modelM′ = 〈T ′, R′, (<′s)s∈T ′, l′〉 defined by:

• 〈T ′, R′, (<′s)s∈T ′〉 = 〈T,R, (<s)s∈T 〉,
• for every s ∈ T ′, l′(s) = β where β is the unique element of TAGS ∪

DATATYPES such that pβ ∈ l(s) ( l(s) may contain other propositional
variables of the form pinew). Unicity is guaranteed by the satisfaction of φ′val.

It is easy to show thatM′, s |= φ. 2

Consequently, SL is in pspace which contrasts with the non-elementary com-
plexity of the decision procedure from [ZL06].

Proposition 1 SL satisfiability problem is pspace-complete.

Proof. It remains to establish the pspace-hardness of SL. This can be done
by reducing the satisfiability problem for minimal modal logic K with no
propositional variable but with logical constant true and false that is already
pspace-complete [Hem01]. We can even restrict ourselves to negation-free
formulae. Let us define a reduction t′ from this fragment of modal logic K into
SL:

• t′(true) = true, t′(false) = ¬true,
• t′(φ ∧ φ′) = t′(φ) ∧ t′(φ′),
• t′(φ ∨ φ′) = ¬(¬t′(φ) ∧ ¬t′(φ′)),
• t′(3φ) = α[∃ x : x > 1 : x t′(φ)],
• t′(2φ) = α[∃ x : x = 0 : x ¬t′(φ)] ∨ δ.
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α is a tag (always the same) and δ is a datatype (always the same). One can
show that the negation-free formula φ (with no propositional variable) is K
satisfiable iff t′(φ) is SL satisfiable.

Suppose that φ is K satisfiable. So there is a tree model M = 〈W,R〉 (no
need for labeling) and w ∈W such thatM, w |= φ (the logic K has the finite
tree model property). The SL model M′ = 〈T ′, R′, (<′s)s∈T ′, l′〉 is defined as
follows:

• T ′ = W , R′ = R,
• For every s ∈ T ′, <′s is an arbitrary linear ordering on <′s. These orderings

are irrelevant because t′(φ) has no regularity constraint.
• For every s ∈ T ′, if s is a leaf then l′(s) = δ, otherwise l′(s) = α.

It is easy to show thatM′, w |= t′(φ). Similarly ifM is a model for t′(φ), then
a model for φ is obtained from M by deleting the labeling and the family of
orderings. 2

The logics SL and EML interpreted over finite trees cannot be immediately
compared because of the presence of tags and datatypes in SL, whence the
models are different. The reduction from SL into EML in the proof of Lemma 8
allows to transform an SL model into an EML model. For the other direction,
assuming that in SL the nodes are labelled by propositional valuations as
in EML, the reduction from EML into SL amounts to being able to express
atomic formulae of the form

∑i=γ
i=1 ai♯pi ∼ b, which can be captured by the SL

formula below:

∨

v

v[∃x0 · · ·x2γ−1 :
i=γ
∑

i=1

ai(
∑

j:pi∈Xj

xj) ∼ b : x0E0 & · · ·& x2γ−1E2γ−1]

where v ranges over all the propositional valuations over a given finite set of
propositional variables and, the Ej’s and Xj ’s are defined as follows. Given
j ∈ {0, . . . , 2γ − 1}, we write Xj ⊆ {p1, . . . , pγ,¬p1, . . . ,¬pγ} such that for
1 6 i 6 γ, the ith bit of j in binary representation is 1 iff pi ∈ Xj iff ¬pi 6∈ Xj .
The formula Ej is defined as follows:

∧

{i: ith bit of j is 1}

pi ∧
∧

{i: ith bit of j is 0}

¬pi

Since no node can satisfy two distinct Ej, Ej′, this allows us to tame the fact
that each child counts only once in an arithmetical constraint. However, the
translation causes an exponential blowup.
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4.3 Fixpoint free SSMH logic

In this section, we recall the syntax and semantics of the fixpoint free frag-
ment of the logic from [SSMH04]. For brevity, we call it SSMH. The full logic
in [SSMH04] contains additionnally fixpoint operators and it is a strict exten-
sion of modal µ-calculus, see e.g. [BS07]. Like for SL, definitions are adapted
to our presentation to EML which allows to compare easily the (sometimes
minor) differences between EML, SL and SSMH. The SSMH formulae are
inductively defined as follows:

φ ::= true | ¬φ | φ ∧ φ′ | α〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 |

⋆〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 | α〈A(φ1, . . . , φp)〉 | ⋆〈A(φ1, . . . , φp)〉.

where

• α belongs to a countably infinite set TAGS of tags,
• A is a nondeterministic finite-state automaton over an p-letter alphabet,
• Φ(x1, . . . , xp) is a Presburger formula as in SL.

A modelM for SSMH is a structureM = 〈T,R, (<s)s∈T
, l〉 where

• T is a finite set of states,
• 〈T,R〉 is a tree and each <s is a total ordering on R(s),
• l : T → TAGS is a labeling function (no datatypes here).

The satisfaction relation is inductively defined below whereM is a model for
SSMH and s ∈ T (we omit the clauses for Boolean operators):

• M, s |= α iff α = l(s),
• M, s |= α〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 iff α = l(s) and R(s) = s1 <

· · · < sk and [x1 ← n1, . . . , xp ← np] |= Φ(x1, . . . , xp) where ni = card({s ∈
{1, . . . , k} :M, ss |= φi}),
• M, s |= ⋆〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 iff [x1 ← n1, . . . , xp ← np] |=

Φ(x1, . . . , xp) where ni = card({s ∈ {1, . . . , k} :M, ss |= φi}),
• M, s |= α〈A(φ1, . . . , φp)〉 iff α = l(s), R(s) = s1 < · · · < sk and there is
i1, . . . , ik such that for every j ∈ {1, . . . , k}, M, sj |= φij and ai1 · · ·aik ∈
L(A). (analogous clause for ⋆〈A(φ1, . . . , φp)〉).

Unlike SL and like EML, a child can count more than once in Presburger con-
straints. Let φ be an SSMH formula with tags {α1, . . . , αn}. We shall define an
EML formula φ′ built over the propositional variablesAP = {pα1 , . . . , pαn

, pαn+1}.
Let t be a logspace reduction from SSMH formulae to EML formulae:

• t is homomorphic for Boolean operators and t(true) = true,
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• t(α〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉) equals

pα ∧ φ(x1, . . . , xp)[x1 ← ♯t(φ1), . . . , xp ← ♯t(φp)].

• t(⋆〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉) equals

φ(x1, . . . , xp)[x1 ← ♯t(φ1), . . . , xp ← ♯t(φp)].

• t(α〈A(φ1, . . . , φp)〉) = pα ∧ A(t(φ1), . . . , t(φp)),
• t(⋆〈A(φ1, . . . , φp)〉) = A(t(φ1), . . . , t(φp)).

Lemma 9 t is a logspace reduction such that φ is satisfiable iff ∀|φ|
∨

p∈AP (p∧
∧

q∈AP\{p} ¬q) ∧ t(φ) is satisfiable.

The proof is similar (and indeed simpler) than the proof of Lemma 8. The
subformula ∀|φ|

∨

p∈AP (p ∧
∧

q∈AP\{p} ¬q) guarantees that each node satisfies
exactly one atomic proposition from AP . Observe that SSMH and EML has
similar expressive power and one can see them as syntactic variants for any
bijection between a finite set of propositional valuations and a finite set of
tags.

Proposition 2 SSMH satisfiability problem is pspace-complete.

Proof. It remains to establish pspace-hardness. We reduce again negation-free
fragment of K with no propositional variable to SSMH:

• t′(true) = true, t′(false) = ¬true,
• t′ is homomorphic for Boolean operators,
• t′(3φ) = ⋆〈∃ x : x > 1 : x t′(φ)〉,
• t′(2φ) = ⋆〈∃ x : x = 0 : x ¬t′(φ)〉.

It is easy to show that φ is K satisfiable iff t′(φ) is SSMH satisfiable. 2

The main differences between SSMH and its extension with fixpoint operators
from [SSMH04] is similar to the difference between the modal logic K and the
modal µ-calculus. For instance, whenever a formula in SSMH has a tree model,
its depth can be polynomially bounded which is not anymore the case when fix-
point operators are added. This partly explains why the satisfiability problem
for SSMH is only in pspace and for the full logic exptime-complete [SSM07].
Formulae in SSMH can only produce constraints on immediate successors of a
node (at distance at most the modal depth of the formula), whereas fixpoint
operators allow to express reachability operators that can produce constraints
on all descendant nodes.
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4.4 PDL over finite trees

In [ABD+05] a PDL-like logic PDLtree is introduced where models are finite,
labeled ordered trees and the four atomic relations are: left-sibling, right-
sibling, mother-of and daughter-of. Other relations can be generated with
standard “program operators” (iteration, test, union and composition). There
is no (full) Presburger constraints in PDLtree (except the obvious ones derived
from the standard modal operators) but regularity constraints can be stated
thanks to the interplay between the program operators and the atomic re-
lations. PDLtree satisfiability is shown exptime-complete in [ABD+05]. It is
not difficult to show that, on the model of the undecidability proof for [ZL06,
Proposition 1], adding Presburger constraints to PDLtree leads to undecidabil-
ity. We provide below an undecidability proof for a logic sharing features from
PDLtree and EML, say L, that is a strict fragment of the logic PDLtree on which
are added Presburger constraints. Hence, the logic L is an hybrid version of
PDLtree and EML without subsuming any of them. Nevertheless, below, the
satisfiability problem for L will be shown undecidable mainly because of the
ability to compare for each node, its number of siblings with its number of
children. Hence, as illustrated below, combining this type of comparisons with
the ability to access to all descendant nodes, makes the logic too expressive
to retain decidability.

Given a countably infinite set AT = {p1, p2, . . .} of propositional variables and
Σ = {↓, ↓∗,→,→∗,←,←∗, ↑, ↑∗} a set of relation symbols, we define the set of
formulae and terms inductively as follows:

φ ::= p | ¬φ | φ ∧ φ | t ∼ b t ::= a× ♯Rφ | t+ a× ♯Rφ

where p ∈ AT, R ∈ Σ, b ∈ N, a ∈ Z\{0} and∼∈ {<,>,=}. The programs from
PDLtree are much richer than Σ because iteration, test, union and composition
are present in PDLtree. Similarly, the Presburger constraints from EML strictly
contains those of L, as L has no modulo constraints. A model M for L is a
structure

M = 〈T,R↓, R↓∗ , R→, R→∗, R←, R←∗ , R↑, R↑∗ , l〉

where

• 〈T,R↓, R→〉 is a finite ordered tree with R↓ and R→ are child-of and right-
sibling relations, respectively;
• l : T → 2AT is the valuation function,
• for every R ∈ {↓,→,←, ↑}, R∗

R
= RR∗ (R∗

R
is the reflexive and transitive

closure of RR), R→ = R−1
← and R↑ = R−1

↓ ,

The satisfaction relation is inductively defined as for EML except this time
the models are finite ordered trees.
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Proposition 3 The satisfiability problem for L is undecidable.

Proof. The proof is by reducing the halting problem for 2-counter machine. A
2-counter machine M consists of two counters C1 and C2, and a sequence of
n > 1 instructions. The Lth instruction is written as one of the following:

L : Ci = Ci + 1; goto L′.
L : if Ci = 0 then goto L′ else Ci = Ci − 1; goto L′′.

We represent the configurations of M by triples 〈L, c1, c2〉 where 1 6 L 6 n,
c1 > 0 and c2 > 0. A computation of M is a finite sequence of related config-
urations, starting with the initial configuration 〈1, 0, 0〉. The halting problem
can be stated as the existence of a finite sequence of related configurations
that reaches the instruction 1 in at least one step. We build a formula φ of L
such that M halts iff φ is satisfiable in L.

As usual, we use the standard notations:

〈R〉φ
def
= ♯Rφ > 0 [R]φ

def
= (♯R¬φ = 0).

A computation 〈q1, c1, d1〉, . . . , 〈qt, ct, dt〉 is encoded as a finite ordered tree of
depth t+ 1 over the propositional variables 1, . . . , n, n+ 1, n+ 2. The variable
n+ 1 [resp. n+ 2] is related to the counter C1 [resp. C2]. The root is labelled
by no propositional variable (valuation {}) and the leftmost branch is the
following sequence of valuations:

{}, {q1}, . . . , {qt}.

Each node labelled by {qi} on that special branch has ci + di right-siblings
with the following valuations

ci times
︷ ︸︸ ︷

{n+ 1}, . . . , {n+ 1},

di times
︷ ︸︸ ︷

{n+ 2}, . . . , {n+ 2} .

The formula φ is defined as the conjunction of the following formulae and
enforces the above encoding of computations:

• Initial configuration:

¬(1 ∨ · · · ∨ n+ 2) ∧ 〈↓〉(1 ∧

C1=0
︷ ︸︸ ︷

(♯→
∗

n+ 1 = 0)∧

C2=0
︷ ︸︸ ︷

(♯→
∗

n + 2 = 0)).

• Unicity of the labelling of the nodes:

[↓][↓∗](
∨

16i6n+2

(i ∧
∧

i′ 6=i

¬i′)).
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• The instruction counter is the leftmost child:

[↓][↓∗]((
∨

16i6n

i)⇔ ¬〈←〉⊤).

• Encoding of C1 is strictly before the encoding of C2:

[↓∗](n+ 1⇒ (♯←
∗

n+ 2 = 0)).

• Instruction L: C1 = C1 + 1; goto L′.

[↓∗](L∧〈↓〉⊤ ⇒ 〈↓〉[L′∧

C1:=C1+1
︷ ︸︸ ︷

(♯↓n + 1− ♯→
∗

n+ 1 = 1)∧

C2 is unchanged
︷ ︸︸ ︷

(♯↓n+ 2− ♯→
∗

n + 2 = 0))].

• Instruction L: if C1 = 0 then goto L′ else C1 = C1 − 1; goto L′′.

[↓∗](L ∧ 〈↓〉⊤ ∧

C1=0
︷ ︸︸ ︷

(♯→
∗

n+ 1 = 0)⇒

〈↓〉L′ ∧

C1 is unchanged
︷ ︸︸ ︷

(♯↓n+ 1− ♯→
∗

n + 1 = 0)∧

C2 is unchanged
︷ ︸︸ ︷

(♯↓n + 2− ♯→
∗

n+ 2 = 0))∧

[↓∗](L ∧ 〈↓〉⊤ ∧

C1 6=0
︷ ︸︸ ︷

¬(♯→
∗

n+ 1 = 0)⇒

〈↓〉L′′ ∧ (

C1:=C1−1
︷ ︸︸ ︷

♯→
∗

n+ 1− ♯↓n + 1 = 1)∧

C2 is unchanged
︷ ︸︸ ︷

(♯↓n + 2− ♯→
∗

n+ 2 = 0))

• The instruction 1 is reached after at least one step: 〈↓〉〈↓〉〈↓∗〉1.

Then, it is easy to show that M halts iff φ is satisfiable in L. 2

If we modify the models by allowing infinite trees with finite-branching, satis-
fiability becomes Σ1

1-hard by reducing the recurring problem for nondetermin-
istic 2-counter machines [AH94, Lemma 8]. The formulae built in the proof of
Proposition 3 are specific since only the relation symbols from {↓∗, ↓,→∗,←}
are used. The decidability status of the following logics is still open:

• restriction of L to formulae with no subformula of the form
∑

i ai♯
Riφi where

for some j 6= j′, Rj 6= Rj′ (forbidding for instance the comparison of the
number of siblings with the number of children),
• EML on finite trees with the relation symbols ↓ (as before) and the left-

sibling relation ←,
• PDLtree augmented with a subclass of Presburger constraints.

The logic obtained by adding ↓∗ to EML is a fragment of the logic SSMH ex-
tended with fixpoints, for which satisfiability is shown decidable in [SSMH04].
Actually, this fragment is already exptime-hard, even if we use only trivial
regularity and Presburger constraints (by using the complexity result of [FL79]).
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5 Concluding Remarks

In this paper, we have shown that the satisfiability problem for the logic
EML is only pspace-complete. We improve previous results, for instance
from [Tob01,SSMH04,ZL06], and we give a pspace bound for the satisfia-
bility of a logic that generalizes many previous logics. The proof to obtain the
pspace upper bound is established by designing a specially tailored Ladner-
like algorithm and by using reasoning on constraint systems from [SSMH04].
The logic EML is therefore a remarkable example of modal logics with a rea-
sonable complexity that combines counting abilities and regularity constraints,
which are useful features for applications ranging from query language for
XML documents to knowledge representation.

We plan to investigate decidable fragments of PDLtree augmented with Pres-
burger constraints on the numbers of children that are more expressive than
EML. For instance, the decidability status of EML extended with the left-
sibling relation (and therefore with an enriched class of arithmetic constraints)
is open.
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A Proof of Lemma 7

The proof basically restates the proof of [SSM07, Claim 7.3] in the context
of EML with subsets of cl(n, φ). Section A.1 recalls a result due to Papadim-
itriou [Pap81] about small solutions of constraint systems, see also [BT76].
Section A.2 explains how the Parikh image of a language defined as an in-
tersection can be characterized from automata (Parikh image of context-free
languages are semilinear). Section A.3 shows how to reduce the constraint
systems in order to obtain exponential-size small solutions. This is the place
where we essentially follow part of the proof of [SSM07, Claim 7.3]. Finally,
Section A.4 explains how to build constraint systems from subsets of cl(n, φ)
and why it allows us to conclude the proof. This appendix completes the proof
sketch provided in the body of the paper.

A.1 Constraint Systems

A constraint system S over the set of variables {x1, . . . , xn} is a Presburger
formula built over {x1, . . . , xn} that is a Boolean combination of atomic con-
straints of the form

∑

j aj × xij = b with each aj ∈ Z and b ∈ N. A positive
solution for S is an element x ∈ N

n such that x |= S in Presburger arith-
metic. We base our analysis on Lemma 10 below, which follows from a result
of Papadimitriou [Pap81].

Theorem 2 [Pap81] Let S be a constraint system over {x1, . . . , xn} made of
a single conjunction of atomic constraints. S has a positive solution iff there
is a positive solution such that all the coefficients are bounded by n×(ma)2m+1

where a is the maximal absolute value among the constants occurring in S and
m is the number of atomic constraints in S.

We have the following corollary.

Lemma 10 Let S be a constraint system over {x1, . . . , xn}. S has a positive
solution iff there is a positive solution such that all the coefficients are bounded
by (n+ 2×m)× (2×m+ (a+ 1))4m+1 where a is the maximal absolute value
among the constants occurring in S and m is the number of atomic constraints
in S.

Proof. The system S can be transformed in disjunctive normal form providing
a disjunction of conjunctions with conjuncts of the form either

∑

j aj×xij = b

or ¬(
∑

j aj × xij = b). Each disjunct has at most m atomic constraints. Since
¬(

∑

j aj×xij = b) can be rewritten as (
∑

j aj×xij−y = b+1)∨(
∑

j aj×xij +y
′ =

b − 1), we get a disjunction of conjunctions as those in Theorem 2. Here y
and y′ are new variables. However, the process of replacing negated atomic
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constraints possibly multiplies by 2 the number of atomic constraints, add at
most 2 × m variables, and add one to the maximal absolute value of each
conjunction, whence the bound. 2

A.2 Product automata over an enriched alphabet

Suppose that the formulae below

A1(φ
1
1, . . . , φ

1
n1

), . . . ,Al(φ
l
1, . . . , φ

l
nl

),¬A′1(ψ
1
1 , . . . , ψ

1
m1

), . . . ,¬A′l′(ψ
l′

1 , . . . , ψ
l′

ml′
)

are exactly the automata-based formulae or their negation that occurs in some
set X ⊆ cl(n, φ). Let {ψ1, . . . , ψP} be the subformulae in sub(φ) that occur as
arguments in the above formulae. Necessarily, {ψ1, . . . , ψP} ⊆ cl(n+ 1, φ).

First, let us build automata B1, . . . , Bl over the alphabet Σ = {Y1, . . . , Ynb(n+1)}
where Y1, . . . , Ynb(n+1) are the only (n+ 1)-locally consistent sets (nb(n+ 1) is
exponential in |φ|). For every i ∈ {1, . . . , l}, the automata Bi and Ai have the

same sets of states, initial states and final states and q
Y
−→ q′ in Bi iff q

ψ
−→ q′

in Ai for some ψ ∈ Y .

Similarly, we build the automata B′1, . . . , B′l′ from the automata A′1, . . . ,
A′l′. We write B′¬1 , . . . , B′¬l′ to denote the complement automata obtained, for
instance, by the standard powerset construction.

Hence, we can define a product automaton B obtained by synchronizing B′1,
. . . , Bl, B

′
1, . . . , B′l′ over the alphabet Σ satisfying the conditions below:

• The cardinal of the alphabet Σ is bounded by 2|φ| and the set of states Q′

has cardinal bounded by 2p(|φ|) for some polynomial p(·).
• For every word w = Yj1 · · ·Yjα ∈ Σ∗, w ∈ L(B) iff the conditions below hold

true.
· For every i ∈ {1, . . . , l}, there are ψ1 ∈ Yj1, . . . , ψα ∈ Yjα such that
ψ1 · · ·ψα ∈ L(Ai).
· For i ∈ {1, . . . , l′}, there are no ψ1 ∈ Yj1, . . . , ψα ∈ Yjα such that
ψ1 · · ·ψα ∈ L(A′i).

The Parikh image of L(B), subset of N
|Σ| and denoted by π(L(B)), is a finite

union L1∪ · · ·∪Lm of linear sets Li = {σ0 +
∑h
j=1 yjσj : yj > 0} where each σj

is in {0, . . . , |Q′|}|Σ| by [SSMH04, Theorem 1]. Consequently, h is bounded by

(|Q′|+1)|Σ| 6 2p(|φ|)×2|φ|
. By Theorem 2 (see also Lemma 10), if the constraint
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system












z1

z2

. . .

z|Σ|













= σ0 +
h∑

j=1

yjσj

made of |Σ| + h variables and |Σ| atomic constraints has solutions, then it
admits a (small) solution whose values are at most doubly exponential in |φ|.
However, in order to guess such values in polynomial space, we need to improve
this double exponential bound to a simple exponential bound in |φ|.

A.3 Reducing the number of variables

Let us pose N = nb(n + 1). We write H : N
N → N

P to denote the homomor-
phism such that

H(













n1

n2

. . .

nN













)(i)
def
=

∑

ψi∈Yj

nj .

This map can be naturally extended to sets of tuples. So if the tuple













n1

n2

. . .

nN













is

the Parikh image of the children of a node with respect to the sets of formulae

Y1, . . . , YN , the tuple H(













n1

n2

. . .

nN













) is the Parikh image with respect to formulae

ψ1, . . . , ψP . For instance, the number of children satisfying ψ3 is denoted by

H(













n1

n2

. . .

nN













)(3).
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By definition of π and B, for every v ∈ N
P , v ∈ H(π(L(B)) iff there is w ∈ L(B)

such that for j ∈ {1, . . . , P}, the cardinal of {w(k) : k < |w|, ψj ∈ w(k)} is
v(j). Consequently, v ∈ H(π(L(B))) iff v ∈ H(Li) for some i ∈ {1, . . . , m}.
However, H(Li) is precisely equal to {H(σ0)+

∑h
j=1 yjH(σj) : yj > 0}. Observe

that each H(σj) has dimension P 6 |φ| and each coefficient is bounded by
N × 2p(|φ|)×|φ|. Consequently, the cardinal of the set {H(σj) : 1 6 j 6 h} is
bounded by (N × 2p(|φ|)×|φ| + 1)|φ|, which is bounded by α 6 2p1(|φ|) for some
polynomial p1(·). Roughly speaking, this entails that there are many images
H(σj) and H(σk) that are equal with σj 6= σk. Let h1, . . . , hα be the elements
of the above mentioned set. So, (EQUIV) the projections over the components
z1, . . . , zP of the solutions of the system

(⋆)













z1

z2

. . .

zP













= H(σ0) +
α∑

j=1

yjhj

are exactly the projections over the components z1, . . . , zP of the solutions of
the system

(⋆⋆)













z1

z2

. . .

zP













= H(σ0) +
h∑

j=1

y′j H(σj)

Typically, from (⋆⋆) to (⋆), each yj can be defined as a sum of variables y′k
(with H(σk) = hj). We recall that a solution of (⋆) is a tuple in N

P+α whereas
a solution of (⋆⋆) is a tuple in N

P+h. We assume that the P first elements
of the tuples correspond to values for z1, . . . , zP . We write S⋆ [resp. S⋆⋆] to
denote the disjunction of all the systems of the form (⋆) [resp. (⋆⋆)]. There is
indeed one disjunct by element from the union L1∪· · ·∪Lm. Observe that each
disjunct of S⋆ has a polynomial amount of equations, an exponential amount of
variables and coefficients are at most exponential in |φ|. The above-mentioned
equivalence (EQUIV) can be extended as follows (the proof is by an easy
verification).

Lemma 11 Let S ′ is a contraint system with no variable of the form either yj
or y′j. The two sets below are identical (obtained by projection over the values
related to the variables z1, . . . , zP ):

(1) {vP ∈ N
P : 〈vP , v〉 is a solution of S⋆ ∧ S ′}.

(2) {vP ∈ N
P : 〈vP , v

′〉 is a solution of S⋆⋆ ∧ S ′}.
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A.4 Constraint systems from locally consistent sets

Let φ be an EML formula and X be a n-locally consistent set. We shall
build the system SX that contains the variables x1, . . . , xnb(n+1). Each xi is
the number of occurrences of “type” Yi among the children of a node of type
X. To each formula ψ ∈ cl(n + 1, φ) that is not a periodicity constraint of
the form t ≡K c, we associate the term tψ =

∑

i,ψ∈Yi
xi. Remember that we

have assumed without any loss of generality that formulae of the form t ≡K c

belongs to the closure sets but are not atomic formulae occurring in φ. We
shall define SX as a conjunction of the constraints below:

•
∑

Yi is not satisfiable xi = 0,
• if

∑

i ai♯φi = b ∈ X, then we add Σiaitφi
= b,

• if
∑

i ai♯φi < b ∈ X, then we add Σiaitφi
+ y = b − 1 where y is a new

variable,
• if

∑

i ai♯φi > b ∈ X, then we add Σiaitφi
− y = b + 1 where y is a new

variable,
• if

∑

i ai♯φi ≡K c ∈ X, then we add
∑

i aitφi
− Ky = c where y is a new

variable,
• if A1(φ

1
1, . . . , φ

1
n1

), . . . ,Al(φ
l
1, . . . , φ

l
nl

) and ¬A′1(ψ
1
1, . . . , ψ

1
m1

), . . . ,

¬A′l′(ψ
l′

1 , . . . , ψ
l′

ml′
) are all the automaton-based formulae in X, then we add

the system S⋆ from Section A.3 where each variable zi is replaced by tψi
.

By construction SX is equivalent to a disjunction of the form
∨
Si with an

exponential amount of disjuncts for which each Si has a polynomial amount
of equations, an exponential amount of variables and coefficients are at most
exponential in |φ|. Hence, by Lemmas 10 and 11, if SX has solutions, then SX
has solutions with values bounded by some M exponential in |φ|. We write M
to denote the maximal value amongst all the values obtained for the different
depths n between 0 and |φ|.

The proof of Lemma 7 is then a simple consequence of Lemma 12 below.

Lemma 12 Let φ be a EML formula, d ∈ {0, . . . , |φ|} and X be a d-locally
consistent set of formulae. Then, X is EML satisfiable iff SX has a positive
solution.

Proof. It is easy to check that if X is EML satisfiable, then SX has a posi-
tive solution. The converse requires a bit more care. Assume that SX has a
positive solution whose projection over {x1, . . . , xnb(n+1)} is 〈n1, . . . , nnb(d+1)〉.
We build the EML model M = 〈T,R, (<s)s∈T , l〉 as follows. For each ni 6= 0,
the set Yi is satisfiable since ΣYi is not satisfiable ni = 0. Hence, there exist a
EML model Mi = 〈Ti, Ri, (<

i
s)s∈Ti

, li〉 and si ∈ Ti such that Mi, si |= Yi. M
is built from n1 copies of M1, . . . , nnb(d+1) copies of Mnb(d+1) by adding R-
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transitions between the root s of T (a new state) and all the si’s of all copies.
Moreover l(s) = AT ∩ X. Because 〈n1, . . . , nnb(d+1)〉 is a positive solution of
SX , there is a way to order the children of s so that the constraints of the
form either A(ψ1, . . . , ψl) or ¬A(ψ1, . . . , ψl) in X are also satisfied (this comes
by construction of S⋆). Because X is a d-locally consistent set, one can easily
show thatM, s |= X. This is shown by structural induction and the base case
for atomic formulae hold true because 〈n1, . . . , nnb(d+1)〉 is the projection of a
positive solution for SX .
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