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ABSTRACT

Context. Baryon Acoustic Oscillations (BAO) are a feature imprintedin the density field by acoustic waves travelling in the plasma
of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe.
Aims. BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. In this work, we
present a new method for the detection of the real-space structures associated with this feature. These baryon acousticstructures are
spherical shells with a relatively small density contrast,surrounding high density central regions.
Methods. We design a specific wavelet adapted to the search for shells,and exploit the physics of the process by making use of two
different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new
statistic when applied to theΛ – Cold Dark Matter (ΛCDM) model, using an analytical approximation to the transfer function.We
confirm the reliability and stability of our method by using cosmologicalN-body simulations from the MareNostrum Institut de
Ciències de l’Espai (MICE).
Results. We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use
the ‘Main’ catalogue to trace the shells, and the Luminous Red Galaxies (LRG) as tracers of the high density central regions. Using
this new method, we detect, with a high significance, that theLRGs in our sample are preferentially located close to the centres of
shell-like structures in the density field, with characteristics similar to those expected from BAOs. We show that stacking selected
shells, we can find their characteristic density profile.
Conclusions. We have delineated a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO
phenomenon can be studied in detail by examining those shells.

Key words. cosmology: large-scale structure of Universe – cosmology:distance scale – galaxies: cluster: general – methods: data
analysis – methods: statistical

1. Introduction

Before recombination, the energy of photons is high enough to
avoid the formation of neutral hydrogen atoms. This means that
baryons and photons are coupled through Compton scattering
and electromagnetic interaction between protons and electrons,
forming a plasma. In this fluid two phenomena act in opposite di-
rections: gravitational forces tend to compress the plasmaaround
high density regions, while radiation pressure tends to dilute
any such over-density. The combination of both in the presence
of any initial inhomogeneity give rise to acoustic waves prop-
agating in the baryon-photon plasma. This phenomenon ends
abruptly at the epoch of recombination, when the temperature
drops enough to allow hydrogen atoms to form, and therefore
radiation decouples from the baryons.

Baryon acoustic oscillations (BAO) are therefore due to
the propagation of these sound waves in the baryon-photon
plasma in the early universe (Peebles & Yu 1970; Hu et al. 1997;
Eisenstein & Hu 1998; Bassett & Hlozek 2010). Any primordial
over-density in the early universe produces a spherical acous-
tic wave in the baryon-photon plasma, travelling outwards:the
radiation pressure drags the baryons that are coupled to the
photons, and compensates the gravity force that pulls all mat-
ter towards the centre. Dark matter, however, is totally decou-
pled from the photons, and therefore its density at the centre
continues growing. About 380, 000 years after the Big Bang,
temperature drops so that photons and baryons decouple, and
the scale of the baryon shells freezes. After this time, boththe
central over-density and the shell grow gravitationally, accret-
ing both dark matter and baryons. The result at late times is a
large over-density at the position of the original perturbation,
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surrounded by a faint spherical shell at a fixed co-moving scale
(Eisenstein et al. 2007).

The BAO scale is fixed by the sound horizon at decou-
pling: it is the distance that the expanding acoustic shellscan
travel before decoupling. It has been accurately measured by the
study of the anisotropies in the Cosmic Microwave Background
(CMB) to be (Komatsu et al. 2009)rs = 153.3 ± 2.0 Mpc =
110.4 ± 1.4h−1 Mpc (where we takeh = 0.72, Freedman et al.
2001)1. Therefore, this scale, once measured, could be used as
a standard ruler to measure the Hubble expansion rate with red-
shift H(z) and the angular diameter distanceDA(z) (Cooray et al.
2001; Blake & Glazebrook 2003; Seo & Eisenstein 2005).

The BAO should appear as a series of damping wiggles in
the matter power spectrum, with the locations of the peaks and
throughs ink-space being a function ofrs and other cosmolog-
ical parameters (Eisenstein & Hu 1998). All the harmonics sum
up to the same peak in the galaxy correlation functionξ(r) at
the scalers, and therefore it could seem more appropriate to use
this statistic for the detection of the BAO feature on the avail-
able galaxy redshift surveys encompassing large volumes ofthe
universe (Sánchez et al. 2008).

The first detection (claiming a∼ 3σ level) was reported in
the analysis of the correlation function (Eisenstein et al.2005)
of the Sloan Digital Sky Survey (SDSS) (York et al. 2000)
Luminous Red Galaxies (LRG) sample (Eisenstein et al. 2001),
and later in the power spectrum (Cole et al. 2005) of the 2-degree
Field Galaxy Redshift Survey (2dFGRS) (Colless et al. 2001).
But certainly this is a controversial topic. Cabré & Gazta˜naga
(2011) are not finding such level of detection using a data set
twice as large in volume and in number of galaxies. They do
not claim this result to be in contradiction with the standard
ΛCDM model, but to be a consequence of insufficient data.
One of the arguments in Cabré & Gaztañaga (2011) is the fact
that mixing model selection with parameter determination can
lead to some confusion in the interpretation of the results and
their significance. Different authors are using different criteria
to assess the significance of ther BAO detection. For example,
when (Eisenstein et al. 2005) affirm that the baryon signature
was detected at 3.4σ (or at 3.0σ when including only data
points between 60 and 180h−1 Mpc) they are comparing their
results of the SDSS-LRG correlation function with the expected
for the best-fit pure CDM model and different BAO models.
The best BAO detection up to now (Percival et al. 2010) was
obtained studying the combined power spectrum of LRG and
‘Main’ Strauss et al. (2002) samples of SDSS, together with the
2dFGRS sample, and is at the∼ 3.6σ level. The authors ex-
plicitly state that since this number is obtained comparingto an
arbitrary smooth model, the significance cannot be directlycom-
pared with the one reported in (Eisenstein et al. 2005). Thisis a
clear example of different authors using different ways to assess
the significance of their results that in practice are not compara-
ble. Hütsi (2006) calculated the redshift space power spectrum
of the SDSS-LRG sample drawn from the Data Release 4. He
concludes that BAO models are favored by 3.3σ over the corre-
sponding models without any oscillatory behavior in the power
spectrum.

Percival et al. (2007) detected BAOs in the clustering of the
combined 2dFGRS and SDSS main galaxy samples, and use
their measurements to constrain cosmological models, in partic-
ular a given combination of the angular diameter distanceDA(z)
and the Hubble parameterH(z). Cabré & Gaztañaga (2009a,b)
studied the LRGs anisotropic redshift space correlation function

1 h is the Hubble constant in units of 100 km s−1 Mpc−1

ξ(σ, π), whereπ is the line-of-sight or radial separation andσ
is the transverse separation. Moreover, Gaztañaga et al. (2009)
have shown how to constrainH(z) using the correlations in the
radial direction. Kazin et al. (2010a) found similar results for the
correlation measurements and uncertainties, but manifestdis-
agreement in the interpretation of the results regarding the de-
tection of a line-of-sight baryonic acoustic feature.

More recent studies (Martı́nez et al. 2009;
Cabré & Gaztañaga 2009a; Sánchez et al. 2009; Kazin et al.
2010b) have confirmed this detection in the last Data Release
(DR7, Abazajian et al. 2009) of the SDSS-LRG, containing
twice as many galaxies as the original sample, although the
observed peak is in these cases wider than that observed in the
original detection – an issue that needs further explanation.
These measurements of the BAO scale at a low redshift, com-
bined with other cosmological probes, have been used to put
stringent constraints on the values of cosmological parameters
(Tegmark et al. 2006; Percival et al. 2007; Sánchez et al. 2009;
Percival et al. 2010; Reid et al. 2010; Kazin et al. 2010a).

While Bassett & Afshordi (2010) argue that low-level detec-
tions may not be sufficient to robustly estimate the cosmologi-
cal parameters, Cabré & Gaztañaga (2011) show instead that it
is still possible –assuming a model– to locate the BAO position
with data providing very low significant BAO detection.

It is important, therefore, to find evidence of BAO in the
galaxy distribution based on complementary methods. A step
further is to search for real structures in the galaxy distribution
that are responsible for the BAO feature in these second order
statistics. The detection of these structures would be a confir-
mation of the existence of the baryon acoustic phenomenon.
Moreover, if we are able to localize these structures in config-
uration space, this would allow us to study in more detail the
properties of BAO.

In this paper, we introduce a new method for the detection
of BAO, which is closely tied to the underlying physics of the
process, and apply it to a sample drawn from the SDSS cata-
logue. This method (described in Section 2) is based on ana-
lyzing directly the 3D galaxy distribution using a very specific
wavelet function (which we called ‘BAOlet’), which is specially
well suited to search for BAO features. The method makes use
of two different tracers, one to map the overall density field (in-
cluding the BAO shells), and the other to locate the positionof
the largest overdensities, which should correspond to centres of
the shells. As we study directly the galaxy distribution in config-
uration space, this method also allows us to identify regions of
space where the BAO signal is stronger or fainter. We describe
the expected signal in theΛCDM model in Section 3, using both
analytical prediction and aN-body simulation catalogue. We de-
scribe the samples used in the case of SDSS in Section 4. In
Section 5, we show the results obtained in this case. We also
make a test to assess the significance of these results, and ex-
plore the implications of this analysis regarding the localization
of BAO structures. Finally, we summarize our conclusions and
discuss possibilities for future work in Section 6.

2. The wavelet detection method

The basis of the new BAO detection method is to focus on the
positions of massive dark matter haloes, which correspond to the
location of large initial perturbations, and to look for thepres-
ence of structures resembling the acoustic shells around these.
Once we locate the positions of the large over-densities, weneed
to study the density field to identify the structures correspond-
ing to the acoustic shells around these centres. An appropriate
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method for identification of structures in continuous fieldsis
wavelet analysis (Martı́nez et al. 1993; Starck & Murtagh 2006;
Jones 2009). Wavelet transforms are widely used in many areas,
especially in image analysis (Mallat 2008; Starck et al. 2010).
They are specially suited for the analysis of data at differ-
ent scales, and identification of characteristic patterns or struc-
tures. Wavelets have been used in Cosmology for the analy-
sis of the large-scale structure, and of the CMB anisotropies
(Martı́nez et al. 1993; Rauzy et al. 1993; Vielva et al. 2004;
Starck et al. 2006; Saar 2009).

Standard wavelet functions like the Mexican hat are, how-
ever, not suitable for the detection of shells. Instead, we need
a family of wavelets whose shape matches the type of struc-
tures we want to find in our data. Therefore, we use a specially
designed wavelet (the ‘BAOlet’), well adapted to the searchof
BAO features – shell-like structures around our selected centres.
We design this new family of wavelet functions as a transfor-
mation of the wide-used B-spline wavelets (Saar 2009). These
ψR,s(x) functions are spherically symmetric, and their radial pro-
files are defined as

ψR,s(r) =
αR,s

4πr2

[
2B3

(
2

r − R
s

)
− B3

( r − R
s

)]
, (1)

whereR and s are the two parameters that define the scale and
width of the BAOlet function,αR,s is the normalization constant
defined so that

||ψR,s||
2 ≡

∫
|ψR,s(x)|2dx = 1 , (2)

andB3(x) is the box spline of the third degree, defined by

B3(x) =
1
12

(
|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3

)
.

The BAOlet function is shown in Fig. 1. It can be thought of
as a spherical shell of radiusR and width s, with zero ampli-
tude at its centre and therefore adapted to the detection of spher-
ical shells of a given radius. This specific choice is motivated
by the fact that the integrated profile is the widely-used one-
dimensional ‘B-spline’ wavelet function that has a null mean
and compact support [−2, 2]. These properties directly translate
onto the BAOlet that has also a null mean –a requirement for any
wavelet function– ifR > 2s, and takes non-zero values only for
R − 2s ≤ |x| ≤ R + 2s.

We describe the density field using the density contrastδ(x),
defined as

δ(x) =
ρ(x) − ρ0

ρ0
,

whereρ(x) is the density field, andρ0 is its mean. Then, given
a density contrast mapδ(x), properly normalized as in equa-
tion (2), we can construct, for each point in the parameter space
(R, s), a BAOlet coefficient map as the convolution of our density
field with the corresponding wavelet:

WR,s(x) =
∫

ℜ3
ψR,s(y)δ(y − x)d3y . (3)

The BAOlet acts as a matched filter, which is sensitive to data
containing shells of different radius and different widths. Its
property of zero mean is also of high importance since it makes
the statistics derived from the BAOlet coefficients independent
of the background level. Indeed, it is obvious that any constant
added to the input data would not change the BAOlet coeffi-
cients. In comparison, the estimation of such a baseline level
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Fig. 1. The BAOlet function. Here we show a 2D plot (bottom)
of the waveletψR,s(x) used in the analysis, as defined by equa-
tion (1). The top panel shows a 1D slice along the dashed-dotted
axis. The wavelet is plotted here forR = 105h−1 Mpc, s =
30h−1 Mpc. The red dot marks the centre of the wavelet. This
function has a null mean (provided thatR > 2s), and compact
support. It takes non-zero values only forR − 2s ≤ |x| ≤ R + 2s.

is a very delicate aspect of the BAO detection in the two-point
correlation function.

Due to the properties of the wavelet, the coefficient maps
WR,s(x) should have a null mean when averaged over all points in
the volume considered. Equivalently, if we sampled these maps
at N random points uniformly distributed in the volume (x(i)

r ),
the expected value of the average of the coefficients is zero,

E
{〈

WR,s(x(i)
r )
〉

N

}
= 0 . (4)

This condition holds even in the presence of shell-like structures
in the density field. Of course, for such structures the valueof
WR,s(xc) (xc is the centre of the shell) is positive, and remains
positive in nearby points. For an idealδ(r − R) density shell the
radius of the region around the centre where the wavelet ampli-
tude is positive, iss; the positive signal in this region is compen-
sated by negative amplitudes around|x| = R. However, if we are
able to identify the positions ofN massive haloes in the same
volume (x(i)

c ), we can define a new statisticB(R, s) as the mean
value of the coefficientsWR,s(x) at these positions:

B(R, s) =
〈
WR,s(x(i)

c )
〉

N
. (5)
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If there are indeed shell-like structures around the selected den-
sity maximax(i)

c , as expected for baryon acoustic structures, we
should find positive values ofB(R, s) with the maximum ofB at
the (R, s) values characterizing these shells.

We can obtain further information from the wavelet coeffi-
cientsWR,s(x), as we have information on the actual dependence
of the signal picked up by the BAOlet function on the position. In
particular, fixing a set of parameters of interest (Ri, si), we could
use the coefficientsWRi ,si(xc) to identify which of the selected
massive haloes are giving the largest signal for these character-
istics of the shells. In the context of BAO, the parametersRi, si
can be chosena priori using a theoretical model, ora posteri-
ori using the parameters for which the functionB(R, s) attains
it maximum. In this way, we can localize in configuration space
the structures responsible for the largest BAO signal in a given
sample.

For our calculation ofB(R, s), we sample the (R, s) parameter
space on a grid. For each point (R, s), we calculate the coefficient
mapWR,s(x) as the convolution of the BAOlet with the density
field (equation 3). We perform the convolution in Fourier space
using a Fast Fourier Transform (FFT) technique. To avoid prob-
lems with the FFT, we zero-pad a large region around our density
cube. To obtainB(R, s), we sampleWR,s(x) at the position of the
N selected centres, and calculate the average value (equation 5).

Therefore, to apply this method, we need a way to map the
overall density fieldδ(x), but also to locate the position of mas-
sive matter haloesx(i)

c . We have to use two different populations
of mass tracers, so that they play the appropriate role in thede-
tection algorithm. The idea of using two different tracer sets, one
for the small perturbations and another for the high peaks, in
a cross-correlation analysis was anticipated by Eisenstein et al.
(2007). We implement here a similar idea, but using a wavelet
tool directly on the density field. As detailed below, we use
galaxies from the ‘Main’ and LRG samples of SDSS in this case.
However, this choice would depend on the kind of data available
in each case.

3. Prediction from ΛCDM

In order to better understand our method, we show here which
results we expect according to theΛCDM model, and the ef-
fect of BAO in our new statisticB(R, s). We use for this aim
both the analytical approximation to the transfer functionof
Eisenstein & Hu (1998), and the results from the MareNostrum
Institut de Ciències de l’Espai (MICE) simulation (Fosalba et al.
2008).

In the first place, we use theΛCDM transfer function, which
allow us to study directly the effect of the BAO. However, in this
case, we must do a series of approximations in order to make a
prediction forB(R, s). We want to predict which is the typical
result for the wavelet coefficientWR,s at the position of massive
matter haloesxc, as a function ofR, s. From equation (3), we see
that this is equivalent to study the typical density profile around
such haloes,δ(y−xc). TheΛCDM transfer function allows us to
calculate this profile, provided we know which is the initialper-
turbation corresponding to the selected haloes. We make here
the simple approximation of considering that these initialpertur-
bations are point-like and spherically symmetric, and can thus
be simply described by a Dirac delta function in configuration
space. This corresponds to a constant value in Fourier space. As
the transfer functionT (k) describes the relative evolution of the
different Fourier modes, the present day radial density profile

corresponding to such initial perturbation will we given simply
by (Eisenstein et al. 2007)

ρ(r) = CT̃ (r) (6)

whereT̃ (r) is the Fourier transform of the transfer functionT (k),
andC is a normalization constant that depends on the details of
the initial perturbation, and on the cosmic growth functionD1(z).
From equations (3) and (5), we see that the effect ofC will be
just to change the normalization of our statisticB(R, s).

We used the fitting formulae to the transfer functionT (k)
from Eisenstein & Hu (1998), and obtained the expectedWR,s at
a large overdensity using equations (6) and (3). In order to high-
light the particular signature of BAO, we also calculatedWR,s
using the ‘no wiggle’ transfer function formula, in which the
BAO have been edited out. We used here the valuesΩM = 0.25,
ΩΛ = 0.75,Ωb = 0.044, andh = 0.7 for the cosmological pa-
rameters, to allow a direct comparison with the MICE simula-
tion. Following Eisenstein & Hu (1998), the sound horizon scale
in this case isrs = 109.3h−1 Mpc. The results for both cases
are shown in Fig. 2. In the plot, we mask the regionR < 2s,
as for these values of the parameters our BAOlet is not compen-
sated (its mean is different from 0). Comparing both panels of the
Figure, we see clearly which is the effect of the presence of BAO
in our statistic. In the case without BAOWR,s is always negative,
and it presents a smooth gradient across the (R, s) plane. This
gradient is due to the overall shape of the radial profile (equa-
tion (6). However, in the presence of BAO,WR,s shows a promi-
nent peak with positive values. This clearly shows the idea be-
hind theB(R, s) statistic. The BAOletψR,s acts as matched filter
with a shape adapted to detect BAO shells. Therefore the positive
values in the coefficientsWR,s correspond to the cases in which
the radial profile is matched by the BAOlet shape. The values at
which WR,s attains its absolute maximum,Rmax = 110h−1 Mpc
andsmax = 22h−1 Mpc, correspond thus to the characteristics of
the shell that best matches the observed profile about the selected
centres.

In order to test the reliability of the method, and of this
ΛCDM prediction, we calculated theB(R, s) for a halo cata-
logue drawn from the MICE simulations. We used the publicly
available halo catalogue from the ‘MICE3072’ run (Crocce etal.
2010). This particular run contains 20483 particles in a box of
side 3072h−1 Mpc, therefore covering a volume of 29h−3 Gpc3.
The simulation was run with the GADGET-2 code (Springel
2005), assuming aΛCDM model with the parameters mentioned
above. Haloes in the simulation were selected using a friends-of-
friends (FoF) algorithm.

We used the resulting halo catalogue atz = 0, which contains
a total of 2819031 haloes containing 143 or more particles. This
corresponds to haloes with masses≥ 3.35× 1013 h−1 M⊙. The
halo number density is thus 9.72× 10−5 h3Mpc−3. We used the
full halo catalogue as a tracer of the overall density field. We then
selected as centres for the calculation ofB(R, s) in equation (5)
only the haloes with a mass≥ 1.76×1014h−1 M⊙. We chose this
mass threshold in order to select approximately the 10% most
massive haloes in the simulation box. This choice is somewhat
arbitrary, but serves for the purpose of testing the BAOlet method
and illustrating the expected result.

Fig. 3 shows the BAOlet resultB(R, s) for these MICE sam-
ples, compared to the theoretical results obtained above from
the Eisenstein & Hu (1998) transfer functions. We obtain a re-
sult very similar to that of Fig. 2, asB(R, s) shows a clear
peak, and attains its absolute maximum forRmax = 108h−1 Mpc,
smax = 28h−1 Mpc. This indicates that our BAOlet method can
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wiggles edited out (Eisenstein & Hu 1998). The normalization
is arbitrary. The contours are drawn at steps of 1000 forWR,s < 0
(dotted),WR,s = 0 (solid), andWR,s > 0 (dashed). The map
attains a maximum atR = 110h−1 Mpc, s = 22h−1 Mpc.

be applied to two sets of mass tracers, although the details of the
tracers used here are very different from the ones we use later
on the SDSS samples. This also confirms the expected effect of
the presence of BAO in theB(R, s) function: the presence of a
large peak with positive values ofB, located approximately at
the values ofR and s corresponding to the radius and width of
the acoustic shells. The fact that we obtain here slightly different
values forRmax andsmax than those predicted above may be due
to non-linear evolution effects, which slightly reduce the radius
and increase the width of the shells. A similar effect is present in
the correlation function (see e.g. Crocce & Scoccimarro 2008).
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Fig. 3. The BAOlet statisticB calculated for the MICE simula-
tion sample described in the text as a function of the parameters
(R, s) (bottom panel). The contours are drawn at steps of 5 for
B < 0 (dotted),B = 0 (solid), andB > 0 (dashed). This func-
tion attains its maximum forR = 108h−1 Mpc, s = 28h−1 Mpc.
The top two panels show cuts at the valuess = 28h−1 Mpc (top)
ands = 22h−1 Mpc (middle), marked with grey horizontal lines
in the 2D panel. In each case, the solid blue line correspondsto
the value obtained from MICE, the dashed red line corresponds
to the theoretical expectation from the Eisenstein & Hu (1998)
transfer function (bottom panel of Fig. 2), and the dotted green
line to the theoretical expectation using the ‘no wiggle’ trans-
fer function (top panel of Fig. 2). These theoretical predictions
have been re-normalised to get the same value at the maximum
in B(R, s).

We also used this halo catalogue from MICE to make a qual-
itative estimation of how different observational effects would
affect the BAOlet result. In the first place, we studied the ef-
fect of redshift-space distortions. To this end, we calculated the
redshift-space positions of all haloes taking into accounttheir
peculiar velocities, as output by the simulation, and consider-
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ing an observer located in one of the vertices of the simulation
cube. The result forB(R, s) in this case is shown in the top panel
of Fig. 4, where it is compared to the real-space result discussed
above. As can be seen from the figure, although small differences
appear between the real- and redshift-space results, the main fea-
tures of theB(R, s) prediction remain the same, with the position
of the maximum changing only by∼ 1h−1 Mpc.

For the second case, we added the effect of a decreasing ra-
dial selection function across the sample. We model this selec-
tion as an exponential decay function, such that the final num-
ber of haloes used to trace the overall density field is∼ 20%
of the total. In our calculations, we then weight each halo by
the inverse of the mean density at its redshift, as we do laterfor
the SDSS data. We do not apply any selection function to the
centres. The results forB(R, s) obtained in this case (including
also the redshift-space effects) are shown in the bottom panel of
Fig. 4. As above, these observational effects do not change sig-
nificantly the overall behaviour ofB(R, s), or the location of the
maximum of the peak. Overall, although the MICE catalogue
used does not mimic the characteristics of our SDSS samples,
we can be confident that neither redshift-space distortionsnor
a radial selection function (when it is taken into account inthe
calculation) should bias significantly our results.

4. SDSS samples used

We used data from two different samples of the latest data re-
lease (DR7) of the spectroscopic SDSS. On one side, we used
the ‘Main’ galaxy sample (Strauss et al. 2002) as mass tracers
for reconstructing the overall density fieldδ(x). On the other, we
used the LRGs as tracers of the central over-densities, and there-
fore used them as the selected centresx(i)

c to computeB(R, s).
Luminous Red Galaxies were selected by the SDSS team

using several colour and magnitude cuts to obtain a highly bi-
ased sample reaching high redshift (Eisenstein et al. 2001). The
galaxies selected in this way are known to reside near the centres
of massive dark matter haloes (Zheng et al. 2009) and are thus
adequate tracers for the centres of baryon acoustic structures. We
applied an extra cut in the K-corrected, evolved,g-band absolute
magnitude:−23.2 < Mg < −21.2, as in the previous BAO anal-
ysis by Eisenstein et al. (2005). This results in an approximately
volume-limited sample in the redshift range 0.15< z < 0.30.

‘Main’ galaxies in the SDSS constitute a much denser
sample, and are therefore more suitable to map small density
changes such as BAO shells. We used the ‘Main’ sample from
the Value-Added Galaxy Catalogue (Blanton et al. 2005), which
constitutes a magnitude limited sample in ther band, withr <
17.6. We applied an extra simple cut,Mr < −20.

For the conversion of angles and redshifts into co-moving
distances, we used a fiducial cosmology with the parameters
ΩM = 0.25,ΩΛ = 0.75. In all our analysis we use distances
in units of h−1 Mpc, so that they do not depend on the specific
value ofh. We converted the distribution of the ‘Main’ galaxies
into a density fieldδ(x) binning it into a grid with cubic pixels of
3h−1 Mpc side. We corrected for the selection effects by weight-
ing each galaxy by the inverse of the average density at its red-
shift. As explained below, we performed some tests by slightly
changing this weighting scheme. Although this weighting may
not be optimal, it should not affect significantly our results, given
that the wavelet method does not depend on the local background
level. We used the density field constructed in this way for the
calculation of the BAOlet coefficients following equation (3).

In our calculations, we could only use the region in which
these two samples overlap, which corresponds to the redshift
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Fig. 4. The BAOlet statisticB for the MICE simulation when
some observational effects are taken into account. In the top
panel, we show theB(R, s) obtained when redshift-space dis-
tortions are included in the simulation. In the bottom panel, we
show the result when a radial selection function is applied to the
halo catalogue. In both cases, the contours are drawn at steps of
5 in B. Solid contours correspond to the results with the obser-
vational effects included. The dashed contours correspond to the
original real-space result without selection, i.e., they are identi-
cal to those in the bottom panel of Fig. 3.

limits 0.15< z < 0.26. To minimize border effects in theB(R, s)
calculation, we defined a buffer region ofrbuff = 175h−1 Mpc
from any of the borders of the ‘Main’ sample volume. We used
as centres only the LRGs in the inner volume. This allows us
to use the density field, as traced by the ‘Main’ sample galaxies,
from z > 0.09. In order to minimize angular selection effects and
border effects, we use a compact area of the sky where the angu-
lar completeness is nearly uniform. This area covers 5511 deg2

and is defined, in the SDSS survey coordinates (Stoughton et al.
2002), by the limits−31.25◦ < η < 28.75◦, −54.8◦ < λ < 51.8◦.
This results in finally using the density field in a volume of
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2.2× 108 h−3 Mpc3, as traced byNMain = 198342 galaxies. The
number of LRGs used as centres (avoiding the buffer region) is
NLRG = 1599.

In Fig. 5 we show a slice of this survey showing both the
‘Main’ galaxies and the LRGs. We show how, given the buffer
used, the LRGs used as centres are located only in an inner vol-
ume of the larger ‘Main’ sample. To illustrate the idea of the
method, we show a zoom around a given LRG galaxy. Even for
this single centre, a slight over-density of ‘Main’ galaxies is seen
at the radii of 105–110h−1 Mpc.

As the structures we look for are huge, with radii about
100h−1 Mpc, we have to consider the effect of assumed cos-
mology (different comoving distances) on our result. In order
to estimate the distance differences, we compared the distances
in our adopted MICE cosmology (ΩM = 0.25,ΩΛ = 0.75) with
these in the WMAP 7-year cosmological model (Komatsu et al.
2011),ΩM = 0.271,ΩΛ = 0.729. We fixed the redshift dif-
ferenceδz = 0.07 that corresponds approximately to our shell
diameter of 200h−1 Mpc, and found that this gives distance dif-
ferences of only a 0.3 and 0.8 per cent at the near and far borders
of our sample (the MICE distances are larger than the WMAP7
ones in each case). So, for our nearby volume, the effect is small,
and does not affect our results given that the statistical uncertain-
ties are much larger (see next Section). However, this effect will
be significant for deep samples.

5. Results for the SDSS samples

We performed the calculation ofB(R, s) for the SDSS in an anal-
ogous way to the case of the MICE simulation, using the sam-
ples defined in Section 4. Our results are shown in Fig. 6. As
above, we mask the regionR < 2s. As we are not introducing
any border correction when calculating theB(R, s) statistic, we
also mask the region corresponding to the valuesR > rbuf − s.
Values obtained at a those large values ofR could contain some
spurious signal, as the calculation ofWR,s would rely on the den-
sity field in regions outside of the survey boundaries.

The resultingB(R, s) map is qualitatively very similar to
that expected, either using an analyticalΛCDM model (Fig. 2),
or the MICE simulation (Figs. 3 and 4). This is an indication
that the observed pattern does not originate from spurious fea-
tures in the SDSS but is closely related to the large scale struc-
ture and more specifically the BAO.B(R, s) attains a maximum
at Rmax = 116h−1 Mpc, smax = 36h−1 Mpc. This maximum
is clearly related to the characteristics of the BAO structures
present in our samples. We studied the robustness of this result
by changing the weighting scheme applied for the construction
of the density map (see Section 4). We did so by capping at dif-
ferent maximum values the possible weights associated to each
galaxy, and repeating the calculation ofB(R, s) in each case. The
results were qualitatively similar, obtaining a peak inB(R, s) in
all cases. However, the position of the peak changed in each case,
with maximum changes of the order of±5h−1 Mpc in Rmax, and
±10h−1 Mpc in smax. Therefore, the difference between the po-
sition of the peak obtained from the SDSS data and that given
by the MICE simulation is not significant. In any case, we can
not use the scale and the width of the observed maximum of
B(R, s) as direct estimates of the radius or width of the shells,
specially given that our analysis of the possible observational
biases (Fig. 4) was only qualitative.

In order to assess the significance of the BAO detection with
this method, we focused on the value ofB(R, s) obtained at the

-20

-10

 0

 10

 20

B
(R

)

-20

-10

 0

 10

 20

B
(R

)
s 

(h
-1

 M
pc

)

R (h-1 Mpc)

 10

 20

 30

 40

 50

 60

20 40 60 80 100 120 140 160

-25 -20 -15 -10 -5  0  5  10  15  20  25
B(R,s)

Fig. 6. The BAOlet statisticB calculated for SDSS data as a func-
tion of the parameters (R, s). The bottom panel shows the results
in the full parameter space considered, where we sampled both R
ands at intervals of 1h−1 Mpc. We mask two areas, at the upper
right and left corners, where our results are not reliable (see de-
tails in the text). The contours are drawn at steps of 5 forB < 0
(dotted),B = 0 (solid), andB > 0 (dashed). The top two panels
show cuts at the arbitrarily chosen valuess = 36h−1 Mpc (top)
ands = 20h−1 Mpc (middle), marked with grey horizontal lines
in the 2D panel. In these panels, the blue line isB(R, s), while

the green line and the red band show the mean (B
MC

) and 1-σMC

interval for the Monte Carlo realizations of random centres. We
obtain a clear significant peak at different values ofs, with a
maximum forR = 116h−1 Mpc, s = 36h−1 Mpc.

maximum,Bmax = B(Rmax, smax) = 22.9 ± 3.72. A more thor-
oughfull analysis would model theB(R, s) statistic in the full
parameter space. However, given the large covariances between
measurements at different values of (R, s) we do not expect a

2 This error inBmax is obtained from the variance of the coefficients at
theNLRG different LRGs. However, our significance test is independent
of this error value.
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Fig. 5. The SDSS catalogues used. We show a 6 degree thick slice drawnfrom the catalogues used in our analysis. The red points
are the LRG galaxies, which form a nearly volume-limited sample atz > 0.15. The ‘Main’ galaxies of the SDSS are depicted in
blue. As shown, we use the ‘Main’ galaxies fromz > 0.09, and we use only the LRGs in an inner volume, allowing for a buffer
region ofrbuff = 175h−1 Mpc from any of the borders of the ‘Main’ sample volume. For our analysis, we use the samples covering a
total area of 5511 deg2. The radius of a typical BAO shell is shown as a segment. At thetop insets we show two orthogonal slices of
width 20h−1 Mpc, centred on a particular LRG. The BAOlet coefficient mapWR,s(x) has a large value at the position of this centre
(for Rmax, smax), and thus we expect to find a strong BAO signal. The two circles have the radii of 100 and 110h−1 Mpc respectively.
This is a single BAO shell where the over-density can be appreciated by eye at the right scale.

large difference from the simple case we consider. We will as-
sess the probability of finding such a maximum in the case in
which there are not baryon acoustic structures present in our
sample. We model this null hypothesis by using randomly dis-
tributed centres for the calculation ofB(R, s) in equation (5),
instead of LRGs. Even using theWR,s(x) coefficients from the
observed density field (traced by SDSS ‘Main’ galaxies), theex-
pected value ofB(R, s) in this case is 0 (see equation 4), and
we expect to obtain a significantly higher signal in the data.In
this way, we are testing the null hypothesis that, either there are
not shell-like structures in the density field traced by the ‘Main’
sample, or these shell-like structures are not found preferentially
around LRG centres. In either case, that would mean that there
are not BAO-like structures present in our sample.

To perform the significance test, we generated 105 random
realizations of a Poisson process, with the mean number of
pointsNLRG, in the same volume as the LRGs considered in the
calculation (i.e. taking into account the buffer zone). For a real-
ization j, we use the generated points as our centresx(i)

c to com-
pute theB(R, s) statistic following equation (5), using theWR,s(x)
coefficients obtained from the data. We can then obtain the mean
value B

MC
(R, s), and the standard deviationσMC(R, s) of the

Monte-Carlo realizations of the centres. We showB
MC

(R, s) and
a band of 1σMC(R, s) around it in the top panels of Fig. 6.

We now calculate our signal-to-noise ratio at the maximum
as S NRmax ≡ Bmax/

[
σMC(Rmax, smax)

]
= 6.60, and assess the

probability of finding such a large value ofS NRmax anywhere in
the parameter space for the Monte Carlo realizations. We used

S NRmax instead of directly usingBmax because for some regions
of parameter space, specially at lows, σMC(R, s) is extremely
large. Therefore, if we usedBmax, we would need to arbitrarily
restrict the parameter space studied, thus introducing a possible
a posteriori bias. When usingS NRmax we sample the full param-
eter space considered in the calculations (as shown in Fig. 6). We
computed the maximum value ofS NR for each realizationj in
the full (R, s) range,S NRMC( j)

max . The distribution of the values of
S NRMC( j)

max is shown in Fig. 7, where it is compared to the value
of S NRmax obtained in the real data. We found that only one of
the realizations gave a value ofS NRMC( j)

max larger thanS NRmax.
Thus, the probability of obtaining a maximum with such a large
S NR in the absence of baryon acoustic structures (our null hy-
pothesis) isp ≃ 10−5, equivalent to a∼ 4.4σ detection in the
Gaussian case.

However, we should stress here that the significance found in
this work can not be compared directly to other detection levels
found in the literature, as it has been stated in the introduction.
In particular, we are not comparing our results with an analytical
no-BAO model ofB(R, s) (such as that shown in the top panel
of Fig. 2), since to do so would require the detailed modelling of
all the selection effects affecting the two samples used.

As explained in Section 2, we can extract more informa-
tion about the BAO phenomenon in our samples making fur-
ther use of the BAOlet coefficient mapsWR,s(x). Here, we use
the coefficient values at the positions of the LRG, for the pa-
rametersRmax, smax, which correspond to the characteristics of
the BAO shells present in our samples. In this way, the values
Wmax ≡ WRmax,smax are a measure of how strong is the signal com-
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Fig. 7. Histogram showing the distribution of the maximum
S NR values obtained, in the full (R, s) space, for the 105 Monte
Carlo realizations of Poisson-distributed centres (S NRMC( j)

max ).
This histogram has a mean of 3.72 and a standard deviation of
0.46. We show as a dashed vertical line the value obtained from
the data (using the LRGs as centres),S NRmax = 6.60. Only one
of the Monte Carlo realizations give a maximum value larger
thanS NRmax.

ing from a BAO shell around a given point, and in particular, a
given LRG. Therefore, usingWmax we can localise in configu-
ration space the regions of the volume covered by our samples
where the BAO signal is mostly coming from.

We illustrate this idea in Fig. 8, where we plot a two-
dimensional projection of the distribution of the LRGs usedas
centers in our analysis, showing also the value ofWmax for each
of them, following a color gradient. The highest values ofWmax
correspond to the red points in the plot.

In Table 1, we provide the 10 LRGs used as centers
with the larger values ofWmax. The whole catalogue of the
NLRG = 1599 LRGs used as our centers, and the value of
Wmax obtained for each of them can be found at the web page
http://www.uv.es/martinez. This catalogue could be used
to study the relation of the BAO signal at a given LRG to its
properties or the environment. It could also be used to make a
selection of LRG centres with high signal, and use them to re-
fine the measurements of the BAO characteristics.

As an illustration of this later use, we show a simple way
to study the overall properties of the BAO structures, its shape
and scale. We select those centres which we know that present
a prominent acoustic feature, i.e., those for whichWmax > 0
This leaves us withNr = 809 centres. In order to improve the
signal-to-noise in this illustration for studying the BAO struc-
tures, we stacked together the 3D density maps around theNr
selected LRGs. In doing so, we kept the line-of-sight direction
aligned for all the centres, as this direction will define thepos-
sible anisotropies in the distribution. We show a 3D view and
a 2D cut of this stacked density map in Fig. 9. Thanks to this
selection the characteristic elements of the BAO are amplified:
on the one side, a central bump with high density, corresponding
to the massive halo traced by the LRG, and on the other side,
the shell surrounding it at a scale of∼ 109h−1 Mpc, showing a
fainter over-density. We also observe the anisotropic nature of
these structures. This is a combination of the fact that we have to

work in redshift space, and of the redshift-dependent selection
function for ‘Main’ galaxies.

A simpler view can be obtained by calculating the average
radial density profileρ(r) around theNr centres. The result-
ing profile, shown in Fig. 10, has the same features as the 3D
view: a high bump at short scales, and a clear peak at about the
acoustic scale, with a maximum atrmax = 109.5± 3.9h−1 Mpc.
The error in rmax was estimated using bootstrap realizations
(Lupton 1993). This scale gives the radius of the baryon acoustic
shells, and it is therefore a good estimator of the acoustic scale
in the sample. We also show in Fig. 10 the radial profiles re-
stricted to different regions of the sphere, to better characterize
the anisotropy of the distribution. We define two cones with a
width of 45◦ with respect to the line-of sight in each direction
(we call these ‘near’ and ‘far’ regions), and a ‘transverse’region
covering the belt between the cones. We obtain for each of these
regions qualitatively similar results. As expected, we seehow
the ‘near’ and ‘far’ subsamples are more strongly affected by
observational effects, such as redshift-space distortions, which
are more severe along the line of sight. In contrast, the result for
the ‘transverse’ subsample matches, within the errors, that for
the full sphere. It is interesting to note that the value ofrmax is
slightly larger for the ‘far’ sample than for the ‘near’ one.

It is worth to emphasize that this approach would be impos-
sible with any statistical BAO detection method used this far,
since the spatial localization of the shells is completely lost in
the correlation function or in the power spectrum, while thelo-
cal nature of the wavelet approach has allowed us to identify
the positions of the most representative structures in our sample.
Moreover, we are measuring the acoustic scale at positions se-
lected for their low contamination from other structures, which
is not the case when averaging over the full sample. In this way,
we maximize the BAO signal, while minimizing the effect of
signals coming from different large-scale structures.

6. Discussion and conclusions

In summary, we have designed a new method for the detection of
baryon acoustic oscillations in the galaxy distribution and for the
localization, in configuration space, of the structures responsible
for them. This method is based on the use of a specially designed
wavelet applied directly on the density field. Our approach also
relies on the use of two different tracers: one for the overall den-
sity distribution, and the other for the central overdensities of the
baryon acoustic structures.

After testing the method with simulations, we applied this
method to the detection of baryon acoustic structures in a sam-
ple drawn from the SDSS. In this case, we used galaxies from
the ‘Main’ catalogue to trace the overall density field, and galax-
ies from the LRG catalogue to trace the location of massive dark
matter haloes. We clearly detect BAO in the sample providinga
confirmation of the detection obtained previously using general
two point statistics (the power spectrum and correlation func-
tion). In fact, our approach provides an independent methodfor
the detection. Finally, we showed how this method allows us,
through the use ofWmax(x), to localize in configuration space the
actual structures responsible for the BAO signal obtained.This
is a consequence of using a wavelet acting directly on the den-
sity field. We illustrate the utility of this approach by showing
the density distribution stacked around a set of centres known to
show the BAO feature given theirWmax value.

Recent works have proposed alternative methods to study the
BAO based on wavelets (Xu et al. 2010; Tian et al. 2011). In par-
ticular, Tian et al. use a Mexican hat wavelet function with two
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Fig. 8. A two-dimensional projection of the distribution in redshift space of the LRGs used in the analysis (i.e. inside our buffer
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SDSS object name α (deg) δ (deg) z σz Wmax

SDSS J141746.20+184733.0 214.44254 18.79250 0.19872 0.00016 517.84
SDSS J121858.41+380813.6 184.74341 38.13714 0.18974 0.00018 436.68
SDSS J112430.27+415557.3 171.12613 41.93260 0.19433 0.00019 419.45
SDSS J112355.53+423816.5 170.98140 42.63793 0.19404 0.00020 414.63
SDSS J112352.72+424542.4 170.96968 42.76178 0.19469 0.00018 414.63
SDSS J122935.13+384636.4 187.39640 38.77680 0.18686 0.00016 413.47
SDSS J112535.99+412608.3 171.39998 41.43564 0.19288 0.00019 401.91
SDSS J104501.94+362944.3 161.25810 36.49566 0.15938 0.00015 399.06
SDSS J140443.31+264439.2 211.18047 26.74424 0.15854 0.00016 396.19
SDSS J142031.28+211700.4 215.13036 21.28346 0.19232 0.00020 395.40

Table 1. Table containing the basic characteristics (J2000 sky coordinates, redshift and redshift uncertainty) of the 10 LRGs with
the larger values of the BAOlet coefficient at the maximumWmax. The full table is available athttp://www.uv.es/martinez.

parameters, conceptually similar to ours. They use it to search
for a peak in the two point correlation function of the ‘Main’
SDSS sample, obtaining a detection with ap-value p = 0.002
(equivalent to 3.1σ in the Gaussian case). As in our case, this
shows the utility of using the ‘Main’ sample to reduce the shot
noise in the calculation and to obtain significant detections.
However, these works apply the wavelet to the measured two
point correlation function, instead of directly to the density field.
In this way, the use the capabilities of the wavelets to character-
ize accurately the BAO signal (in terms of radius and width),but
they are not able to get any information about the localization of
these structures in space.

The use of wavelets directly on the density field isolates valu-
able information about the baryon acoustic structures thatis hid-
den in the standard two point statistics. In particular it gives us
information, through the coefficientsWR,s(x), to localize regions
in the sampled volume giving the largest or lowest signal. We
expect that this new method for studying BAO will be of much
use for ongoing or planned surveys, such as the WiggleZ Survey
(Drinkwater et al. 2010), the Baryon Oscillation Spectroscopic

Survey (BOSS, Eisenstein et al. 2011), or the Physics of the
Accelerating Universe (PAU) Survey (Benı́tez et al. 2009),
which will cover a much larger volume than studied here, and
will explore higher redshifts.
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