Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biosensors and Bioelectronics Année : 2018

Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin

Résumé

On-line and real-time analysis of micro-organ activity permits to use the endogenous analytical power of cellular signal transduction algorithms as biosensors. We have developed here such a sensor using only a few pancreatic endocrine islets and the avoidance of transgenes or chemical probes reduces bias and procures general usage. Nutrient and hormone-induced changes in islet ion fluxes through channels provide the first integrative read-out of micro-organ activity. Using extracellular electrodes we captured this read-out non-invasively as slow potentials which reflect glucose concentration-dependent (3–15 mM) micro-organ activation and coupling. Custom-made PDMS-based microfluidics with platinum black micro-electrode arrays required only some tens of islets and functioned at flow rates of 1–10 µl/min which are compatible with microdialysis. We developed hardware solutions for on-line real-time analysis on a reconfigurable Field-Programmable Gate Array (FPGA) that offered resource-efficient architecture and storage of intermediary processing stages. Moreover, real-time adaptive and reconfigurable algorithms accounted for signal disparities and noise distribution. Based on islet slow potentials, this integrated set-up allowed within less than 40 μs the discrimination and precise automatic ranking of small increases (2 mM steps) of glucose concentrations in real time and within the physiological glucose range. This approach shall permit further development in continuous monitoring of the demand for insulin in type 1 diabetes as well as monitoring of organs-on-chip or maturation of stem-cell derived islets.
Fichier non déposé

Dates et versions

hal-02499537 , version 1 (05-03-2020)

Identifiants

Citer

Romain Perrier, A. Pirog, M. Jaffredo, Julien Gaitan, Bogdan Catargi, et al.. Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosensors and Bioelectronics, 2018, 117, pp.253-259. ⟨10.1016/j.bios.2018.06.015⟩. ⟨hal-02499537⟩
96 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More