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From the distributions of times of interactions to

preys and predators dynamical systems

Vincent Bansaye∗ and Bertrand Cloez†

June 8, 2023

Abstract

We consider a stochastic individual based model where each predator searches
and then manipulates its prey or rests during random times. The time distributions
may be non-exponential and density dependent. An age structure allows to describe
these interactions and get a Markovian setting. The process is characterized by a
measure-valued stochastic differential equation. We prove averaging results in this
infinite dimensional setting and get the convergence of the slow-fast macroscopic
prey predator process to a two dimensional dynamical system. We recover classical
functional responses. We also get new forms arising in particular when births and
deaths of predators are affected by the lack of food.
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∗CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
†MISTEA, INRAE, Institut Agro, Univ. Montpellier

1



4 Proofs and additional results 17
4.1 Existence of the process and trajectorial representation . . . . . . . . . . . 17
4.2 First estimates and properties . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Construction and tightness of the sequence of scaled processes . . . . . . . 24
4.4 Identification of limiting values and proof of convergence . . . . . . . . . . 27

5 Discussion 33

1 Introduction

Functional responses are widely used to quantify interactions between species in
ecology. The way functional responses arise at the macroscopic level and describe
population dynamics or evolution is a fundamental issue for species conservation or sta-
tistical inference of parameters. Indeed, their form influences the stability properties of
dynamics, their long time behavior or speed of convergence. The link between individual
behavior and macroscopic dynamics has attracted lots of attention for chemical reactions
and population dynamics from the works of Michaelis and Menten.

Macroscopic derivations from individual based model rely in general on a large pop-
ulation approximation of finite dimensional Markov processes describing the number of
individuals of each species, possibly structured in status (searching, handling...), space or
size. In this setting, Kurtz and Popovic [KKP14] obtain the classical Michaelis Menten
and Holling functional responses [Has13, AG12] in limiting dynamical systems and fluc-
tuations of processes around these limits. In our context of preys-predators interactions,
let us mention [DS13] which starts from a stochastic individual based model. They de-
rive a finite dimensional Markov chain and convergence to ODEs involving the classical
functional responses. In [CKBG14], a simple decision tree based on game-theoretical ap-
proach response is developed. Similarly, random walks and Poisson type process are used
in [AKF11] to describe functional responses. The reduced model counting only the total
number of preys and the total number of predators, without distinguishing their status, is
also classically derived directly from the macroscopic ODEs [JKT02, BDBS96, HDB97].
Again, it uses a slow-fast scaling and the associated quasi-steady-state approximation.
These Markov settings allow for justification of macroscopic equations in a context of
absence of memory of interactions. Indeed, the time for associated interactions are then
exponentially distributed, potentially up to the addition of the relevant successive state to
describe the interaction. For other kind of justification of the macroscopic deterministic
models with classical functional responses, we refer to [JC94, DMP+17, BGB+21]. Let
us also mention [AG12, BAH+22, DH20] for various stimulating applications.

Random times involved in ecological or biological interactions are in general non-
exponentially distributed, see [DKPvG15, BBC18] and references therein. Indeed,
handling or manipulation times may have small standard deviations compared to the
mean, while exponential distribution forces the value of variance once the mean is fixed.
Besides, foraging suggests that the probability of finding a prey eventually increases
with searching time for a given density of preys. Finally, as far as we see, these random
times seem to be distributed with one mode. The aim of this work is thus to consider
general distribution for the times describing interactions. We extend approximation
results relying on absence of memory and obtain a reduced model. We also obtain new
features due to the fact that mortality depends on prey consumption and times are not
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exponentially distributed. This paper can be seen as a continuation of [BBC18] and
propose a mathematical framework for the derivation of macroscopic dynamical systems,
when the interactions are modeled by renewal processes. Each predator successively
searches during a random time and then manipulates during another random time,
which may include rest or other interactions. We assume that these time distributions
admit a density with respect to Lebesgue measure and are dependent of the prey density.
Extensions of the current approach to more than two status for predators would be
straightforward. We also believe that several type of preys could be considered with a
similar approach.
We consider an age structure which enables us to exploit a Markov framework for the
analysis. This Markov setting will be both useful for the construction of the process
and the study of scaling limits, in particular thanks to the generator and martingales
associated with. It consists in a classical extension of the state space of non-Markovian
dynamics. In this vein, we mention in particular the epidemiological models, where
age may be the biological age or infection age, or chemical reactions, where time of
reaction may be non exponential. For this latter, a recent related and stimulating work
[KKKR20] propose averaging results. But the interpretation of the age is different
and not density dependent. Furthermore, as far as we have seen, rigorous proofs are
not provided. In particular [KKKR20] does not deal with hypothesis required on time
distribution to make convergence of stochastic models hold.

Let us first describe informally the model. We write n1 ∈ N the number of preys and
n2 ∈ N the number of predators. Each predator searches (independently) preys during
a random time distributed as a random variable TS(n1). Typically the more n1 is large,
the smaller TS(n1) should be. At the end of searching times, one prey is caught and
the population of preys goes from n1 to n1 − 1. The predator which has caught a prey
changes its status and now manipulates during a time distributed as TM (n1− 1). Several
predators follow simultaneously and independently this dynamics, but they live with a
common number of preys and impact each other through this common resource. Besides,
each predator gives birth and dies with respective individual rates γr(a) and βr(a), which
depends on their status r ∈ {S,M} and the time a from which they are in this status.
Typically, the fact that the predator does not find a prey make its death rate βS(a)
increase with a. Preys also give birth and die, with fixed rates γ and β.
We assume that the size of the populations of preys is of order of magnitude K1 and
the size of the populations of predators is of order of magnitude K2 and that K1 � K2.
That means that preys are much more numerous than predators. A slow-fast dynamic
is considered : the time scale of prey-predator interactions is short compared to the
time scale of birth and death of predators and preys. It means that each predator eats
many preys during its life and, if a prey is not eaten by a predator then its life length
is comparable to that of predators, up to some factor. After scaling, we show, that the
couple of stochastic processes describing the quantities of preys and predators converge
in law in D([0,∞),R2

+) as K1,K2 tend to infinity, to the unique solution (x, y) of an
ordinary differential equation:{

x′(t) = (γ − β)x(t)− y(t)φ(x(t))
y′(t) = y(t)ψ(x(t)),

where x is the quantity of preys and y the quantity of predators and φ is the death rate
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of preys induced by predation and given by

φ(x) =
1

E[TS(x) + TM (x)]
, (1)

and ψ is the growth rate of predators including the gain from prey’s consumption and
defined by

ψ(x) =
E
[∫ TS(x)

0 (γS(a)− βS(a))da +
∫ TM (x)

0 (γM (a)− βM (a))da
]

E[TS(x) + TM (x)]
. (2)

This limit theorem will be illustrated both by classical and new functional responses in
Section 3. We observe that the response φ of preys due to predatory is only sensitive
to mean time of interactions. It thus extends the exponential case to more general
distribution. At this macroscopic scale, for the population of preys, the distribution of
times involved in interactions plays a role only through its mean. In contrast, the growth
rate ψ of the population of predators is in general sensitive to the other characteristics
of the distribution.

The fact that the time of interactions is both density dependent and non-exponentially
distributed leads us to extend the state space and consider rates of change of status
which are depend on the age in the current status and the number of preys. We
then exploit the generator and martingale problem and get also the age distribution
of predators. The problem arising is then an averaging in infinite dimension. The
strategy of proof follows the techniques developed in [KKP14] in finite dimension using
the occupation measure. The averaging phenomenon in finite dimension is classical
[KKP14, BKPR06, Cos16, MT12]. In infinite dimension, much less work has been done
up to our knowledge. Let us mention [MT12] which considers averaging with an age
structure and has also inspired this work. Two main differences appear in our context
: the age structure is due to interactions and the rates involved are not bounded, since
tail distribution of times may for instance decrease faster than exponentially. In this
paper, at the macroscopic scale the infinite setting reduces to a finite one describing the
number of preys and predators.
We consider a punctual measure whose atoms give the status and the age of predators,
which is the length of time since they have been in this status. Other relevant ages
could be added, in particular the time from the birth which would impact natality or
mortality. However, it seems superfluous at our stage. In our slow-fast dynamics, the
numbers of predators in each status are instantaneously at equilibrium. This enables
to reduce the infinite-dimensional model to a two-dimensional system of equations.
Following [Kur92, KKP14], the occupation measure ΓK , given by ΓK([0, t]) =

∫ t
0 δY K

s
ds

deals with the fast time component Y K , here the predations. More precisely, for a
set A, ΓK([0, t] × A) represents the time that Y K spends in A. In our setting, Y K is
the collection of ages and status and is thus defined as a punctual measure. Instead
of considering a measure whose atoms are punctual measures, we consider the mean
measure ΓK([0, t]) =

∫ t
0 Y

K
s ds, which is enough for our purpose. Consequently, our

measure ΓK will not degenerate to some measure of the form
∫ t

0 δf(Xs)ds, for some
function f , but tends to some specific distribution.
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The paper is structured as follows. In Section 2, we present the model and main results
in more details. In Section 3, we provide examples and simulations and illustrate the
main results with different functional responses, classical or new. Section 4 is devoted to
rigorous construction and description of the objects and the proofs. It relies on stochastic
differential equations for punctual point processes and associated martingales. Finally,
the last section is a short discussion about motivations, extensions and perspectives.

Notation. We write a∞ ∈ (0,+∞] the maximal interaction age and

X = {S,M} × [0, a∞),

the state space of predators endowed with the product σ-algebra.
We denote by M(S) the set of finite measures on any topological space S endowed with
its Borel algebra. We endow M(S) with the narrow (or weak) topology: that is µn tends
to µ if and only if for every continuous and bounded function f on S,

lim
n→∞

∫
S
fdµn =

∫
S
fdµ.

For r ∈ {S,M}, we write r the complementary status of r, i.e. the unique element of
{S,M} \ {r}.
We denote by C1,b(X ) (resp. C1,b(U ×X ) and C1,b([0, a∞))) the space of measurable and
bounded functions from {S,M} × [0, a∞) (resp. U × {S,M} × [0, a∞) and [0, a∞)) to R
such that f is continuously differentiable with respect to its second (resp. third, resp.
first) variable, with bounded derivative.
Finally, D([0, T ],R+) stands for the Skorokhod space for càdlàg functions, endowed with
its usual topology; see for instance [Bil13].

2 Model and main results

In this section, we introduce the assumptions and give an informal presentation of
our model. We also present our main result and detail some examples. A more rigorous
construction, some mathematical complements and the proofs are postponed in Section 4.

First, for convenience and sake of realism, we assume in the whole paper that birth
and deaths rate of predators are measurable and bounded (with respect to their age):

γ̄ := sup
(r,a)∈{S,M}×R+

(γr(a) + βr(a)) <∞.

2.1 Interaction times

The random variables describing the interaction are denoted by Tr(x) for a predator
which has been in status r ∈ {S,M} for a time a ∈ R+ when there is x preys. Working
directly with sequences of random variables is not practical. Indeed, the times are depen-
dent one from each other through the density of preys and have to be defined again once
a predation occur. A classical way to deal with this matter is the use of an age structure.
We thus write αr(x, a) for the (hazard) rates corresponding to the speed at which event
occur when a predator has been in status r during a time a. More precisely, we make the
following assumption in the whole paper :
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Assumption 2.1. There exists a∞ ∈ (0,∞] such that for any r ∈ {S,M},
i) functions αr : [0,∞)× [0, a∞)→ [0,∞) are continuous.
ii) the random time for interaction Tr(x) satisfies for any x > 0,

pr(x, a) = P(Tr(x) ≥ a) = e−
∫ a
0 αr(x,u)du

and
lim
a→a∞

pr(x, a) = 0, ∀a < a∞, pr(x, a) > 0.

iii) For any a ≥ 0, αS(0, a) = 0, i.e. TS(0) =∞ almost surely.

For x > 0, this assumption ensures that Tr(x) has a support (0, a∞) which does
not depend on the density of preys nor of the status r (and no atom at the final value
a∞). In particular, these random times are positive and finite almost surely (a.s.). When
there is no more prey (x = 0), the searching time explodes, which corresponds to iii).
These assumptions could be relaxed at the cost of technicalities. We note that the mean
interaction time is

E(Tr(x)) =

∫
[0,a∞)

pr(x, a)da ∈ (0,∞].

Let us also highlight that under the previous assumption, Tr(x) has non negative density
on [0, a∞), with respect to the Lebesgue measure, fr(x, ·) and

αr(a, x) =
fr(a, x)∫

[a,a∞) fr(u, x)du
.

We do not assume that these interactions rates αr are lower and upper bounded. Indeed,
for instance when the time of interaction has a finite support (a∞ < ∞) or a subexpo-
nential tail, it is not upper bounded, even for a fixed number of preys. Let us detail some
classical distributions that will be captured in our setting:

• Exponential law: f(a, x) = λ(x)e−λ(x)a and α(a, x) = λ(x), for some positive
bounded function λ. This is the classical exponential setting with memory less
property for searching and manipulation.

• Log-normal distribution : f(a, x) = 1
aσ(x)

√
2π

exp
(
− (log(a)−µ(x))2)

2σ(x)2

)
, for some positive

finite function σ.

• Uniform law: f(a, x) = 1[0,1](a) and α(a, x) = (1− a)−11[0,1).

• Pareto law : f(a, x) = k(x)(z(x)k(x)/a)k(x)1a≥z(x) and α(a, x) = k(x)/a1a≥z(x), for
some bounded functions k : N→ (0,+∞) and z : N→ (1,+∞).

2.2 The stochastic individual based model

In this section, we introduce informally our discrete individual based model. A
definition using stochastic differential equations will be given in Section 4.

We write X(t) ∈ N the number of preys at time t and P(t) the set of predators at
time t. Each predator is characterized by a status r ∈ {S,M} and an age a ∈ [0, a∞).
For each predator i ∈ P(t), we write
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• ri(t) as predator status at time t, with ri(t) = S meaning that predator searches
and ri(t) = M that it manipulates.

• ai(t) its age at time t, i.e. the time that he has already spent in its current status
ri(t).

Between two events, the age of predators grows at speed one :

∀i ∈ P(t), a′i(t) = 1.

Each predator that has been searching for a given time a finds a prey with rate αS(a, x)
when the number of preys is x. Then its status becomes M and its age 0:

(S, a) −→ (M, 0) at rate αS(a, x),

and for the whole population, it causes the death of a prey

x −→ x− 1 at rate
∑

i∈P, ri=S
αS(ai, x).

Similarly each predator that has been manipulating for a given time a switches to the
searching status with rate αM (a, x) when the number of preys is x:

(M,a) −→ (S, 0) at rate αM (a, x).

Besides, predators may give birth or die with respective measurable rates γr and βr
which depend on their status r ∈ {S,M} and their interaction age a. We assume here
that the newborn is in status M with age 0 :

(r, a) −→ (r, a) + (M, 0) at rate γr(a).

This choice seems natural but may sound somewhat arbitrary. It will not have an impact
on the approximation result due to the fast scale. For the death transition, for each
predator

(r, a) −→ ∅ at rate βr(a).

In the simplest case, γr(a) and βr(a) depend neither on a nor on r. However, if a
predator occupies his status for too long, in particular if it does not find food for too long,
this affects his mortality or reproductive capacity. Besides hunting a prey and handling
one do not require the same energy. Staying for a long time in an activity requiring
energy without having any resources, regardless of its biological age, can have serious
consequences on the metabolism of the individual.

Finally, preys give birth and die with constant individual rates denoted by γ and β:

x −→ x+ 1 at rate γ; x −→ x− 1, at rate β.

All these events, with the associated rates, are summarized in Figure 1. The popu-
lation of predator is represented by a punctual measure Y (t) =

∑
i∈P(t) δ(i,ri(t),ai(t)) ; see

[BM15] for details on modeling through Poisson point measure. We can define the dy-
namics more rigorously with the help of Poisson point measure. We then prove that under
Assumption 2.1, our model is well defined for any time, as soon as initially the age distri-
bution is not chosen arbitrarily close to the bound a∞; see forthcoming Proposition 4.1
for details.
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(X, Y )(X − 1, Y )
βX

natural death
(prey)

(X + 1, Y )
γX

natural birth
(prey)

(X,Y − δ(i,M,ai) + δ(i,S,0))

∀i ∈ P,1ri=MαM (ai, X) research
event

(X,Y + δ(•,M,0))

∀i ∈ P, γri(ai)birth
(predator)

(X,Y − δ(i,ri,ai))

∀i ∈ P, βri(ai)death
(predator)

(X − 1, Y + δ(i,M,0) − δ(i,S,ai))

∀i ∈ P,1ri=SαS(ai, X) capture
event

Figure 1: Summary of all possible events. The rate of events are written near the arrow
of the event and the Dirac mass notation +δ(i,r,a) means the addition of the individual i
with status r and age a into the population and −δ(i,r,a) means that it is removed.

2.3 Scaling and averaging

We introduce our scaling parameters K = (K1,K2) ∈ (0,+∞)2 respectively for the
size of the populations of preys and the predators. These sizes are going to infinity.
Besides, in our scaling,

λK =
K1

K2

tends to infinity. The rates for interactions are now density-dependent (rather than
population-size-dependent) and we set

αKr (a, x) = αr(a, x/K1) (3)

for r ∈ {S,M}. Birth and death of preys and predators (but the deaths of preys due to
predation) occur at a slower time scale and we set

βKr (a) = λ−1
K βr(a), γKr (a) = λ−1

K γr(a), βK = λ−1
K β, γK = λ−1

K γ, (4)

where βr and γr are still non-negative and measurable and bounded functions and β, γ
are non-negative numbers.

To summarize, the population of preys is of order of magntiude K1, the population of
predators is of order K2, interactions occur at rate of order 1 but ”natural” (in the sense
that that there are not due to interactions) births and deaths arise at rate of order 1/λK .
To obtain existence of the process for any time t ≥ 0, we suppose that Assumption 2.1
holds for x ∈ [0,∞). We note that the searching time may explode if the density of preys
vanishes and it can vanish if the number of preys explode, see forthcoming section for
examples. As in the previous section, the case when the number of preys is zero is a bit
special.

Let us now specify the admissible initial conditions.
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Assumption 2.2. The initial number of preys and predators satisfy

XK(0) = bK1x0c, Y K(0,U , {S,M}, [0, a∞)) = bK2y0c,

for some constants x0, y0 > 0.
Besides there exists a0 ∈ (0, a∞) such that YK(0, {S,M}, [a0,∞)) = 0 a.s. for all K ≥ 1.

The fact that initial population sizes of preys and predators are deterministic will be
convenient for proofs but could be easily relaxed. The fact that the initial age is not too
close to a∞ could also be partially relaxed using a domination of the tail distribution
and additional computations.

Under Assumptions 2.1 and 2.2, for each K = (K1,K2) ∈ (0,+∞)2, forthcom-
ing Proposition 4.1 ensures existence and strong uniqueness of the solution ZK =
(XK , Y K) of the system of stochastic differential equations (9-10) with parameters
αKr , γ

K
r , β

K
r , γ

K , βK given above. We consider now the accelerated and scaled process
defined, for all t ≥ 0, by

ZK(t) = (ΞK(t),YK(t, dr, da)) =

(
1

K1
XK(λKt),

1

K2
Y K(λKt,U , dr, da),

)
.

For every T > 0, (ZK(t), t ∈ [0, T ]) belongs to the space D([0, T ],R+)×M([0, T ]×X ).

2.4 Main result

Our approximation result requires the following assumption on the interaction rates.
It involves the control of time distributions when the population density of preys belongs
to a compact set of (0,∞). We set for r ∈ {S,M} and K > 0,

αr(a,K) = inf
x∈(−1/K,K)

αr(a, x), αr(a,K) = sup
x∈(−1/K,K)

αr(a, x).

Assumption 2.3. For any K > 0, there exists a continuous function V : [0, a∞)→ [1,∞)
such that lima→a∞V(a) = +∞ and for r ∈ {S,M},∫

[0,a∞)
V(a) (1 + αr(a,K))e

− 1
4

∫
[0,a) αr(s,K) ds

da <∞.

We observe that this assumption ensures that E(Tr(x)) is locally bounded on (0,∞).
For r ∈ {S,M}, we recall that pr(x, a) = exp(−

∫ a
0 αr(x, u)du) is the cumulative distri-

bution of the interaction times. We define

φ(x) =
1∫

[0,a∞)(pS(x, a) + pM (x, a))da
(5)

and

ψ(x) = φ(x)

∫
[0,a∞)

((γS(a)− βS(a))pS(x, a) + (γM (a)− βM (a))pM (x, a)) da. (6)

Let us refer to Equations (1) and (2) in introduction for an expression of φ and ψ in
terms of the random variables Tr and the demographic rates. Our last assumption con-
cerns uniqueness of the limiting equation and the fact that the limit does not reach a
boundary (in finite time). For simplicity, we also assume here existence, but the limiting
procedure we prove would ensure existence up to this time when the process get close to
the boundary.
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Assumption 2.4. The following system of ordinary differential equations,{
x′(t) = (γ − β)x(t)− y(t)φ(x(t)),
y′(t) = y(t)ψ(x(t)),

(7)

admits a unique global solution (x, y) ∈ C1(R+, (R∗+)2) such that (x(0), y(0)) = (x0, y0).

The preceding assumption holds under classical regularity assumption and in partic-
ular, if φ and ψ are globally Lipschitz. Locally Lipschitz conditions are also sufficient
when the system does not explode in finite time. That is enough for our purpose. Our
main result can then be stated as follows.

Theorem 2.5. Let (x0, y0) ∈ (R∗+)2. Under Assumptions 2.1, 2.2, 2.3 and 2.4, the two
following assertions hold for every T > 0:

i) the process (ΞK(t),YK(t, {S,M}, [0, a∞))t∈[0,T ] converges in law to (x(t), y(t))t∈[0,T ]

in D([0, T ],R2
+),

ii) for each r ∈ {S,M}, the measure YK(t, {r}, da)dt converges in law to the measure

yr(dt, da) = y(t)pr(x(t), a)φ(x(t)) dt da

in the space M([0, T ]× [0, a∞)) endowed with narrow topology.

The fact that convergence of YK(t, {r}, da) hold on the associated Skorokhod space
is left open.

2.5 Behavior of the limiting ODEs

Writing λ = γ − β, our main result gives a microscopic interpretation of dynamical
systems of the form : {

x′(t) = λx(t)− y(t)φ(x(t)),
y′(t) = y(t)ψ(x(t)).

Let us now consider some properties of the long-time behavior of this system, linked to
our motivations. A large literature exists on the topic and we refer e.g. to [MB14, Hsu05,
HS98] and references therein.

First, non-trivial equilibrium points (x?, y?) ∈ R+ × R∗+ of this system verifies

ψ(x?) = 0, y? =
(γ − β)x?

φ(x?)
=

λx?

φ(x?)
.

Uniqueness properties of such equilibrium may be delicate. In particular, the fact
that a 7→ γS(a) − βS(a), a 7→ γM (a) − βM (a) and mean times of interaction x 7→
E[TS(x)],E[TM (x)] are decreasing do not guarantee uniqueness. The fact that ψ is strictly
monotone provides a sufficient condition.

The Jacobian matrix at this equilibrium is equal to

J(x?,y?) =

(
(φ(x?)/x? − φ′(x?))y? −φ(x?)

ψ′(x?)y? 0

)
.

Consequently,
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• if ψ′(x∗) > 0 then J(x?,y?) admits two real eigenvalues whose signs are opposite,
consequently (x∗, y∗) is a saddle and unstable point;

• if ψ′(x∗) < 0 then either eigenvalues are complex conjugate or they are real with the
same sign. In any case, the sign of the real part of these eigenvalues are given by the
sign of φ(x?)−φ′(x?)x?. Consequently, this point is stable when φ(x?)−φ′(x?)x? <
0, and unstable if φ(x?)− φ′(x?)x? > 0.

In particular, for the commonly used function φ : x 7→ cx, for some c > 0, (see
Section 3 for details), the eigenvalues have opposite signs or are pure imaginary (according
to the sign of ψ′(x∗)). However, in this particular case, the long time behavior of this
dynamical system can be described through a first integral; namely a function that is
constant along the solutions of the ODE. More precisely, setting

L(x, y) = λ log(y)− cy −
∫ log(x)

1
ψ(eu)du,

the function t 7→ L(x(t), y(t)) is constant along time. In particular, when the curve
L(x, y) = L(x(0), y(0)) is a bounded loop then (x, y) should be periodic.

3 Examples and numerical simulation

In this section, we consider some examples of dynamical systems which appear from
our approximation procedure. It can be easily seen that they satisfy our assumptions by
using V : a 7→ aε or V : a 7→ (a∞ − a)−(1+ε) in Assumption 2.3, for some ε > 0.

Recall that TS(x) and TM (x) are the random times for searching and manipulating
when the density of preys is x. The death rate of preys induced by predation is

φ(x) =
1

E[TS(x)] + E[TM (x)]
.

Note that it may be surprising that φ depends both on manipulation and searching time
although deaths of preys due to predation only occur after a searching time. However,
since predators necessarily change their status after catching a prey, the random times
between two prey captures are the sum of the time of manipulating and the time of
searching. Recalling that γr(a) (resp. βr(a)) is the birth (resp. death) rate of predators
which are in status r from time a and writing

λr(a) = γr(a)− βr(a),

the growth rate of predators is

ψ(x) = φ(x)E

[∫ TS(x)

0
λS(u)du +

∫ TM (x)

0
λM (u)du

]
.

We will present some forms of these functions from the more classical setting to the
more new ones. Up to our knowledge, the setting where φ and ψ have a different form is
already less common.

11



3.1 Classical setting and functional responses : memory less interac-
tions

We assume in this section that the growth rate λS and λM of predators are constant
(they do not depend on age). Besides, we suppose that the mean manipulation time is
not density dependent : tM = E[TM (x)]. Then

φ(x) =
1

E[TS(x)] + tM
, ψ(x) =

λSE[TS(x)] + λM tM
E[TS(x)] + tM

= λS + (λM − λS)tMφ(x(t)).

In particular, φ and ψ only depend on the law of TS , TM through their mean. We recover
classical functional responses with usual supplementary assumptions that we detail now.
The limiting ODE becomes{

x′(t) = λx(t)− y(t)φ(x(t))
y′(t) = ψ(x(t))y(t) = λSy(t) + (λM − λS)tMφ(x(t))y(t).

In this last expression, interaction terms are given by φ(x)y for preys and predators,
which correspond to a mass transfert (given by usual conversion of yield rate).

Let’s start by considering the working hypotheses with the least amount of memory.
It corresponds to constant birth and death rates and constant rate of change of status
(i.e. exponential times for each isolated events). Thus γr = γr(a), βr = βr(a) and we we
can then introduce the growth rate of predators in each status r ∈ {R,M} as follows:

λr = γr − βr.

For searching times, it can be justified with the hypothesis of rapid mixing of the preys
in the medium where predators live. In this section, we further assume that λ, λM > 0
and λS < 0 to study the limiting ODE system.

3.1.1 Absence of manipulation and Lotka-Volterra form

When there is no manipulation tM = 0 and E(TS(x)) = 1/(cx) with c > 0, we obtain
the classical Holling type I functional response and Lotka-Volterra form:

φ(x) = c x, ψ(x) = λS .

Assuming the searching time is inversely proportional to the density of preys can be
justified when preys are supposed to be catch independently (minimum of exponential
variables has an exponential law whose parameter is the sum of the parameters). Note
however that the growth rate of predators is fixed and not linear here. Consequently, the
solution of the associated ODE leads to extinction of at least one of the two populations.

3.1.2 Manipulation and Holling type II

The case

tM > 0, E(TS(x)) =
1

cx
,

where c > 0 leads to Holling type II functional response (see [Has13, AG12]) :

φ(x) =
cx

1 + tMcx
, ψ(x) = λS + (λM − λS)tM

cx

1 + tMcx
.

12



Constant (λM − λS)t0 is related to the ”yield constant” in microbial ecology, as in the
chemostat equation for instance. The limiting ODE is also related to the Rosenzweig-
MacArthur model. The difference between these two equations lies in the prey growth
term which is λx in our case and x(1 − x) (logistic growth) in the case of Rosenzweig-
MacArthur model. These difference is fundamental for the long time behavior. In par-
ticular, in our ODE system, there is a unique equilibrium point which is unstable. The
long time behavior consists then to extinction/explosion of the populations.

3.1.3 Rarefaction of preys and Holling type III

If rarefaction of preys makes predators consider other species, one can let E(TS(x))
be larger than c/x. Taking for instance E(TS(x)) = 1/(cx2) leads to Holling type III
functional response (see [Has13, AG12]). This can be found using a modeling with several
species, as in [BBC18] for instance. This is not directly captured in our setting (to avoid
superfluous notation) but should work without difficulty.
In contrast with the models of the two preceding section, such assumption may lead to
a stable dynamical system. Indeed, when E(TS(x)) = 1/(cx`), with ` > 0, then the ODE
system reads. 

x′ = λx− y cx`

1 + tMcx`

y′ = λSy + (λM − λS)tM
cx`

1 + tMcx`
.

In particular, when ` > 1 the functional response is not a not convex. For this
dynamical system, there is a unique non-trivial equilibrium which is given by

x∗ =

(
−λS
cλM tM

)1/`

, y∗ =
λ

λM

(
− λS
λM tMc

) 1−`
`

(λM − λS).

Moreover, this equilibrium is exponentially stable when

`− 1 > − λS
λM

.

We refer to Figure 2 and Figure 3 for a numerical simulation.

3.2 A first generalization : non-exponential time of interaction

We saw in the last subsection that classical functional responses arise easily when
searching times are supposed to be exponentially distributed. This can be justified
though independence and rapid mixing assumptions. Relaxing these two assumptions
leads different forms of functional responses. Keeping independence of prey catching but
assuming heavy tailed distribution of capture events can lead for instance to the form

E[TS(x)] = x−1/αΓ

(
1 +

1

α

)
. (8)

Indeed, from extreme value theory, the minimum of independent random variables nec-
essary belongs (asymptotically) to the Frechet, Weibull or Gumbel class of laws. Equal-
ity (8) is obtained through Frechet distribution TS(x)−1 ∼ F(α, x1/α, 0).
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Figure 2: A sample path of the total number of preys and predator t 7→
(Ξ(t),Y(t, {S,M}, [0,+∞)) and the limiting ODE for the model described in Subsec-
tion 3.1.3 with K1 = 500, K2 = 50, ` = 2,c = 1, t0 = 1, γM = 2, γS = 0, βM = 0 βS = 1,
γ = 2, β = 0 . The dashed line represents the ODE system and the solid line represents
the path of only one iteration of the individual based model. The blue lines represents
the predators and the red line represents the preys.

Figure 3: Phase portrait associated to the setting of Figure 2. In red we have the set
{(x(t), y(t)} and in black the set {(Ξ(t),Y(t, {S,M}, [0,+∞))} for only one sample path
of the individual based model.
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Other laws can be genuinely considered. For instance, in [BBC18, Page 11], preys are
supposed uniformly distributed in a space of two dimension and predators are supposed
to move directly, at a constant speed, towards the nearest prey. With this modeling then
the expected time is

E[TS(x)] =
1

c
√
x
.

In such case and more generally for models with spatially distributed preys considered
in [BBC18], the time for searching is non-exponential. Nevertheless, if we stick to this
set of hypotheses, apart from demonstrating a stronger convergence result than [BBC18]
(the convergence of a stochastic process), we do not provide additional keys for ecological
understanding based on our dynamic modeling.

3.3 A dome-shaped example

To simplify, let us continue to assume that λS and λM are constant and E[TS(x)] =
1/cx. However, in contrast with the preceding model, we now do not assume that x 7→
E[TM (x)] is constant. Indeed, in some ecosystems, the number of individuals and/or preys
affects the environment (creation of toxins, lack of oxygen, water resources, ...). These
effects can reduce the efficiency of the predators and increase their handling time. It then
may be natural to assume that x 7→ E[TM (x)] is increasing. For sake of illustration, we
choose here E[TM (x)] = dxp. With this choice, we have

φ(x) =
cx

1 + cdxp+1
, ψ(x) = λS + (λM − λS)

cdxp+1

1 + cdxp+1
.

Figure 4 and Figure 5 illustrate these two functional responses for particular param-
eters. In particular, we observe that φ is a dome-shaped function with maximum in
x = (cdp)−1/(p+1) and that ψ has a rather radical form.

Figure 4: Plot of the functional re-
sponse φ : x 7→ x

1+x2

Figure 5: Plot of the functional re-
sponse ψ : x 7→ x2

1+x2

From the results of Section 2.5, we can show for this example that the ODE system
has again a trivial behavior (namely extinction and/or explosion of the one of the two
populations).

3.4 Influence of the distribution of the time of interaction

Our main result states that, at the first order approximation (i.e. the deterministic
limiting ODE without considering random fluctuations), the death rate of preys, induced
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by predation, only depends on the interaction time distribution through its mean. Namely
the form of φ only involves the expectation of the interaction times. In particular, assum-
ing a Markov model, that is exponential law for these times, implies the same functional
response φ.

Notwithstanding, the growth rate of predators depends on the whole law of the times
of interactions. Indeed, the births and deaths of predators depend on the times of search-
ing and manipulations in a non trivial way.
Let’s give an explicit example. Assume that for some A,B,C > 0, we have for a ≥ 0,

λS(a) = −A+Be−Ca.

This models that the more a predator searches (without finding), the less it reproduces
and/or the more easily it dies.

Let us assume that TS(x) is exponential distributed with mean 1/cx, we have

E

[∫ TS(x)

0
λS(u)du

]
= − A

cx
+

B

cx+ C
.

and, as in the setting of Subsection 3.1, we can recover below two classical forms without
directly assuming a conversion of prey into predators.

3.4.1 Case without manipulation

When there is no manipulation, we have

φ(x) = cx, ψ(x) =

(
−A+B

cx

cx+ C

)
λS .

In particular, ψ(x)→x→0 −A and ψ(x)→x→∞ tMB. That is φ(x) behaves as exactly as
in the Lotka-Volterra model in contrast to ψ which evolves as an Holling type II response.
This model is relatively close to Lotka-Volterra.

In Figure 6 and Figure 7, we simulate a path of our individual based model with the
associated ODE system :  x′ = λ3x− yx

y′ = −y(t) +
2x2y

1 + x
.

Indeed, we used the following parameters:

K1 = 1000, K2 = 50, c = 1, γS(a) = 2e−a, βS(a) = 1, γ = 3, β = 0.

Then A = 2, B = 1 and C = 1. As the Lotka-Volterra system, this new ODE system
seems to have a stable orbit.

3.4.2 Case with constant manipulation (another dome-shaped response)

With constant manipulation time tM and constant growth λM , we have

φ(x) =
cx

1 + tMcx

and

ψ(x) =
1

1 + tMcx

(
−A+B

cx

cx+ C

)
λS +

tMλMcx

1 + tMcx
.
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Figure 6: A sample path of the total number of preys and predator t 7→
(Ξ(t),Y(t, {S,M}, [0,+∞)) and the limiting ODE for the model described in Subsec-
tion 3.4.1. The dashed line represents the ODE system and the solid line represents the
path of only one iteration of the individual based model. The blue lines represents the
predators and the red line represents the preys.

that is ψ(x) →x→0 A < 0 and ψ(x) →x→∞ λM > 0 Then it behaves as classical Holling
type II prey-predator model:

ψ(x) = −A+ µ
x

x+K
.

Even if this form is still asymptotically similar to the Holling type II response, it can
nevertheless have very different and new forms, as shown in Figure 8. We do not see such
form of functional response in the literature and then it seems to be new.

4 Proofs and additional results

4.1 Existence of the process and trajectorial representation

To formalize conveniently our modeling, we label each predator using classical Ulam-
Harris-Neveu notation and describe the associated genealogical tree. The set of individ-
uals is then

U = N× ∪k≥0{1, 2}k.

For short, we write u = u0u1 . . . uk ∈ U and u then corresponds to an individual living
in generation |u| = k and whose ancestor in generation i is u0 . . . ui for 0 ≤ i ≤ k. At
each reproduction event, we assume for simplicity that every predator u only gives birth
to one predator and we label the mother by u1 and its child by u2. The population of
predators alive at time t, denoted by P(t), is a random subset of U .
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Figure 7: Phase portrait for the model described in Subsection 3.4.1. In red we have the
set {(x(t), y(t)} and in black the set {(Ξ(t),Y(t, {S,M}, [0,+∞))} for only one sample
path of the individual based model.

Figure 8: Plot of the functional response ψ : x 7→ x2+10x−1
(x+1)(x+2) of Section 3.4.2.
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The state of the population is then given by the process

Z = (Z(t))t≥0 = (X(t), Y (t))t≥0,

where the measure Y describes the predators and is given for all t ≥ 0 by

Y (t) =
∑
i∈P(t)

δ(i,ri(t),ai(t)).

For any t ≥ 0, Y (t) ∈ M(U × X ), where we recall that X = {S,M} × [0, a∞). Besides,
for any U ⊂ U , the projected measure

Y (t, U, {r}, ·) =
∑

i∈P(t), ri(t)=r

δai(t)

gives the collection of ages of predators in status r at time t, whose labels belong to U .
The total number of predators at time t is then Y (t,U , {S,M},R+).

Following for instance [FM04, Tra06, BT10], we construct and characterize (Z(t))t≥0

as the unique strong solution of a stochastic differential equation. For every i ∈ U ,
we let N i be independent Poisson punctual point measures on R2

+ with intensity the
Lebesgue measure. These measures provide the random times when a predator changes
its status between searching and manipulating. We introduce also independent Poisson
point measuresMi and Q on R2

+ with Lebesgue measure intensity. They are independent
of (N i, i ∈ U) and describe births and deaths of preys and predators. We consider then
the following equation for the evolution of the number of preys for t ≥ 0,

X(t) = X(0)−
∫ t

0

∑
i∈P(s−)
ri(s−)=S

∫
R+

1{u≤αi(s−)}N i(ds, du)

+

∫ t

0

∫
R+

(
1{u≤γX(s−)} − 1{0<u−γX(s−)≤βX(s−)}

)
Q(ds, du). (9)

Indeed, the number of preys decreases when they are caught by a predator and also varies
independently by births and deaths. For every function f ∈ C1,b(U × X ), we consider

〈Y (t),f〉 = 〈Y (0), f〉+

∫ t

0

∑
i∈P(s−)

∂af(i, ri(s−), ai(s−)) ds

+

∫ t

0

∑
i∈P(s−)

∫
R+

1u≤αi(s−)Df(i, s−)N i(ds, du)

+

∫ t

0

∑
i∈P(s−)

∫
R+

(
1u≤γi(s−) ∆f(i, ri(s−), ai(s−)))

− 10<u−γi(s−)≤βi(s−) f(i, ri(s−), ai(s−))
)
Qi(ds, du), (10)

where ∂af stands for the partial derivative of f with respect to the third variable and

Df(i, s) = f(i, ri(s), 0)−f(i, ri(s), ai(s)); ∆f(i, r, a) = f(i1, r, a)+f(i2,M, 0)−f(i, r, a).
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Recall that r is the complementary status of r, i.e. the unique element of {S,M} \ {r}.

Let us state the existence result and characterize the process using the previous
stochastic differential equation.

Proposition 4.1. Let Z(0) = (X(0), Y (0)) with X(0) ∈ N and Y (0) ∈ M(U × X )
a.s. such that Y (0,U , {S,M}, [a0,∞)) = 0 a.s. for some a0 < a∞. Under Assumption
2.1, the system of stochastic differential equations (9-10) admits a unique strong solution
Z = (X,Y ) in D([0,∞),N×M(U × X )) with initial condition Z(0).

Proof. The construction of the process and its uniqueness can be achieved iteratively,
using the successive random times between each event, see for instance [BM15]. The proof
is classical and we just give its sketch. The only point to justify is that the successive
times where an event (change of status, birth or death) occur do not accumulate. For
that purpose, we proceed by a localization procedure and introduce the hitting time
TK = inf{t : X(t) ≥ K}. Recalling that Tr(x) is a.s. positive for any x ∈ {0, . . . ,K},
no accumulation of change of status occurs before TK a.s. We also recall that birth and
death rates of preys and predators are upper bounded. So a.s. the jumps of the process
Z do not accumulate before TK . We need now to justify that TK tends a.s. to infinity as
K →∞. It is achieved by dominating the process X by a pure linear birth process (Yule
process) with birth rate per capita γ. The fact that this latter does not explode is well
known and can be derived for instance from the finiteness of its first moment. Pathwise
uniqueness of the system of stochastic differential equations is also obtained by induction
on the successive jumps, which are provided by the common Poisson point measures. The
arguments above ensure that existence and uniqueness holds for positive time. Let us
finally note that the system (9-10) is closed, since P(t) and (i, ri(t), ai(t)) are determined
(uniquely) by the measure Y (t), which is itself determined by its projections 〈Y (t), f〉 for
f ∈ C1,b(U × X ).

4.2 First estimates and properties

We start by a sharp and useful bound on the first moment of the punctual measures
Y evaluated on tests functions which may be non bounded. For convenience, we write

Y(t, ·) = Y (t,U , ·) =
∑
i∈P(t)

δ(ri(t),ai(t))

the projection of the measure Y (t) on X . We also introduce the exit time of the number
of preys of (1/K,K) for K > 0 :

τK = inf{t ≥ 0 : Xt 6∈ (1/K,K)}.

We consider the associated bounds on the rate of transitions for r ∈ {S,M},

αr(a,K) = sup
x∈(1/K,K)

αr(a, x), αr(a,K) = inf
x∈(1/K,K)

αr(a, x),

which are continuous by continuity of αr. We also recall that

γ̄ = sup
r∈{S,M}, a∈[0,a∞)

γr(a) <∞.
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Lemma 4.2. Under assumptions of Proposition 4.1, there exists C > 0 such that for any
continuous and non-negative function f : [0, a∞)→ R+ and r ∈ {S,M} and K > 0,

E

[∫ T∧τK

0

∫
[0,a∞)

f(a)Y(s, {r}, da)ds

]

≤ C(1 + T )eγ̄T
∫

[0,a∞)
f?(a)e

−
1a>t0

4

∫
[t0,a)

αr(u,K)du
da,

where t0 = min(1, a∞/2) and f?(a) = 1[0,t0)(a) sup[0,t0) f + 1[t0,a∞)(a)f(a).

Proof. We consider first f continuous, non negative with compact support in [0, A), where
A ∈ [0, a∞). The conclusion for general f will follow with a monotone approximation
of f by compactly supported functions. Fix T ≥ 0 and consider an increasing sequence
(an)0≤n≤n0 , where an+1 = an + tn and (tn)0≤n≤n0−1 is a decreasing sequence of positive
numbers and an0 = A. For a predator i ∈ U , a status r ∈ {R,M} and a level n ∈ N, we
set

ui,rn = E
[∫ τK∧T

0
1{i∈P(s), ri(s)=r, ai(s)∈[an,an+1)}ds

]
.

It is equal to the cumulative time spent by predator i, in status r and between ages an
and an+1. Let also

N i,r
n =

∑
s≤τK∧T

1{i∈P(s), ri(s)=r, ai(s)=an}

be the number of times that predator i ∈ U reaches age an while it is in status r. In
other words, writing b(i) the birth time of individual i, for every j ∈ N, we can define
iteratively

T i,rj+1,n = inf{t > T i,rj,n | i ∈ P(t), ri(t) = r, ai(t) = an},

for j ≥ 0, with T i,r0,n = b(i). We get

N i,r
n =

∑
j≥1

1{T i,r
j,n≤τK∧T}

.

With this notation and writing Tj = T i,rj,n+1 for convenience, we have for n ≤ n0 − 2,

ui,rn+1 ≤ E

N
i,r
n+1∑
j=1

∫ Tj+tn+1

Tj

1{i∈P(s), ai(s)∈[an+1,an+2), ri(s)=r}1{∀u∈[0,s]:X(u)∈K}ds

 . (11)

Adding that (tn)n decreases, the status cannot change twice during time tn+1 and reach
level an+1 again. So, on the event the process does not jump at all during the time period
[Tj , Tj + tn+1] on the event considered and for s ≤ tn+1,

E
[
1{ i∈P(Tj+s), ai(Tj+s)∈[an+1,an+2), ri(Tj+s)=r, ∀u∈[0,s]:X(Tj+u)∈K}

∣∣Tj , (X(t))t≤Tj+s

]
= E

[
e−

∫ s
0 αr(an+1+u,X(Tj+u))du1{∀u∈[0,s]:X(Tj+u)∈K}

∣∣Tj , (X(Tj + u))u≤s

]
≤ e−

∫ s
0 αr(an+1+u,K)du,
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we get for n ≤ n0 − 2,

ui,rn+1 ≤ E

N
i,r
n+1∑
j=1

∫ tn+1

0
e−

∫ s
0 αr(an+1+u,K)du ds

 ≤ tn prn E [N i,r
n+1

]
, (12)

where

prn =
1− e−αr

ntn+1

αrntn
, αrn = inf{αr(a, x) : a ∈ [an+1, an+2], x ∈ (1/K,K)}.

Besides, as ages increase at rate 1, either predator i is born at an age between an+1 and
an+2 or it has exactly spent the time tn at level between ages [an, an+1). In any case,

E
[
N i,r
n+1

]
≤ P(Ain) +

ui,rn
tn
,

where
Ain = {b(i) ≤ T ∧ τK , ai(b(i)) ∈ [an+1, an+2)}.

Combining these inequalities, we obtain

ui,rn+1 ≤ p
r
nu

i,r
n + tnp

r
nP(Ain),

which then gives, by induction,

ui,rn ≤ u
i,r
0

n−1∏
j=0

prj +
n−1∑
k=0

tkP(Aik)
n−1∏
j=k

prj .

Using now prj ≤
tj+1

tj

(
1− αr

j tj+1

4

)
, when tj+1 is small enough, and setting

Snk =
n−1∑
j=k

αrjtj+1/4,

we get
∏n−1
j=k p

r
j ≤ tn

tk
e−S

n
k and then

ui,rn ≤
tn
t0
ui,r0 e−S

n
0 + tn

n−1∑
k=0

P(Aik)e
−Sn

k .

To conclude for f compactly supported, we set fn = supa∈[an,an+1) f(a) and get

E
[∫ t

0
f(ai(s)) 1i∈P(s),ri(s)=rds

]
≤

n0−1∑
n=0

fnu
i,r
n

≤ P(b(i) ≤ T ∧ τK)

t0 ∧ 1

n0−1∑
n=0

fntne
−Sn

0

(
T +

n−1∑
k=0

P(Aik | b(i) ≤ T ∧ τK)eS
k
0

)
,
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since ui,r0 ≤ T P(b(i) ≤ T ∧ τK). Let now t0 = min(1, a∞/2) and A ∈ (t0, a∞). For any
h > 0, we consider a positive strictly decreasing sequence (thn)n≤nh

0−1 such that

th0 = t0, lim
h→0

sup
n≥1

thn = 0, ah
nh
0

=

nh
0−1∑
k=0

thk = A.

Using the following uniform convergence of the Darboux sum

sup
k=0,...,nh

0−1

∣∣Sk0 − 1

4

∫
[0,ahk)

αr(u)du
∣∣ h→0−→ 0,

which comes from the continuity of α and uniform continuity of f on [0, A], we get, by
letting h→ 0,

E
[∫ τK∧T

0
f(ai(s))1{i∈P(s), ri(s)=r}ds

]
≤ CP(b(i) ≤ T ∧ τK)

∫
[0,a∞)

f?(a)e
−

∫
[0,a) αr(u,K)du/4

da

×

[
T + E

(
1{ai(b(i))≤a} exp

(∫
[0,ai(b(i)))

αr(u,K)du/4

))]
,

for some constant C, where we recall that f?(a) = 1[0,t0)(a) sup[0,t0] f + 1[t0,a∞)(a)f(a).
Recall also that ai(b(i)) has a compact support in [0, a∞) under our assumptions on the
initial condition (from Proposition 4.1), together with the fact that newborns have age
0. So the last term is bounded by a constant. Summing over all predators i yields the
result since∑

i∈U
P(b(i) ≤ T ∧ τK) ≤ E (#{i ∈ U : b(i) ≤ T ∧ τK}) ≤ eT γ E [Y(0, {S,M}, [0, a∞))]

since #{i ∈ U : b(i) ≤ T ∧ τK} is dominated by a pure birth process at time T , with
individual birth rate γ.

We define Fg,f : R+ ×M(X )→ R by

Fg,f (x, µ) = g(x) + 〈µ, f〉, (13)

where g : R+ → R and f : X → R are measurable and bounded functions. We introduce

LFg,f (x, µ) = γx(g(x+ 1)− g(x)) + βx(g(x− 1)− g(x))

+

∫
X

(
∂

∂a
f(r, a) + γr(a)f(M, 0)− βr(a)f(r, a)

)
µ(dr, da)

+

∫
X
αr(a, x)(1r=S (g(x− 1)− g(x)) + f(r, 0)− f(r, a))µ(dr, da).

The operator L is the generator of the Markov process (X(t),Y(t))t≥0. More precisely,
our SDE representation (9-10) yields the following family of martingales. Let g : R+ → R
be measurable and bounded and f ∈ C1,b(X ). We define M(t) = Mg,f (t) for t ≥ 0 by

M(t) = Fg,f (X(t),Y(t))− Fg,f (X(0),Y(0))−
∫ t

0
LFg,f (X(s),Y(s))ds
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Lemma 4.3. Under assumptions of Proposition 4.1 and assuming further that for any
K > 0 and r ∈ {S,M}, ∫

[0,a∞)
αr(a,K)e

− 1
4

∫
[0,a) αr(u,K)du

da <∞, (14)

then (M(t))t≥0 is a local martingale. Besides (M(t ∧ τK))t≥0 is a square-integrable mar-
tingale and its bracket is given, for all t ≥ 0, by

〈M〉(t ∧ τK)

=

∫ t∧τK

0

(
γX(s)(g(X(s) + 1)− g(X(s)))2 + βX(s)(g(X(s)− 1)− g(X(s)))2

)
ds

+

∫ t∧τK

0

∑
i∈P(s)

αi(s)
(
1ri(s)=S(g(X(s)− 1)− g(X(s))) + (f(ri(s), 0)− f(ri(s), ai(s))

)2
ds

+

∫ t∧τK

0

∑
i∈P(s)

(
γi(s)f(M, 0)2 + βi(s)f(ri(s), ai(s))

2
)
ds.

Proof. The fact that M is a local martingale and the computation of its square variation
is derived from our SDE representation (9-10) . Indeed one can write the semi-martingale
decomposition of Fg,f (X,Y) using the compensation of the Poisson point measures, see
for instance [FM04, BM15]. We only give details for the first component X:

g(X(t)) = g(X(0)) +

∫ t

0

∑
i∈P(s−)
ri(s−)=S

αi(s−)(g(X(s−)− 1)− g(X(s−)) ds

+

∫ t

0

∑
i∈P(s−)
ri(s−)=S

∫
R+

1{u≤αi(s−)}(g(X(s−)− 1)− g(X(s−)) Ñ i(ds, du)

+

∫ t

0
(γX(s−)((g(X(s−) + 1)− g(X(s−)) + βX(s−)(g(X(s−)− 1)− g(X(s−))) ds

+

∫ t

0

∫
R+

(
1{u≤γX(s−)}((g(X(s−) + 1)− g(X(s−))

+ 1{0<u−γX(s−)≤βX(s−)}(g(X(s−)− 1)− g(X(s−))
)
Q̃(ds, du),

where Ñ i and Q̃ are the compensated measures of N i and Q.
Finally, square integrability of (M(t∧ τK))t≥0 is a consequence of Lemma 4.2 applied

to f = αr and Doob’s inequality and our integrability assumption (14).

4.3 Construction and tightness of the sequence of scaled processes

hyp:timeint The proof is based on standard tightness and uniqueness arguments
involving the occupation measures and averaging [Kur92, KKP14] and localization. The
main new difficulties lie in the infinite dimension in the averaging procedure due to the
age structure combined with unboundedness of the interactions rates αr inherent in our
framework. In this section, we always assume that Assumptions 2.1 and 2.2 hold and
do not recall it in the statements.
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First, under these assumptions, for each K = (K1,K2) ∈ (0,+∞)2, Proposition 4.1
ensures existence and strong uniqueness of the solution ZK = (XK , Y K) of the system
of stochastic differential equations (9-10) with parameters αKr , γ

K
r , β

K
r , γ

K , βK given in
(3-4). Recall that we consider the accelerated and scaled process defined, for all t ≥ 0,
by

ZK(t) = (ΞK(t),YK(t, dr, da)) =

(
1

K1
XK(λKt),

1

K2
Y K(λKt,U , dr, da),

)
.

Furthermore, Lemma 4.2 above directly implies the following counterpart for the
scaled process. It allows us to localize the age distribution. We set

τKK = inf{t ≥ 0 : ΞKt 6∈ (1/K,K)}.

Lemma 4.4. There exists C > 0 such that for any continuous non-negative function f
on [0, a∞) and r ∈ {S,M} and K > 0,

E

[∫ T∧τKK

0

∫
[0,a∞)

f(a)YK(s, {r}, da)ds

]

≤ C(1 + T )eγ̄T
∫

[0,a∞)
f?(a)e

−
1a>t0

4

∫
[t0,a)

αr(u,K)du
da,

where t0 = min(1, a∞/2) and f?(a) = 1[0,t0)(a) sup[0,t0] f + 1[t0,a∞)(a)f(a).

Proof. We have

E

[∫ T∧τKK

0

∫
[0,a∞)

f(a)YK(s, {r}, da)ds

]

=
1

λKK2
E

[∫ λK(T∧τKK )

0

∫
[0,a∞)

f(a)Y K(s, {r}, da)ds

]
.

Adding that λKτ
K
K is the exit time of (K1/K,K1K) for XK and

Y K(0,U , {S,M}, [0, a∞)) = bK2y0c and γKr (a) = λ−1
K γr(a), the conclusion comes

from Lemma 4.2.

We now give the counterpart of the martingales of Lemma 4.3 for the scaled process.
Recalling that Fg,f (x, µ) = g(x) + 〈µ, f〉 where g : R+ → R is a bounded measurable
function and f ∈ C1,b(X ), we set

LKFf,g(x, µ) = K1x
(
γ(g(x+ 1/K1)− g(x)) + β(g(x− 1/K1)− g(x))

)
+

∫
X

(γr(a)f(M, 0)− βr(a)f(r, a))µ(dr, da)

+λK

∫
X

(
∂

∂a
f(r, a) + αr(a, x) (1r=S (g(x− 1/K1)− g(x)) + f(r, 0)− f(r, a))

)
µ(dr, da).

Lemma 4.5. Suppose that Assumption 2.3 also holds. Let g : R+ → R be a bounded
measurable function and f ∈ C1,b(X ). Then the process MK defined for t ≥ 0 by

MK(t) = Ff,g(ZK(t))− Ff,g(ZK(0))−
∫ t

0
LKFf,g(ZK(s))ds,
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is a local martingale. Besides (MK(t ∧ τKK ))t≥0 is a square integrable martingale and

〈MK〉(t ∧ τKK )

=

∫ t∧τKK

0
ΞK(s)

(
γ(g(ΞK(s) + 1/K1)− g(x))2 + β(g(ΞK(s)− 1/K1)− g(x))2

)
ds

+λK

∫ t∧τKK

0

∑
i∈P(s)

αri(s)(ai(s),Ξ
K(s))

×
(
1ri(s)=S(g(ΞK(s)− 1/K1)− g(ΞK(s))) +

1

K2
(f(ri(s), 0)− f(ri(s), ai(s))

)2

ds

+

∫ t∧τKK

0

∑
i∈P(s)

(
γri(s)(ai(s))

f(M, 0)2

K2
2

+ βri(s)(ai(s))
f(ri(s), ai(s))

2

K2
2

)
ds.

We introduce now the measures ΓKK on R+ × {S,M} × [0, a∞) defined a.s. for every
bounded measurable functions H by

ΓKK (H) =

∫
R+

∫
X
H(s, r, a)ΓKK (ds, dr, da) =

∫ τKK

0

∫
X
H(s, r, a)YK(s, dr, da)ds

We also set

ΞKK (t) = ΞK(t ∧ τKK ), YKK (t) = YK(t ∧ τKK , {S,M}, [0, a∞))

for the localized version of the processes counting preys and predators. Considering such
space-time measures for proving averaging results is inspired from [Kur92, KKP14]. How-
ever, we do not consider here the occupation measure of the fast variables YK(t, dr, da).

Lemma 4.6. Suppose that Assumption 2.3 also holds, for every K > 0 and T > 0, the
sequence (ΞKK ,YKK ,ΓKK )K is tight in D([0, T ],R+)2 ×M([0, T ]×X ).

Proof. On the first hand, using a domination of the process YK(·, {S,M}, [0, a∞)) by a
linear birth process, we have

sup
K≥1

E

(
sup
t≤T
YK(s, {S,M}, [0, a∞))

)
<∞. (15)

Then the first moment of the sequence of random variables (ΓKK ([0, T ] × {S,M} ×
[0, a∞)))K is bounded and it is a tight sequence in R.

On the second hand, we can combine Assumption 2.3 with Lemma 4.4 to obtain

sup
K≥1

E

[∫ τKK ∧T

0

∫
[0,a∞)

V(a)YK(s, {r}, da) ds

]
< +∞ (16)

for r ∈ {S,M}. Then we get

sup
K≥1

P(ΓKK ([0, T ]× {S,M} × [a, a∞)) ≥ ε) ≤ ε

for a close enough to a∞. Moreover, as H ≥ 1, this also implies tightness of (ΓKK ([0, T ]×
X ))K≥1. Lemma 1.1 of [Kur92] then entails the relative compactness of the sequence
(ΓKK )K≥1 in the space of finite measures embedded with the weak (narrow) topology.
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Now, we show that (ΞKK )K≥1 is tight by using the Aldous-Rebolledo criterion.
Lemma 4.5 gives the semi-martingale decomposition

ΞKK = ΞKK (0) +AK +MK ,

where

AK(t) =

∫ t∧τKK

0
(γ − β)ΞKK (s)ds−

∫ t∧τKK

0

∫
[0,a∞)

αS(a,ΞKK (s))YK(s, {S}, da)ds,

〈MK〉(t) =
1

K1

∫ t∧τKK

0
(γ + β)ΞKK (s)ds+

1

K1

∫ t∧τKK

0

∫
[0,a∞)

αS(a,ΞKK (v))YK(v, {S}, da)ds.

Hence, writing T K the set of stopping times associated to ΞKK , for any σ ∈ T K and h > 0,

E
[
|AK(σ)−AK(σ + h)|

]
≤ hK |γ − β|+ E

[∫ (σ+h)∧τKK

σ∧τKK

∫
[0,a∞)

αS(a,ΞK(v))YK(v, S, da)dv

]
.

Using again Assumption 2.3 and Lemma 4.4 with now f(a) = αS(a,K), we get

lim
b→a∞

sup
K≥1

E

[∫ τKK ∧T

0

∫
[b,a∞)

αS(a,ΞK(v))YK(s, {S}, da)ds

]
= 0.

Using (15) and that αS is bounded on compacts sets of [0, a∞)× (0,∞) by continuity, we
obtain for any b ∈ [0, a∞),

lim
h→0

sup
K≥1,

σ∈T K , h≤δ

E

[∫ (σ+h)∧τKK

σ∧τKK

∫
[0,b]

αS(a,ΞK(v))YK(v, S, da)dv

]
= 0.

Combining these estimates yields

lim
δ→0

sup
K≥1,

σ∈T K , h≤δ

E
[
|AK(σ)−AK(σ + h)|

]
= 0. (17)

Besides, for each t ≥ 0, the family of random variables (AK(t))K is tight since the same
integrability argument ensures that (E(|AK(t)|))K is bounded. Proceeding analogously
for the quadratic variation of MK and using [JM86, Theorem 2.3.2] ends the proof of
tightness of (ΞKK )K≥1. The proof of tightness of (YKK )K≥1 is similar since birth and death
rates are bounded.

4.4 Identification of limiting values and proof of convergence

We proceed now with identification of limiting points. In this section, we assume that
Assumptions 2.1 and 2.2 and 2.3 hold. Recall that the survival function of interaction
times is denoted by pr = P(Tr(x) ≥ a) = exp(−

∫ a
0 αr(x, u)du) and response for prey is

φ, see (5).
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Lemma 4.7. Let T > 0, K0 > 0 and consider a limiting point (ΞK0 ,ΓK0) of (ΞKK0
,ΓKK0

)
in D([0, T ],R+)×M([0, T ]×X ). For all but countably many K < K0, it satisfies for any
r ∈ {S,M}, and f continuous bounded on R+ × [0, a∞),∫ τK

0

∫
[0,a∞)

f(s, a)ΓK0(ds, {r}, da)

=

∫ τK

0

∫
[0,a∞)

f(s, a)pr(ΞK0(s), a)φ (ΞK0(s)) ΓK0(ds, {S,M}, [0, a∞))da a.s.,

where
τK = inf {t ≥ 0 | ΞK0(t) /∈ (1/K,K)} .

Proof. To avoid the use of a sub-sequence, we assume that the sequence (ΞKK0
,ΓKK0

)K
converges in law to (ΞK0 ,ΓK0) as K → ∞. Using Skorokhod representation, we also
assume that this convergence holds a.s. Following the proof of [EK09, Theorem 4.1
p.354], for all but countably many K < K0, (τKK )K converges a.s. to τK. Indeed, from
[JS13, Proposition 2.11, Chapter VI], the hitting time τKK is a continuous function of
the process ΞKK0

, except for discontinuity points of ΞKK0
. This set of points is at most

countable, see [JS13, Lemma 2.10 b), Chapter VI].

Let us use Lemma 4.5 with g = 0 and f ∈ C1,b(X ) such that f(M, ·) = 0. Writing
f(S, ·) = f ∈ C1,b([0, a∞)),

MK(t) =
1

λK

{∫
[0,a∞)

f(a)YKK0
(t ∧ τKK , {S}, da)−

∫
[0,a∞)

f(a)YKK0
(0, {S}, da)

}

−
∫ t∧τKK

0

∫
X
H(ΞKK0

(s), r, a)ΓKK0
(ds, dr, da)

+
1

λK

∫ t∧τKK

0

∫
[0,a∞)

(γS(a)− βS(a))f(a)YKK0
(s, {S}, da)ds,

is a square integrable martingale, where

H(x, S, a) = ∂af(a)− αS(x, a)f(a), H(x,M, a) = αM (x, a)f(0). (18)

Step 1. Let us prove that

lim
K→∞

∫ t∧τKK

0

∫
X
H(ΞKK0

(s), r, a)ΓKK0
(ds, dr, da)

=

∫ t∧τK

0

∫
X
H(ΞK0(s), r, a)ΓK0(ds, dr, da) in probability

Assumption 2.3 and Lemma 4.4 guarantee that

C = sup
K≥1

E

[∫ t∧τKK

0

∫
X
V(a)(1 + αr(a,K))ΓKK0

(ds, dr, da)

]
< +∞.

Furthermore, Fatou Lemma ensures that

E

[∫ t∧τKK

0

∫
X
V(a)(1 + αr(a,K))ΓK0(ds, dr, da)

]
≤ C.
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The fact that V(a)→∞ as a→ a∞ and

sup
x∈K,a∈[0,a∞)

|H(x, r, a)|
1 + αr(a,K)

<∞

ensure by Markov inequality that for any ε > 0,

lim
b→a∞

sup
K

P

(∫ t∧τKK

0

∫
{S,M}×(b,a∞)

H(ΞKK0
(s), r, a)ΓKK0

(ds, dr, da) ≥ ε

)
= 0

lim
b→a∞

P

(∫ t∧τK

0

∫
{S,M}×(b,a∞)

H(ΞK0(s), r, a)ΓK0(ds, dr, da) ≥ ε

)
= 0.

To conclude the first step, we need to prove that for any b ∈ (0, a∞),

lim
K→∞

∫ t∧τKK

0

∫
{S,M}×[0,b]

H(ΞKK0
(s), r, a)ΓKK0

(ds, dr, da)

=

∫ t∧τK

0

∫
{S,M}×[0,b]

H(ΞK0(s), r, a)ΓK0(ds, dr, da) a.s.

Indeed, we observe that |∆ΞKK0
(s, r, a)| ≤ 1

K , and the limiting process ΞK0 is continuous

and the convergence of (ΞKK0
)K is uniform on [0, T ]. We add that the convergence of (ΓKK0

)
to ΓK0 as K goes to infinity ensures that

sup
K≥1

ΓKK0
([0, T ∧ τKK ]× {S,M} × [0, b]) < +∞.

We obtain

lim
K→∞

∫ t∧τKK

0

∫
{S,M}×[0,b]

H(ΞKK0
(s), r, a)ΓKK0

(ds, dr, da)

−
∫ t∧τK

0

∫
{S,M}×[0,b]

H(ΞK0(s), r, a)ΓKK0
(ds, dr, da) = 0 a.s.

Finally the fact that H is continuous and bounded on K × {S,M} × [0, b] ensures that

lim
K→∞

∫ t∧τKK

0

∫
{S,M}×[0,b]

H(ΞK0(s), r, a)ΓKK0
(ds, dr, da)

−
∫ t∧τK

0

∫
{S,M}×[0,b]

H(ΞK0(s), r, a)ΓK0(ds, dr, da) = 0 a.s,

which ends the proof.

Step 2. We can now prove that that for any t ≥ 0 and f ∈ C1,b([0, a∞)), we have∫ t∧τK

0

∫ ∞
0

H(ΞK0(s), r, a)ΓK0(ds, dr, da) = 0 a.s. (19)

where we recall that H is defined in (18). Indeed, (15) ensures that

λ−1
K

∣∣∣∣∣
∫

[0,a∞)
f(a)YKK0

(t, {S}, da)−
∫

[0,a∞)
f(a)YKK0

(0, {S}, da)

∣∣∣∣∣ (20)

≤ C‖f‖∞
λK

sup
t≤T
YKK0

(t, {S}, [0, a∞)),
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which tends to 0, in probability, as K →∞. Similarly, in probability,

lim
K→∞

1

λK

∫ t∧τKK

0

∫
[0,a∞)

(γS(a)− βS(a))f(a)YKK0
(s, {S}, da)ds = 0.

Combining this three last convergence results, we obtain that MK converges in law
to M , given, for all t ≥ 0, by

M(t) = −
∫ t∧τK

0

∫
X
H(ΞK0(s), r, a)ΓK0(ds, dr, da).

Process M remains a martingale. It is also a.s. Lipschitz because function H is bounded.
Consequently, it is null. It proves (19) and ends step 2.

Step 3. Using the previous step, let us prove that for r ∈ {S,M}

ΓK0(ds, {r}, da) = γK0(s, {r}, [0, a∞))
pr(ΞK0(s), a)∫

[0,a∞) pr(ΞK0(s), w)dw
daΛr(ds) a.s., (21)

where γK0(s, {r}, ·) is a measure on [0, a∞) for any s ≥ 0 and ΛS a measure on R+.
Thanks to [Kur92, Lemma 1.4], there exist s 7→ γK0(s, {r}, ·) is a measurable application
from [0, T ] to the space of probabilities on [0, a∞), and ΛS is a measure on R+ such that

ΓK0(ds, {S}, da) = γK0(s, {S}, da)ΛS(ds).

As (19) holds for every t ≥ 0, focusing on functions f such that f(0) = 0, we obtain a.s.
and for ΛS-almost all s ≤ t ∧ τK,∫ ∞

0
H(ΞK0(s), S, a)γK0(s, {S}, da) = 0.

In conclusion, for every f ∈ C1,b([0, a∞)) such that f(0) = 0 and for ΛS-almost all
s ≤ t ∧ τK, we almost surely have∫

[0,a∞)
(∂afS(a)− αS(ΞK0(s), a)f(a))γK0(s, {S}, da) = 0. (22)

Let us show now that this functional equation imposes the form of γK0 through the
solutions of the associated Poisson Equation. We proceed with a fix realization of the
process and the results hold a.s. Consider s ≤ t∧τK. For any test function g ∈ C1

c ([0, a∞))
such that ∫ ∞

0
g(v)pS(ΞK0(s), v)dv = 0,

the function f defined by

f : a 7→ pS(ΞK0(s), a)−1

∫ a

0
g(v)pS(ΞK0(s), v)dv

is well-defined for each fixed s and belongs to C1,b(X ). This function verifies f(0) = 0
and is solution of the Poisson equation:

∀a ∈ [0, a∞), ∂af(a)− αS(ΞK0(s), a)f(a) = g(a) a.s.
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By (22), it yields ∫
[0,a∞)

g(a) γK0(s, {S}, da) = 0.

We extend this identity to g ∈ C1([0, a∞)) such that
∫∞

0 g(v)pS(ΞK0(s), v)dv = 0
by an approximation argument. We can then apply this identity to g : a 7→
h(a) −

∫
[0,a∞) h(v)pS(ΞK0(s), v)dv for any h ∈ C1([0, a∞)). Using that γK0(s, {S}, da)

is a probability measure, we obtain that pS(ΞK0(s), ·) is the density of the measure
γK0(s, {S}, ·) with respect to Lebesgue measure. It proves (21) for r = S and the case
r = M is obtained similarly.

Step 4. We can now conclude. Using (19) with f ≡ 1 yields for every t ≥ 0,∫ t∧τK

0

∫
[0,a∞)

αS(a,ΞK0(s))ΓK0(ds, {S}, da) =

∫ t∧τK

0

∫
[0,a∞)

αM (a,ΞK0(s))ΓK0(ds, {M}, da).

This implies the following equality of measures∫
[0,a∞)

αS(a,ΞK0(s))ΓK0(ds, {S}, da) =

∫
[0,a∞)

αM (a,ΞK0(s))ΓK0(ds, {M}, da).

Integrating (21) over [0, a∞) and using the previous equality, we obtain

γ(s, {S}, [0, a∞))∫∞
0 pS(ΞK0(s), w)dw

ΛS(ds) =
γ(s, {M}, [0, a∞))∫∞

0 pM (ΞK0(s), w)dw
ΛM (ds).

Finally, we have

γ(s, {r}, [0, a∞))Λr(ds) =

∫
[0,a∞) pr(s, w)dw

p(ΞK0(s))
ΓK0(ds, {S,M}, [0, a∞)),

and

Γ(ds, {r}, da) =
pr(ΞK0(s), a)

p(ΞK0(s))
ΓK0(ds, {S,M}, [0, a∞)) da.

It ends the proof.

Let us now focus on the number of preys and the whole number of predators. We
prove that limiting points of the corresponding processes satisfy the ODE (7).

Lemma 4.8. Let T > 0 and K0 > 0 and (ΞK0 ,ΓK0) be a limiting point of (ΞKK0
,ΓKK0

)K
in D([0, T ],R+) × M([0, T ] × X ). For all but countably many K < K0, the measure
1s≤τKΓK0(ds, {S,M}, [0, a∞)) admits a density YK0 with respect to the Lebesgue measure
and the couple (ΞK0 ,YK0) satisfies for all t ≥ 0,

ΞK0(t ∧ τK) = ΞK0(0) +

∫ t∧τK

0
((γ − β) ΞK0(s)− YK0(s)φ(ΞK0(s))) ds

YK0(t ∧ τK) = YK0(0) +

∫ t∧τK

0
YK0(s)ψ(ΞK0(s))ds.
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Proof. As in Lemma 4.7, to avoid the use of sub-sequences, we assume that (ΞKK0
,ΓKK0

)
converges to (ΞK0 ,ΓK0) in law. We use again Lemma 4.5, with now f ≡ 0 and g ≡ Id. It
ensures that MK , defined for every t ≥ 0 by

MK(t) = ΞKK0
(t ∧ τKK )− ΞKK0

(0) +

∫ t∧τKK

0
(β − γ) ΞKK0

(s)ds

−
∫ t∧τKK

0

∫ ∞
0

αS(a,ΞKK0
(s))ΓKK0

(ds, {S}, da),

is a square integrable martingale. Then, using similar arguments to the first step of the
proof of Lemma 4.7, MK(t) converges in law to M(t) as K →∞ for every t ≥ 0, where
M is defined by

M(t) = ΞK0(t ∧ τK) − ΞK0(0) +

∫ t∧τK

0
(β − γ) ΞK0(s)ds

−
∫ t∧τK

0
φ(ΞK0(s))ΓK0(ds, {S,M}, [0, a∞)).

Besides M is a local martingale. Similarly and as computed in the proof of Lemma 4.6,
the bracket of

(
MK
t∧τKK

)
t≥0

converges to 0 in probability and then Mt∧τK = 0 a.s. It

proves the first part of the result.

We need now to describe ΓK0(ds, {S,M}, [0, a∞)). Again, we apply Lemma 4.5 but
now with f ≡ 1 and g ≡ 0, to obtain that MK defined for all t ≥ 0 by

MK(t) = YK(t ∧ τKK , [0, a∞))− YK(0, [0, a∞)) +

∫ t∧τKK

0

∫
X

(βr(a))− γr(a)) ΓKK0
(ds, dr, da)

is a square integrable martingale and

〈MK〉(t) =
1

K2
2

∫ t∧τKK

0

∑
i∈P(s)

(
γri(s)(ai(s)) + βri(s)(ai(s))

)
ds.

Using (15) ensures that E(〈MK〉(T ∧ τKK )) converges in law to 0 as K → ∞, for any
T ≥ 0. By Doob and Cauchy Schwarz inequality, it implies that the random variable∫ T∧τK

0 MK(t)dt tends in law to 0 as K →∞. Letting each term of the expression of MK

converge, we get by identifying the limits

0 = ΓK0([0, T ∧ τK], {S,M}, [0, a∞))− Y(0, [0, a∞))(T ∧ τK)

+

∫ T∧τK

0
dt

∫
[0,t]×X

(βr(a)− γr(a))ΓK0(ds, dr, da).

Using Lemma 4.7 with f(s, a) = 1s≤t(βr(a))− γr(a)) and the definition of ψ yields

ΓK0([0, T ∧ τK], {S,M}, [0, a∞))

= Y(0, {S,M}, [0, a∞))(T ∧ τK) +

∫ T∧τK

0
dt

∫ t

0
ψ (ΞK0(s)) ΓK0(ds, {S,M}, [0, a∞)).
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This means that the measure 1s≤τKΓK0(ds, {S,M}, [0, a∞)) has a density Y with respect
to the Lebesgue measure, where Y is defined for all t ≥ 0 by

Y(t) = Y(0, {S,M}, [0, a∞)) +

∫ t

0
ψ (ΞK0(s))Y(s)ds.

It is the desired result.

Adding that uniqueness of the limiting ODE holds under Assumption 2.4, we can
conclude the proof of the approximation result.

Proof of Theorem 2.5. Let (x0, y0) ∈ (R∗+)2 be the initial condition of (x, y). Assump-
tion 2.4 guarantees that for any time horizon T > 0, there exists K0 > 0 such that for all
t ≤ T , x(t) ∈ (1/K0,K0). Let (ΞK0 ,YK0 ,ΓK0) be any limiting values of (ΞKK0

,YKK0
,ΓKK0

)K
in D([0, T ],R+)2 ×M([0, T ]× X ). By continuity of x, we can choose some K < K0 such
that conclusion of Lemma 4.7 and Lemma 4.8 hold and x(t) ∈ (1/K,K) for any t ≤ T .
Consequently, (ΞK0 ,YK0) and (x, y) satisfy the same evolution equation (7) on time in-
terval [0, T ∧ τK]. Uniqueness guaranteed by Assumption 2.4 ensures that they coincide
up to time T ∧ τK. It follows that τK ≥ T because x(t) belongs to (1/K,K) for any t ≤ T .
For any continuous and bounded function g, we have∫ T∧τK

0
g(t)YKK0

(t)dt
K→∞−→

∫ T∧τK

0
g(t)YK0(t)dt.

By Lemma 4.7 and Lemma 4.8, we also observe that

ΓK0(dt, {r}, da) = y(t)pr(x(t), a)φ(x(t)) dt da.

and using
∑

r∈{S,M}
∫ a∞

0 pr(x(t), a)φ(x(t)) da = 1, we get∫ T∧τK

0
g(t)YKK0

(t)dt
K→∞−→

∫ T∧τK

0
g(t)y(t)dt.

Identification of the two previous limits ensures that

YK0(t) = y(t) for almost every t ≥ 0.

As trajectories are càdlàg, this identity holds for every t ≥ 0. Using now
Lemma 4.6, it ensures the convergence of (ΞK ,YK(·, {S,M}, [0, a∞)),ΓK) over [0, T ] to
(x, y, y(t)pr(x(t), a)φ(x(t)) dt da) in D([0, T ],R+)2 ×M([0, T ]×X ).

5 Discussion

This work is a continuation of [BBC18] which aims at connecting in a general way the
successive time (and their distribution) spent at the individual level for interactions and
the macroscopic evolution of population sizes. The work [BBC18] was dedicated to count
the number of interactions, when the variations of density of preys and predators were
neglected. It was thus a way to relate the individual behavior (and potentially measurable
quantities) to the functional response which quantifies the speed at which interactions
occur on a short time window. In the current paper, we also take into account births and
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deaths in the population and the way these events are affected by interactions (in par-
ticular fertility and survival of predators depend on the searching time). This additional
step allows to connect the individual behavior to the macroscopic population dynamics.
Compared to the literature, the major mathematical difficulty is to take into account
memory effects (due to non exponential time distribution). It leads us to add an age
structure to describe the interactions and develop averaging techniques for slow fast sys-
tems in infinite dimension. Another difficulty to achieve such averaging is the role of the
scales, which allow to know in which case the deterministic ODE is a valid approximation.

In this work, we were interested in cases where the number of preys is much larger
than the number of predators and the time for interactions is much shorter that the time
to give birth or the time to die for preys and predator. Besides the time for searching
may impact the survival of offsprings (via natality rate) or the death probability.
This seems reasonable for many interactions. For instance, fox-rabbit, wolf-deer/caribou,
white bear-seal, bear-fish, bird-worm, where the time for searching is of order of days or
a week, while reproduction is of order of a year for both (and several years for death). A
relevant extension of the model considered here would consist in letting the mortality or
natality of predators depend not only on the time from the last change of status. Lack
of food could be taken into account more generally through the quantity of food eaten in
a largest period.

For most of the species mentioned above, extension of the model to several preys
for one predator and interference between several predators should be considered. Also
adding the biological age or non-exponential clock for birth and death (season effect,
maturity, menopause ...) are interesting points to address. We have focused in this work
on relaxing the memory less properties of interactions. But extensions mentioned above
seem accessible via the framework and techniques developed here even if technicalities
may fast increase.

Determining stochastic fluctuations around the limiting deterministic system is a
challenging and interesting problem. It is relevant in particular when population sizes are
not very large. The variance of interaction times should appear to describe fluctuations
and may be much larger than in the exponential case. The averaging approach of
[KKP14] provides a path for this issue via Poisson equation. Adapting these techniques
seems an interesting perspective and complement to this work. Owing to our infinite
dimensional, it is probably a challenging question.
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Mathématique et Biodiversité” of VEOLIA-Ecole polytechnique-MNHN-F.X and ANR
ABIM 16-CE40-0001. The authors are also grateful to Sylvain Billiard and Tanguy
Daufresne and Annick Lesne and Marius Bansaye for stimulating discussions about prey-
predator interactions. Finally, we would like to thank the anonymous reviewers and the
AE for comments and suggestions which have improved the presentation of the paper.

34



References

[AG12] Roger Arditi and Lev R Ginzburg. How species interact: altering the stan-
dard view on trophic ecology. Oxford University Press, 2012.

[AKF11] Tal Avgar, Daniel Kuefler, and John M Fryxell. Linking rates of diffusion and
consumption in relation to resources. The American Naturalist, 178(2):182–
190, 2011.

[BAH+22] Octavio Augusto Bruzzone, Maria Belen Aguirre, Jorge Guillermo Hill, Ed-
uardo Gabriel Virla, and Guillermo Logarzo. Revisiting the influence of
learning in predator functional response, how it can lead to shapes different
from type iii. Ecology and Evolution, 12(2):e8593, 2022.

[BBC18] Sylvain Billiard, Vincent Bansaye, and Jean-René Chazottes. Rejuvenating
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