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Boundary Control for Multi-Directional Traffic on Urban Networks

Liudmila Tumash, Carlos Canudas-de-Wit and Maria Laura Delle Monache

Abstract— This paper is devoted to boundary control design
for urban traffic described on a macroscopic scale. The state
corresponds to vehicle density that evolves on a continuum
two-dimensional domain that represents a continuous approx-
imation of a urban network. Its parameters are interpolated
as a function of distance to physical roads. The dynamics
are governed by a new macroscopic multi-directional traffic
model that encompasses a system of four coupled partial
differential equations (PDE) each describing density evolution in
one direction layer: North, East, West and South (NEWS). We
analyse the class of desired states that the density governed by
NEWS model can achieve. Then a boundary control is designed
to drive congested traffic to an equilibrium with the minimal
congestion level. The result is validated numerically using the
real structure of Grenoble downtown (a city in France).

I. Introduction

Ever growing urban areas face the problem of trans-
portation efficiency drop during rush hours. This triggers
challenges for researchers to develop realistic traffic models
to predict congestion formation as well as to suggest efficient
control measures to mitigate it. The first macroscopic traffic
model was introduced by Lighthill and Whitgham [1] and
Richards [2] who elaborated the kinematic wave theory for
traffic. The LWR model is a first-order hyperbolic PDE based
on conservation of vehicles that describes traffic evolution
on a single road. Its key assumption is the existence of
a concave relation between traffic flow and density known
as fundamental diagram. LWR framework was extended to
networks by adding Riemann problems at intersections in
[6]. However, computational cost may become too high if
one considers a large network, which requires development
of macroscopic approaches for urban traffic modelling.

Alternatively, one can use 2D continuum models to de-
scribe urban traffic. These share a lot of features with
pedestrian models [4] the main difference being that vehicles
are restricted to move on roads. A model including diffusion
and a drift term depending on density and network geometry
was considered in [7]. Another work [8] defines the direction
of traffic motion by solving Eikonal equations. Recently,
[10] extended the LWR model to two dimensions with a
space-dependent FD that incorporates network infrastructure
parameters. A general method to calculate steady states in 2D
LWR was presented in [13], while [14] elaborated a boundary
controller for congested traffic that was further extended to
traffic being in any (mixed) regime in [15].
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The aforementioned references consider only uni-
directional traffic. The first attempt to include multiple di-
rections was made recently by [9] who deployed dynamic
user-optimal principle for the path choice. Its main drawback
is that traffic density may become unbounded (it is not
based on a fundamental diagram). There are also other
works [12], [11] proposing 2D multi-layer models with
bounded densities. However, these models do not include
mixing between direction layers (vehicles can not change the
direction). Then, they are also not necessarily hyperbolic,
i.e., their type varies with parameters, which exaggerates
its analysis and numerical simulation. Our recent work [16]
fixes both of these aspects introducing a multi-directional
model that uses network geometry to assign direction layers
to corresponding density evolutions: North, East, West and
South (NEWS model). The direction layers are coupled,
i.e., the model captures vehicles that change the direction
of movement. Information about traffic flow direction is
obtained from turning ratios at intersections.

In this paper we design a boundary control for the NEWS
model that drives an initially congested state to the best
possible desired equilibrium corresponding to congestion
minimization, which equivalently means throughput maxi-
mization of the network. Our main contribution is an ex-
tensive analysis of possible space-varying profiles that the
system can achieve, which is far from being trivial for multi-
directional traffic systems. We then use Lyapunov methods
to show exponential convergence to the desired state.

II. NEWS Model

We use the NEWS model introduced in [16] to predict
traffic evolution on a general urban network. The state is
described in terms of vehicle density ρ = (ρN ,ρS ,ρW ,ρE)T ∈

R4 evolving in 4 cardinal direction layers: North (N), East
(E), West (W) and South (S). It evolves on a bounded
2D continuum plane Ω ⊂ R2 that is a rectangular domain
bounded by xmin, xmax, ymin and ymax. It approximates a
urban network whose road parameters are interpolated in the
domain as a function of distance to these roads. The NEWS
model describes evolution of ρ(x,y, t) : Ω×R+→ R+ by the
following system of PDEs:

∂ρN
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1
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(
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−
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−
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Flux function ψ(x,y,ρ) is a four-dimensional vector ψ =

(ψN ,ψS ,ψW ,ψE)T . Let us consider the North direction to
simplify definitions. Then, ψN(x,y,ρN) : Ω×R+ → R+ is a
concave function that achieves maximum ψmax

N (x,y) ∀(x,y) ∈
Ω (capacity) at the critical density ρc

N(x,y), and minimum
is achieved at ψN(x,y,0) = ψN(x,y,ρmax

N ) = 0 with ρmax
N (x,y)

being the space-dependent traffic jam density. This concave
relation is known as fundamental diagram (FD). Vehicles
move freely to the North with a positive kinematic wave
speed vN(x,y) if density in this direction is below the critical
value, i.e., free-flow regime occurs for ρN(x,y) ∈ [0,ρc

N(x,y))
∀(x,y) ∈ Ω. Otherwise vehicles move in congested regime
with a negative kinematic wave speed ωN(x,y) if ρN(x,y) ∈
[ρc

N(x,y),ρmax
N (x,y)] ∀(x,y) ∈ Ω. Traffic flow in other di-

rections ψS , ψW , and ψE can be retrieved from FD of
corresponding directions. Here we use the triangular FD [3],
and its parameters are defined ∀(x,y) ∈Ω as:

ρc
N =

ωN

vN +ωN
ρmax

N , ψmax
N =

vNωN

vN +ωN
ρmax

N ,

and we also assume that ρc = ρmax/3 for all directions.
In (1), ψin(x,y,ρ)−ψout(x,y,ρ) is the net flow at roads:
ψin

N −ψ
out
N

ψin
S −ψ

out
S

ψin
W −ψ

out
W

ψin
E −ψ

out
E

 =


ψS N +ψWN +ψEN −ψNS −ψNW −ψNE
ψNS +ψWS +ψES −ψS N −ψS W −ψS E
ψNW +ψS W +ψEW −ψWN −ψWS −ψWE
ψNE +ψS E +ψWE −ψEN −ψES −ψEW

 .
Thereby ψS N , ψWN , ψEN and so on are partial flows. As an
example, ψS N(x,y,ρS ,ρN) is a flow of cars that were going
to South and then turned to North. It is defined as a function
of demand from the South DS and supply of the North S N :

ψS N = min {αS N DS (ρS ),βS NS N(ρN)} , (2)

where αS N and βS N are the turning ratio from South to
North and the supply ratio of the North for vehicles arriving
from the South, correspondingly. The demand and supply
functions in (2) are defined for triangular FD as follows:

DS (ρS ) =

vS ρS , if 0 ≤ ρS ≤ ρ
c
S ,

ψmax
S , if ρc

S < ρS ≤ ρ
max
S ,

(3)

S N(ρN) =

ψmax
N , if 0 ≤ ρN ≤ ρ

c
N ,

ωN(ρmax
N −ρN), if ρc

N < ρN ≤ ρ
max
N ,

(4)

Notice that demand can not exceed the maximal flow, since
it is the highest possible flow determined by the number of
lanes and speed limit (transportation capacity). We can now
insert (4), (3) into (2) and obtain:

ψS N = min{αS NvS ρS ,αS Nψ
max
S ,βS NωN

(
ρmax

N −ρN
)
,βS Nψ

max
N }.

(5)
In [16] the NEWS model was first derived to describe

density propagation in a vicinity of any intersection in a
unified way. It was then extended to networks by defining
intersection parameters everywhere in domain Ω through
interpolation (details are given below). Thus, if we consider
(1) for a fixed point (x,y) ∈ Ω being a location of some
intersection with nout outgoing roads each having length l j
for j ∈ {1, . . . ,nout}, then L(x,y) in (1) should be interpreted

as the mean length of outgoing roads of this intersection, and
it was chosen such that the number of cars is conserved:

L =

nout∑
j=1

ρmax
j l j

/
nout∑

j=1

ρmax
j

 .
Finally, cN , cS , cW , cE and sN , sS , sW , sE from (1) describe
a general orientation of roads, e.g., consider North:

cN =

nout∑
j=1

pN
θ j

cosθ jψ
max
j

nout∑
j=1

pN
θ j
ψmax

j

, sN =

nout∑
j=1

pN
θ j

sinθ jψ
max
j

nout∑
j=1

pN
θ j
ψmax

j

,

where pN
θ j
∈ [0,1] is a coefficient indicating orientation of

road j w.r.t. North (1 means that road j is pointing exactly
to the North, 0 means that angle θN

j ≥ π/2 w.r.t. North).
Any urban network is given as a set of roads and inter-

sections with given speed limits and number of lanes. The
NEWS model (1) is a PDE that requires all intersection
and FD parameters to be defined ∀(x,y) ∈ Ω (that is, also
in areas where there are no roads). First, we define the
maximal density ρmax by placing vehicles at every road with
a headway distance of 6 m. We assume that every vehicle
contributes to global density with a Gaussian kernel with
standard deviation 50 m centred at its position (see [10]).
Further, we project all intersection and FD parameters α, β,
L, cosθ, sinθ, ρmax, v and ω into NEWS formulation using
network geometry data (see [16] for a detailed description).
Then, these variables are interpolated using Inverse Distance
Weighting that assignes values to parameters as a function
of distance to roads, see also [10].

III. Desired Steady-State

A. Congested Traffic

We will now linearize (1), which is possible if traffic is
considered to be either in pure free-flow or pure congested
regime. Our goal is to mitigate congestions, and hence it is
feasible to consider it for congested regime. Thus, we assume
a heavily congested initial state that should be driven to the
state of minimal congestion (remaining in the same regime).
For the congested regime, minimum in (2) is always resolved
to the benefit of supply, which in turn implies that

ψS N = βS NωN
(
ρmax

N −ρN
)
, ∀(x,y) ∈Ω.

Using this simplification for model (1), we fix ρ0(x,y)
∀(x,y) ∈ Ω as an initial condition (a function of bounded
variation), and introduce the following Initial Boundary
Value Problem that describes evolution of congested traffic
on domain Ω with Γ ⊂Ω being its boundary:

∂ρ

∂t
=

1
L

(I−B)W
(
ρmax −ρ

)
−
∂[C W (ρmax −ρ)]

∂x

−
∂[S W (ρmax −ρ)]

∂y
,

ρ(x,y, t) = u(x,y, t), ∀(x,y) ∈ Γout

ρ(x,y,0) = ρ0(x,y),

(6)



Fig. 1: Vehicle density in Grenoble downtown. Downstream
boundaries for control are indicated by colorful arrows:
North in blue (uN), East in dark red (uE), West in green
(uW ) and South in orange (uS ).

where Γout ⊂ Γ is a set of boundary points (x,y) associated
with the domain exit:

Γout = (ymax, xmax, xmin,ymin)T .

Congested traffic is controlled at downstream boundary Γout
by specifying the control vector u = (uN ,uE ,uW ,uS )T . See
Fig. 1, where arrows denote boundaries to be activated for
control in each direction. Boundary control can be physically
realized by setting e.g. traffic lights at roads’ exits.

Finally, C, S , W and B in (6) are all 4×4 matrices such
that C and S are diagonal matrices, W is a positive-definite
diagonal matrix, and B is a nonnegative matrix:

C = diag(c), S = diag(s), W = diag(ω),

B =


βNN βNE βNW βNS
βEN βEE βEW βES
βWN βWE βWW βWS
βS N βS E βS W βS S

 .
B. Desired Steady-State

Define error from a desired space-varying equilibrium as:

ρ̃(x,y, t) = ρ(x,y, t)−ρd(x,y), ∀(x,y) ∈Ω.

To simplify the mathematical analysis, we restrict our study
to desired profiles ρd having values only in the congested
regime, i.e., ρd(x,y) ≥ ρc(x,y) ∀(x,y) ∈Ω.

The time derivative of error coincides with that of state
(6). The desired density is constant in time and thus:

1
L

(I−B)W
(
ρmax −ρd

)
=
∂[C W

(
ρmax −ρd

)
]

∂x
+
∂[S W

(
ρmax −ρd

)
]

∂y
,

(7)
which lets us write the equation for error dynamics as

∂ρ̃

∂t
=

1
L

(B− I)Wρ̃+
∂[C Wρ̃]
∂x

+
∂[S Wρ̃]
∂y

. (8)

We seek to find a desired density distribution that cor-
responds to congestion minimization, and then to design a
boundary control that achieves that desired equilibrium. The

desired density must remain in the congested regime, and its
boundary values should be proportional to maximal densities
at corresponding coordinates, i.e., ∃γ ∈ [1/3,1] such that

ρd(x,y) = γρmax(x,y), ∀(x,y) ∈ Γout. (9)

The range of constant γ coincides with the range of densities
in congested regime (recall ρc = 1/3ρmax).

Problem 1. Find the desired space-varying density ρd(x,y)
∀(x,y) ∈ Ω that corresponds to state of minimal congestion
under constraints: ρd(x,y)≥ ρc(x,y) ∀(x,y) ∈Ω, and boundary
values being proportional to maximal densities (9).

Remark 1. Minimizing congestion means finding ρd(x,y) ≥
ρc(x,y) ∀(x,y) ∈Ω such that the L∞ norm

∥∥∥ρd(·)−ρc(·)
∥∥∥
∞

is
minimized, i.e., we want density to be as small as possible.

Remark 2. Physically, (9) implies that boundaries are filled
in a homogeneous way. For example, imagine vehicles con-
centrated in a city center that tend to leave it simultaneously,
e.g., when people drive back home from their offices.

In order to find a desired profile satisfying Problem 1, we
need to solve (7). First, we need to introduce a change of
variables ρ̂(x,y) ∀(x,y) ∈Ω as

ρ̂(x,y) = ρmax(x,y)−ρd(x,y), (10)

which being inserted into (7), yields

1
L

(I−B)Wρ̂ =
∂[C Wρ̂]
∂x

+
∂[S Wρ̂]
∂y

. (11)

Then, the following steps are performed:
1) Initial guess: set the desired density values at the

downstream boundaries Γout equal to corresponding critical
values, i.e., pick the lowest γ = 1/3, which leads to

ρ̂(x,y) =
2
3
ρmax(x,y), ∀(x,y) ∈ Γout.

2) Define a numerical grid: divide Ω into equal cells (nx =

ny). The discretization steps are

∆x = (xmax − xmin)/nx, ∆y = (ymax − ymin)/ny.

Then, a grid point is given by (i∆x, j∆y) for i ∈ {1, . . . ,nx},
j ∈

{
1, . . . ,ny

}
.

3) Discretize PDE (11): now consider North, and the
same steps should be done for other directions. In accordance
with the upwind scheme, discretization of cNωN ρ̂N and
sNωN ρ̂N depends on signs of cN and sN . Hence, we can
define 4×4 diagonal matrices Qx, Qy, Rx and Ry that capture
the upwind scheme:

cN,i, j > 0 :

Qx
NN,i, j =

cN,i+1, jωN,i+1, j

∆x
, Rx

NN,i, j = 0,

else :

Qx
NN,i, j = 0, Rx

NN,i, j = −
cN,i−1, jωN,i−1, j

∆x
,



and the same can be written for sN and y-direction, for which
we fix i and vary j. Define also a 4×4 matrix P as:

Pi, j =
1

Li, j
(Bi, j− I)Wi, j−

|Ci, j|Wi, j

∆x
−
|S i, j|Wi, j

∆y
.

Using the definition of matrices P, Qx, Qy, Rx and Ry, we
can now write the PDE system for ρ̂ given by (11) in a
discretized form that reads ∀(i, j) ∈ {1, . . . ,nx}× {1, . . . ,ny}:

Pi, jρ̂i, j + Qx
i, jρ̂i+1, j + Qy

i, jρ̂i, j+1 + Rx
i, jρ̂i−1, j + Ry

i, jρ̂i, j−1 = 0. (12)

4) Find solution to system (12): using dimensional split-
ting, i.e., at each iteration first x and then y steps are
performed. At each x step, terms ρ̂i, j−1 and ρ̂i, j+1 take fixed
values from the previous iteration, while ρ̂i−1, j and ρ̂i+1, j are
fixed for each y step. At x step the system (12) is solved
for every j by block tridiagonal matrix algorithm, while at
y step this algorithm is applied for every column i.

5) Find optimal solution: a numerical solution ρ̂ for (12)
is not necessarily optimal. Since (12) is a linear system, αρ̂
for α ∈ [0,1] is also its solution. Let us estimate parameter α∗

providing the optimal equilibrium as in Problem 1. Consider
the desired state ρd obtained from (10):

ρd = ρmax −αρ̂. (13)

By choosing α = 0 we obtain ρd = ρmax, while by choosing
α = 1 we achieve ρd = ρc at the boundaries (see step 1 and
use ρc = ρmax/3). This implies that by taking an intermediate
value of α we guarantee congested regime at the boundaries.
Let us calculate α∗ that provides for ρd to be as close as
possible to ρc while preserving congested regime in Ω (see
Remark 1), for which in general we can write:

ρd

ρc ≥ 1⇒
ρmax −αρ̂

1/3ρmax ≥ 1⇒ α ≤
2
3
ρmax

ρ̂
.

From the discussion above it follows that the optimal state
is achieved if ∃(x∗,y∗), for which

α∗ = min
(x,y)∈Ω

r∈{N,S ,W,E}

2
3
ρmax

r (x,y)
ρ̂r(x,y)

. (14)

The optimal desired profile in the whole domain Ω can be
obtained from (13) for optimal α = α∗

ρd(x,y) = ρmax(x,y)−α∗ρ̂(x,y), (x,y) ∈Ω, (15)

with α∗ given by (14). To get an expression for ρd(x,y) at
the boundary ∀(x,y) ∈ Γout, we take ρ̂ from step 1 and insert
it into (15), which yields

ρd(x,y) = γ∗ρmax(x,y), with γ∗ = 1−
2
3
α∗ ∀(x,y) ∈ Γout. (16)

This expression directly determines boundary control vari-
ables u(x,y) from (6), see details below.

IV. Boundary Control Design

After we have analyzed the desired profile corresponding
to the state of minimal congestion (see Remark 1), let us
formulate the boundary control design problem as follows.

Problem 2. Find a boundary controller u(x,y) that drives
congested traffic governed by (6) to the desired space-varying
state ρd(x,y) given by (15) ∀(x,y) ∈Ω as t→∞.

To prove convergence to the desired profile, we have to
restrict to a special network structure, e.g. a Manhattan grid.

Assumption 1. Matrices C and S from (6) are constant in
space, e.g., they can be defined as:

cN = 0, cS = 0, cW = −1, cE = 1,
sN = 1, sS = −1, sW = 0, sE = 0.

(17)

In general, further analysis requires these variables to be
just constant in space, but we choose (17) for simplicity. We
also make an assumption on supply ratios:

Assumption 2. Matrix B is constant in space, which implies
that every intersection has the same turning ratio pattern.

Theorem 1. Under Assumptions 1 and 2, let the boundary
controller be defined ∀(x,y) ∈ Γout as

u(x,y) =
(
ρd

N (x,ymax),ρd
S (x,ymin),ρd

W (xmin,y),ρd
E(xmax,y)

)T
, (18)

then ∃K,k > 0 such that∥∥∥ρ(t)−ρd
∥∥∥2

L2 6 e−ktK
∥∥∥ρ(0)−ρd

∥∥∥2
L2 ,

i.e., the state ρ(x,y, t) exponentially converges to the desired
equilibrium ρd(x,y) ∀(x,y) ∈Ω as t→∞.

Remark 3. Although for simplicity we made Assumption
1, control (18) can be applied to a more general network, as
we will show on a numerical example.

Proof of Theorem 1. Let us first analyse matrix B− I. Its
non-diagonal elements are positive and its diagonal elements
are negative. Moreover, it has one zero eigenvalue and all
others are negative, see Appendix I. Hence, B− I is a negative
singular M-matrix with one zero eigenvalue. Thus, there
exists a positive-definite diagonal 4×4 matrix D such that

D(B− I) + (BT − I)D ≤ 0. (19)

Let us also introduce a diagonal 4×4 matrix E composed
by exponential functions. We then define the following
Lyapunov function candidate:

V =

xmax∫
xmin

ymax∫
ymin

ρ̃T WDEρ̃dydx =

xmax∫
xmin

ymax∫
ymin

(ρ̃2
NωN DNey

+ ρ̃2
EωE DEex + ρ̃2

WωW DWe−x + ρ̃2
SωS DS e−y) dydx,

(20)

where DN , DE , DW and DS are diagonal elements of matrix
D. Function (20) is obviously positive-definite, since matrix



WDE > 0. Let us now take its time derivative, and then insert
the error dynamics ∂ρ̃/∂t from (8), which yields:

V̇ =

xmax∫
xmin

ymax∫
ymin

1
L

(Wρ̃)T
(
DE(B− I) + (BT − I)DE

)
Wρ̃dydx

+ 2

xmax∫
xmin

ymax∫
ymin

(Wρ̃)T DE
(
∂[C Wρ̃]
∂x

+
∂[S Wρ̃]
∂y

)
dydx.

(21)

Let us now denote the first term of (21) as V̇1 and the second
term as V̇2. Term V̇1 is negative due to (19) and the fact that
matrix E is non-negative. We further consider V̇2 by inserting
the values of matrices C and S (17) from Assumption 1

V̇2 = 2

xmax∫
xmin

ymax∫
ymin

(
ωE ρ̃E DEex ∂(ωE ρ̃E)

∂x
−ωW ρ̃W DWe−x ∂(ωW ρ̃W )

∂x

+ωN ρ̃N DNey ∂(ωN ρ̃N)
∂y

−ωS ρ̃S DS e−y ∂(ωS ρ̃S )
∂y

)
dydx.

This expression is then integrated by parts, which yields:

V̇2 =

ymax∫
ymin

[
e−x(

√
DWωW ρ̃W )2 − ex(

√
DEωE ρ̃E)2

]
x=xmin

dy

+

ymax∫
ymin

[
ex(

√
DEωE ρ̃E)2 − e−x(

√
DWωW ρ̃W )2

]
x=xmax

dy

+

xmax∫
xmin

[
e−y(

√
DSωS ρ̃S )2 − ey(

√
DNωN ρ̃N )2

]
y=ymin

dx

+

xmax∫
xmin

[
ey(

√
DNωN ρ̃N )2 − e−y(

√
DSωS ρ̃S )2

]
y=ymax

dx

−

xmax∫
xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2

+ eyDN (ωN ρ̃N )2 + e−yDS (ωS ρ̃S )2
)
dydx.

(22)

By setting the boundary controller as in (18) ∀t ∈ R+, we
achieve

ρ̃N (x,ymax, t) = 0, ρ̃S (x,ymin, t) = 0, ∀x ∈ [xmin, xmax],
ρ̃W (xmin,y, t) = 0, ρ̃E(xmax,y, t) = 0, ∀y ∈ [ymin,ymax],

(23)

and one ensures that the first four integrals in (22) go to zero.
The last term in (22) can be bounded as follows

xmax∫
xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2 + eyDN (ωN ρ̃N )2

+ e−yDS (ωS ρ̃S )2
)
dydx ≤ − min

(x,y)∈Ω
r∈{N,S ,W,E}

ωr(x,y)V
(24)

where we have used the definition of the Lyapunov function
(20) and that ω is positive. This means that by inserting (23)
into (22) and by using the bound from (24), we can write:

V̇ = V̇1 + V̇2 ≤ V̇2 ≤ −kV,

where k ∈ R+ is a positive constant

k = min
(x,y)∈Ω

r∈{N,E,W,S }

ωr(x,y).

One can also prove that error ρ̃ converges to zero in L2
norm exponentially. Indeed, note that the Lyapunov function
V from (20) defines an equivalent norm on density space:

m‖ρ̃‖2L2 6 V 6 M ‖ρ̃‖2L2 , with m = min
(x,y)∈Ω

r∈{N,S ,W,E}

ωr(x,y)DrEr(x,y),

M = max
(x,y)∈Ω

r∈{N,S ,W,E}

ωr(x,y)DrEr(x,y).

By exponential convergence of Lyapunov functions we have

V(t) 6 e−ktV(0)⇒ ‖ρ̃(t)‖2L2 6 e−kt M
m
‖ρ̃(0)‖2L2 .

�

Remark 4. Assumption 2 can be relaxed, if one can find
matrix D that satisfies inequality (19) and whose elements
DE(y) and DW (y) may depend on y, while DN(x) and DS (x)
may depend on x.

V. Numerical Example

We consider Grenoble downtown with a total surface of
1.4× 1 km2 as a network. We define a numerical grid for
nx = 60 and ny = 60, and deploy the 2D Godunov scheme to
simulate density governed by (6) with downstream boundary
conditions set to the desired optimal density as in (18),
while the upstream boundary conditions are initialised with
φmax. We will demonstrate how the boundary controller (18)
mitigates congestion given the initial state

ρ0(x,y) = ρmax(x,y), ∀(x,y) ∈Ω.

The results of control performance for the network of
Grenoble downtown are shown in Fig. 2. Fig. 2a) illustrates
the initial vehicle density (traffic jam). The optimal desired
equilibrium ρd is illustrated in Fig. 2b). It was found by first
solving PDE for ρ̂ (12) and then using (15), where we use
α∗ = 0.51 obtained using (14). Further, we show the impact
of boundary controller (18) on congested traffic after t = 5
min, t = 20 min and t = 50 min in Fig. 2c), 2d) and 2e),
respectively. The controlled state at t = 50 min looks identical
to the desired equilibrium.

We deploy the Structural Similarity Measure (SSIM) [5] to
enable a quantitative comparison between the controlled state
on Fig. 2c) - e) and the desired state on Fig. 2b). This index is
a perception-based metric used to detect structural changes.
The range of SSIM is [−1,1], where S S IM = 1 means
that two images are identical and S S IM = −1 indicates
that the second image is inverse of the first. To refine the
computations, we also divide the network of Grenoble into
9 equal zones. SSIM is calculated for every zone, and then
its mean value S S IM is found as an arithmetic average. The
result is shown on Fig. 2f), where S S IM converges to 1
indicating that the desired profile is achieved.

VI. Conclusions

We investigated the multi-directional NEWS model from
the control perspective. In particular, we analysed the class
of desired equilibria that must satisfy a certain system of
PDEs. We have posed and solved the problem of finding an



Fig. 2: Boundary control in Grenoble downtown: a) initial
congested state ρ0, b) desired equilibrium ρd; controlled state
after: c) t = 5 min, d) t = 20 min, e) t = 50 min; d) S S IM
between state and desired density as a function of time.

equilibrium state that provides congestion minimization in a
network, under the constraint that its range must remain in
the congested regime. The desired state was assumed to be
proportional to the maximal densities at the boundaries. Fur-
ther, we proved the exponential convergence of a congested
state to this desired equilibrium using Lyapunov methods.
Finally, we used the real network of Grenoble downtown to
produce a numerical example that stays in a good agreement
with the theoretical result. Thereby, at each time step we
have calculated the structural similarity index to show the
convergence of our density distribution to the desired one.

We see two major promising directions for future studies:
finding equilibria that admit mixed traffic regimes, and
elaborating boundary control that is set to points on roads
rather than being a continuous line.

Appendix I
Eigenvalues of matrix β− I

Let us now analyse eigenvalues of matrix B− I from (6). To
simplify the notations, we introduce B̄ = B− I. By Gershgorin
circle theorem, every eigenvalue of B̄ lies within at least one
of the Gershgorin discs d(b̄ii,Ri), where d is a closed disc
centered at b̄ii with radius Ri =

∑
j,i
|b̄ ji|.

Consider the first row of matrix B̄. The Gershgorin disc is
centred at βNN −1 and its radius is R1 = βNS +βNW +βNE =

1−βNN . The remaining rows of matrix B̄ can be analysed in
the same way. Due to Gershgorin theorem, in general, every
result looks similar to:

|λ− (βNN −1)| ≤ (1−βNN),

which implies that Reλ(B̄) ≤ 0 ∀λ(B̄) and if Reλ(B̄) = 0, then
λ(B̄) = 0.

Let us consider λ(B̄) = 0 with x being the corresponding
eigenvector:

xT B̄ = 0 = xTλ(B̄).

Using the definition of matrix B̄, we further get

xT (B− I) = 0⇒ xT B = xT .

Thus, it follows that x is also the eigenvector of matrix B
associated with the eigenvalue λ(B) = 1.

Note that matrix B is a positive matrix, i.e., βi j > 0 for
1 ≤ i, j ≤ 4 (assume we have no zero turning ratios). Then by
Perron-Frobenius theorem λ(B) = 1 is a Perron root (since
all columns of B sum to 1), and thus it is a simple root.
It follows that all the eigenvalues of matrix B̄ = (B− I) are
strictly negative and only one eigenvalue is zero.

ACKNOWLEDGEMENT

Scale-FreeBack project received funding from the Euro-
pean Research Council (ERC) under European Union’s Hori-
zon 2020 research and innovation program (grant agreement
N 694209).

References
[1] M. Lighthill and G. Whitham, “On kinematic waves, II: A theory of

traffic flow on long crowded roads”, Proc. Royal Soc. London, vol.
229, no. 1178, pp. 317-345, 1956.

[2] P. Richards, “Shock waves on the highway”, Operations Res., vol. 47,
no. 1, pp. 42-51, 1956.

[3] C. F. Daganzo, “The cell transmission model: A dynamic represen-
tation of highway traffic consistent with the hydrodynamic theory”,
Transp. Res. Part B: Method., vol. 28, no. 4, pp. 269-287, 1994.

[4] R. L. Hughes, “A continuum theory for the flow of pedestrians”,
Transp. Res. Part B: Method., vol. 36, no. 6, pp. 507-535, 2002.

[5] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity”, IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

[6] J. P. Lebaque, “First-order macroscopic traffic flow models: Intersec-
tion modeling, network modeling”, 16th International Symposium on
Transportation and Traffic Theory, 2005.

[7] F. Della Rossa, C. D’Angelo and A. Quarteroni, “A distributed
model of traffic flows on extended regions”, Trans. Res. Part B:
Methodological, vol. 5, no. 3, pp. 525-544, 2010.

[8] Yanqun Jiang, S. C. Wong, H. W. Ho, Peng Zhang, Ruxun Liu
and Agachai Sumalee, “A dynamic traffic assignment model for a
continuum transportation system”, Trans. Res. Part B: Methodological,
vol. 45, no. 2, pp. 343-363, 2011.

[9] Z. Y. Lin, S. C. Wong, P. Zhang, Y. Q. Jiang, K. Choi and Y. C. Du,
“A predictive continuum dynamic user-optimal model for a polycentric
urban city”, Transp. B: Transp. Dyn., vol. 5, no. 3, pp. 228-247, 2017.

[10] S. Mollier, M. L Delle Monache and C. Canudas-de-Wit, “Two-
dimensional macroscopic model for large scale traffic networks”,
Transp. Res. Part B: Method., vol. 122, pp. 309-326, 2019.

[11] R. Aghamohammadi and J. A. Laval, “A Continuum Model for Cities
Based on the Macroscopic Fundamental Diagram: a Semi-Lagrangian
Solution Method”, Trans. Res. Procedia, vol. 38, pp. 380-400, 2019.

[12] S. Mollier, M. L Delle Monache and C. Canudas-de-Wit, “A step
towards a multidirectional 2D model for large scale traffic networks”,
TRB 2019 - 98th Annual Meeting Transportation Research Board,
Washington D.C., USA, hal-01948466, Jan. 2019.

[13] L. Tumash, C. Canudas-de-Wit and M. L. Delle Monache, “Equi-
librium Manifolds in 2D Fluid Traffic Models”, 21th IFAC World
Congress, Berlin, Germany, 2020, available: hal-02513273v2.

[14] L. Tumash, C. Canudas-de-Wit and M. L. Delle Monache,
“Topology-based control design for congested areas in ur-
ban networks”, ITSC, Rhodos, Greece, 2020, pp. 1-6, doi:
10.1109/ITSC45102.2020.9294280.

[15] L. Tumash, C. Canudas-de-Wit and M. L. Delle Monache, “Boundary
and VSL Control for Large-Scale Urban Traffic Networks”, submitted
to IEEE Trans. on Automatic Control, 2021, available: hal-03167733.

[16] L. Tumash, C. Canudas-de-Wit and M. L. Delle Monache, “Multi-
Directional Continuous Traffic Model For Large-Scale Urban Net-
works”, submitted to Transp. Res. Part B: Method., 2021, available:
hal-03236552.


