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Abstract

This work reports an experimental investigation of a liquid-solid fluidized bed involving inertial

particles at large Reynolds number. Thanks to optical techniques and index matching, the statistics

of the velocity fluctuations of both the particles and the liquid are measured for a wide range of

the particle volume fraction αp. The dynamics of the fluctuations suggests that the flow possesses

the three following properties: (1) The liquid volume involves a wake region in which vertical

fluctuations are negative and an interstitial region where they are positive; (2) The statistics of the

horizontal fluctuations are similar to vertical ones, except that they are symmetric; (3) Local instant

particle fluctuations are proportional to liquid ones. Assuming these properties are true allows us to

derive a model for the probability density functions (p.d.f.s) of the two components of the velocity

fluctuations of the two phases. This model involves a single reference p.d.f. that is independent

of αp and one weighting parameter for each phase. The weighting parameter of the liquid phase

is an affine function of αp, which characterizes the volume of the wakes relative to that of the

interstices. That of the particle phase depends on the preferential concentration of the particles,

which tend to avoid the wakes at low αp. This model accurately describes the experimental p.d.f.s

up to the third-order moment and reproduces all their peculiar features: skewness of the vertical

fluctuations which reverses at a given volume fraction, presence of exponential tails corresponding

to rare intense events, symmetry between low and large volume fractions.

Keywords: Two-phase flow, Fluidized bed, Velocity fluctuations, Probability density function
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I. INTRODUCTION

We report experimental investigations of the velocity statistics in liquid-solid fluidized

beds at large Reynolds number, in which dense particles are supported by a continuous

upward flow of a liquid. In contrast with gas-solid fluidized beds, the spatial distribution

of the particles in such configurations remains statistically uniform over a large range of

particle volume fraction αp, typically from 0.1 to 0.5. Both phases experience strong ve-

locity fluctuations that result from the drift velocity between them, which is itself due to

gravity. Because of this agitation, liquid fluidized beds are an efficient tool for enhancing

heterogeneous chemical reactions or interfacial mass transfer, in particular in crystallization

or biofilm growth processes (see [1] and references therein). In addition, they build a con-

figuration of dispersed two-phase flow that is especially interesting to study the complex

interplay between the fluctuating motions of the two phases in cases where the dispersed

phase is homogeneous while its concentration is large.

In dispersed two-phase flows, whatever the nature the dispersed phase (liquid, gaseous

or solid particles), the agitation of the continuous phase that is induced by the relative mo-

tion of the particules generally involves two contributions [2–4]: (1) the flow disturbances

generated in the vicinity of the particles and (2) the turbulence that results from the collec-

tive instability of the flow through a random distribution of obstacles. At low to moderate

volume fractions (αp <∼ 0.1), the mechanisms of the particle-induced fluctuations have been

extensively studied in bubble columns (see [5] for a recent review) and the turbulence contri-

bution was found to play an important role, provided the bubble Reynolds number is larger

than 100. Regarding large volume fractions (αp > 0.1), we found only a few recent studies

that have investigated fluidized beds by means of numerical simulations ([6], [7], [8]). In

such configurations, the distance between the particles is too small for turbulence to freely

develop and fluctuations are thus dominated by the flow disturbances around each particle.

On the other hand, the particle fluctuations can be seen as a reaction to the liquid fluctu-

ations, in a similar way as in the Tchen-Hinze theory that described turbulent particle-laden

flows by considering that the particles respond to the various scales of the prescribed turbu-

lent fluctuations in an amount which depends upon their inertia ([9], [10], [11]). However,

in contrast to turbulent particle-laden flows, the liquid fluctuations in a fluidized bed are

a direct consequence of the presence of the particles. The coupling between the liquid and
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particle fluctuations is therefore much stronger and necessarily depends upon the particle

volume fraction. Over several decades, numerous works have addressed the problem of the

particle agitation in liquid fluidized beds ([12], [13], [14], [15], [16], [17], [18], [19]). Despite

this continuous effort and the growing capabilities in numerical simulations, a physical model

relating the particle agitation to the particle-induced liquid agitation is still lacking. This

is primarily due to a lack of experiments in which measurements of the velocity statistics of

the two phases are jointly measured, especially in dense inertial suspensions ([20], [21]).

The present work provides extensive measurements of the statistics of the velocity fluctu-

ations of the liquid and the particles in a liquid-solid fluidized bed involving inertial particles

with a particle-to-liquid density ratio of 1.5, a Reynolds number in between 150 and 360,

at concentrations ranging from 0.14 and 0.42. In a recent Rapid Communication to Phys.

Rev. Fluids [22], a first analysis of these results was presented, limited to the second-order

moments of the fluctuations. A physical interpretation of the mechanism controlling the en-

ergy of the fluctuations was proposed, leading to a model for the velocity variances of both

phases. The main idea was to distinguish two regions within the liquid: (1) the wakes of the

particles in which the liquid is entrained at the velocity of the particle; (2) the interstitial

region between the particles where the liquid velocity is close to its average value. This

suggests assuming that the random fluctuation of each component u′i of the liquid velocity

is proportional to the product of the average liquid velocity 〈Uz〉 and the fluctuation χ′ of

the solid-phase indicator function, which characterizes the fluctuations of the concentration:

u′z = −γz〈Uz〉χ′. A simple model is thus obtained that relates the variance of the liquid

velocity to that of the solid-phase indicator function: 〈χ′2〉 = αp(1 − αp). The standard

deviation of each component liquid velocity then reads√
〈u′2i 〉/〈Uz〉 = γi

√
αp(1− αp) . (1)

This model nicely fits the experimental results in the whole range of solid phase fraction

investigated (0.14 ≤ αp ≤ 0.42) by taking γz = 1.24 for the vertical direction and γx = 0.79

for the horizontal one.

Regarding the velocity fluctuations v′i of the particles, we assume that the fluctuation of

the slip velocity u′i−v′i is controlled by the same mechanism as the one which determines the

fluidization law relating the mean liquid velocity 〈Uz〉 to the mean particle concentration αp.

This implies that u′i − v′i = ki
d〈Uz〉
dαp

χ′ and leads to the following relation for the standard
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deviations of the components of the particle velocity√
〈v′2i 〉√
〈u′2i 〉

=

(
1 +

ki√
〈u′2i 〉

d〈Uz〉
dαp

√
αp(1− αp)

)
. (2)

This model well reproduces the experimental results by taking kz = 0.35 for the vertical

component and kx = 0.21 for the horizontal one.

In the present article, we examine the probability density functions (p.d.f.s) of the velocity

fluctuations of the two phases. We show that considering the variance of the solid-phase

indicator function is not sufficient to model the evolution with αp of the p.d.f.s of the

velocity fluctuations. The asymmetry of the fluctuations between the wake region and the

interstitial region must also be accounted for. That being done, the p.d.f.s of the two velocity

components of the two phases for all volume fractions can be related to a single p.d.f., which

confirms our physical interpretation based on the distinction between two regions.

The paper is organized as follows. The experimental setup and the physical properties of

the two phases are presented in section II. The techniques used to measure the velocity fields

of both phases are detailed in section III. Experimental results are presented in section IV:

the flow homogeneity is assessed by examining the pair correlation function of the particles

in IV A; statistical moments and p.d.f.s of the liquid fluctuations are presented in V B for

the liquid and in IV C for the particles. In section V, a model of the p.d.f.s based on the

distinction between the wake and the interstitial regions is proposed. Concluding remarks

are given in section VI.

II. EXPERIMENTAL SETUP AND PHASE PROPERTIES

A. Experimental setup

The fluidization column is schematized in figure 1. It is composed of a cylindrical glass

column of internal diameter d=51±1 mm diameter and height H=280 mm. Upstream of

the bed entry is mounted a stack of a 20 mm high metal honeycomb of 4 mm meshsize, a 30

mm-high fixed bed of 3 mm metal beads, a thin layer of a synthetic foam topped with a thin

mesh metal grid, the whole placed in a conical tube of 70 mm length and 30° semi-angle.

This set-up ensures a good homogeneity of the pressure distribution in the liquid at the bed

entry. The outlet section, located above the top of the fluidized bed, is a free surface where
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(a) (b)

FIG. 3. Particle tracking in the fluidized bed with matched refractive indices (αp = 35%). (a)

Snapshot of the bed where two tagged particles are present. (b) Trajectories of the two tagged

particles.

Figure 2 shows the evolution of the fluidization velocity Uf as a function of the particle

volume fraction. It is well described by the following empirical law,

Uf = U0(1− αp)n , (3)

where U0 = 0.19m/s is close to Vt and n = 2.31. This result is consistent with Richardson-

Zaki’s correlation, which proposes n = 4.4Re−0.1
p = 2.35.

III. MEASUREMENT TECHNIQUES

This section describes the non-intrusive optical measurement techniques that are imple-

mented thanks to the matching of the optical indices of the two phases.

A. Solid-phase characterization

The motion of the particles is characterized by means of two-dimensional particle trajec-

tography. It consists in tagging one or two particles in black and following their trajectory
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through the bed. For that purpose, a camera (Miro Lab 320), equipped with a 60 mm lens,

records the successive locations of each tagged particle in the (x,z) plane with an integra-

tion time of 250 µs and an acquisition rate of 40 Hz, which corresponds to a maximum

particle displacement between two successive images of less than one diameter. Opposite to

the camera, is placed a white LED pannel that ensures a uniform background illumination

of the image field. A typical image of two marked particles in the bed is displayed in figure 3a.

The center of mass of each tagged particle is detected thanks to an image process-

ing technique based on a thresholding method. First, the lighting inhomogeneities of the

LED pannel are attenuated by normalizing each image with a background image. Then, a

threshold is performed to binarize the image and detect the darkest pixels. Only objects

the size of which is close to the particle diameter are finally retained. In that way, only

tagged particles are detected and the position of their center can be localized at each time

step. Figure 3b displays typical trajectories of the center of two tagged particles within the

fluidized bed. The instantaneous velocity components vx and vz of each particle are then

determined along its trajectory by simply dividing the displacement between two images

by the time step. This leads to an accuracy on the velocity better than 0.02 cm/s. Then,

the statistics of particle velocity fluctuations are computed from data collected on a few

trajectories corresponding to an overall time duration of at least 5 min, which was checked

to be enough to ensure good convergence.

B. Liquid-phase characterization

Planar particle image velocimetry (PIV) is used to determine the liquid velocity field in

the (x,z) plane. The flow is seeded with red-fluorescent polystyrene tracers (PS-FluoRed-

Fi227, Microparticles GmbH) of diameter dPIV = 48.2±0.6 µm and density 1050 kg/m3. A

Nd:YAG laser (Litron Lasers nanoPIV, 2×120 mJ, 532 nm) generates a vertical sheet of

light parallel to the (x,z) plane of maximal thickness wl ≈ 0.5 mm. A camera (Lavision

Imager pro), equipped with a 50 mm lens, is synchronized with the laser pulses and records

images of the fluorescent tracers. The image field area is 52.8 × 52.8 mm2 with a resolution

of 22.73 pixel/mm and is located about 8 cm above the bottom of the column.
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(a)

(c)

(b)

(d)

FIG. 4. Image processing for particle detection (αp = 35 %). (a) Raw PIV image. (b) Filtering of

PIV particles. (c) Correction of background inhomogeneity. (d) Determination of particle contours

(green dashed lines) and centers (red stars).

Figure 4(a) shows an example of a raw image obtained with the PIV setup. We see

that the Nafion particles fluoresce in the same range of wavelength as the PIV tracers.

We therefore need to discriminate the particles constituting the dispersed phase from the

PIV tracers before the computation of the velocity field. A three-step image processing

has been developed in order to mask the Nafion particles. PIV tracers are first filtered by

using an adaptative threshold using a kernel of 28×dPIV width and by filling the elements

smaller than 166×d2
PIV with the value of the pixels that surround them (figure 4b). Then,

background inhomogeneities are smoothed out by subtracting an instantaneous background

image to the current image, which enhances the grey-level gradients at the particle surface
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(figure 4c). This background image is obtained by the application of a median filter with a

kernel of 1.11×dp width. Then, the cleaned image is binarized by applying an adaptative

threshold (again with a kernel of 1.11×dp width) and the contours of the Nafion particles

(green dashed lines in figure 4d) are closed by combining a dilatation over four pixels and

equivalent circles. Finally, the interior of these contours are filled with zeros to generate the

mask.

Once Nafion particles have been masked, an instantaneous velocity field is calculated

each 1/9 s from a pair of images separated by a time step of 1 ms. The computation is

carried out by Davis 8.4 PIV software developed by Lavision, which is based on a multi-pass

cross-correlation algorithm. Interrogation windows of 32×32 pixels with a 50% overlap are

used, in combination with a median filter. For each operating condition, 1500 uncorrelated

velocity fields have been recorded, ensuring a good convergence in the estimation of the

statistical properties.

Two global quantities are evaluated for validation purposes. The global particle volume

fraction determined from the bed elevation is compared with that derived from the time-

averaged surface fraction of the mask of Nafion particles. The relative difference between

these two quantities is found to be less than 7%, whatever the fluidization velocity. In

addition, the average liquid vertical velocity determined from PIV measurements is compared

to Uf/(1−αp), where the fluidization velocity Uf is determined by means of a flowmeter. On

average, the discrepancy between the two values is always below 10 %, which is reasonably

small for PIV measurements in a dense dispersed flow.

IV. EXPERIMENTAL RESULTS

This section is devoted to the presentation of the experimental results, starting with the

spatial distribution of the particles, before addressing the velocity statistics of the liquid and

the particles.
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distance r. The maximum relative error on r2D caused by the uncertainty in the y-location

of the particle centers is a function of r2D/dp and writes

Err(r2D) =
{1 + ( r2D

dp
)−2[1 + (wl/dp)]

2}1/2 − 1

{1 + ( r2D
dp

)−2[1 + (wl/dp)]2}1/2
. (4)

As shown in figure 5b, Err(r2D) decreases rapidly towards zero with the inter-particle dis-

tance: it is 30% at dp and drops under 10% at 2dp. In the following, all calculations are

based on the two-dimensional distance r2D, which will be written r for sake of simplificity.

The radial pair density Gr is computed by counting the number of particles j located at

a distance rij in between r −∆r and r + ∆r of all particles i located in a disk of radius R

having its center in the middle of the image [24]:

Gr(r) =
πR2

Nb

1

2πr∆r(Nb − 1)

Nb∑
i=1

∑
j 6=i

[H(rij − r + ∆r)−H(rij − r −∆r)] , (5)

where Nb is the total number of particles present in the disk of radius R and H is the

Heaviside function which is equal to 0 for x < 0 and 1 otherwise. In most cases, the radial

step ∆r is taken equal to 0.1×dp and the radius R of the region of interest to Hf/6, where

Hf=52.8 mm is the height of the field of view. However, for αp = 0.14 and αp = 0.42, R

is taken respectively equal to Hf/5 and Hf/4, in order to increase statistical convergence.

In all cases, the number Nb of particles is greater than 5000, which ensures a satisfactory

statistical convergence.

Figure 6 displays the experimental radial pair distribution function Gr(r/dp) for different

volume fractions. The peak around r/dp = 1, as well as the non-zero values observed for

r/dp < 1, are due to the finite thickness of the laser sheet used to light the particles, as

discussed above. For r/dp > 1.5, the measurements are reliable and Gr is unity, indicating

a uniform distribution of the inter-particle distances.

We now examine the angular distribution of the particles by considering the angular pair

distribution Gθ(θ), which is defined here as the probability density that the separation vector

between two particles at a distance r in between 1.5dp and 2.5dp makes an angle θ with the

vertical direction. Gθ(θ) is plotted in figure 7 for various solid fractions. The particles

display a slight preferential alignment in the horizontal direction (θ = 90 deg), which tends

to disappear as αp is increases. A similar trend of horizontal clustering was observed in

large Reynolds-number bubble swarms [24, 25] for gas volume fractions lower than 15%

13













αp

FIG. 13. Skewness coefficients of the two components of the particle velocity as a function of αp.

(The dashed line shows the skewness Sklz of the vertical fluid velocity).

V. PHYSICAL INTERPRETATION AND MODELING

In a previous rapid communication [22], we have proposed to subdivide the liquid volume

into a wake region and an interstitial region. This allowed us to derive models of the variances

of the liquid and particle velocities, the mathematical expressions of which are recalled by eqs

1 and 2. Now, we propose to develop this concept to build a model for the probability density

functions of the velocity fluctuations. Since the variances have already been modelled, we

focus on the p.d.f.s of the normalized fluctuations of the liquid u′∗i = u′i/
√
u′2i and of the

particle v′∗i = v′i/
√
v′2i . We consider first the liquid phase before dealing with the particles.

A. Liquid-velocity p.d.f.s

Figure 14 schematizes the liquid flow by considering that it is divided into two sepa-

rate regions: (1) the wake region W wherein vertical fluctuations are negative due to the

entrainment of the liquid by the particles and (2) the interstitial region I where it is the

reverse (u′∗z > 0) since the average of the fluctuations over the whole volume of liquid is null

19





Let us define f lowlz (u′∗z ) as the p.d.f. of vertical velocity fluctuations of the lowest possible

value αlowp of the volume fraction, which generally corresponds to the largest fluidization

velocity ensuring a stable homogeneous fluidized bed. We also define fhighlz (u′∗z ) as the p.d.f.

of the largest possible volume fraction αhighp , which corresponds to the lower liquid velocity

allowing the fluidization of the particles. The experiments show that flz(u
′∗
z ) smoothly

evolves from f lowlz (u′∗z ) to fhighlz (u′∗z ) as αp increases (fig 9). A simple model of flz(u
′∗
z ) can

thus be obtained by considering flz(u
′∗
z ) as a linear combination of the p.d.f.s. of the two

extreme cases,

flz(u
′∗
z ) = (1− Φ)f lowlz (u′∗z ) + Φfhighlz (u′∗z ) . (6)

The weighting parameter Φ ranges between 0 and 1. It characterizes the proportion of

intense negative fluctuations, while 1−Φ characterizes that of intense positive fluctuations.

It is an increasing function of the wake volume fraction, V∗w = VW/(VW + VI), which is

itself an increasing function of the particle volume fraction αp. It has to be equal to 1/2 at

αp = αpc, where the wake volume is equal to the interstice volume and the distribution is

symmetric. Assuming a linear increase of Φ with αp, we get

Φ =
1

2
+ kΦ(αp − αpc) , (7)

where the prefactor kΦ should be greater than unity, since Φ is expected to pass from almost

zero to one while αp increases from αlowp > 0 to αhighp < 1. Knowing that they have skewnesses

of opposite signs and that f lowlz is symmetric at Φ(αpc) = 0.5, eqs. 6 and 7 require that f lowlz

and fhighlz are symmetric with respect to the ordinate axis,

fhighlz (u′∗z ) = f lowlz (−u′∗z ) = f ref (u′∗z ). (8)

With a few assumptions, we thus end up with the model defined by eqs. 6-8, which involves

two scalar parameters, αpc and kΦ, and a single centred normalized p.d.f., f ref (u′∗z ), that is

independent of αp and can be described by a Gaussian distribution to which an exponential

tail is added on the right side. Note that f lowlz and fhighlz are p.d.f.s of zero average and unit

variance, hence f ref is as well. We have now to check whether this model is in agreement

with the experiments.

Figure 15b displays the experimental p.d.f.s f lowlz (−u′∗z ) measured at αlowp = 0.14 and

fhighlz (u′∗z ) at αhighp = 0.42. We observe that f lowlz (−u′∗z ) and fhighlz (u′∗z ) match very well, which
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p.
d.
f.

p.
d.
f.

p.
d.
f.

p.
d.
f.

(a) Vertical direction, αp=0.14

(c) Vertical direction, αp=0.42

(b) Vertical direction, αp=0.26

(d) horizontal direction, all αp

FIG. 16. Comparison between model and experimental p.d.f.s. for the liquid. Black dashed lines:

model. Colored lines: experiments.

Then, we need to determine Φ(αp). Using eqs 6 and 8, the skewness coefficient of the

liquid vertical velocity writes

Sklz =

∫ +∞

−∞
ξ3flz(ξ)dξ = (2Φ− 1)

∫ +∞

−∞
ξ3f ref (ξ)dξ . (13)

Performing the summation with the experimentally fitted function f ref (ξ), we find
∫ +∞
−∞ ξ3f ref (ξ)dξ =
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0.4. Φ is thus simply related to the skewness coefficient by

Φ =
1

2
+ 1.25Sklz . (14)

Values of Φ, computed by inserting experimental values of Sklz in eq 14, are plotted in

fig 15a. They are well approximated by eq 7 with αpc = 0.26 and kΦ = 3.1. We note that

Φ(αlowp ) is small and Φ(αhighp ) is almost equal to unity, which justifies the choice of these

values of αp to fit extremes p.d.f.s fhighlz and f lowlz .

We have now all the ingredients to build the model p.d.f.s at all particle volume fractions.

Figures 16a-c compare modelled p.d.f.s to measurements, showing that this simple model

makes a good approximation of the vertical fluctuations of the liquid. Note that the model

is exact up to the third order statistical moment, but only approximated regarding higher

order moments, which explains the deviation close to maximum of the p.d.f. of the vertical

fluctuations.

Horizontal liquid velocity fluctuations are directly associated to vertical ones by the con-

servation of the liquid volume. It is hence reasonable to think that their statistical distri-

bution can be modelled in a similar way, as a function of f ref . As in the vertical direction,

horizontal fluctuations of large magnitude are located in wakes at small αp and in interstices

at large αp. However, positive and negative horizontal fluctuations have equal probability,

in both the wake and the interstitial regions. Horizontal p.d.f. flx(u
′∗
x ) is thus symmetric.

In addition, vertical p.d.f.s at low and high αp are symmetrical to each other (eq 8). Con-

sequently, the evolution of VW relative to VI is thus expected to have no influence on the

horizontal p.d.f.s. We thus propose to model flx as the simplest symmetric function based

on f ref ,

flx(u
′∗
x ) =

1

2

(
f ref (−u′∗z ) + f ref (u′∗z )

)
. (15)

Figure 16d confirms that eq 15 describes very well the experimental distribution, without

the need of introducing any additional parameters.

B. Particle-velocity p.d.f.s

In [22], we assumed that instant local particle fluctuations are proportional to liquid

ones, by involving a factor which depends on the particle volume fraction. This allowed us

to derive a reliable model for the variance of the particle velocity (eq 2). Regarding the
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whole statistical distribution, this assumption leads us to consider that the p.d.f.s of the

particle fluctuations must be expressed in a similar way to those of the liquid, by making

use of f ref and of the probability Pp (resp. 1− Pp) that the more intense fluctuations seen

by the particles are negative (resp. positive). This gives, in the vertical direction,

fpz(v
′∗
z ) = (1− Pp)f ref (−v′∗z ) + Ppf

ref (v′∗z ) , (16)

and in the horizontal direction,

fpx(v
′∗
x ) =

1

2

(
f ref (v′∗x ) + f ref (−v′∗x )

)
. (17)

If the particles were uniformly distributed throughout the liquid volume, Pp would be equal

to Φ and the p.d.f.s of the two phases would be the same. In fact, we have seen that there

is preferential horizontal alignment of the particles at lower αp, which leads the particles to

avoid the wakes. As a result, intense fluctuations of negative signs are not experienced by the

particles, which explains why the skewness coefficient of their fluctuations is never negative.

Parameter Pp is therefore not directly related to the volume fraction of the wake and there

is no obvious way to a priori relate it to Φ. Nevertheless, it can be determined from the

experimental skewness coefficient in the same manner as what has been done for the liquid

phase, by means of eq 13. Figure 17 displays Pp as a function of αp. It turns out to remain

roughly equal to 0.7 at αp ≤ 0.3 and then increases as 2.1 × (αp − 0.3) + 0.7. However,

it is interesting to note that at large αp, as the particle locations become independent

of each other, Pp becomes close to Φ. Differences between particle and liquid Eulerian

velocity statistics are indeed due to particle preferential concentration and do not question

the proportionality between the local instant fluctuations of the two phases in the vicinity

of each particle.

Inserting the values of Pp into eqs 16 and 17, we obtain the model p.d.f.s of each com-

ponents of the particle velocity fluctuations and for all particle volume fractions. Figure 18

compares them to experimental ones. Except from a slight difference in the negative tail of

the vertical p.d.f.s at lower αp and the central part the horizontal p.d.f.s at larger αp, the

matching is satisfactory. It is remarkable that such a good agreement is obtained by making

use of the same reference function f ref as for the modeling of the liquid phase.
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FIG. 18. Comparison between model and experimental velocity p.d.f.s. for the particles. Black

dashed lines: model. Colored lines: experiments.

are obtained, which are in good agreement with experiments.

In the present work, we went further by examining the probability density functions of

the velocity fluctuations. We showed that it was possible to derive a model of the normalized

p.d.f.s of the fluctuations by assuming the same flow properties. Increasing αp, the relative

volume of the wake region increases while that of the interstices decreases. We thus move
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from a situation where negative u′z are rare and intense while positive u′z are common but

of lower magnitude to a situation where the opposite is true. At low αp, the p.d.f.s flz

of u′z are asymmetric with a long tail on the left side and a negative skewness, whereas

it is the reverse at large αp. Considering the p.d.f.s at small and large αp are symmetric,

we can express flz by using a single function f ref that is independent of αp (eq 8). This

leads to express flz(u
′∗
z ) as a linear combination of f ref (−u′∗z ) and f ref (u′∗z ) (eq 6), involving

a weight Φ that characterises the relative importance of the wake and the interstices and

increases with αp (eq 7). Then, using property (2), the p.d.f. of the horizontal liquid velocity

fluctuations flx is also related to f ref (eq 15). Finally, property (3) suggests that the p.d.f.s

of the particle velocity fluctuations fpz(v
′∗
z ) and fpx(v

′∗
x ) are similar to those of the liquid

phase (eqs 16-17), except that the weighting function Pp(αp) is different from Φ(αp) because

of the preferential alignment of the particles in the horizontal direction (fig 17). We end up

with a model of the p.d.f.s of the two velocity components of the two phases. This model

only relies on a single reference p.d.f., which displays a long exponential tail on the right

side, and two weighting parameters, Φ for the liquid and Pp for the particles. Regarding the

liquid, Φ is an increasing affine function of αp that is equal to 1/2 at the point where flz is

symmetric. Pp is only equal to Φ when particle locations are independent of each other. In

general, it has a more complex evolution which depends on the preferential concentration of

the particles. This model is in good agreement with the experiments, which confirms that

the dynamics of the fluctuations depicted by properties (1-3) is realistic.

Future work should consider other particle Reynolds numbers and density particle-to-

fluid density ratios in order to investigate how the reference function, f ref , and the weighting

parameters, Φ and Pp, vary and to determine the limits of validity of the present description.
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