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Abstract

A new compressible pressure-based Lattice Boltzmann Method is proposed to
simulate humid air flows with phase change. The variable density and compressible
effects are fully resolved, effectively lifting the Boussinesq approximation commonly
used, e.g. for meteorological flows. Previous studies indicate that the Boussinesq
assumption can lead to errors up to 25%, but the model remains common, for com-
pressible models often suffer from a lack of stability. In order to overcome this
issue, a new pressure-based solver is proposed, exhibiting excellent stability proper-
ties. Mass and momentum conservation equations are solved by a hybrid recursive
regularized Lattice-Boltzmann approach, whereas the enthalpy and species conser-
vation equations are solved using a finite volume method. The solver is based on a
pressure-based method coupled with a predictor-corrector algorithm, and incorpo-
rates a humid equation of state, as well as a specific boundary condition treatment
for phase change. In particular, boundary conditions that handle mass leakage are
also proposed and validated. Three test cases are investigated in order to validate
this new approach: the Rayleigh-Bénard instability applied to humid air, the atmo-
spheric rising of a condensing moist bubble, and finally the evaporation of a thin
liquid film in a vertical channel. Results indicate that the proposed pressure-based
Lattice-Boltzmann model is stable and accurate on all cases.

1 Introduction

Many application fields require to account for humid air physics when modeling and
simulating flows. Examples of important industrial application fields are the simulation
of high pressure water vapor flows in steam turbines and the simulation of cooling sys-
tems. This is also illustrated by atmospheric flows, in which atmospheric moisture plays
a crucial role in the formation of clouds, storms, weather fronts, precipitation and other
phenomena [1]. It governs most aspects of our weather and climate in the form of vapor,
liquid water, and ice. All these mechanisms can be solved numerically by invoking the
Boussinesq approximation [2], which consists in neglecting density variations except in
the gravity term in the Navier-Stokes equations. This incompressibility condition sim-
plifies the equations, and is widely adopted in weather forecast tools, but comes with a
restriction on the range of flow physics. In fact, it is restricted to small variations of tem-
perature [3], which can be very limiting in the scope of meteorological applications, or
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phase change mechanisms. Cherkasov et al. [4] showed that the Boussinesq assumption
can lead to an error of 25% in a problem of laminar natural convection in a gas between
two vertical isothermal plates heated up to different temperatures, if the temperature of
the hot wall is no more than three times the temperature of the cold wall. Schatzmann
[5] also studied a variety of industrial stack plumes with different initial density ratios,
and made comparisons of predictions with and without the Boussinesq approximation.
It was found that the difference in jet-property predictions between the two models in-
creases with increasing initial density defect ratio. In the case of the largest ratio tested,
the maximum height of rise predicted with the Boussinesq model was 20% larger than
with the non-Boussinesq model. This shows the importance of a non-Boussinesq model
to study cases with large differences of temperature, or more generally cases where the
thermodynamic variables vary a lot. Other less restrictive assumptions, such as using
pseudo-incompressible equations [6], or anelastic equations [7], can also be used, which
all rely on simplifications of the fully compressible Navier-Stokes equations to tackle the
compressibility issue. Previous studies have also demonstrated that it is possible to use
a full compressible model: Feng and Tao [8] developed a full compressible thermal model
using a multispeed lattice Boltzmann method, but the cost of this method is prohibitive
for an industrial use as will be explained in section 3.2. Another solution to reduce the
cost of a compressible solver is to couple a finite volume method to a Lattice-Boltzmann
model as was shown by Luan et al [9]. They applied their model to a case of natural con-
vection and obtained stable results, but their study was restricted to single component
flows. The main disadvantage of the compressible model is its lack of stability as shown
by Guiho [10]. This stability issue of the compressible model will also be demonstrated
with the third test case presented here, because a stable solution with the density-based
solver could not be obtained. In order to overcome this problem, the objective of our
study is to broaden the scope of application of the compressible model thanks to an
improved solver stability. The novelty of our method is to propose a stable multi com-
ponent compressible solver that can handle humid air for meteorological applications,
and to achieve a better accuracy without using the common Boussinesq assumption.
New boundary conditions will also be proposed in order to handle the mass leakage at
boundaries. The rest of the introduction will focus on the features of our pressure-based
compressible hybrid Lattice-Boltzmann method.

Most previous studies dealing with humid air and moist cases are based on the
Navier-Stokes equations, e.g. [11, 12, 13]. Here, we chose to use the Lattice-Boltzmann
method (LBM) which is a mesoscopic approach, based on the Boltzmann equation, that
recovers the Navier-Stokes equations on the macroscopic level. The advantages of the
LBM are its automatically generated cubic mesh which removes the need of a body-fitted
mesh, as well as its very high parallel efficiency and very high numerical accuracy. The
LBM has been gaining more and more interest in the industry, with practical applica-
tions in the automotive industry, the aerospace industry, but also in civil engineering,
among other applications. Feng et al. [14] have also developed the LBM for meteorolog-
ical applications, and their study will serve as a guideline for this article. Nevertheless,
they use the Boussinesq approximation which is not the case here as explained previously.

The novelty of the present work is that a new fully compressible pressure-based
Lattice-Boltzmann solver with a hybrid recursive regularization is used and developed
in order to incorporate specific features: the humid air equation of state, the phase
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change mechanisms and the evaporation/condensation boundary conditions. Because
of the presence of a small fraction of liquid in the humid air, the perfect gas law can-
not be used. Instead, a humid air equation of state is used, e.g. see [1, 15]. This
equation of state, which originates in a linearization of a full multispecies multiphase
equation of state makes it possible to study cases with small fractions of water vapor
and liquid. Phase change between the vapor and the liquid is also taken into account
and evaporation/condensation processes can therefore be simulated. In order to do so,
the instantaneous equilibrium phase change model given in [15] is used to simulate the
condensation of a bubble rising in a moist atmosphere, but also the evaporation of a
thin liquid film at the walls of a heated channel [16]. Special attention is thus given in
order to incorporate the phase change mechanisms in the boundary conditions. In order
to account for phase change mechanisms, an enthalpy equation is used in the present
work instead of the entropy equation used in [17]. This hybrid method is based on the
coupling of the mass and momentum equations solved by the LBM, with the enthalpy
equation solved by a finite-difference method. Doing so, one does not need (when sim-
ulating fully compressible flows) to expand the equilibrium function up to an order too
expensive for an industrial use. The regular D3Q19 lattice can thus be kept, and the
general cost of the solver, which is fully compressible, stays reasonable.

Another aspect of the solution is the HRR collision model, which damps non-physical
modes which can lead to instabilities at high Reynolds number flows. The HRR collision
model stabilizes the solution and makes it possible to use the solver in a more general
framework [18, 19]. The last novel aspect of this LBM algorithm is the development of
a new segregated, pressure-based approach, coupled with a predictor-corrector method
[17]. The predictor-corrector method is an algorithm in which the first step (predictor)
consists in finding the weakly compressible solution. Then, the second step (corrector)
is to correct the first step in order to recover a fully compressible solution. This type of
algorithm is quite common in Navier-Stokes methods, and its efficiency depends on the
robustness and capability of the first step. Here, only explicit schemes are used for both
steps and the predictor step is based on the artificial compressibility method pioneered
by Chorin [20]. The pressure-based collision model is used for the first step (predictor)
of the algorithm. Pressure-based methods present an advantage in some cases which
is the following: by controlling explicitly the pressure oscillations in flows with a large
density variation, pressure-based solvers have proven to be more robust and accurate
than classical single relaxation time density-based LBM solvers. Indeed, computing the
pressure directly from an evolution equation, and not from the equation of state, re-
duces spurious pressure oscillations in multifluid Navier–Stokes methods, see[21, 22] and
in Lattice-Boltzmann Methods [23, 24, 25]. Nevertheless, the predictor step gives a pres-
sure evolution equation which is not valid for high-Mach number flows, hence the need
for a correction step to recover the full compressible solution.

This article is organized as follows: the first section presents the governing equa-
tions of the method, beginning with the macroscopic equations and the specific fea-
tures needed for the humid air applications : the humid equation of state, the phase
change mechanisms, and the special boundary conditions for evaporation/condensation.
The numerical method is then presented, with the pressure-based LBM coupled with a
predictor-corrector algorithm and the finite volume method to solve the species and the
enthalpy conservation equations. In the second section, the test cases are presented in
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increasing order of complexity. First, the Rayleigh-Benard instability is studied, in a
single component configuration (dry air), and then in a multiple components configura-
tion (dry air with water vapor and water liquid). This first test case will prove that the
pressure-based code gives consistent results in a simple configuration, and is compared
to the density-based code. The second test case deals with a moist bubble rising in the
atmosphere, which is condensing during its rise. The purpose of this second test case
is to demonstrate that the full compressible effects are taken into account in a large
domain, without using the Boussinesq assumption, which is most commonly used in the
meteorological context as shown by previous studies [26, 27]. Finally, the last test case
is about a heated vertical channel with a thin liquid film on its walls. Dry air is entering
the channel from the top, and produces the evaporation of the thin liquid film, thus
creating vapor at the wall. This last case shows the superiority of our model compared
to the density-based code, because the latter did not give usable results contrary to the
former. All the test cases are performed with the pressure-based version and compared
to the density-based version of the code when possible, and/or to the reference when
available, in order to validate the accuracy and robustness of the pressure-based method.

2 Governing equations

2.1 Macroscopic equations

The humid air flow is assumed to follow the compressible Navier-Stokes equations, linking
the local mass volume ρ, velocity vector uα and energy.

Under this formalism, mass and momentum conservation read

∂ρ

∂t
+
∂ρuβ
∂xβ

= 0 (1)

∂ρuα
∂t

+
∂ρuαuβ + δαβp−Παβ

∂xβ
− ρg = 0, (2)

where p is the pressure, to be linked to the local state in Eq. (7), g is the gravity
acceleration, and Παβ is the stress tensor

Παβ = µ

(
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ
2

3

∂uγ
∂xγ

)
. (3)

Energy conservation is considered in its enthalpy h form,

∂h

∂t
+ uα

∂h

∂xα
=

1

ρ
(Παβ

∂uα
∂xβ

− ∂qα
∂xα

+
Dp

Dt
), (4)

where the pressure derivative Dp
Dt is assumed to be negligible, and qα is the heat flux,

assumed to depend on the temperature T as

qα = −λ ∂T
∂xα

+ ρ
N∑
k

hkYkVk,α, (5)

with λ the thermal conductivity. It is defined as:

λ =
µ

Pr

∑
k

YkCp,k (6)

Vk,α is the diffusion velocity and it is evaluated through a Fickian approximation.
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2.2 Moist equation of state and phase change

To close the system of governing equations, a thermodynamic closure is required, linking
the pressure with the mass volume and energy (or enthalpy / temperature). Considering
a mixture of dry air, water vapor, and liquid water with respective mass fractions Yd, Yv
and Yl, and assuming that mass fractions of vapor and liquid water remain small, one
obtains the following equation of state [1, 15],

ρrT = p(1− 0.61Yv)(1 + Yl), (7)

where r is the mass gas constant of dry air.
The enthalpy h is linked to the temperature T through

h =

3∑
k=1

hkYk, (8)

with
hk = Cp,kT + qk. (9)

Cp,k is the constant pressure mass heat capacity of species k, and qk its reference enthalpy.
The mean heat capacity Cp therefore reads

Cp =
∑
k

YkCp,k (10)

For the rest of the demonstration, we introduce the following thermodynamic quan-
tity:

θ =
p

ρc2s
=
rT

c2s
(11)

as the ratio of thermodynamic perfect gas pressure to the classical athermal LBM pres-
sure.

In considering three constituents, two additional conservation equations need to be
appended to the system as

∂Yv
∂t

+ uα
∂Yv
∂xα

=
1

ρ

∂

∂xα
(ρDy

∂Yv
∂xα

)− Q̇ (12)

∂Yl
∂t

+ uα
∂Yl
∂xα

=
1

ρ

∂

∂xα
(ρDy

∂Yl
∂xα

) + Q̇, (13)

where Dy is the diffusion coefficient, given by the Schmidt number of each specie:

Dy =
µ

ρScy
(14)

and Q̇ is a source term, accounting for potential phase change. The dry air mass
fraction is deduced as Yd = 1− Yv − Yl.

Phase change, i.e. condensation or evaporation, is formulated as in the NCAR general
atmospheric model [28]: condensation takes place when saturation is reached at a given
grid point, and the specific humidity is bounded by the saturation value Y sat

v :
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Y sat
v =

εpsat
p− (1− εpsat)

, (15)

where ε = 0.622 is the ratio of molecular masses of water vapor and air. The saturation
pressure is assumed to follow an Antoine law

psat(T ) = 610.78e(17.269
T−273.16
T−35.86

). (16)

The phase change source term is then computed through a saturation adjustment
[15]:

Q̇ =

{
−Yl/δt if Yv < Y sat

v and Yl < ∆Yv

∆Yv/δt otherwise
(17)

where

∆Yv =
CprT

2

εY sat
v Lv(T )2 + CprT 2

(Yv − Y sat
v ), (18)

with the mass latent heat Lv defined as

Lv(T ) = hv(T )− hl(T ). (19)

3 Numerical method

We now present the hybrid numerical method used to solve the governing equations.
Mass and momentum conservation equations (1) and (2) are solved via a pressure-based
Lattice-Boltzmann solver, coupled with a finite volume solver for energy and species
equations (4), (12) and (13). The novelty of the method relies on the fact that the full
compressible effects are taken into account, contrary to previous studies on the matter
which use the Boussinesq assumption as explained in the introduction. Another novel
aspect of our approach is the mass conserving boundary conditions, which have been
developed specifically to handle mass leakage at the boundaries when the simulation
domain is big, which is typical of meteorological applications.

3.1 Pressure-based Lattice-Boltzmann solver coupled to a predictor-
corrector approach

Lattice-Boltzmann methods rely on a discretization on space, time, and velocity of the
Boltzmann equation [29, 30]. fi represents the variable solved by the LBM, and cor-
responds to the density distribution of particles at space and time (x, t) with velocity
ci. It is a mesoscopic approach which recovers the macroscopic quantities through the
moments of the distribution function fi:

∑
i f

eq
i = ρθ = p/c2s∑

i ci,αf
eq
i = ρuα∑

i ci,αci,βf
eq
i = ρuαuβ + ρθc2sδαβ

(20)

The Lattice-Boltzmann equation, discretized in space, time, and velocities, is written:

fi(x+ ciδt, t+ δt) = feqi (x, t) + (1− 1

τ
)fneqi (x, t) +

1

2
FEi (x, t) (21)
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The term FEi (x, t) accounts for the gravity term F gi and for correction terms [17].
There are several ways to include an external force into the LBM. Here, we use the
approach from [31] in which the gravity term is written as follows:

F gi = ρωi
[Aαciα

c2s
+

(uαAβ + uβAα)(ciαciβ − c2sδαβ)

2c4s

]
(22)

In this approach, when an external force is taken into account, such as gravity, the
macroscopic velocity is also modified as:

u =
1

ρ

∑
i

ci,αf
eq
i +

A

2
(23)

The other correction terms included in FEi are detailed in Farag et al [17].
The equilibrium function is written:

feqi = ωi[ρθ +
ciαρuα
c2s

+
a
(2),eq
αβ H

(2)
iαβ

2c4s
+
a
(3),eq
αβγ H

(3)
iαβγ

6c6s
] (24)

where Hiαβ and Hiαβγ are respectively the second and third order Hermite polynomi-
als. The non equilibrium distribution function is also expanded in Hermite polynomials
and reconstructed by a Recursive Regularized BGK LBM [18, 19] :

fneqi = ωi[
a
(2),neq
αβ H

(2)
iαβ

2c4s
+
a
(3),neq
αβγ H

(3)
iαβγ

6c6s
] (25)

In the present approach, the non-equilibrium coefficients a
(2),neq
αβ and a

(3),neq
αβγ are

evaluated with the hybrid recursive collision model introduced in [18]. This model is
used to enhance numerical stability, as well as enforce a traceless lattice-Boltzmann
tensor by removing its trace. It is observed to yield accurate and robust results for a
broad range of applications and flow physics, e.g. [32, 33, 14, 34, 35].

The pressure-based solver is very similar to the density-based solver, except that the
macroscopic equations which are recovered are a slightly different due to the change in
the zeroth order moment ρθ. In the pressure-based solver, the macroscopic equation on
mass which is recovered is the following:

∂ρθ

∂t
+
∂ρuβ
∂xβ

= 0 (26)

This equation represents the pressure evolution equation in the low-Mach nearly
incompressible limit, but it is not valid in fully compressible flows with strong dilatational
effects. A few corrections are necessary in order to recover the full compressible limit
(which correspond to the corrector step mentioned above). The corrections, done on the
zeroth order moment and on the second order moment, are the following:

ρ(t+ δt, x) =
∑
i

f∗i (t+ δt, x) + ρ(t, x)[1− θ(t, x)] (27)

acorαβ = c2sδαβ[ρ(t+ δt, x)(1− θ(t+ δt, x))− ρ(t, x)(1− θ(t, x))] (28)

More details about the pressure-based LBM algorithm and on the correction terms
can be found in Farag et al. [17].
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3.2 Finite volume solver for species and enthalpy

A first-order explicit Euler scheme is used for the time integration :

φn+1 = φn + δt[RHSC(φn) +RHSD(φn) + Φ] (29)

where RHSC , RHSD represent the convection term and the diffusion term, respec-
tively. The convective flux is constructed using the MUSCL scheme [36], with the van
Albada limiter [37]. A classical second order central difference scheme is adopted for the
diffusion term. The last term Φ is related to remaining source terms, which are treated
explicitly in time.
It is also possible to solve the scalar transport and the enthalpy equations by using the
LBM, with the multiple distribution function model for example [38], or a multispeed
approach [8]. Nevertheless, these methods are more cumbersome numerically than the
hybrid method proposed here as noted by [39], which is why we decide to couple the
LBM with a finite volume solver for the species and enthalpy equations.

3.3 Boundary conditions

In the LBM, several types of boundary conditions can be used, which can be classified
mainly in two types : the conditions which deal with distribution functions directly (such
as Bounce-Back and interpolated Bounce Back conditions [40, 41]), and the conditions
which deal with macroscopic quantities from which distribution functions are then de-
duced, or reconstructed, hence the term ”reconstruction” method [42, 43] for this second
approach. The reconstruction method can be summarized with the following steps:

• Depending on the desired boundary condition, we apply the Dirichlet or Neumann
condition to macroscopic quantities : velocity, density, enthalpy, and species

• Reconstruction of feqi from macroscopic values on boundaries (eq 24)

• Reconstruction of fneqi from macroscopic values on boundaries (eq 25)

• Computation of fi using feqi and fneqi

Details of the present implementation are available in [44, 45, 46] and will not be
repeated here for the sake of brevity.

For enthalpy and species which are solved via the finite volume approach, the macro-
scopic values of h, Yl, Yv are simply imposed (Dirichlet condition) or extrapolated (Neu-
mann condition) on all boundaries via a first order interpolation.

This approach is most commonly used in industrial applications, because it is pos-
sible to use some already existing conditions (wall models for turbulent applications for
example) which have been developed on macroscopic quantities, often for Navier-Stokes
solvers. On the other hand, the mass conservation on solid impermeable boundaries is
not necessarily respected in the reconstruction method. For many types of engineering
problems for which the numerical domain is small and gravity does not play a big role, it
is not an important concern. Nevertheless, the mass conservation issue with the recon-
struction method can cause a problem for cases in which gravity plays an important role
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because the numerical domain is large (atmospheric test cases for example). In that case,
the leakage of mass at the boundaries can lead to inaccuracy and stability issues. This
type of problem was encountered here for the bubble ascending in a moist atmosphere
case. It was therefore mandatory to respect the mass conservation at the boundaries.
To do so, it is easier to use the first approach: handling distribution functions directly.
For compressible problems, respecting the mass conservation at the boundary can be
mathematically written:

dm

dt
=

∫
V

dρ

dt
dV = −

∫
V
∇(ρu)dV = −

∫
S
ρundS = 0 (30)

with n the normal vector of the boundary S. Knowing that in the LBM, ρun =
∑

i cifi,
this leads to a condition on the functions coming out and coming in the domain at the
boundary, which resembles the bounce-back method.∑

outgoing i

cifi(xk, tn) +
∑

incoming i

cifi(xk, tn) = 0 (31)

If we use the bounce back condition for the incoming unknown direction:∑
outgoing i

cif
col
i (xk−1, tn−1) +

∑
incoming i

cif
col
i (xk, tn) = 0 (32)

If we suppose that the boundary is flat (which is the case in the bubble test case),
and knowing that ci = −copp(i) with opp(i) the opposite direction of i, the condition is
written:

f coli (xk, tn) = f colopp(i)(xk−1, tn−1) (33)

with i the incoming direction.

4 Validation of the method

The proposed new pressure-based fully compressible Lattice Boltzmann Method for hu-
mid air will now be validated considering several test cases.

4.1 Rayleigh-Bénard instability

The Rayleigh-Benard instability is a natural convection phenomenon, in which a fluid
is enclosed between two horizontal plates, the one below being heated and the one on
top being cooled, so that the fluid develops a regular pattern of convection cells known
as Benard cells. It is an important mechanism of mass and heat transfer in nature
(meteorology, astrophysics) and in many industrial applications (heat exchangers). The
gravity accelerates the flow downwards whereas the viscosity counteracts the motion so
that a convection pattern appears. The Prandtl number Pr and Rayleigh number Ra
are defined as:

Pr =
ν

D
(34)

Ra = Pr
gH3∆T

ν2T0
(35)

9



∆T is the temperature difference between the top and bottom walls, T0 is the reference
temperature set to 300.0 K, H is the domain height set to 1m, and ν is the kinematic
viscosity given by the value of Ra in the simulations. For the test cases presented in
this section, the Rayleigh number is equal to 104 and the Prandlt number is equal to
0.71. Another important parameter is the reference velocity used to scale the velocity
on figure 3:

u0 =
√
gβH∆T (36)

4.1.1 Single component case : dry air

This test case is studied in a square domain, the top wall being cooled at TC = 299.5
K and the bottom wall being heated at TH = 300.5 K. Adiabatic conditions are set
for the temperature on the right and left walls. The temperature difference TH − TC is
chosen to be small enough to allow the comparison with results based on the Boussinesq
approximation.

Figure 1: Schematic diagram of the single component Rayleigh-Benard case

Only dry air is simulated in this first test case, so that the pressure-based code can
be validated and compared to results from Feng et al. [14], and Ouertatani et al [47] in
which a nearly incompressible model was used along with a Boussinesq approximation.
The square simulation domain is 1m × 1m, on a 50 × 50 grid. Figure 2 shows the
temperature field once the steady state has been reached. It is in good agreement with
reference [14].

10



Figure 2: Temperature for the single component case : reference [14] (left) and pressure-based
solver (right)

The comparisons of the vertical velocity uy along a horizontal line in the middle of
the domain, and of the horizontal velocity ux along a vertical line in the middle of the
domain, are presented on figure 3.
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Figure 3: Velocity uy along x at midline of domain for the single component case. Symbol =
reference, line = pressure-based solver
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Figure 4: Velocity ux along y at midline of domain for the single component case. Symbol =
reference, line = pressure-based solver

The results are in very satisfactory agreement with the reference data, meaning
that the pressure-based LBM solver can be accurately used to investigate flows in the
Boussinesq regime. The slight differences observed may be due to the fact that our
pressure-based solver does not rely on the Boussinesq assumption, contrary to the ref-
erences [14, 47]. Indeed, we can assume that without the Boussinesq assumption, in
the momentum and mass equations, the density variations (others than in the buoyancy
force) are not neglected, hence leading to small differences between the reference and
the results presented here.

4.1.2 Multiple component case : moist air (dry air with water vapor and
water liquid)

This test case presents a multiple component Rayleigh-Bénard instability, which is com-
posed of dry air, water vapor, and water liquid. The water vapor and liquid fractions
are set respectively to 0.002 and 0.001 on the top wall, and to 0 on the bottom wall.
The bottom wall is heated at 309.5K and the top wall is cooled at 299.5K. Periodic
boundary conditions are applied at the left and right walls. The domain is extended to
observe several convection cells. The temperature field is displayed on figure 5. Because
the reference article does not present results with the gravity applied to all three compo-
nents, but only to water components, the comparison is made between the density-based
version of the ProLB solver, and the present pressure-based version. Indeed, the density-
based version of ProLB has already been validated in many cases [35, 44] and will serve
as a reference guideline when no data is available in the literature.

Figure 5 presents the temperature field: several convection cells can be observed in
the extended domain.
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Figure 5: Temperature for the three component Rayleigh-Benard case

A comparison of the density and velocity fields predicted using the pressure-based
and density-based methods is then made. The comparison is done on a horizontal and
a vertical lines in the middle of the domain on Figs. 6 and 7, respectively.
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Figure 6: Velocity (cross) and density (square) on a horizontal line at the middle of the domain.
Symbols = reference data (density-based method), solid line = pressure-based solver
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Figure 7: Velocity (cross) and density (square) on a vertical line at the middle of the domain.
Symbols = reference data, solid line = pressure-based solver

A very good agreement is obtained between the density-based and pressure-based
methods, which means that the new pressure-based code can be accurately used to
simulate moist convection cases, with several components. Here, both density-based and
pressure-based codes give good results and demonstrate good accuracy and robustness.

4.2 Rising bubble

A rising moist bubble is studied in a two dimensional domain, with a height of 2.4 km
and a width of 3.6 km, on a 720 x 480 grid with a 5m mesh size. The base state has a
constant relative humidity of 20% with a pressure of 850 hPa and a surface temperature
of 283 K. The bubble is initially located at the center of the domain, at z = 0.8 km.
The kinematic viscosity ν is set to 1 m2/s and the Prandlt number to 1. The relative
humidity RH is set to 100% inside the bubble, for r < 200m. A transition layer is
assumed for 200m < r < 300m, defined as follows :

RH = 20% + 80%cos2(
π

2

r − 200

100
) (37)

The vapor mass fraction can then be deduced as:

Yv =
ε.psatRH

p0 −RH(1− ε)psat
(38)

Concerning other initial conditions, we cannot use the reference initial conditions
from [48, 14], which were based on a nearly incompressible approach. Indeed, in these
references a constant density ρ0 is used as a reference state. This is possible when
invoking the Boussinesq approximation, because density variations are only taken into
account in the gravity term via a modified and special formulation of the gravity. Here,
we use a fully compressible solver, which means that setting a constant initial density
is not correct nor representative of the hydrostatic atmospheric state. The correct way
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to initialize the simulation is to find the initial state (p, ρ, T ) which respects the perfect
gas law, the hydro static equilibrium state, and another constraint on the temperature.
Several assumptions on the atmospheric temperature field can be made: isothermal
atmosphere, or linear variation of the temperature for example. Here, we chose to use
the latest, which leads to the following set of equations:

p = ρRT
dp
dz = −ρg
dT
dz = −K

(39)

Solving the previous system of equations leads to the following expression of the
initial state: 

p = p0(1− Kz
T0

)(g/RK)

ρ = P
RT

T = T0 −Kz
(40)

The coefficient K is set to 0.0065 here, so that the temperature varies linearly from
283 K (ground surface) to 267.4 K (top surface).

Regarding boundary conditions, both boundary conditions explained in section 3.3
were tested on a simplified 2.4km high air column with identical initial conditions as the
bubble test case. Because the fluid is initialized to the hydrostatic state, there should
be no movement of fluid in the air column and the velocity should be equal to zero.
When using the reconstruction method, we encountered mass conservation issues at the
boundaries due to the presence of gravity in a very high domain. Nonphysical mass
flux is coming in the domain because the top and bottom walls do not conserve exactly
the mass with the reconstruction method. To solve this problem, we used the second
boundary condition (33) explained in section 3.3 which conserves the mass. The result
with both boundary conditions is displayed on Fig. 8 :
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Figure 8: Vertical velocity in the air column for two types of boundary condition implementa-
tions

The mass coming in the domain with the BB boundary condition is better controlled
with incoming velocity values of the order of 1e−3m/s compared to 1e−1m/s with the
reconstruction method. We will hence use the bounce back condition for the bubble test
case.

The contour of water vapor is displayed on figure 9.

Figure 9: Vapor contour at initial time (left) and at t = 150s (right)

The bubble rises and expands over time, condensing during its rise as predicted
by the reference. Nevertheless, a quantitative comparison with the reference article is
not possible because the initial states are different, as it is not possible to impose a
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constant reference density initially since the Boussinesq assumption is not used here. In
order to illustrate this problem, figure 10 shows a comparison of the initial densiy and
temperature, in the Boussinesq reference case and in our pressure-based compressible
solver. Imposing a constant density field initially led to a non physical result in our case,
because we do not use the Boussinesq assumption due to the compressible formulation
of our solver, so it was mandatory to impose a varying density initially, which agrees
with the hydrostatic solution. Because of this initial difference, the results quickly differ:
at two minutes, the highest position of the bubble in our case is 1152m, 5% above the
measured position 1100m in the reference. At three minutes, the order of error is 10%,
the bubble being located at 1352m in our case, against 1194m in the reference.
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Figure 10: Initial condition for the density (left) and for the temperature (right)

In the same manner as in the first test case, a comparison between the density-based
and pressure-based codes is done, based on the fact that the density-based code has been
validated on numerous cases. The profiles of density, temperature, vapor mass fraction
and velocity are compared on Figs. 11, 12, 13 and 15.
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Figure 11: Profiles of density along a vertical line x=1800m at t=100s
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Figure 13: Profiles of vapor fraction along a vertical line x=1800m at t=100s
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Both density-based and pressure-based codes give almost identical profiles. The
results are in good agreement with [48], with the bubble expanding and condensing
during its rise.

4.3 Heated vertical channel with evaporating liquid film

The last test case deals with a heated vertical channel with evaporating thin liquid films
at the walls in which a steady, downward, laminar flow is streaming. This test case shows
that the pressure-based LBM solver also includes condensation/evaporation boundary
conditions, which are stable and accurate. In order to validate the results, a reference
case from [16] is selected. First, it is assumed that the liquid films are extremely thin so
that the boundary conditions for heat and mass transfer from [49] can be used. At the
inlet section, the fluid temperature, velocity, and vapor mass fraction are constant and
uniform, and the pressure is interpolated. At the outlet section, the pressure is constant
and equal to the atmospheric pressure, and the fluid velocity, temperature and vapor
mass fraction are interpolated. At the walls, we assume that the gas and liquid film
interface are in thermodynamic equilibrium, which leads to the following expression for
the vapor mass fraction at the wall under the extremely thin liquid film assumption:

Yv,w =
Mv

Ma

psat(Tw)

p− psat(Tw)(1− Mv
Ma

)
(41)

Liquid evaporation produces a normal velocity at the wall, which is given by [49]:{
ut = 0

uw = − Dv
1−wi

(∂ω∂n )i
(42)
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Figure 15: Profiles of vertical velocity along a vertical line x=1800m at t=100s

The inlet Reynolds number is 300 and the height and diameter of the channel are
respectively 2m and 2cm. The mesh size is 0.5 mm, which gives a 40 x 4000 grid. The
pressure p is assumed to be equal to the ambient pressure pa for heights of the order of
1m. This leads to a constant value of Yv,w, because the wall is also heated at a constant
temperature Tw. Here, we chose to simulate a case from [16] with Tw = T0 = 327.5K
and Yv,w = 0.1. The kinematic viscosity ν is equal to 1.74e−5m2/s and the Schmidt
number is equal to 0.529.

Results are presented on figures 16 and 17. The comparison is made between our
results and those given in [16] on downwards velocity along the channel, at 0.2 m and
at 1m.
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Figure 17: Downwards velocity at 0.2m

The results are in good agreement with the reference data, both in magnitude and
tendency. Nevertheless, the discrepancies between the reference and our results is bigger
than in the first test case. Several reasons can be invoked to explain these discrepancies:
first, the boundary conditions are not applied in the same manner. In [16], source
terms were introduced in the cells adjacent to the walls because direct implementation
of special boundary conditions is not possible in the commercial software they use, which
is a black box on this matter. Here, we directly impose the correct boundary conditions
on the walls, without introducing the notion of adjacent cells. We prefer to use this
second approach for the boundary conditions because it is identical to the original study
[49], and also the article [50] on which the authors of the reference [16] rely. In fact,
we assume that the liquid films are extremely thin so that boundary conditions for heat
and mass transfer can be introduced as was suggested by Lin et al. [49]. Secondly,
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they use a special formulation of the compressible flow equations: the density does not
fully depend on the pressure, but only on the ambient pressure. In Ansys Fluent which
is the commercial software that they are using, this special formulation is called the
”Incompressible Ideal Gas Law”, for which the density depends only on the operating
pressure pop and not on the local relative pressure field :

ρ =
pop

R/WT
(43)

This not the case in our solver because it is fully compressible, which means that the
density fully depends on the local relative pressure and temperature. This could explain
the discrepancies observed because we are not using the same formulation for the density.
Indeed, the authors are already observing differences between their Boussinesq results
and their Incompressible Ideal Gas Law results, so it seems logical that differences are
also observed for our fully compressible model.

Regarding the density-based version of the Lattice Boltzmann Method, stability is-
sues were encountered in this test case, which led to numerical instability before steady
state was reached. According to [17], pressure-based solvers were initially designed to
handle low-Mach flows with large density variations, which is typically the case here
(multiphase interfacial flow). This comes from the fact that pressure-based solvers ex-
plicitly control pressure oscillations because the pressure is directly computed using an
evolution equation instead of deducing it from an equation of state. In this case, we
can assume that the density-based solver is unstable because it does not handle well
the pressure oscillations caused by the large density variations at the walls, due to the
presence of a thin liquid film. In order to stabilize the density-based simulations in
this test case, we tried to refine the mesh in order to better capture and control the
pressure oscillations at the walls. The mesh was refined 10 times, leading to a mesh
composed of 16 million cells, leading to a dramatic growth of the computational cost,
therefore demonstrating that the pressure-based method is more stable and robust and
efficient on coarse meshes than the density-based method on this type of test cases. The
coefficient σ in the HRR model [18] also had to be modified in order to stabilize the
computation.

5 Conclusion

A new Lattice Boltzmann method for humid air able to fully account for compressibility
effect was proposed and successfully assessed on several test cases. This method is an
extension of the segregated pressure-based method proposed in [17] to the case of moist
air with phase change. To this end, a modified equation of state is implemented, and the
entropy equation used in the original scheme is replaced by an enthalpy equation, which
is better suited to account for condensation and evaporation phenomena. New boundary
conditions are also introduced in order to tackle the mass leakage issue at the boundaries,
often encountered in large simulation domains. The present method is observed to be
more accurate and more robust than the density-based Lattice Boltzmann method for
humid air previously proposed in [14]. Indeed, the third test case about the heated
vertical channel was only studied and validated with our compressible pressure-based
model, because the compressible density-based code did not produce stable results and
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the solution exploded. The pressure-based code is hence more general, since the density-
based method was restricted to the Boussinesq approximation and weak dilatational
effects. In fact, the compressible model is more accurate than the Boussinesq assumption
but suffers from stability issues. These were handled thanks to the pressure-based code
which is more stable than the density-based code, as shown in this paper thanks to the
different test cases.
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