
HAL Id: hal-03178123
https://hal.science/hal-03178123

Submitted on 23 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A MIN-MAX PATH APPROACH FOR BALANCING
ROBOTIC ASSEMBLY LINES WITH

SEQUENCE-DEPENDENT SETUP TIMES
Y Lahrichi, L. Deroussi, N Grangeon, S Norre

To cite this version:
Y Lahrichi, L. Deroussi, N Grangeon, S Norre. A MIN-MAX PATH APPROACH FOR BALANC-
ING ROBOTIC ASSEMBLY LINES WITH SEQUENCE-DEPENDENT SETUP TIMES. 13ème
CONFERENCE INTERNATIONALE DE MODELISATION, OPTIMISATION ET SIMULATION
(MOSIM2020), 12-14 Nov 2020, AGADIR, Maroc, Nov 2020, AGADIR, Morocco. �hal-03178123�

https://hal.science/hal-03178123
https://hal.archives-ouvertes.fr


13th International Conference on Modeling, Optimization and Simuation - MOSIM’20 - November 12-14, 2020
Agadir - Morocco ”New advances and challenges for sustainable and smart industries”

A MIN-MAX PATH APPROACH FOR BALANCING ROBOTIC

ASSEMBLY LINES WITH SEQUENCE-DEPENDENT SETUP

TIMES

Y. LAHRICHI L. DEROUSSI, N. GRANGEON, S. NORRE

Université Clermont Auvergne Université Clermont Auvergne

CNRS, LIMOS LIMOS UMR CNRS 6158, antenne de l’IUT d’Allier

63000 Clermont–Ferrand, France 03100 Montluçon, France

youssef.lahrichi@uca.fr laurent.deroussi@uca.fr, nathalie.grangeon@uca.fr, sylvie.norre@uca.fr

ABSTRACT: We deal in this paper with SDRALBP-2, namely the Sequence-Dependent Robotic Assembly
Line Balancing Problem of type 2. The problem is of industrial relevance due to the growing robotization of the
assembly lines in the new Industry 4.0 era. Given a set of operations that are necessary to assembly a product
and a set of robot types with different performances, the problem is concerned with addressing three decision
problems simultaneously while minimizing a given objective. The first decision is to assign the operations to
a given set of stations placed in a straight line [Balancing decision], the second decision is to sequence the
operations in each station due the sequence-dependent setup times [Sequencing decision] and the third decision
is to assign a robot to each station [Equipment selection decision]. We consider the objective of minimizing
the cycle time, which is the maximum duration spent by a product in some station. We propose in this
paper a method of type Sequence-First Balance-And-Select-Second. The proposed method embeds a dynamic
programming algorithm (that solves a polynomial case) in a metaheuristic. Benchmark instances are used to
evaluate the proposed method.

KEYWORDS: Line balancing, Robotic, Sequence-dependent setup times, Polynomial case, Min-max
path, Metaheuristic.

1 INTRODUCTION

We assist nowadays to the growing robotization of all
manufacturing systems. This large-scale robotization
is pushed by new industry 4.0 standards encourag-
ing the use of cyber-physical systems. Cyber-physical
systems are systems where robots or other physical
components interact with cyber or software compo-
nents in order to deliver a service or produce a good
in ways that change with context. Besides, robots
offer higher productivity and flexibility (US National
Science Foundation).

Assembly lines follow the same robotization trend.
More and more often, tasks in assembly lines
are no longer performed by human operators
(Nilakantan, Ponnambalam, Jawahar & Kanagaraj
2015), (Janardhanan, Li, Bocewicz, Banaszak &
Nielsen 2019). Human operators are only concerned
by supervising the production process while robots
perform all the operations. We consider a straight
assembly line. Such a line is a series of stations orga-
nized throw a straight line. In each station, a set of
operations is performed on a product. The product
is then moved from the current station to the next

station and a new product is moved to the current
station. The product is considered finished when it
exits from the last station. A robotic assembly line is
an assembly line where the operations are performed
by robots. Balancing an assembly line is the prob-
lem of assigning the operations necessary to assemble
a product to the stations. The maximum duration
spent by a product on some station is called the cycle
time.

Balancing a robotic assembly line raises two problems
that are not usually considered jointly in literature:

• The equipment selection problem which is con-
cerned with assigning a robot to each station.
The relevance of the problem is justified by the
different performances of the robots. Indeed, the
duration of an operation depends on the type of
robot used (Rubinovitz, Bukchin & Lenz 1993).

• The problem of sequencing the operations in each
station. The latter is justified by the considera-
tion of sequence-dependent setup. A setup time
ti,j,r between operations i and j must be consid-
ered if operations j is performed just after op-



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

eration i by a robot r. The sequence-dependent
setup times are considered to provide for the nec-
essary tool change on the robot or handling on
the product. We remark that the setup times
are not only sequence-dependent but also robot-
dependent.

The considered problem in then called the SDRALBP
(Sequence-Dependent Robotic Assembly Line Balanc-
ing Problem.). If the considered objective is to mini-
mize the cycle time given a fixed number of stations,
then it is denoted SDRALBP-2.

We propose a method of type Sequence-First Balance-
And-Select-Second to tackle this problem. This
method relies on a novel algorithm, called minmax,
that computes a min-max path in some auxiliary
graph. We prove that the latter is optimal when a
sequence of all operations is given. The select and bal-
ance subproblems can be polynomially solved thanks
to minmax. The SDRALBP-2 is then reduced to find-
ing the best sequence of operations. The sequencing
subproblem is solved by metaheuristic.

The paper is organized as follows. The problem is
described in section 2. A example is given in section
3. Our contribution is then positioned in literature in
section 4. A mathematical formulation is described
in section 5. The resolution approach is described
in section 6 then tested on benchmark instances in
section 7.

2 PROBLEM STATEMENT

Given a set N of operations, a set S of stations placed
in a straight line and a set R of robot types, the
SDRALBP, is concerned with addressing three deci-
sions simultaneously:

• Balancing decision: Assign each operation to a
station.

• (Equipment) Selection decision: Assign a robot
to each station.

• Sequencing problem: Sequence the operations in
each station.

The duration of an operation i depends on the type of
robot r used and is denoted dri . Operations are linked
by precedence relations (when operation i precedes
operation j, the station to which i is assigned should
not be after that of j). Sequence-dependent setup
times are also considered. A setup times tri,i′ should
be considered if operation i is performed just before
operation i′ in some station equipped by a robot of
type r.

The workload of a station is the sum of durations
and sequence-dependent setup times induced by the

n Number of operations
N Set of operations, indexed on

{1, 2, . . . , n}
smax Max. number of stations
S Set of stations, indexed on

{1, 2, . . . , smax}
nr Number of robot types available
R Set of robot types, indexed on

{1, 2, . . . , nr}
P Set of couple(i, j) ∈ N2

s.t. i precedes j
C Cycle time
dri Duration of

i ∈ N, r ∈ R operation i on robot of type r
tri,i′ Setup time between operations i

i, i′ ∈ N, r ∈ R and i′ on a robot of type r

Table 1 – Notations used

sequence of operations assigned to it. The cycle time
stands for the maximum workload among the stations
and is a key performance indicator of the assembly
line.

In this study, the cycle time is the objective to mini-
mize given a maximum number of station.

The same type of robot can be assigned to several
stations without any limitation, i.e. we assume that
we have enough robot units of each type of robot.

The notations introduced in table 1 are used all across
the paper.

3 EXAMPLE

We illustrate the problem with a small instance. The
different attributes of the instance are given as fol-
lows:

• Number of operations: n = 10.

• Number of types of robots: nr = 4.

• Maximum number of stations: smax = 3.

Precedence relations are illustrated in the precedence
graph (figure 2). Durations and sequence-dependent
setup times are given respectively in tables 2 and 3.
A feasible solution is depicted in figure 1.

The solution is feasible since precedence relations are
satisfied and the number of stations used does not
exceed the maximum number of stations.



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

Figure 1 – Feasible solution

Figure 2 – Precedence graph

Op.
Robot type

1 2 3 4

1 d11 =3 4 4 2
2 d12 = 4 3 3 2
3 1 3 2.3 1
4 3.4 7 4 2
5 3.5 5 1 1
6 2 5 4 1
7 1.3 8 2.4 3
8 5 5 3.1 2
9 3 5 2.4 2
10 5 7.5 1.1 3

Table 2 – Durations

The cycle time is obtained by computing the maxi-
mum among the workloads of the stations:

• On the first station, the workload is given by:

d41 + t41,2 + d42 + t42,4 + d44 + t44,5 + d45 + t45,1 = 7.6

• On the second station, the workload is given by:

d13 + t13,8 + d18 + t18,7 + d17 + t17,3 = 9.3

• On the third station, the workload is given by:

d49 + t49,6 + d46 + t46,10 + d410 + t410,9 = 7.6

From the above calculation we can deduce the cycle
time: C = 9.3.

4 STATE OF THE ART

The studied problem is a generalization of the Simple
Assembly Line Balancing Problem. SDRALBP be-
comes a SALBP when nr = 1 and t1i,j = 0,∀i, j ∈ N .
SALBP is NP-Hard and has been extensively studied
in literature. The interested reader can find a taxon-
omy of assembly line balancing problems in (Battäıa
& Dolgui 2013).

The Sequence-Dependent Robotic Assembly line Bal-
ancing problem considers two particularities jointly:

• The consideration of the equipment selection
problem: the problem is raised whenever the
decider has to choose between different types
of equipment with different performances in
order to perform the assembly operations.



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

(a) Setup times of robots of type 1

Op. 1 2 3 4 5 6 7 8 9 10
1 0 t11,2=0.9 0.5 0.3 0.2 0.2 0.6 0.4 0.6 0.4

2 0.4 0 0.6 0.1 0.3 0.4 0.1 0.6 0.6 0.4
3 0.2 0.1 0 0.1 0.1 0.2 0.7 0.8 0.6 0.2
4 0.1 0.2 0.4 0 0.1 0.2 0.1 0.2 0.6 0.3
5 0.5 0.5 0.9 0.4 0 0.7 2 0.7 0.6 0.3
6 0.2 0.1 0.2 0.2 0.2 0 0.3 0.7 0.6 0.3
7 0.7 0.5 0.4 0.2 0.7 1 0 0.2 0.6 0.4
8 0.1 0.1 0.5 0.5 0.1 0.2 0.8 0 0.6 0.3
9 0.7 0.5 0.4 0.2 0.7 1 0.1 0.2 0 0.4
10 0.1 0.1 0.1 0.5 0.1 0.2 0.5 0.2 0.6 0

(b) Setup times of robots of type 2

Op. 1 2 3 4 5 6 7 8 9 10
1 0 t21,2=0.4 0.5 0.4 0.5 0.7 0.5 0.7 0.5 0.7

2 0.1 0 0.4 0.4 0.2 0.4 0.1 0.2 0.5 0.2
3 0.1 0.3 0 0.4 0.6 0.7 0.3 0.2 0.5 0.2
4 0.1 0.2 0.5 0 0.4 0.4 0.5 1.5 0.5 0.2
5 0.5 0.5 0.9 0.4 0 0.7 2 0.7 0.5 0.2
6 0.2 0.5 0.4 0.3 0.4 0 0.4 0.2 0.5 0.1
7 0.3 0.5 0.4 0.3 0.7 1 0 0.1 0.5 0.1
8 0.5 0.5 0.1 0.1 0.4 0.2 0.7 0 0.5 0.1
9 0.7 0.5 0.4 0.2 0.7 1 0.1 0.2 0 0.4
10 0.1 0.1 0.5 0.1 0.1 0.2 0.1 0.1 0.1 0

(c) Setup times of robots of type 3

Op. 1 2 3 4 5 6 7 8 9 10
1 0 t31,2=0.1 0.9 0.7 0.4 0.4 0.5 0.7 0.5 0.1

2 0.2 0 0.4 0.4 0.3 0.1 0.1 0.2 0.5 0.1
3 0.2 0.3 0 0.1 0.4 0.6 0.3 0.2 0.5 0.2
4 0.3 0.2 0.1 0 0.5 0.4 0.4 0.5 0.5 0.2
5 0.5 0.1 0.4 0.9 0 0.1 0.1 0.3 0.5 0.2
6 0.1 0.2 0.5 0.4 0.3 0 0.3 0.1 0.5 0.7
7 0.8 0.1 0.5 0.2 0.7 0.5 0 0.1 0.5 0.2
8 0.7 0.3 0.2 0.2 0.1 0.3 0.4 0 0.5 0.7
9 0.7 0.5 0.4 0.2 0.2 1 0 0.2 0 0.4
10 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0 0.6 0

(d) Setup times of robots of type 4

Op. 1 2 3 4 5 6 7 8 9 10
1 0 t31,2=0.2 0.3 0.4 0.2 0.1 0.2 0.2 0.5 0.7

2 0.5 0 0.1 0.1 0.4 0.1 0.1 0.1 0.5 0.2
3 0.2 0.1 0 0.1 0.2 0.2 0.1 0.2 0.5 0.7
4 0.3 0.1 0.2 0 0.1 0.2 0.1 0.1 0.5 0.2
5 0.2 0.1 0.2 0.3 0 0.1 0.1 0.1 0.5 0.3
6 0.2 0.2 0.2 0.4 0.3 0 0.1 0.1 0.5 0.1
7 0.2 0.1 0.5 0.2 0.1 0.3 0 0.1 0.5 0.1
8 0.2 0.3 0.2 0.2 0.1 0.2 0.5 0 0.5 0.2
9 0.7 0.5 0.4 0.2 0.7 1 0.1 0.2 0 0.2
10 0.1 0.1 0.5 0.2 0.1 0.2 0.1 0.1 0.5 0

Table 3 – Setup times

The Robotic Assembly Line Balancing Problem
(RALBP) is defined in (Rubinovitz et al. 1993).
In the context of RALBP, different types of
robots are available to perform the operations.
The durations of the operations depend on the
type of robot and the decider has to assign a sin-
gle type of robot to each station. The RALBP
has gained great importance due to its indus-
trial relevance and due to the academic challenge
it raises. The literature on RALBP is summa-
rized in table 4. We can partition the litera-
ture on RALBP within two categories. Some
authors consider that the same type of robot
can be selected by multiple stations without any
limitation (Rubinovitz et al. 1993), (Nilakantan
et al. 2015), (Borba et al. 2018) whereas other
authors consider that each robot can be se-
lected by at most one station (Gao et al. 2009),
(Janardhanan et al. 2019). The first assumption
is the original assumption of RALBP as defined
in (Rubinovitz et al. 1993), it is assumed in this
paper.

• The consideration of sequence-dependent setup
times: Sequence-dependent setup times in the
context of assembly lines were introduced in
(Andres, Miralles & Pastor 2008). Setup times
are necessary to provide for tool change or prod-
uct handling that can occur between two opera-
tions. The Sequence-Dependent Simple Assem-
bly Line Balancing problem (SDSALBP) raises
the decision of sequencing the operations in each
station. Many authors have considered sequence-
dependent setup times in the context of assem-
bly lines: (Borisovsky, Delorme & Dolgui 2014),
(Martino & Pastor 2010), (Lahrichi, Grangeon,
Deroussi & Norre 2020).

The problem considered in this paper, SDRALBP-
2, is concerned with minimizing the cycle time while
addressing the balancing, selection and sequenc-
ing decisions simultaneously. To the best of our
knowledge, the three previous decisions have never
been addressed simultaneously in literature expect in
(Janardhanan et al. 2019). Besides, (Janardhanan
et al. 2019) assume that each robot can be selected
at most once while we assume in this paper that
each type of robot can be selected by multiple sta-
tions without any limitations. The results obtained
in (Janardhanan et al. 2019) can not be compared
directly to our results, they give an upper bound for
our results.

The resolution approach described in this paper could
be seen as a Sequence-First Balance-And-Select-
Second algorithm. We propose a min-max path al-
gorithm that addresses optimally the selection and
the balancing decisions in polynomial time provided
that a sequence of all operations is given. The later



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

Table 4 – Position of our study in the literature.

Article Objectives Sequence-dependent
Z1 Z2 Z3 setup times

(Rubinovitz et al. 1993) X
(Levitin, Rubinovitz & Shnits 2006) X

(Gao, Sun, Wang & Gen 2009) X
(Yoosefelahi, Aminnayeri, Mosadegh & Ardakani 2012) X X

(Nilakantan et al. 2015) X
(Çil, Mete & Ağpak 2016) X X X

(Borba, Ritt & Miralles 2018) X
(Janardhanan et al. 2019) X X

Our study X X
Z1: Cycle time, Z2: Number of stations, Z3: Cost of robots used

novel algorithm is then integrated in a metaheuristic
framework.

5 MATHEMATICAL FORMULATION

To clarify the definition of the problem, we give a lin-
ear formulation based on the one from (Janardhanan
et al. 2019). The latter is considering a limited num-
ber of robots per type of robot, we adapt it for
the case of an unlimited number of robots by type.
The formulation of (Janardhanan et al. 2019) is itself
adapted from (Andres et al. 2008).

We use i to index an operation, s to index a station,
j to index a position in the sequence of operations
assigned to a station and r to index a type of robot.
The following variables are used:

xi,s,j,r =


1 If the operation i is assigned to the

station s at the j-th position of its
sequence and performed by a robot
of type r.

0 Otherwise.

ys =

 1 If at least one operation is assigned
to station s.

0 Otherwise.

vs,r =

 1 If a robot of type r is assigned to
station s.

0 Otherwise.

zi,i′,s,r =


1 If operation i is performed just

before operation i′ at station s
by a robot of type r.

0 Otherwise.

wi,s =


1 If the operation i is assigned to the

last position in the sequence of
station s.

0 Otherwise.

C = Cycle time

We minimize the cycle time (Min C) under the con-
straints (1)-(12).

∑
s∈S

∑
j∈N

∑
r∈R

xi,s,j,r = 1,∀i ∈ N (1)

∑
i∈N

∑
r∈R

xi,s,j,r ≤ 1,∀s ∈ S, ∀j ∈ N (2)∑
i∈N

xi,s,j,r ≤ vs,r,∀s ∈ S, ∀j ∈ N, ∀r ∈ R (3)∑
r∈R

vs,r = ys,∀s ∈ S (4)∑
i∈N

xi,s,j+1,r ≤
∑
i∈N

xi,s,j,r

∀s ∈ S,∀j ∈ N − {n},∀r ∈ R
(5)

ys+1 ≤ ys,∀s ∈ S − {smax} (6)∑
s∈S

∑
j∈N

∑
r∈R

(n.(s− 1) + j)xi,s,j,r ≤

∑
s∈S

∑
j∈N

∑
r∈R

(n.(s− 1) + j)xi′,s,j,r,∀(i, i′) ∈ P

(7)

∑
i∈N

∑
j∈N

∑
r∈R

di,r.xi,s,j,r+

∑
i∈N

∑
i′∈N

∑
r∈R

ti,i′,r.zi,i′,s,r ≤ C.ys,∀s ∈ S
(8)

xi,s,j,r + xi′,s,j+1,r ≤ 1 + zi,i′,s,r,

∀i, i′ ∈ N2, i 6= i′,∀j ∈ N − {n},∀s ∈ S, ∀r ∈ R
(9)



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

xi,s,j,r −
∑

i′∈N ;i′ 6=i

xi′,s,j+1,r ≤ wi,s

∀i ∈ N, ∀s ∈ S, ∀j ∈ N − {n}
(10)

xi,s,n,r ≤ wi,s,∀i ∈ N, ∀s ∈ S,∀r ∈ R (11)

wi,s + xi′,s,1,r ≤ 1 + zi,i′,s,r

∀i ∈ N, i′ ∈ N, i 6= i′,∀s ∈ S, ∀r ∈ R
(12)

The set of constraints (1) ensures that all operations
must be assigned once and only once. (2) ensures that
at most one operation can be assigned to the same
position. (3) ensures that an operation is carried out
by a robot of type r on a station s only if the station s
is equipped by a robot of type r and (4) ensures that
no more than one type of robot can be assigned to a
station. (5) ensures that a position is only occupied
by an operation if all of its previous positions are also
occupied. (6) ensures that a station is only used if
the previous stations are also used. (7) ensures that
the precedence constraints are respected. (8) ensures
that the cycle time constraints are respected on all
stations. (9) ensures that zi,i′,s,r = 1 when i and i′

follow each other on the station s (equipped by the
robot r). (10) - (12) verify that zi,i′,s,r = 1 when i is
the last operation assigned to the station s and i′ the
first operation assigned at the station s (equipped by
the robot r).

6 RESOLUTION APPROACH

6.1 Overview and basic definitions

An algorithm of type Sequence-First Balance-And-
Select-Second addresses the sequencing subproblem
in the first step by giving a sequence of all operations
called giant sequence. The balancing and the selec-
tion subproblems are then solved in the second step
while respecting the giant sequence. We give some
basic definitions and the algorithm used to obtain a
giant sequence. Then, the algorithm to address the
balancing and the selection decisions is described in
subsection 6.2. This algorithm is then embedded in a
metaheuristic (subsection 6.3).

Definition 6.1. (Giant sequence) Given an instance
of the SDRALBP, a giant sequence is a permutation
of all its operations .

Definition 6.2. (A solution satisfying a giant se-
quence) A solution s of the SDRALBP is said to
satisfy a giant sequence σ = (σ1, σ2, . . . , σn) if for all
σi, σj such that i < j either σi and σj are assigned
to the same station in s or the station to which the
operation σi is assigned must be before the station to
which σj is assigned.

Definition 6.3. (Compatible giant sequence) A gi-
ant sequence σ is said to be compatible with respect to

an instance of the SDRALBP if there exists at least
a feasible solution satisfying σ.

Theorem 6.4. If we consider SDRALBP-2, a com-
patible giant sequence is simply a giant sequence re-
specting precedence constraints.

Proof. Indeed, given a giant sequence respecting
precedence constraints a feasible solution satisfying
this giant sequence could be obtained by allocating
all the operations of the giant sequence to a single
station.

Remark 1. A compatible giant sequence respecting
precedence constraints could be obtained thanks to Al-
gorithm 1.

Algorithm 1 Algorithm to build a giant sequence
respecting precedence constraints

INPUT: An instance of the SDRALBP.
OUTPUT: A giant sequence σ respecting
precedence constraints.

1: while σ is of size < n do
2: Select randomly and uniformly i an operation

without predecessor or such that all predeces-
sors have already been included in σ.

3: Append i to σ
4: end while

6.2 Giant sequence fixed: polynomial case

We suppose in this subsection that the giant sequence
is fixed. It is equivalent to the case where the prece-
dence graph is a path of length n. We suppose
without loss of generality that the giant sequence
σ = (1, 2, . . . , n).

The resolution approach relies on an auxiliary graph
HI(σ) = (V,A). The graph HI(σ) = (V,A) is di-
rected, composed of the set of nodes V and the set of
arcs A. The set of nodes is given by the set of opera-
tions plus an additional node corresponding to a fic-
titious operation, i.e V = {0}∪N . An arc (i, j) from
operation i to operation j refers to a station, the sub-
sequence assigned to this station is (i+1, i+2, . . . , j)
and the robot of type r selected for this station should
minimize the workload induced by this subsequence:∑j

k=i+1 d
r
k +

∑j−1
k=i+1 t

r
k,k+1 + trj,i+1. The arcs set A

is given by all the arcs (i, j) such that i < j. Be-
sides, HI(σ) is weighted. The weight of the arc (i, j)
is given by:

ci,j = Minr∈R{
j∑

k=i+1

drk +

j−1∑
k=i+1

trk,k+1 + trj,i+1}

ci,j corresponds to the minimum time required to per-
form the subsequence (i + 1, . . . , j). Any value of r



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

Algorithm 2 Minmax

INPUT (I,σ) where I is an instance of the SDRALBP-2 problem and σ is a giant sequence respecting
precedence constraints. We suppose without loss of generality that σ = {1, 2, ..., n}
OUTPUT S: An optimal solution (with the minimal cycle time C∗) respecting σ

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t=1 to n do
4: Lt := ∅
5: end for
6: for t=0 to n-1 do
7: for all i/(t, i) ∈ A (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: if (bt < smax − 1 or i = n) then

10: (ai, bi) := (Max{at, ct,i}, bt + 1)
11: if (ai, bi) is not dominated by an element of Li then
12: Li := Li ∪ {(ai, bi)}
13: if (ai, bi) dominates some element (a′i, b

′
i) ∈ Li then

14: Li := Li\{(a′i, b′i)}
15: end if
16: end if
17: end if
18: end for
19: end for
20: end for
21: if Ln 6= ∅ then
22: C∗ := Min(ai,bi)∈Ln

(ai)
23: Decode the path of cost C∗ to build S
24: end if

that gives this min represents the type of robot as-
signed to this station. The construction of the auxil-
iary graph can be performed within time in O(n3.nr).

The optimal solution among the solutions satisfying
a giant sequence σ can be obtained by computing
a path from 0 to n in HI(σ) that minimises the
maximum weight of an arc using no more than
smax arcs. In graph theory, the problem is known
as a bottleneck path or min-max path (Chechik, Ka-
plan, Thorup, Zamir & Zwick 2016) which consists in
finding a path between a pair of vertices such as the
weight of an arc of maximum weight is minimized.
This problem is polynomial. Since the path should
not exceed smax arcs, we are dealing with a con-
strained min-max path which can also be computed
in polynomial time thanks to Algorithm 2 that we
call minmax. It could be seen as an adaptation of
Bellman-Ford algorithm to solve the problem of find-
ing a min-max path constrained not to exceed smax

arcs in the graph HI(σ). It uses a set of labels Li for
node i. Every label l = (a, b) in Li corresponds to a
path (partial solution) between 0 and i where a de-
notes the cycle time used by the path represented by
the label l and b denotes the number of stations used
by this path (i.e. the number of arcs in the path).(a, b)
is said to be dominated by (a′, b′) if a′ ≤ a and b′ ≤ b.

The dominance rule limits the number of labels per
node to smax.

Algorithm 2 starts with fictitious node 0 labelled
L0 := {(0, 0)} and continues with the other nodes
following the giant sequence. For every node t and
every label (at, bt) ∈ Lt, the algorithm explores every
outgoing arc (t, i) and tries to propagate it (i.e add
a label to the list of labels of node i denoted Li) if
(Max{at, ct,i}, bt + 1) is not dominated by a label of
Li. If so, the label (Max{at, ct,i}, bt + 1) is added to
Li and all labels dominated by (Max{at, ct,i}, bt + 1)
are deleted from Li. The min-max path cost (cycle
time) is stored in C∗. The path is decoded by cre-
ating a station for each arc ci,j which is part of the
path. The subsequence (i+ 1, i+ 2, . . . , j) is assigned
to this station. The type of robot selected for this
station is any type of robot minimizing the workload
induced by this subsequence. The algorithm runs in
O(n4 + n3.nr). The obtained path represents an op-
timal balancing (and robot selection) solution.

6.3 An hybrid metaheuristic

The minmax algorithm could be used to solve the
problem optimally given a giant sequence of opera-
tions. To solve the SDRALBP-2, we should deter-



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

mine the best giant sequence.

We use metaheuristic frameworks in order to explore
the space of giant sequences. The minmax algorithm
is then used as a decoding algorithm and an evalua-
tion function.

We use Iterated local search (ILS). A complete
description of ILS algorithm could be found in
(Lourenço, Martin & Stützle 2010). A local search
is iterated a number of times starting from a pertur-
bation of the best know solution. The stopping cri-
terion of the local search is the number of solutions
visited while the stopping criterion of the ILS is the
number of iterations of local search. The neighbours
are chosen randomly. The neighbourhood move used
is described below. The perturbation stands for ap-
plying the move three times.

We choose an insertion move that respects precedence
constraints. A random operation is chosen on the
giant sequence then it is re-inserted between the last
operation that precedes it and the first operation that
succeeds it with respect to precedence constraints.

7 EXPERIMENTATION

The experiments presented in this section are pre-
liminary. Other experiments are being held. The
instances are taken from (Janardhanan et al. 2019).
They are partitioned within three classes:

• Instances with null setup times: they correspond
to the same instances of (Gao et al. 2009).

• Instances with low setup times: they correspond
to the instances of (Gao et al. 2009) to which
setup times are added and generated randomly
and uniformly within [0, 0.25 ∗mini,rdi,r].

• Instances with high setup times: they correspond
to the instances of (Gao et al. 2009) to which
setup times are added and generated randomly
and uniformly within [0, 0.75 ∗mini,rdi,r].

We have smax = nr for these instances. The only
method available in literature for SDRALBP-2 is sug-
gested in (Janardhanan et al. 2019). Their method
gives an upper bound for ours because they don’t al-
low themselves to use a type of robot several times
in different stations. Our method can also apply
for RALBP (SDRALBP with null setup times) by
considering that the setup times are null. Since the
RALBP is much more investigated than SDRALBP,
we also compare our method on instances with null
setup times with the better-performing algorithms
from RALBP literature: (Nilakantan et al. 2015),
(Borba et al. 2018). The RALBP does not raise
any sequencing problem, it is only concerned with

the balancing and robot selection decisions. Even if
our method is not dedicated to RALBP, this compar-
ison can give an idea about the performance of our
method. Table 5 shows the experiments on instances
with null setup times (RALBP) and table 6 shows ex-
periments on instances with low and high setup times.
In those tables, references denote the value of the cy-
cle time obtained in those references while C and C10

denote the cycle time obtained respectively with a
stochastic local search where 10 000 neighbours are
visited and an ILS of 10 iterated local searches where
10 000 neighbours are visited in each. We do not have
the results of (Janardhanan et al. 2019) for instances
with n ≥ 89.

CPU times needed to compute C are comparable with
those from (Janardhanan et al. 2019) for n = 11..70
since they are generally below 50 seconds (i.e less
than 5 microseconds necessary to run the minmax
algorithm). The CPU time grows then drastically
while increasing the value of n. The CPU times re-
main very reasonable up to n = 148. For n = 148
and nr = 29, 0.1 seconds is needed to perform a sin-
gle minmax run. For instances with n = 297, this
value can rise up to 1.7 second for biggest nr. In
order to be used efficiently in a metaheuristic, the
minmax algorithm should be applied many times to
explore as much neighbors as needed. The minmax
algorithm is very fast for instances with n = 1..70
(small instances) and reasonable for instances with
n = 89..148 (medium and big instances). However
for very big instances n = 297 with high number of
possible robots, the CPU times of the minmax algo-
rithm exceeds one second which limits the number of
neighbours that can be visited in some metaheuristic.
For this reason, results for instances with n = 297 and
n = 148 (C10) are not presented in this preliminary
research.

Table 5 shows that even if our method is not ded-
icated to RALBP, it can retrieve most optimal val-
ues obtained by (Borba et al. 2018) and is far better
than (Nilakantan et al. 2015) which is dedicated to
RALBP.

Tables 5 and 6 show the benefit of the assumption
allowing the use of the same robot type in multi-
ple stations. Indeed, the cycle time C (and C10) is
much smaller than the cycle time from (Janardhanan
et al. 2019) for most instances. C10 is better than C
at the expense of 10 times higher CPU time. The ta-
bles also show that the consideration of setup times
has a real impact on the cycle time. This justifies
that the sequence-dependent setup times cannot be
negligible and should be taken into consideration in
the modelling/optimization step of the Robotic As-
sembly Line Balancing Problem.



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

Table 5 – Instances with null setup times

n smax, nr (Nilakantan et al. 2015) (Borba et al. 2018) (Janardhanan et al. 2019) C C10

11 4 - - 128 126 126
25 3 503 503∗ 503 503 503

4 327 291∗ 327 294 291
6 200 194∗ 213 195 194
9 110 109∗ 121 109 109

35 4 341 341∗ 449 342 341
5 332 329∗ 344 329 329
7 211 201∗ 222 201 201
12 103 93∗ 112 98 93

53 5 449 449∗ 559 449 449
7 294 283∗ 320 284 283
10 221 203∗ 239 213 203
14 142 134∗ 162 137 134

70 7 430 391∗ 448 401 392
10 264 233∗ 271 238 234
14 194 170∗ 201 183 176
19 140 121∗ 152 129 126

89 8 460 436∗ - 446 445
12 320 296∗ - 309 301
16 219 205∗ - 211 207
21 170 156∗ - 164 161

111 9 523 468 - 491 472
13 321 275 - 295 287
17 240 212 - 230 224
22 182 154 - 173 166

148 10 593 550 - 583 -
14 419 351 - 376 -
21 273 225 - 244 -
29 189 154 - 171 -

∗: optimal solution

Table 6 – Instances with low and high setup times

Instance Low Setup High Setup

n smax(= nr) (Janardhanan et al. 2019) C C10 (Janardhanan et al. 2019) C C10

11 4 137 137 137 152 152 151
25 3 516 536 535 579 584 579

4 346 303 303 380 343 343
6 227 203 198 242 216 214
9 131 116 116 142 125 121

35 4 462 352 352 494 376 374
5 355 335 335 392 368 365
7 237 208 208 261 225 224
12 118 100 100 131 113 113

53 5 574 471 461 619 508 486
7 334 286 286 359 319 308
10 256 223 213 276 244 237
14 170 146 143 185 155 155

70 7 469 426 408 507 466 448
10 282 252 246 309 270 266
14 211 189 182 233 206 202
19 158 135 131 175 145 144

89 8 - 465 458 - 491 491
12 - 318 308 - 344 344
16 - 224 220 - 240 238
21 - 166 163 184 181

111 9 - 517 495 - 541 521
13 - 306 301 - 329 228
17 - 233 233 - 257 255
22 - 178 172 - 193 191

148 10 - 610 - - 685 -
14 - 391 - - 431 -
21 - 256 - - 289 -
29 - 182 - - 202 -



MOSIM’20 - November 12-14, 2020 - Agadir - Morocco

8 CONCLUSION AND PERSPECTIVES

In this paper, a solvable polynomial case for the
sequence-dependent robotic assembly line balancing
problem is derived. It is solved thanks to a minmax
path algorithm. We also give an interesting use case
of the minmax proposed algorithm: embedding it on
a metaheuristic. This findings introduce a new solu-
tion encoding in a metaheuristic that searches in a
much smaller space than traditional encodings. The
first experimentation are very promising. Several di-
rections could be taken following this research :

• Reducing the CPU time of the minmax algorithm
by limiting the number of labels thanks to upper
bounds.

• Making more experiments on different sets of in-
stances.

• Using more sophisticated metaheuristics embed-
ding the minmax algorithm.

• Adapting the method for the case where each
robot can be used at most once.

• Deriving other use cases of the minmax algo-
rithm.

ACKNOWLEDGMENTS

The authors acknowledge the support received from
the Agence Nationale de la Recherche of the French
government through the program ”Investissements
d’Avenir”(16-IDEX-0001 CAP 20-25).

References

Andres, C., Miralles, C. & Pastor, R. (2008). Balanc-
ing and scheduling tasks in assembly lines with
sequence-dependent setup times, European Jour-
nal of Operational Research 187(3): 1212–1223.

Battäıa, O. & Dolgui, A. (2013). A taxonomy of
line balancing problems and their solutionap-
proaches, International Journal of Production
Economics 142(2): 259–277.

Borba, L., Ritt, M. & Miralles, C. (2018). Exact and
heuristic methods for solving the robotic assem-
bly line balancing problem, European Journal of
Operational Research 270(1): 146–156.

Borisovsky, P. A., Delorme, X. & Dolgui, A. (2014).
Balancing reconfigurable machining lines via a
set partitioning model, International Journal of
Production Research 52(13): 4026–4036.

Chechik, S., Kaplan, H., Thorup, M., Zamir, O. &
Zwick, U. (2016). Bottleneck paths and trees

and deterministic graphical games, 33rd Sympo-
sium on Theoretical Aspects of Computer Sci-
ence (STACS 2016), Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Çil, Z. A., Mete, S. & Ağpak, K. (2016). A
goal programming approach for robotic assem-
bly line balancing problem, IFAC-PapersOnLine
49(12): 938–942.

Gao, J., Sun, L., Wang, L. & Gen, M. (2009). An
efficient approach for type ii robotic assembly
line balancing problems, Computers & Industrial
Engineering 56(3): 1065–1080.

Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak,
Z. & Nielsen, P. (2019). Metaheuristic algo-
rithms for balancing robotic assembly lines with
sequence-dependent robot setup times, Applied
Mathematical Modelling 65: 256–270.

Lahrichi, Y., Grangeon, N., Deroussi, L. & Norre, S.
(2020). A new split-based hybrid metaheuris-
tic for the reconfigurable transfer line balanc-
ing problem, International Journal of Produc-
tion Research pp. 1–18.

Levitin, G., Rubinovitz, J. & Shnits, B. (2006). A ge-
netic algorithm for robotic assembly line balanc-
ing, European Journal of Operational Research
168(3): 811–825.

Lourenço, H. R., Martin, O. C. & Stützle, T. (2010).
Iterated local search: Framework and appli-
cations, Handbook of metaheuristics, Springer,
pp. 363–397.

Martino, L. & Pastor, R. (2010). Heuristic proce-
dures for solving the general assembly line bal-
ancing problem with setups, International Jour-
nal of Production Research 48(6): 1787–1804.

Nilakantan, J. M., Ponnambalam, S. G., Jawahar, N.
& Kanagaraj, G. (2015). Bio-inspired search al-
gorithms to solve robotic assembly line balancing
problems, Neural Computing and Applications
26(6): 1379–1393.

Rubinovitz, J., Bukchin, J. & Lenz, E. (1993). Ralb–
a heuristic algorithm for design and balancing of
robotic assembly lines, CIRP annals 42(1): 497–
500.

Yoosefelahi, A., Aminnayeri, M., Mosadegh, H. & Ar-
dakani, H. D. (2012). Type ii robotic assembly
line balancing problem: An evolution strategies
algorithm for a multi-objective model, Journal
of Manufacturing Systems 31(2): 139–151.


