Decoupled control of the high mobility robot hylos based on a dynamic stability margin
Guillaume Besseron, Christophe Grand, Faïz Ben Amar, Philippe Bidaud

To cite this version:
Guillaume Besseron, Christophe Grand, Faïz Ben Amar, Philippe Bidaud. Decoupled control of the high mobility robot hylos based on a dynamic stability margin. IROS’08 : the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2008, Nice, France. pp.2435-2440, 10.1109/IROS.2008.4651092 . hal-03177941

HAL Id: hal-03177941
https://hal.archives-ouvertes.fr/hal-03177941
Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Decoupled control of the high mobility robot Hylos based on a dynamic stability margin

G. Besseron, Ch. Grand, F. Ben Amar and Ph. Bidaud

Institut des Systèmes Intelligents et de Robotique (ISIR)
Université Pierre et Marie Curie - Paris VI, 75005 Paris, France
CNRS, FRE 2507, Paris, France
{besseron, grand, amar, bidaud}@isir.fr

Abstract—This paper concerns the control of an autonomous high mobility wheel-legged rover crossing uneven terrains. A new control strategy, using active redundancies of the robot, leads to elaborate a posture control based on the potential field approach of the stability measurement. Then a decoupled posture and trajectory control algorithm based on the velocity model of the robot is proposed. Last, simulation results showing performance of the control algorithm are presented.

I. INTRODUCTION

The main field of this research project deals with the mobility of autonomous robotic rovers moving on an unknown natural environment. Many potential applications like planetary or extreme environment (volcanic, arctic or desert) exploration, agriculture, defense, demining, and others various missions in hazardous areas can be considered. Therefore autonomous mobile robots must be able to move on a wide variety of terrains while ensuring the integrity of the system (i.e. the stability holding to avoid tipover). The main difficulties in this kind of environment are due to the geometrical and physical soil properties (large slopes, roughness, rocks distribution, soil compaction, friction characteristics, etc) – it is easier for an autonomous system to move on flat tar road than to cross a uneven stony field.

Lots of robotic systems have been developed in order to attempt to answer to these issues. Rovers such as Sojourner [1], Shrimp [2], or Nomad [3] are articulated multibody structures permitting a passive adaption to the ground surface. Other robotic systems like these of Gofor [4], SRR [5], Lama [6], Azimut [7], or MTR [8] use an active suspension allowing the control of some attitude parameters of the robot. High mobility hybrid systems – such as Hylos [9], Workpartner [10], or Athlete [11] robots – combine the advantages of both wheeled and legged vehicles – i.e. the ability to ensure some higher velocity than legged systems for the first one, and to cross terrains with high discontinuities (like rocks, steps, gaps, etc) for the second.

In this paper, we propose to analyze the problem of stability control for the Hylos robots which were developed in our lab (see Fig. 1) [9]. These rovers are high mobility redundantly actuated hybrid systems. They are lightweight (around twenty-five kilogrammes) robots with sixteen actively actuated degrees-of-freedom (four wheel/leg sub-assemblies, each one is made up of a two-degrees-of-freedom suspension mechanism and a steering and drive wheel). Because of active internal mobilities, the control of their posture could be considered. The problem of posture control for this kind of robotic system is a challenge regarding its complex dynamic interactions with the environment when moving on roughly irregular terrains.

Control approaches of such redundantly actuated systems have been proposed in previous works [4], [5]. They are usually based on the modeling and analysis of vehicle motion, and lead to improve the stability of the vehicle. In [9], authors propose a posture adjustment algorithm which controls the robot around a suboptimal posture, which, itself, optimizes both the traction force balance and the tipover margin for the Hylos robot. This suboptimal posture is defined when the Hylos robot is evolving on a sloping terrain, and corresponds to the case when the vertical components of the contact force are equally distributed.

In this study, the used strategy is different. Posture control consists in modifying the robot posture in order to ensure its stability without specifying strictly a postural state. The posture correction is so made only when the stability of wheel-legged vehicle is jeopardized. The proposed controller is based on the technique of “potential fields” for which an artificial potential, reflecting the rover tipover stability margin, is used.

In section II, after the introduction of the used stability margin, the potential field based on the stability measurement is proposed. Section III presents the formulation used to develop the differential kinematic model of a hybrid wheel-legged robot. Next, decoupled posture and trajectory control algorithm is described in section IV. Finally, results of dynamic simulation to validate this new stability control strategy are shown in the last section V.
II. STABILITY MARGIN AND LINKED POTENTIAL FIELD

A. Dynamic Stability Margin

The control of robotic systems under stability margin conditions was mainly addressed in the field of legged locomotion. Since the first stability criterion [12] estimating stability for machine walking at constant speed on flat, even terrain, many of these stability criteria have been developed to adapt in more complex cases.

The control method presented in this paper considers the vehicle movement on an irregular terrain without discontinuities. Thus, the tipover stability margin is mainly constrained by the terrain geometry. In order to ensure the integrity of vehicle movement on an irregular terrain, many of these stability criteria have been developed to consider that the robot moves in a field of forces. Each force, including gravity, are considered. The formalism can be applied to the vehicle, when necessary.

To get a differential form for the potential field (as it is required), the stability potential function relative to the stability margin \(U_{stab} \) is not directly issued from the stability margin \(m_s \). In fact a potential function \(U_{stab} \) is defined for each tipover axis corresponding to each stability angle \(\upsilon_i \). The stability potential function \(U_{stab} \) results from the sum of each \(U_{stab,i} \), of which the specific form of repulsive potential function has been chosen in accordance with the potential field approach.

\[
U_{stab}(\mathbf{q}) = \sum_i U_{stab,i}(\mathbf{q}) \tag{4}
\]

with

\[
U_{stab,i}(\mathbf{q}) = \begin{cases}
\frac{1}{2} h_{stab} \left(\frac{1}{\upsilon_i(\mathbf{q})} - \frac{1}{\upsilon^*} \right)^2 & \text{if } \upsilon_i \leq \upsilon^* \\
0 & \text{if } \upsilon_i > \upsilon^*
\end{cases} \tag{5}
\]

where \(\upsilon_i \) is the stability angle or tipover angle relative to \(i \)-th tipover axis, \(\upsilon^* \) is the stability angle limit. Thus, the threshold of stability measurement from action must be defined in order to maintain an acceptable stability. \(h_{stab} \) is a constant gain.

This function has a zero-band as shown on the figure 3(b), what results in having a correction in the robot control only when necessary.
III. DIFFERENTIAL KINEMATIC MODEL

In this paper, the same formalism as the one defined on previous works ([9], [16]) is used and adapted to the specific differential kinematics of the Hylos II robot.

For this class of system, a robot is composed of a main body connected to serial articulated chains ended by a cylindrical wheel. Let us define \(\mathcal{R}_0 \) the fixed frame, \(\mathcal{R}_p \) the platform frame, \(\mathcal{R}_{C_i} \) the contact frame for each wheel and \(\mathcal{R}_i \) the frame attached to the \(i \)th rotating wheel (see Figs. 4 and 5).

The operational configuration of the robot is defined by \(\mathbf{p} = (x, y, z)^t \) and \(\phi = (\varphi, \psi, \theta)^t \) respectively the position and the orientation of the main body with respect to the fixed frame \(\mathcal{R}_0 \).

First, the velocity of the contact point due to the platform motion with respect to the ground and expressed in the platform frame \(\mathcal{R}_p \) can be written as:

\[
\mathbf{v}_x = \mathbf{R}_p \mathbf{p} + \mathbf{\omega} \times \mathbf{p}_i
\]

where \(\mathbf{p} \) is the platform velocity expressed in \(\mathcal{R}_0 \) and \(\mathbf{\omega} \) is the platform rotation velocity vector expressed in \(\mathcal{R}_p \). \(\mathbf{R} \) is the rotation matrix between the platform frame and the ground one and \(\mathbf{p}_i \) is the position of the contact point in the platform frame.

The vector \(\mathbf{p}_i \) depends on leg parameters \(\mathbf{q}_i \) (including \(q_{1i} \) and \(q_{2i} \)). It is obtained by writing the kinematic model of the leg:

\[
\mathbf{p}_i = \mathcal{G}_i(\mathbf{q}_i)
\]

Then equation (6) can be rewritten in a matrix form:

\[
\begin{align*}
\mathbf{v}_x &= \mathbf{R}_p \mathbf{p} - \mathbf{\tilde{p}}_i \mathbf{T}_\phi \dot{\phi} \\
&= \begin{bmatrix} \mathbf{R}_p & -\mathbf{\tilde{p}}_i \mathbf{T}_\phi \end{bmatrix} \mathbf{\dot{x}} \\
&= \mathbf{L}_i \mathbf{\dot{x}}
\end{align*}
\]

where \(\mathbf{\tilde{p}}_i \) is the skew matrix corresponding to the cross-product, \(\mathbf{\dot{x}} \) is the platform velocity twist with respect to the ground frame \(\mathcal{R}_0 \) and \(\mathbf{T}_\phi \) is the rotation velocity decoupling matrix, detailed in appendix. This matrix expresses the rotation velocity vector \(\mathbf{\omega} \) as a function of the rotation angle derivative \(\dot{\phi} \). \(\mathbf{L}_i \) is called locomotion matrix with a 3 \times 6 dimensions.

The velocity of the contact point \(C_i \) due to the leg motion with respect to the platform is expressed by a classical serial chain differential kinematic model:

\[
\begin{align*}
\mathbf{v}_{p_i} &= \mathbf{J}_p \mathbf{q}_i \\
&= \left[\mathbf{\sigma} \times \mathbf{a}_1 \ldots \mathbf{\sigma} \times \mathbf{a}_m \right] \mathbf{q}_i
\end{align*}
\]

The differential kinematic model is obtained by means of the velocity composition principle expressed in the contact frame \(\mathcal{R}_{C_i} \):

\[\mathbf{v}_s = -\mathbf{v}_c + \mathbf{v}_{p_i} + \mathbf{v}_x\]

where:

- \(\mathbf{v}_s \) is the sliding velocity of the contact point \(C_i \),
- \(\mathbf{v}_x \) is the velocity of \(C_i \) due to platform motion with respect to ground,
- \(\mathbf{v}_{p_i} \) is the velocity of \(C_i \) due to leg’s motion with respect the platform,
- \(\mathbf{v}_c = r \mathbf{\omega}_i \mathbf{t}_i \) is the wheel circumferential velocity with respect to the leg.

On the assumption of pure rolling (slip velocity is null), we obtain then from equation (10) by projection on the contact frame \(\mathcal{R}_{C_i} = (C_i, \mathbf{t}_i, \mathbf{l}_i, \mathbf{n}_i) \):

\[
\mathbf{R}_i^t \mathbf{L}_i \mathbf{\dot{x}} + \mathbf{R}_i^t \mathbf{J}_p \mathbf{q}_i - r \mathbf{\omega}_i \mathbf{t}_i = 0
\]

where \(\mathbf{R}_i \) is the matrix rotation of the contact frame with respect to the platform frame and \(\mathbf{\omega}_i \) is the \(i \)th wheel rate.

Finally, we obtain, in a matrix-form, the velocity equation for the whole system composed of four wheel-legged chains:

\[
\mathbf{L} \mathbf{\dot{x}} + \mathbf{J} \mathbf{\dot{q}} = 0
\]

where \(\mathbf{L} \) is the locomotion matrix which gives the wheel contribution to the platform movement, \(\mathbf{J} \) corresponds to the Jacobian matrix of wheel-legged differential kinematic chain, and where \(\mathbf{x} \) and \(\mathbf{q} \) respectively the vectors of the platform parameters and the articual-joint parameters of wheel-legged chains.

IV. DECOUPLED CONTROL

The motion control of the studied redundant system is based on the resolution of the inverse velocity model. Several classical approaches of redundancies control and issued from manipulators control have been considered ([17], [18], [19],...
[20]). In order to solve the inverse model of equation (12), the task in the operational space is defined following two modalities: one relative to the robot posture and the other to the trajectory control.

Thus the vector of platform velocities \(\dot{x} = (\dot{x}, \dot{y}, \dot{z}, \dot{\psi}, \dot{\theta})^t \) – input of inverse model – is split into two sub-vectors \(\dot{x}_t \) and \(\dot{x}_p \). Each of them put together respectively the trajectory and posture terms:

\[
\begin{align*}
\dot{x}_t &= (\dot{x}, \dot{y}, \dot{\theta})^t = S_t \dot{x} \\
\dot{x}_p &= (\dot{z}, \dot{\psi}, \dot{\theta})^t = S_p \dot{x}
\end{align*}
\]

where \(S_t \) and \(S_p \) are the appropriate sorting matrices, which are detailed in appendix.

The trajectory following task is realized by controlling the velocity term \(\dot{x}_t \) using a classical control approach. Then, the problem is to compute the joint velocity term \(\dot{q} \) in order to obtain the desired \(\dot{x}_t \) while ensuring the robot stability using a decoupled inverse differential kinematic model.

Furthermore, the actuated joint velocities are also split into three groups considering their effects on the reference body velocity:

\[
\dot{q} = (q_a, \gamma, \omega)^t
\]

where \(q_a \) groups together the set of the leg joints, \(\gamma \) the wheel steering joint and \(\omega \) the wheel spin velocity, which are respectively introduced by the associated sorting matrix, explained in appendix:

\[
q_a = S_{qa} \dot{q} \quad \gamma = S_{\gamma} \dot{q} \quad \omega = S_{\omega} \dot{q}
\]

Posture motion analysis: The projection of the differential kinematic constraints on each contact normal \(n_i \) leads to eliminate the \(\gamma \) and \(\omega \) velocities in the kinematic equation as they do not contribute to the robot motion in this direction:

\[
P_n \left[L (S_t^t S_t \dot{x} + S_p^t S_p \dot{x}) + J (S_{qa}^t S_{qa} \dot{q}) \right] = 0
\]

where \(P_n \) is the projection matrix associated to \(n \), the set of the vectors \(n_i \). \(P_n \) is also defined in appendix.

Then, considering that the leg motion marginally contributes to the reference body motion with respect to the wheel rotation, the term \(P_n L (S_t^t S_t \dot{x}) \) is negligible with respect to the term \(P_n L (S_p^t S_p \dot{x}) \). Finally, the relation (16) comes down to:

\[
^uL_p \dot{x}_p + ^uJ_{qa} \dot{q}_a = 0
\]

with \(^uL_p = \left(P_n L S_p^t \right) \) and \(^uJ_{qa} = \left(P_n J S_{qa}^t \right) \).

Trajectory motion analysis: The same analysis can be conducted by considering then the projection of the differential kinematic constraints on each longitudinal contact vector \(t_i \) and last on each lateral contact vector \(l_i \):

\[
^tL \dot{x} + ^tJ_{qa} \dot{q}_a + ^tJ_{\omega} \omega = 0
\]

\[
^L \dot{x} + ^J_{qa} \dot{q}_a = 0
\]

The term \(J_{\gamma} \) is neglected in the differential kinematic equations by considering that the castor angle is very small during the robot motion. Thus, \(\gamma \) the steering velocity as no effect on the instantaneous reference body velocity \(\dot{x} \). So, \(\gamma \) is determined by the equation (19) that corresponds here to the non-holonomic constraints (N.H.C.).

Once this decoupled analysis is established, the solving method is set up. The desired leg joints \(q_{ia} \) are substituted for the potential field gradient \(\nabla U \), established previously in order to control the robot posture (see Sec. II):

\[
\dot{x}_p = - (^uL_p)^+ \ ^uJ_{qa} \dot{q}_a = - (^uL_p)^+ \ ^uJ_{qa} \nabla U
\]

where \((^uL_p)^+ \) represents the pseudo-inverse matrix of \(^uL_p \).

Lastly, the trajectory control leads to compute the wheel velocity \(\omega \) and the steering velocity \(\gamma \). The first is stemmed from the relation (18) where the posture control \(\dot{x}_p \), issued of the relation (20), and the desired trajectory \(\dot{x}_t \) are input into the relation (21). As previously, \(\dot{q}_a \) is substituted for the potential field gradient \(\nabla U \):

\[
\omega = - ^tJ_{\omega}^{-1} \left(^tL \dot{x}_t + ^tL_p \dot{x}_p + ^tJ_{qa} \nabla U \right)
\]

The second comes from the compatible steering angle \(\gamma_i \), computed from the non-holonomic equation (19).

\[
\dot{\gamma}_i = \{ \dot{\gamma}_i \} \text{ with } \dot{\gamma}_i = K_{\gamma} (\gamma_i - \gamma_{im})
\]

where \(\gamma_{im} \) is the measure of the steering angle, and \(K_{\gamma} \) is a gain control.

The whole posture control algorithm is summed up through the control scheme depicted in figure 6.
V. RESULTS

The proposed posture control algorithm has been evaluated in dynamic simulation in order to validate its running principle. As shown in figure 7, this one has consisted in modeling the dynamic behaviour of the Hylos robot moving on an uneven ground in following a “loop” trajectory (from point “A” to point “B”). The results of this simulation are presented through figures 9 and 10, which depict respectively the evolution of the stability margin and the global potential generated for the posture correction. Figure 8 allows to observe the evolution of the robot joint angles during the whole simulation.

The first observation we have made is that the robot tips over when the posture control is not activated (see Fig. 7(a)). This stability loss is depicted on the figure 9 when the stability margin becomes negative. The point “C” on figures 7(a) and 9 shows this moment.

On the contrary, when the posture control is engaged the robot completes the set trajectory in spite of the elevation terrain variations. The analysis of the figures 8, 9 and 10 shows there is a synchronisation between those variables. As planned by the control strategy, a posture correction of the robot is made when the stability margin drops under the stability margin limit ($\upsilon^*=0.35$ rad). Every time that this case appears, the potential function relative to the stability measurement becomes non-null (see Fig. 10). Then the robot posture is modified only if a potential field is generated (see Fig. 8). Thus the robot stability is preserved without imposing a specific posture.

VI. CONCLUSION

In this paper, a new stability control strategy for a wheel-legged robot has been proposed. This one has come from the idea to use active redundancies of the studied rover in order to ensure its stability without imposing a particular posture, as made in previous works [9]. This strategy needed to set up a decoupled control of posture and trajectory. An original velocity based control algorithm has been presented. This approach allows to carry out the desired behaviour of the robot. The algorithm has been validated through dynamic simulations, showing the capabilities of such a redundantly actuated robot to ensure both its stability margin during the whole motion on uneven terrain and a specified trajectory.

Experiments with the Hylos robot are in progress. Shortly the practical feasibility of this control approach will be evaluated and validated through these experiments.
A. Differential Kinematics Matrices details

\[
\omega = T_{\phi} \dot{\phi} \text{ with } T_{\phi}(\phi) = \begin{pmatrix} c_{\phi}c_{\theta} & -s_{\phi} & 0 \\ s_{\phi}c_{\theta} & c_{\phi} & 0 \\ -s_{\phi} & 0 & 1 \end{pmatrix}_{[3 \times 3]}
\]

\[
J = \begin{pmatrix} J_1 & 0 & 0 & 0 \\ 0 & J_2 & 0 & 0 \\ 0 & 0 & J_3 & 0 \\ 0 & 0 & 0 & J_4 \end{pmatrix}_{[12 \times 16]}
\]

with \(J_i = (R_i^t J_p, 0) \)

\[
L = \begin{pmatrix} R_1^t L_1 \\ R_2^t L_2 \\ R_3^t L_3 \\ R_4^t L_4 \end{pmatrix}_{[12 \times 6]}
\]

\[
\dot{x} = \left(\dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2, \dot{x}_3, \dot{y}_3, \dot{z}_3, \dot{x}_4, \dot{y}_4, \dot{z}_4 \right)^t_{[6 \times 1]}
\]

\[
\dot{q} = \left(\dot{q}_1, \dot{q}_2, \dot{\gamma}_1, \dot{\omega}_1, \dot{q}_3, \dot{q}_4, \dot{\gamma}_2, \dot{\omega}_2, \dot{\gamma}_3, \dot{\omega}_3, \dot{q}_5, \dot{q}_6, \dot{\gamma}_4, \dot{\omega}_4 \right)^t_{[16 \times 1]}
\]

B. Sorting Matrices details

\[
S_t = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}_{[3 \times 6]}
\]

\[
S_p = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}_{[3 \times 6]}
\]

\[
S_{qi} = \begin{pmatrix} S_{q_1} & 0 & 0 & 0 \\ 0 & S_{q_2} & 0 & 0 \\ 0 & 0 & S_{q_3} & 0 \\ 0 & 0 & 0 & S_{q_4} \end{pmatrix}_{[8 \times 16]}
\]

with \(S_{qi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{[2 \times 1]} \)

\[
S_i = \begin{pmatrix} S_{\gamma_1} & 0 & 0 & 0 \\ 0 & S_{\gamma_2} & 0 & 0 \\ 0 & 0 & S_{\gamma_3} & 0 \\ 0 & 0 & 0 & S_{\gamma_4} \end{pmatrix}_{[4 \times 16]}
\]

with \(S_{\gamma_i} = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}_{[4 \times 1]} \)

\[
S_\omega = \begin{pmatrix} S_{\omega_1} & 0 & 0 & 0 \\ 0 & S_{\omega_2} & 0 & 0 \\ 0 & 0 & S_{\omega_3} & 0 \\ 0 & 0 & 0 & S_{\omega_4} \end{pmatrix}_{[4 \times 16]}
\]

with \(S_{\omega_i} = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}_{[4 \times 1]} \)

C. Projection Matrices details

\[
P_t = \begin{pmatrix} P_{t_1} & 0 & 0 & 0 \\ 0 & P_{t_2} & 0 & 0 \\ 0 & 0 & P_{t_3} & 0 \\ 0 & 0 & 0 & P_{t_4} \end{pmatrix}_{[4 \times 12]}
\]

with \(P_{t_i} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}_{[3 \times 1]} \)

\[
P_1 = \begin{pmatrix} P_{1_1} & 0 & 0 & 0 \\ 0 & P_{1_2} & 0 & 0 \\ 0 & 0 & P_{1_3} & 0 \\ 0 & 0 & 0 & P_{1_4} \end{pmatrix}_{[4 \times 12]}
\]

with \(P_{1_i} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}_{[3 \times 1]} \)

\[
P_n = \begin{pmatrix} P_{n_1} & 0 & 0 & 0 \\ 0 & P_{n_2} & 0 & 0 \\ 0 & 0 & P_{n_3} & 0 \\ 0 & 0 & 0 & P_{n_4} \end{pmatrix}_{[4 \times 12]}
\]

with \(P_{n_i} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}_{[3 \times 1]} \)