Skip to Main content Skip to Navigation
Journal articles

Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting

Abstract : We compute exactly the mean perimeter and the mean area of the convex hull of a $2$-d Brownian motion of duration $t$ and diffusion constant $D$, in the presence of resetting to the origin at a constant rate $r$. We show that for any $t$, the mean perimeter is given by $\langle L(t)\rangle= 2 \pi \sqrt{\frac{D}{r}}\, f_1(rt)$ and the mean area is given by $\langle A(t) \rangle= 2\pi\frac{D}{r}\, f_2(rt)$ where the scaling functions $f_1(z)$ and $f_2(z)$ are computed explicitly. For large $t\gg 1/r$, the mean perimeter grows extremely slowly as $\langle L(t)\rangle \propto \ln (rt)$ with time. Likewise, the mean area also grows slowly as $\langle A(t)\rangle \propto \ln^2(rt)$ for $t\gg 1/r$. Our exact results indicate that the convex hull, in the presence of resetting, approaches a circular shape at late times. Numerical simulations are in perfect agreement with our analytical predictions.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03177642
Contributor : Claudine Le Vaou <>
Submitted on : Tuesday, March 23, 2021 - 12:22:36 PM
Last modification on : Tuesday, May 11, 2021 - 9:54:30 AM

Links full text

Identifiers

Collections

Citation

Satya N. Majumdar, Francesco Mori, Hendrik Schawe, Grégory Schehr. Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting. Physical Review E , American Physical Society (APS), 2021, 103 (2), ⟨10.1103/PhysRevE.103.022135⟩. ⟨hal-03177642⟩

Share

Metrics

Record views

21