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Abstract Inthis work we deal with the exponential stability of the nonlinear Korteweg-
de Vries (KdV) equation on a finite star-shaped network in the presence of delayed
internal feedback. We start by proving the well-posedness of the system and some
regularity results. Then we state an exponential stabilization result using a Lyapunov
function by imposing small initial data and a restriction over the lengths. In this part
also, we are able to obtain an explicit expression for the rate of decay. Then we prove
the exponential stability of the solutions without restriction on the lengths and for
small initial data, this result is based on an observability inequality. After that, we
obtain a semi-global stabilization result working directly with the nonlinear system.
Next we study the case where it may happen that a control domain with delay is
outside of the control domain without delay. In that case, we obtain also a local expo-
nential stabilization result. Finally, we present some numerical simulations in order
to illustrate the stabilization.
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1 Introduction

The Korteweg-de Vries (KdV) equation u; + uy + Uy +utt, = 0 was introduced in
[8] to model the propagation of long water waves in a channel. It has been widely
studied in the last years, in particular its controllability and stabilization properties,
see [3}[19] for a complete introduction to those problems.

From the stabilization point of view, we can refer to the work [22] where the boundary
exponential stabilization problem was studied in the bounded spatial domain x € (0, 1).
It is well known that the length L of the spatial domain plays an important role in
the stabilization and controllability properties of the KdV equation. For example
if L =2m it is possible to find a solution of the linearization around 0 of KdV
(u(t,x) = 1 —cos(x)) which has constant energy. More generally if L € N where N is
called the set of critical lengths defined by

KAkl
N = {27“/%, k.l EN*},

we can find suitable initial data such that the solution of the linear KdV equation has
constant energy. In the case of internal stabilization it is proven in [17,[15] that for any
critical length by adding a localized damping we reach the local exponential stability
for the nonlinear KdV equation.

Adding a delay term allows to study the action of a device in a more real-life
setting. It is known that even the presence of small delays in internal feedback could
destabilize a system, see for example [6]. In the works [2] and [21] the problem of
robustness with respect to time delay for a KdV equation was studied with boundary
and internal stabilization respectively. Our contribution to this work is to study the
stabilization of a KdV equation posed on a Star Network in presence of internal time
delays. With respect to the KdV equation on Networks the first work introducing this
system was [1]] where the stabilization and controllability problems were studied and
after that the boundary controllabilty results were improved in [4].

In this work we are interested in the stability properties of the Korteweg-de Vries
equation with internal input delay posed on a Star-Shaped Network. Let K = {k; : 1 <
J < N} be the set of the edges of a network 7~ described as the intervals [0, ;] with
t;>0for j=1,---N, the network 7 is defined by

N
7= Jk;.

Jj=
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Fig. 1 Star Shaped Network for N = 3.

Specifically we are going to consider the next evolution problem for the KdV
equation with internal input delay on each edge.

6,uj(t,x)+6Xuj(t,x)+uj(t,x)6xuj(t,x)+(9)3Cuj(t,x)

+a;(x)uj(t,x)+bj(x)u;j(t—hj,x)=0, x€(0,¢),t>0,j=1,---,N,

u;j(t,0) =ur(t,0), Vj,k=1,---N,

Z;vzl Bfuj(t,O) =—au(t,0) - %u%(r,O), t>0,

uj(t,;) = du;(t,6;) =0, t>0,j=1,---,N,

u;j(0,x)= u(j).(x), x € (0,¢)),

uj(t,x) = z(j).(t,x), (t,x) € (=h;,0)x(0,¢;),

(KdVvad)

where a > % and for all j =1,---,N, h; > 0 is the time delay on the edge j, a;,

bj € L*(0,¢;) are non-negative and supp b; = w; is a nonempty, open subset of
(0,¢;) such that

bj(x) =2 by >0, aeonw;, (1.1)
there exists co > 0, such that b;(x)+co < a;(x),Vx € w;. (1.2)
The condition « > % was firstly introduced in [1]] in order to have a decreasing energy,

the case @ = % was studied in [4] from a controllability point of view. In our work

we consider a > % in some cases and @ > % in others. The conditions over the
damped terms with and without delay (T.I)-(T.2) are the analogues of the conditions
(1.2) — (1.3) presented in [21]], similar conditions over the weight of the feedback
with and without delay can be founded in [22 [13 [12].

In order to study this system we need first a proper functional setting. We define
the following spaces

d i—1
H2(0,¢,) = {v e H*(0,¢)), (&) v(£)=0,1<i< s}, s=1,2,

where the index r is related to the null right boundary conditions. The space HS (7")
will be the cartesian product of H;(0,¢;) including the continuity condition on the
central node (u;(0) =ux(0),Vj,k=1,---,N)

N
H(7) = {z= (ur. - un) € | [H0.6).u,(0) = ui(0), V) k =1, ,N},s= 1.2

J=1
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and
N
2 _ 112
lullZy o = Zl e 11 oz,

where the index e indicates that each edge belongs to H;(0,{;).
N N
A7) =] [L20.6). Lo ) =[]L0.¢).
j=1 j=1
The space L?>(7") is equipped with the inner product
N ¢
(U, V)2 = Z/ ujvidx, Vu,veL*(T). (1.3)
j=170

We also define the space
B = C([0,T].L2(7)) N L*(0,T; Hy (7))

endowed with the norm

T 1/2
lleelle = Nl ro,r1,02(my) + el 20,7 m1 (7)) =  max llullpz (o + (/0 llu(z, ')||H2ﬂé(7-)dt
Note first (I.T) and (T.2) imply
wj=supp b; C suppa;, and a;(x) > bg+co >0, in wj. (1.4)
To deal with delays we introduce the following space
N
H=L2(T) x| [ [ L2((=h;,0) x (0,¢;))
j=1
endowed with
) N ¢ ) 0 rt )
1w ol = Y| [T wera [ 7w emaas
= \Jo -h; Jo
where for all j =1,---,N, &; is a non-negative function belonging to L (0,¢;) such
that supp ¢; = supp b; = w; and
bj(x)+co <€&j(x) <2aj(x)—bj(x)—co, inwj. (1.5)
For (KdVd), we define the energy
N 4 1
E(f) = Z / uﬁ(z,x)dxm,/ / £j()u3(t = hjp.x)dpdx | . (1.6)
j:1 0 wj 0

The above expression corresponds to the square norm of (u(t,-),u(t+-,-)) in H,
with the change of variable s = —hp for u;(t +s,x).
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Finally we denote L2(Q) = ;V:l L?((0,1) X wj), and let
N
H=L7)x HLZ((O,l)xa)j) =L2(7)xL}(Q)
Jj=1

with its inner product

Nt 1
<(§)(§)>=;‘/0 uj(x)v,-(x)dx+hj‘/wj/0 £;(0)z;(p,x)yj(p,x)dpdx,

we denote by || - || g its associated norm.

Our first main result is the following one, where local exponential stability of

(KdVd) is obtained for a restricted assumption over L = max ¢}, but an estimation
Jj=lo N

of the decay rate is given.
Theorem 1.1 Assume a, b € L*(7") componentwise non-negative that satisfy (I.1)

and (T2). Let @ > % and (é’j);\’:l C (0,00) such that L < ‘/Tgn. Then there exists € > 0,

such that for every (go,go(—ﬁ-,-)) € H satisfying ||(g°,§0(—ﬁ-, N < €, the energy
of defined by (1.6) decays exponentially. That is, there exist C > 0, y > 0 such
that

E(t) <CE(0)e™", >0,

where

2
3uin’ + §L3/26/1171'2 —,u14L2)

M2

v < min min
8L2((1+Luy)) j=L N 2hj (2 + 1€ L= (0.¢;))

(1.7)

c=(1+max{Lm,’£}),
b

for yuy and u» such that

1 2a;,-b;—&; —b;
0<pu; <min{l,— (2e—=N) min {inf —— fj,infgj I,
N j=1,--,N | w; Lb; w; Lbj

O0<pr< min _inf{2a;-b;—&; - Lb;}.
j=1,---,N wj k ‘ ‘

This result will be proved in a constructive way by using a Lyapunov function, similar
to those used in [2} 21]].

On the other hand, our second main result is obtained without restriction on the
lengths of 7~ and gives us a local exponential stability.
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Theorem 1.2 Assume a, b € L*(7") componentwise non-negative that satisfy (I.I))
and (1.2). Let (fj)j.vzl C (0,0), then there exists € > 0 such that for all (u®,z°(~h-,-)) €
H with || (u®,2°(=h-,))||u < € the energy of (RAVd) decays exponentially, i.e, there
exists C > 0 and u > 0 such that E(t) < CE(0)e ™" for all t > 0.

The main difference between Theorem[I.Tland Theorem[I.2is that Theorem [ 2lis
based on an observability inequality which is proved using a contradiction argument.
Thus we can not estimate the decay rate.

In our third main result, we proved a semi-global exponential stabilization by
working directly with the nonlinear system (KdVd).

Theorem 1.3 Assume a, b € L*(7") componentwise non-negative that satisfies (1.1))
and (I2). Let (fj)szl C (0,00) and R > 0. Then for all (u°,z2°(-h-,-)) € H with
||(go,go(—ﬁ~, DI £ R then there exist C = C(R) > 0 and u = u(R) > 0 such that the

energy of (KAVd) satisfies E(t) < CE(0)e " for all t > 0.

The semi-global sense of this result arises from the fact that we can choose as we
want the parameter R > 0 of the initial data but the decay rate depends on it.

In the last results presented, it is not possible to take a; =0 and b; # 0 for some
je{l,---,N} (by (T.4) if a; = 0 then b; = 0). However this is only a technical part
of the proof and in the next result we deal with this problem in a more general case,
we suppose for this part that

wj=supp b; ¢suppaj, forjelc{l,---,N}. (1.8)

For this we write now the analogues of the condition (I.2) in the setting (I.8), take
I'={1,--- ,N}\I,

there exists ¢ > 0, such that b;(x) +co < a;(x),Vx € w;, forjel". (1.9)

Then we write our last result of stabilization when the internal delay is not necessarily
supported in the domain of a;.

Theorem 1.4 Assume a, b € L*(7") componentwise non-negative that satisfy (I.1))
and (T9). Let « > &, n > 1 and (fj)j.vz1 C (0,+00) such that L < ‘/7577. Then there
exits 6 = 6(a,n,L,h) >0 and € > 0, such that for every (go,go(—@,-) satisfying

Bl (7 < 6 and ||(u°,2°(=h-,)) | < €, the energy of (RAVd) decays exponentially
to 0.

The organization of this paper is the following:

Section2]is devoted to the study of the well-posedness of (KdVd). More precisely
we consider the linearization around 0 of (KdVd) and using Semigroup Theory we
show the well-posedness of the linear system. Then using a fixed point argument
we obtain the well-posedness for the nonlinear system. In Section [3] we present our
stabilization results when the feedback terms a, b € L®(7") satisfy (I.I) and (T.2). The
first one namely Theorem|I.1]is obtained following the same steps as [2, 21]]. Then we
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detail the proofs of Theorem [I.2]and Theorem [I.3]that are based on an observability
inequality. In Section4] we study the case where is not satisfied and we show the
proof of Theorem I.4]using a suitable auxiliary system and a perturbation argument.
Some numerical simulations are presented in Section[3]in order to illustrate the results
obtained. Section[6]collects some concluding ideas and future research lines.

2 Well-posedness of a delayed KdV system

Our idea is the following, first we work with the linearization around 0 of (KdVd),
then we add a boundary source term at the central node g(¢) to consider the nonlinear

N
boundary condition —gu%(t,O)and secondly we add the internal source terms f; to

consider after the term u ;. u ;. Finally to pass to the nonlinear we use a fixed
point argument.

2.1 Well-posedness of the linear case

We start by proving the well-posedness for the linearization of (KdVd) around 0, that
writes

8,uj(t,x)+6xuj(t,x)+0§uj(t,x)+aj(x)uj(t,x)

+bj(x)uj(t—hj,x)=0, xE(O,fj),t>0,j=1,~-,N,

uj(t,0) =ui(t,0), Vj,k=1,---N,

S 03u;(1,0) = —au; (1,0), t>0,

uj(t,[j)Zaxuj(l‘,fj)ZO, t>0,j=1,"',N,

u;j(0,x) = u?(x), x€(0,¢)),

uj(t,x) = z?.(t,x), (t,x) € (=hj,0)x(0,¢;).
(LKdVad)

We set z;(t,p,x) = ”f|wj (t—=hjp,x) x €wj, p € (0,1). Then we can check that

hjoizi(t,p,x)+0,z;(t,p,x) =0, xewj,pe(0,1),r>0,
zj(1,0,x) =u;(t,x), X €wj,t>0, 2.1)
z;j(0,p,x) = uj|wj(—hjp,x) = Z(J).(—hjp,x), pe(0,1).

Let us introduce the componentwise product .* as

P1 q1 pi1q1

PN 4N PNAN
Then can be written as

:U,(t) =AU(t),t>0

U(0) = Us, (2.2)
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0
,Uo=1 o 4 and the operator A is defined by:
2,

where U = ( (h-)

[FSIEN
I

—(Dx(T)+DUT Nu—a.xu-b.x2(1,)
AU= _%-*DP(T)E

1 1 -
for u = (up¥,. a=(apl,. b=b)Y,. h=(h)¥, (z) = wd ) =

(Zj(l,-))j.v:] in which Z;(1,-) € L*(0,¢;) is the extension by 0 of z;(1,-) outside
w; and the operators D (7") (resp. D, (7)) acts like the derivative with respect to x
(resp p) componentwise as

ui (’)xul 21 6pZ1
un Oxun IN 6pZN

The domain of A is the following

N N 2.
D(A) = (f),ze(]_[H3(0,€j))mHS(T>,Z(Lx—”;(m:—aul(ox
= j=1 Jj=1

N
ze[ [L2H 0D %w)), 2500 = ujl,, (x)}-
J=1 '

Note that if (%) € D(A) then u € H2(7") that implies u;(t,¢;) = dyu;(t,£;) = 0.

Theorem 2.1 Assume a,b € L™ (T) componentwise non-negative that satisfy (LI
and (L.2). Let Uy € H. Then there exists a unique solution U € C([0,00); H) of (2.2).
Moreover if Uy € D(A) then U is a classical solution and

U € C([0,00); D(A))NC'([0,0); H).

Proof Let U = (%) € D(A), then



Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network 9

N ¢
(AU,U) = Z (‘/0 (—8iuj(x) = 0xuj(x)—a;(x)uj(x))u;(x)dx
j=1

J

! 1
_/ bj(x)zj(l,x)uj(x)dx—hj/ /0 fj(x);Opzj(p,x)zj(p,x)dpdx)
w;j w;j J

1

:i(/t)j O2u;(x)d u~(x)dx—32u.(x)u-(x)’€j——uz.(x)rj—/gja'(x)ug(x)dx
A xUj XU X7 J 0 2 0 0 ’ ’

J=1

—/‘bj(x)zj(l,x)uj(x)dx—% ;,-(x)z?(p,x)iédx)

& (1 216 | 42 15 b 2
:jZ:;(E(axu,-(x)) |0-'+axuj(0)ul(0)+§ul(0)—/o aj (x)u(x)dx

_/‘bj(x)Zj(l,x)uj(x)dx—%/.fj(x)zﬁ(l,x)dx+%/'gj(x)zﬁ(o,x)dx).

Thus,

1 N u
(AU,U) < —EZ(Bxuj(O))2+(3—a) u%(O)—Z/(O a;j (x)u(x)dx
j=1 Jj=1

)] wj

N ) . N . .
5[ (oo 22 B0 s S [ (0689

=17 @ =17
(2.3)
Using (T4), (T:3) and that @ > & we conclude that (AU, U) < 0, thus A is dissipative.
Easy calculations show that

o\ [ Px(T)+D3(T))y —asv+£.55(0,)
A (5) =( %.*DP(T)X )

in which §;(0,-) € L*(0, ¢;) is the extension by 0 of y;(0,-) outside w; and with

D(ﬂ*):[(

. = b (x)
0xv;j(0)=0,Vj=1,---,N, V€ ELZ(HI(O,I)ij),yj(l,x) Z—éfj__(xx)"jle(x)}.
)e

I< I<

N N a2y
),ge ﬂm(o,ej) NH (T, Z deJ (0) = (@ = N)v1(0),
Jj=1 Jj=1

Note that (i) € D(A*) then v € H.(7") that implies vi(t,£;)=0.Let V= (
D(A*), then

I< |<
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N ¢
(AV.Vy=y (/0 (829 ;(x) +8yv (x) —a; (x)v; (x))v; (x)dx
j=1

! 1
+ /w 10920979+ /w K /0 f,-(x)h—japyj<p,x>yj<p,x>dpdx),

N

& A A
=3 (_/0 02v;(x)xv j (X)dx+82v; (x)v; ()| +%|vj(x)|2|g’

¢
—/0 aj(x)vﬁ(x)dx+ fj(x)yj(O,X)Vj()c)dx+l

o 3 w_fj(x)lyj(p,x)lzhl)dx)

N

4
< D (510 ORI =220, 0m 0= 3200~ [ 0y

v / £/(0y2(0,x)dx + = / £V (V) dx+ / £ (3 (1,x) - y,<0x>)dx)

1 N (0 b
S—§;|3xvj(fj)|2+(§—a)v%(0)+‘/ ( aj(x)+§’;x)+2§fj(x))v§(x)dx

— X))V (X _x 2 X .
/<o,fj)/wj 5V ()~ / (x)y3(0,x)dx

bz(X)
Moreover we know that &;(x) > b;(x) > bg > 0, for x € w, then we have that (x)
&j
bj(x), for x € w; and then
2
&j(x) bj(x) fj(x) bj(x)
—a;(x)+= + a;(x)+ <0, for xew;,
! 2 2¢(x X Y 2 !

thus as @ > %, A* is dissipative. Finally A and A" are dissipative, also A is densely
defined closed operator, thus A is the infinitesimal generator of a Cp semigroup of
contractions on H [16]. |

As the systems (CKdVd) and (2:2) are equivalent we obtain the well-posedness
of (CKdVd). Let S(z),7 > 0 the semigroup of contractions associated with A. Next
result gives us some a priori estimates for (CKdVd).

Proposition 2.1 Assume a, b € L™ (7") componentwise non-negative that satisfy(I.1))
and (I.2). Then, the map

U= (u’2°(=h,)) = S() (@, 2°(~h-,")) (2.4)
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is continuous from H to Bx C([0,T];L*(Q)) and for (go,go(—ﬁ-, -)) € H the following
estimates hold

N T pt T
JZ_;/O ‘/0 aj(X)(uj(t,x))dedH/O wj(Zj(t,l,X))zdxdt

< C(I1el2, o +12° (=) ) ) -
(7) (Q)

2.5)

o - 1+ 2T ||a|l>(7) + 2T || Bl (1)
“ﬂ ”LZ(T) - T ” ”LZ(OT]LZ((T))

+2(a——)||u1( 012 .7 10t 021 1)+ Il () 120(=E ) 12
(2.6)

N T
1
I gy < N2 g2 [ [ st tnPasar @)
=t

wj
Proof Taking (u®.z°(~h-,-)) € H, Theorem[2.1|gives us S(-) (u®, 2% (~h-,")) = (u.z) €

C([0,T];H) and using that ‘A generates a Cy semigroup of contractions, we get for
allt € [0,T]

N e N
Z[)f (uj(t,x))zdx+2hj/w/olfj(x)(zj'(t,p,x))zdpdx
<Z/ (uo(x)) dx+2h /"/0lfj(x)(z(}(—hjp,x))zdpdx.

Letpel_[C ([0,T] x (0,1)) andqe]_[c ([0,T] % (0,¢;)). Now multiplying
J=1 Jj=1

(2.8)

(CKdVd) by gju; and @.1I) by p,z; and integrating on (0,s) x (0,£;) and (0,s) X
(0,1) X w; we can obtain

4]
| a0 eopas; - / / (80 + 0+ 03, uy Paxdr
S fj
+2// ajqj|uj|2dxdt+2// bi(x)qj(t,x)u;(t—hj,x)u;(t,x)dxdt
0o Jo 0o Jo

s ort s
+3/0‘/0 |axuf|26xqj'dxdl‘=‘/0 [(‘11'+3§‘1j)|uj|2+2qjuj6fuj

—20xq ju;O0xu; —q;10xu;|*] (1,0)dt,
2.9)

1 s 1
1
| [ csnsopdal-o [ [0 [ auowssappiePasdpar
wj wj

1 S
oo /O (zj(t,1,%))2p,(t,1) = (u;(t,x))*p,(1,0)dxdt =
J wj
(2.10)
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Taking s =7 and p; = p in 2.10) we get

1 1 T 1
//,0[Z,-(T,p,x)z—z?(—phj,x)z]dxdp——/ //Izjlzdxdpdt
0 Jo; hiJo Jo Ju,

| 2.11)
+—/ /Zj(t,l,x)zdxdp:O.
hjiJo Jew,
Thus,
I )
— zj(t,1,x)"dxdp
hj 0 wj
1 T ! 1
S—/ ‘//|Zj|2dxdpdt+/ / pz?(—ph‘;,x)zdxdp.
hiJo Jo Ju, 0 Jo,
and hence with (2.8)) we get
N
> / 2j(t,1,3)%dvdp < C (|1, ) +12° (=) g ) - (2.12)
1Y

Then taking ¢; = 1 in (2.9)

N fj S N N
Z/ |uj(s,x)|2dx+/ Z|6xuj(t,0)|2dt+(2a/—N)/ |ui (£,0)2dt
j=170 0 5= 0
Nops opt N s pt
+ZZ/ / af|uj|2dxdt+22/ / bjuj(t—"h;,x)u;(t,x)dxdt
mdo Joo = Jo Jo '
N ¢;
:Z/ |u;(0,x)]dx.
‘=Jo

Thus

N ¢ s N N T pt
Z/ |uj(s,x)|2dx+/ Z|3xuj(t,0)|2dt+22/ / a;lu;Pdxdt
=Jo 0 = = Jo Jo

N ¢ N T pt
SZ/O |u,(o,x)|2dx+22/0 /0 biluj(t—hy,x)|uj(t,x)|dxdt.
j=1 j=1

Note now that

s l;
z/ /Jbj(x)|uj(t—hj,x)||uj(t,x)|dxdt
0 0
s fj s fj
s// bj(x)luj(t—hj,x)lzdxdt+// b (x)|uj(t,x)*dxdt,
0 0 0 0

K t; s—h;
- / / b () (1,3) Pdxd + / ' / b ()| (1,x)[2dxdt,
0 0 —hj a)j

N fj 0
sz/ / bj(x)|uj(t,x)|2dxdt+/ / b (x)|29(t,x) dxdt,
0 0 —hj wj
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which implies

Noops ot
221 /0 /0 bj<x)|uj(t—hj,x)||uj(t,x>|dxdtsC(||g°||§zm+||g°(—@-,~)||§2(g)).
J=

(2.13)
Thus, we have

Nt T N N T pf
Z/ |uj(s,x)|2dx+/ Zlﬁxu,—(t,o)|2dt+2/ / aj(x)(uj(t,x))dedt
=170 0 = =170 Jo
< C (1612, iy + 12 () I g )
that brings (2.3)) using (2.12).

Note also that Zj.vz 10xuj(-,0) € L?(0,T). Moreover integrating (2.14)) with respect to
s over [0,7] we can obtain.

(2.14)

12 0 -2y < CT (1812, + 120 (=B ) g ) (2.15)
We are going to consider the following multiplier presented in [4]], g (¢,x) = X(zi’;x) ,
J

this multiplier satisfies the next properties

- q;(¢,0)=0,Vre[0,T].
-0<gq,(tx) <1, V(tx)e[OT]x[Of]
- 0<6xq1(tx)_l,,V(tx)€[0 T]1x[0,¢;].

- (9)%qj(t,x)=—[2,V(t x) € [0,T] x [0,¢;].

x(2£’ -X)

Taking ¢ (t,x) = and s =T in 2.9) we get

J

N N T
Z/quj(t,x)|uj(T,x)|2dx+2Z/ / g (6,)bj (X j(t = hj,x)u; (1,x)dxdt
=170 =170 Joj
N, N T p¢;
+2/ ul(tozf—_ﬁxuj(t,O)dt+ZZ/0 /0 q;(t.x)a;(x)|u;(t,x)|>dxdt
j=1 j=1
N . N T ¢
J 2 J 2
—Z/ / xq; (1,2)|uj (1,x)] dxdt+32/ / |91 (1,%) P D (1,x) dxdt
=Jo Jo ‘=iJo Jo

N

_Z/,qj(o Ol dx Zfz /OTlul(t,0)|2dt.

and then recalling that L= max {; and taking {= min ¢;
j=l.---,N j=l.---,N
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2 0P 2. T i 2
ﬁ”ul(U )|IL2(0,T) S€_2”E“L2(O,T;]L2(7"))_2 0 ul(l‘,());axuj([,())[—jdl

N T
—ZZ;‘/O A qi(t,x)bj(x)u;(t—hj,x)u;(t,x)dxdt+ ||g0||i2(7,).
j= J

(2.16)
Using Young’s inequality, (Z.13) and @2.13) we get that u; (+,0) € L*(0,T) and

et (0022 07y < € (1012 iy + 120 (=B g )

Now, let us choose ¢; =x and s =7 in (2.9)

/Oxluj|2dx|odx—/(; /(; |uj|2dxdt+2‘/0 ‘/0 xbj(x)uj(t—hj,x)ui(t,x)dxdt

T pt T pt T
+2/ / aj(x)x|uj|2dxdt+3/ / |c")xuj|2dxdt=/ —2u;(1,0)du;(t,0)dt
0 0 0 0 0

Then
N T rt N T pf;
32/ / |0xuj|2dxdts(1+2L||Q||Lw(7))2/ / lu |2 dxdt
mJo Jo ‘=Jo Jo
N 0 N e
+L||Q||Lm(7~)2/ ‘/lz(}(t,x)|2dxdt+LZ/ |u;(0,x)*dx
j=1 —h_,' a)j j=1 0

N T
—22 / w1 (1,0)85u(1,0)dt
=170

and hence

N T p¢
3.21./0 /0 |Oxu] dxdtsC(llg 122 + 12 (_ﬁ"')”n}(g))a
J:

that brings with (2:8)) the continuity of the map (2.4) from H to Bx C([0,T] : L?(Q)).
Now taking ¢; =T —t and s =T in (2.9), we obtain,

4 5 T prt 5 T rt
—/ Tu;(0,x)] dx+/ / |u | dxdt+2/ / a;(x)(T —1t)|u;|*dxdt
0 0 0 0 0

T ¢ T
+2/0 /0 bj(x)(T—t)uj(t—hj,x)uj(t,x)dxdt:/0 [(T = 1)]u; (2,0)]2
+2(T = 1)u; (t,0)02u;(1,0) — (T —1)|0xu; (1,0)*] dt,
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then

N ¢ N T p¢ T pt
TZ/ |uj(0,x)|2dx=Z(/ / |uj|2dxdt++2/ / (T —1)a,|u,|*dxdt
=170 =100 00

T rf -
+2£ A bj(x)(T—t)uj(t—hj,x)uj(t,x)dxdt)+(2a/—N)A (T 1) |uy (1,0)2dt

N T
+Z/ (T —1)|Bu;(1,0)|*dt.
=170

Finally we get (2.6), that is

1+2T o0 +2T||b]|1
1|12, s( Il +2T Ik (”)uuuzz )
CURITS T ullrz0,r:2(7)

N
2 (a— 5) I O .7 #1001 g 7y + 1B () 1= )2 -

Lastly taking p; =1 and s =T in (2.10)

1 1
[ [ epmbad- [ [ npoPad
0 wj 0 wj

J

1 T
v [ 1l 0P 0P dvde =0
hiJo Jo,

and hence we obtain (2.7). ]

2.2 Extra boundary conditions

Following [[1] we need now some regularity results for the linear delayed KdV equation
with extra boundary source term g(¢) at the central node

atuj(t,x)+6xuj(t,x)+6;uj(t,x)+aj(x)uj(t,x)
+bj(x)uj(t—hj,x) =0, X € (O,Kj), t>0, j= 1,---,N,
u;j(t,0) =ug(t,0), Vj,k=1,---N,
S 03uj(1,0) = —au; (1,0) + (1), >0,
Mj([,{ii)zaxuj(l‘,fj)ZO, t>0,j=1,"',N,
u;j(0,x) = us.(x), x€(0,¢)),
uj(t,x) = 29(1,x), (t,x) € (=h;,0) % (0,¢;).
2.17)
Recall that z;(¢,p,x) = uj|wi(t—hjp,x), for x € wj, p € (0,1) is solution of
hjoizj(t,p,x)+0,z;(t,p,x) =0, x€wj;,pe€(0,1),t>0,
7j(1,0,x) =u;(t,x), X€w;,t>0, (2.18)

zj(0,p,x) = ujle(—hjp,x) = z?.(—hjp,x), p€(0,1).

Define h = max -1 ...y h;.
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Proposition 2.2 Assume a, b € L™ (7) componentwise non-negative that satisfy (I.I))
and (I2). Let (Up,g) € D(A)x C2([0,T]) where CZ([0,T]) := {¢ € C*([0,T]) :

©(0) =0}. Then there exists a unique classical solution U = (%) e C([0,T],D(A))N
C'([0,T];H) of @I7)-218).

Proof Lety =u—g¢, where ¢ is defined as

(x—=¢;)?

. .

2 -2

51(25 £ +a)
=1

$j(x)=

We can easily check that

¢ (L)) =¢7(£;) =0, Vj=1,---,N
1
$j(0) = ———=¢x(0), Vj.k=1,---N,
NP (2.19)
” jzz; J
S ¢(0) = 1-agi(0), t>0.

We extend g on [—D,0] by g(¢) =0 for 7 € [-h,0]. Then v satisfies

(9,vj(t,x)+6xvj(t,x)+6;’vj(t,x)+aj(x)vj(t,x)
+bj(x)vi(t="hj,x)= fi(t,x), x€(0,£;),t>0, j=1,---,N,
v;(2,0) =vi(2,0), Vj,k=1,---N,

M 0%v;(1,0) = —avi(1,0), t>0,
Vj(l,fj)Zaij(l,fj)ZO, l>0,j:1,"',N,
v;i(0,x) = u?.(x), x € (0,¢)),
vj(t,x) =z(}(t,x), (t,x) € (=hj,0)x(0,¢;).

(2.20)

for fi(t,x) =—¢;(x)g’(t) - (¢}+¢}”+a]~¢j)(x)g(t). Then, taking y ; (¢, p,x) = Vf|wj (t—
hjp’x)

hioy(t,p,x)+0,y;(t,p,x) =0, x€ewj,pe(0,1),t>0,
yj(t909x):vj(t9x)’ ‘xewj’t>0’ (221)
Yi(0.0.x) =vj|,, (=hjp.x) =2(=h;p.x), p € (0.1).

Thus defining V = (5), as —fg’ - (9’+£”’+g. *@g € C'([0,T],L*(7)), by the

classical semigroup theory and the well-posedness of the linear case, we deduce the
existence of a unique solution V of (2:20)-(2.21). Moreover V € C([0,7],D(A)) N
C'([0,T]; H) and hence (2Z.17)-(2.18) admits a unique solution U € C([0,T], D (A)) N
C'([0,T];H). o
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Now, we study the same system but with less regular data.

Proposition 2.3 Assume a, b € L™ (T") componentwise non-negative that satisfy (I.1)
and (T.2). Let (Uy,g) € Hx L*(0,T), then there exists a unique mild solution U €
BxC ([0,T];L*(Q)) of @I7)-@-I8). Furthermore u;(-,0) and dyu(-,0) belong to
L%(0,T) and we have the following estimates

< € (118122 0.7 + 112 oy + 112 (<1, ) I g ) - (2.22)

||§||2C([0’T]7L2(Q)) <C (”ZOHEIZ(-T) + ||§0(_ﬁ', )”]]2_‘2(9) + ”g”iZ(O’T)) . (223)

1+2T|allLe () + 2T || bl ()
“Z()”iz(ﬂ = ( T ”Z”iZ(O’T;LZ(r]—))

#1120 (=) gy + € (11 (0 a7y + 18122 1) |

(2.24)

N T
1
12 2 ) < 2T 2y + D5 /0 |2 (1, 1,%)Pdxdr.  (2.25)
=17 wj

Proof Those estimates are obtained in a similar way as Proposition [2.1] and for that
many calculations are omitted. First suppose that (Up,g) € D(A) X Cg([O, T1) and

thus the solution of (2Z:17)-(2:18) satisfies U € C([0,T]; D(A)NC'([0,T]; H).

Multiplying (2.17) by u; and integrating on [0,s] X [0,£;] gives us

Nt s N s
Z/ |uj(s,x)|2dx+/ Z|6xuj(t,0)|2dt+(2a—N)/ luy (1,0)2dt
— Jo 0 ‘o 0
J J
N N [)j N S fj
+22/ / ajluj|2dxdt+22/ / bjuj(t—"hj,x)u;(t,x)dxdt
“mJo Jo =Jo Jo

N £ K
:Z/J|uj(0,x)|2dx+2/ ui(1,0)g(t)dt,
j=170 0

then using that

s l;
z/ / " b (0 (= hjox)u (t,x)dds
0 0

s ' 0
SZ/ /fbj(X)Iuj(t,x)|2dxdz+/ / bj(x)lzg(t,x)lzdxdt,
o Jo iy Joo;

J

N £ s N s
Z/ |uj(s,x)|2dx+/ Zlﬁxuj(t,O)lzdt+(2a/—N)/ |uy (2,0)*dt+
=170 0 53 0

N s nt .
22 J(aj—bj)|uj|2dxdt <2 [ ui(1,0)g(t)dt (2.26)
j:1 0 0 0

+C (11 oy +12° (B g ) -
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Note now that (Z:T6) still holds in this case and we can obtain

N T
”ul("O)HiZ(O’T) S C ||£||22(O’T;L2(7.))+||Zol|i2(7.) +Z‘/0‘ |axuj(t,0)|2dt
J=1
0 2
HZ ()P ).
From (2.26) we obtain
2 02 0 2 !
”ul("o)”LZ(O’T) < C(”Z ”]LZ(‘7')+||§ (_ﬁ‘a')”]LZ(Q)""/Ov Ml(t,O)g(I)dt)
and again by Young’s inequality
1 (02 gy = € (112 iy 120 g + 182 1

Thus u;(-,0) € L>(0,T) and from 2.26) u(s,-) € L>(7") for s € [0,T], dyu(-,0) €
L*(0,T) and

2 2 0912 0 2
max (5,22, < € (U8l o) + I 120 ) 2227

sel0,T

Now multiplying 2.17) by xu; yields

¢ - TopGo T pt
/ x|uj| dx|0 dx—/ / o dxdt+2/ / xbj(x)uj(t—hj,x)u;j(t,x)dxdt
o . o Jo : o Jo ; : : .
T pe; T pt T
+2 / / a;j(x)x|u;|*dxdt +3 / / |0 u ;> dxdt = / —2u ;(t,0)du; (2,0)dt.
o Jo 0o Jo 0

Then

N T [.’. N T fj
32/ / |Ou | dxdr < (1+2L||Q||me)2/ / |uj|2dxdt
=Jo Jo =Jo Jo

N ¢ N 0
LY [ PacsLibliein Y, [ [ 1 Paxar
Jj=1 0 j=1 —I’lj wj

#Hlur )2 .7 + 10O .

and using (2:27) we deduce (2:22). Now multiplying (2.17) by (T —1)u; yields

—/ T|uj(0,x)| dx+/ / |ue 7| dxdt+2/ / a;(x)(T—t)|u;|"dxdt
0 o Jo o Jo

T l; T
+2/0 /0 bj(x)(T—t)uj(t—hj,x)uj(t,x)dxdt:/0 [(T = 1)]u; (2,0)]2
+2(T = 1)u; (,0)02u;(1,0) — (T —1)|0xu; (1,0)*] dt,
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then
N ¢ N T et T pt
TZ/ |uj(0,x)|2dx=2(/ / |ui|2dxdt+2/ / (T—1t)a;|u;|*dxdr+
=Y = \wWo o Jo ‘ 0 Jo
T pt T
2/ / bj(x)(T—t)uj(t—hj,x)uj(r,x)dxdt)+(2a—N)/ (T —1)|u1 (1,0)|dt
o Jo 0

N T ) T

Finally we get

[l

2 L 1+2T||all e () + 2T || bl (7 )
”LZ(T) == T ”ﬂ”LZ(O,T;LZ(‘T))

bl (12 (s ) gy + € (1 O 7 +llgl2 1)
and hence (2:24). We can conclude that the estimates for (2.18)) are the same as
Proposition By density of D(A) in H, C5([0,T]) in L*(0,T), we extend our
result to arbitrary data (U, g) € Hx L*(0,T). ]

2.3 Extra source term

We add now a source term f;(¢,x) on each edge in our KdV problem.

ﬂtuj(t,x)+6xuj(t,x)+6;uj(t,x)+aj(x)uj(t,x)
+bj(x)uj(t—hj,x) = f;(t,x), x€(0,¢),t>0, j=1,---,N,
u;j(t,0) =ug(t,0), Vj,k=1,---N,
Zj.vzlaguj(t,O)=—au1(t,0)+g(t), t>0,
uj(t, ;) =0xu;(t,t;) =0, t>0, j=1,---,N,
u;j(0,x) = us.(x), x € (0,¢))
uj(t,x) = 29(1,x), (t,x) € (=h;,0)x (0,¢;).
(2.28)

We set as in the previous cases z;(f,p,X) = uj|w_(t— hjp,x) x €wj, p € (0,1).
J
Then

hjoizj(t,p,x)+0,2;(t,p,x) =0, x€wj,pe€(0,1),t>0,
7 (2,0,x) = u;(t,x), x€wj,t>0, (2.29)
zj(O,p,x) = uj|wj (_hjp’x) = Z(j)'(_hjp’x)’ pE (0’ 1)

Proposition 2.4 Assume a, b € L™ (7)) componentwise non-negative that satisfy (1.1
and ([.2). Let (Uy,g, f) € HX L*(0,T) X L' (0,T;L?(7")) then there exists a unique

mild solution U = (%) e BXC ([0,T];L*(Q)) to 2:28)-(2.29). Furthermore we have

the following estimates,
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1D o101y < € (18012 oy + 12 (B0 + 112 o -2+ 18022 0 )
(2.30)

2 012 0 2
10012 0 72y < COT) (112 oy + 120 ) g .
I om0 1810 )

Proof The well-posedness of (2.28)-(2.29) follows from classical semigroup theory

and from the propositions given considering the source term % . Also this gives

us the first inequality, for the second one note that multiplying (Z-28) by u,; and
integrating we get

N ¢; T N T
Z/ |u,-(T,x)|2dx+(2a—N)/ |u1(t,0)|2dt+Z/ |Bu;(1,0)*dt
‘=Jo 0 ‘=Jo
NopT rtf NopT ptf

+2Z/ / aj(x)|uj(t,x)|2dxdt+22/ / b (t,x)u; (1 —hy,x)dxdt
J=1 0 0 = 0 0

T N T pt o
—2/ u(t,0)g(t)dt =2 / / fi(t,x)u;i(t,x)dxdt+||u’|| .
o 1 JZ:; 0 0 J J = L2

Note that

N T ¢ N T
2y [ [ s andvdr <23 [ 180005200t
j=1 j=1

N T
< 22 ||Mj||C([0,TJ,L2(0,£,-))/0 1 /illz20,e,)dt < ||Z||2c([0’r],Lz(¢)) + ”i”il(o’T;Lz(ﬂ)'
=

Following the same steps as in Proposition 2.1 and Proposition 2.3] we can get

[ 2o [T 2 2 0.0 2
O [ irRase Y [ 1o 0.00Pdr < € (Ml s ) 160 DI,
= =

T
+2‘/0' uj (t’O)g(t)dt+ ”E”%([O,T],LZ(T)) + ”i”il(o,T;LZ("]’))) .

Now multiplying (Z.28) by g u; for g; = X(Z?;X) and using the last inequality we get
j

et (00122 .y < € (1012 i + 120 = D g + 1812 0y + IS s 22y
and we can also have
”ul("o)”iZ(O,T) + ”axu(’ O)HiZ(O,T) <C (”J_C”%,I(O,T;]LP(‘T)) + ”g”2LZ(O,T)

(b DI ).
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Now multiplying (2.28) by xu; gives us

N T pt Nl NoofTort
32/ / |6xuj|2dxdt+Z/ x|uj(T,x)|2dx—Z/ / |uj|>dxdt
=Jo Jo o mJo Jo
N N T p¢;
+22x|uj|2ajdxdt+22/ / xbju;(t—hj,x)uj(t,x)dxdt
=1 j=170 /0

N oT rt NopT
= 22 xujfjdxdt—ZZ w1 (1,0)8u; (1,0)dr.
0 0 0
j=1 j=1

Hence

30sull2, < TllulZ,,

2 2
oryezmy tL (“ﬂ”cqo,r],um) +IAII (0,T;L2<'r>>)

+N 1 (L0172 .1y + 105 0) 7.2

(0.7:L2(7))

0,1)"

2.4 Well-posedness of nonlinear system

The aim of this section is to use the estimates obtained in the last sections to pass to
the nonlinear system. The following propositions are needed in order to deal with the
internal nonlinearity and boundary nonlinearity respectively.

Proposition 2.5 (Proposition 4.1, [18]) Let T, L > 0, and y € L*>(0,T;H'(0,L)).
Then yy, € L'(0,T;L?(0, L)) and the map

y € L*(0,T;H' (0,L)) = yy, € L'(0,T; L*(0, L))
is continuous. Moreover we have
”yyx “Ll (0,T;L2(0,L)) < C”y”iZ(O’T;Hl (0,L))" (2.32)

Proposition 2.6 (Proposition 2.6, [1]) Let u € B, then |u;(¢,0)|* € L*>(0,T) and the
map
ueB s |ui (1,00 € L*(0,7)

is continuous. Moreover, we have the estimate,
1
2 2
Ny G0l z20,7) < @II&IIB- (2.33)
Now we are ready to establish our well-posedness result of the nonlinear (KdVd) for

small initial data.

Theorem 2.2 Assume a, b € L™(T") componentwise non-negative that satisfy (1.1)
and (T.2). Let (Z,)j\il C (0,+00), T > 0, there exists € >0 and C > 0 such that for
all Uy = (u®,2°(~h,-)) € H with ||Upllu < €, the nonlinear equation (RAVd) has a
unique mild solution u € B. Moreover it satisfy

llullz < Cll(u’, 2 (=R, Dl
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Proof Let Uy € H, with ||Up||lg < €, where € > 0 will be chosen later, u € B and
consider the map @ : B — B defined by ®(u) = v where v is solution of

0,vj(t,x)+ﬁxvj(t,x)+8$vj(t,x)+aj(x)vj(t,x)
+b i (xX)vi(t=hj,x)=—u;(t,x)0xu;(t,x), x€(0,£;),t>0, j=1,---,N,
Vj(t,()):vk(t,()), Vj,k=1,~'-N,

L 0%vi(1,0) =—av](t,0)—g(u1(t,0))2, t>0,
Vj(l‘,fj)Zaij(l‘,fj)ZO, t>0,j=1,---,N,
v;i(0,x) = u?(x), x €(0,¢)),
vj(t,x) =z2(t,x), (t,x) € (=hj,0)x(0,¢;).

(2.34)

Clearly u € B is solution of if u is a fixed point ®. From Proposition [2.5]and
Proposition 2.6} we get for all u € B

I@@llz = llvlls < C (1Ulln + ull3)
and for u, i € B

1@ () - @@z < C (llulle +lllle) llu - ills

Let us choose R > 0 to be defined later and consider @ restricted to the closed ball
Bg (0, R). Then, for any u, i € Bg(0,R), we have

I®(w)ls < C(e+R?)

[D(u) —®(@)|le < 2CR||lu—ils.

Thus if R < 5= and € > 0 such that C(e + R*) < R we obtain the local well-posedness
result applying the Banach fixed point Theorem. O

Remark 2.1 On a similar way as Theorem [2.1} we can obtain classical solutions by
taking Uy € D(A).

3 Stabilization of delayed KdV system
3.1 Lyapunov stabilization of the delayed system

The aim of this part is to prove Theorem[I.1] As we said before this proof is developed
in a constructive manner by using a Lyapunov function.
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Proof of Theorem|I.1] :
Let u a regular enough solution of with Uy € D(A) satisfying ||Up|lg < e,

where € > 0 will be chosen later. Following [2} 21]] we consider the next Lyapunov
candidate for (KdVd)

V(t) = E(t) +m Vi(t) +uaVa(t). (3.1

where E is defined by (T.6)

N 7 N 1
vl(t)=z;/0 xlu; (1,x)Pdx, and vz(t)=Z;h,~/w_/0 (1-p)u, (1= hjp,x)dpdsx.
Jj= Jj= J

Clearly
E()<V() < (1+maX{Lm,’§})E(n.
0

After some computations we have,
d N N
GEO = oM OP =Y 00 .0F = [ a0 P
j=1 j=1 i)W

N N
3 [ 20,0046 )y r0Pas+ Y [ (500 =€y (r -y P,
j=1Y @i j=1Y @i

—Vl(t) Z/ i (£,%)2dx — 32/ |0 (1,) | Pdx — 2u, (1, O)Za u;(1,0)
+§jz=;‘/0v u;(;,x)dx—zjz:;‘/o’fxaj(x)|uj(t,x)|2dx—2;/wijj(x)uj(t,x)uj(t—hj,x)dx
& b 2 & b 2 N 2 IN 2
S/Z—;/O luj (£,%)] dx—3;/0 054 (8.) P+ = | (1,0)| +§]Z:;|6xuj(t,0)|
N ¢ n n
+§;/0 u?(z,x)dx+LjZILjbj(x)|uj(z,x)|2dx++Lj21‘/wfbj(x)|uj(t—hj,x)|2dx,

and

N N
_Vz(t =Z/ |uj(t,x)|2dx—Z/ / |u; (t—hjp,x)|*dpdx.

=1 J

.

Our idea now is to prove that for suitable choice of uj, up, ¥ > 0 we have that
%V(Z) +2yV(t) <0, which gives the exponential stability.
Using the following Poincaré’s inequality: If y € H'(0, L) and y(0) =0 or y(L) =0,
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we have [[y|lz2(0,1) < 271‘ 10x ¥l £2(0,1)- We can check easily that for y > 0

d N N y
TVO+2V() <=2 (a— 5 —m;) |1 (£,0)” + (11 - 1); |04 (1,007

N N l:
2 J
+Z/ (—Zaj+bj+§j+L/11bj+/12)|uj|2dx+5/11 E/o (uj)3dx
wj j=1

J=1
N

+Z/ (bj—fj +,ulLbj)|uj(t—hj,x)|2dx
wj

=1
N ¢
Z/ |Bu (1, %) dx
=170

N 1
23 [ [ @rah+2vms =l = hypo P,
j=1Ywj

~

4L2 (1 +2u1yL+2y)
2 _3I'11

+

T

. . I
For the term involving /0 ’ uj (t,x)dx, note that

4 ¢
/0 (10 < s 1B /O )1 < 1B . 5 12002,V -
By the injection of Hl(O,fj) into L*(0,£;) we know that [lu;|lr~(0.¢,) <

\/f_j||6xuj||Lz(0,£f), then

5]
3 2 2
/0 w;(t,x)dx < “”j“[ﬁO((),gj)“”‘j”Lz(O,l’j)\/FjS gj||6xuj”L2(0’gj)\/Z_j“uj”Lz(O,l’j)'

Recalling that L = max;-;,... y {; and as the energy is not increasing we get
lujllz2(0.¢;) < 0ol - Choosing ||Upllm < € we get

b N org 2 N el
§y12/0 W3 (t,x)dx < g,uleL3/2Z‘/0 |01 (1,x) | dx.
j=1 j=1

Now taking

| 24i=bi=¢& &i=b;

1
»—(2a-N);,
Lb; b, "N )}

0<u; < min inf{
=l

N wj
0< u <j:?,l-i-l-l,NiLIulf{zaj_bj_gj_'ulLbj}.
Then —(2a¢—N —u;N) <0and (u; — 1) <0. Moreover forall j=1,---,N

(—2aj+bj+§j+Ly1bj+,u2)<O, (bj—fj+ﬂ1Lbj)<O

Finally joining the estimates
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AL*(uy +2p1yL+2y) 2L3 e
x2 “dd

d 2
SV +2V(0) < 10 (2, 2) 112, 1,

N 1
D2 [ e -l =hip ) Ppas
=Y

2_ 2 . .
and then as L < ?ﬂ', we can choose € < %% and then take y > O satisfying

to obtain -V (7)+2yV (1) < 0. We get the desired exponential stability, by densit
™7 ir Y g p y, by y
we can extend the result to any Uy € H, with ||Uy||g < €. )

Remark 3.1 As in [2| 21] we obtain an estimation of the rate of decay. Also recall
that we can improve the result searching for a better Poincaré’s inequality, and as is
commented in [2, 21]] looking for a new multiplier for the Lyapunov function V, in
the sense that the restriction on the lengths, comes from the multiplier x.

Remark 3.2 Note that in absence of the feedback terms (with and without delay) this
result can be see as an alternative proof via Lyapunov theory of Theorem 3.4 [1]] (in
our case with a more restrictive condition on the lengths).

3.2 Observability approach

In the previous section we obtained a stabilization result under the hypothesis that

3
L< e > N/2 and for small initial data. Now we are going to prove a result

without restrictions on the lengths that holds for @ > N /2 and small initial data. The
idea is to obtain an observability inequality in the linear system. The proof is based on
a contradiction argument and hence we can not estimate the decay rate of the energy,
contrary to Theorem [I.1]

Theorem 3.1 Assume a, b € L™ (T") componentwise non-negative that satisfy (I.1))
and (L.2)). Let (é’j);\’:l C (0,00) and T >V, then there exists C > 0 such that for all

Up = (go,go(—ﬁ', -)) € H we have the following observability inequality

JZ_;/O (ug(x))de+JZ_;hj/wj/0 £ (0)(20(=h; p,x))dxdp
N T N T
ax j ,0 2d N (1, zdd
<C ]z:;./o (Oxu(,0)) t+;/o /o aj(x)(u;(t,x))"dxdt (Obs)

N T T
+JZ_:‘/0 ‘/wj(zj(t,l,x)) dxdt + Qa N)/0 (u1(2,0))%dt |,

for (%) = S(-)Uy, solution of (CKdVd).



26 Hugo Parada et al.

Proof We follow the classical approach presented in [18].

Suppose that is false. Then we can find a sequence (U])nen =
(ZO,n’ZO,n(_Q-, ‘)nen C H such that

N £ 0 N | .
N2 ‘ . o , _
]Z_;/o (u;"(x)) dx+;h1/wj‘/o £j(x) (2" (=hjp,x))*dxdp = 1

and for (u",z") = S(go’”,go’”(—ﬁ-, -)) we have
N T N T pt
> / (0 (£,0))%d1+ )" / / a; (x) ('} (1,x)) dxdr
=170 =170 Jo

N T .
g n 2 B , 5
+j—1‘/0 /wj(Zj(t,l,z)) dxdt+ 2a N)‘/O (”1 (1,0)) 0

when n — oo, Now using (2:22) for g =0 we get that (u"),en is bounded in
L*(0,T;HL (7)) and then as 6,14;? = —axu;? —8)%14;? —aju;? - bjz;?(l), we have that
(8,u")nen is bounded in L*(0,T3H*(0,¢;)). Using the Aubin-Lions Lemma, we
can deduce that (u"), ey is relatively compact in L?(0,T;1?(7")) and hence we can
assume that it is convergent in L2(0,T;L>(7)).

3.2)

Moreover for T > I since z’]“.(t,p,x) = u;’|w (t=hjp,x) we have
k J

1 1
/ (Z?(T,p,x))zdpdh/ / (W(T - ph;.x))*dpdx
wj J0 w;j J0

1 T
< —/ / (u;(t,x))*dtdx.
hjJw,; Jo

Now thanks to (2.7)

N 1 T

12" () 2 ) < TNy * D5 i / |2 (1, 1,x)Pdxdt.
j=1"J wj

N T N .
< Zi/ / (M?(I,X))zdxdt+2i/ / |Z7(1,1,X)|2dxdt,
j:1 h‘] 0 wj ]:1 h] 0 w;

and hence (go’"(—ﬁ-,-))neN is a Cauchy sequence in L?(Q) using (3:2). Moreover
using (2:6) and (3:2) we get that (u*"), ey is a Cauchy sequence in L%(7").

Let Uy = (u,2(=h,)) = limyeo(u™", 2" (=h-,)) in H and (u,2) =
S(~)(go,§0(—h', -)). By Propositionwe have:
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i/or/Oaaj(X)(u;?(t,x))dedei/OT/wjbj(x)(zy(t,l’x))zdxdt

J=1

n:;i/OT/ijaj(x)(uj(t,x))zddejZ]z;/OTL_bj(x)(zj(t,l,x))2dxdt.

J=1 j

Thus

N ¢ N |
0/ \\2 ‘ . 0y , _
JZ:;/O (u(x)) dx+jz:;h, /wj/o &j(0)(2(=hjp,x))*dxdp = 1

and

JZI:‘-/OT /O{j a;(x)(u;(t,x))*dxdt +JZI:‘ -/OT ./w, bj(x)(z;(,1,x))*dxdt =0,

Asz;i(t,1,x)=u;(t—h;,x)=0in (0,T) Xwj, we can deducethatgo =0and z=0.
Moreover u; =0 on (0,7) X w;, and as u; is solution of 8;u ; +dxu ; +3u; = 0 thanks
to Holmgrem’s Theorem, u; = 0 in (0,7) X (0,£;). Thus (u,z) = (0,0) and we get a

contradiction which ends the proof. |
Remark 3.3 Note that in the case @ = N /2 the term of ||u; (¢,0) ||iz(0 ) disappear of
(Obs).

Now from the observability inequality (Obs|), we can obtain the exponential sta-
bility of the linear system (LKdVd).

Theorem 3.2 Assume a, b € L®(7") componentwise non-negative that satisfy (I.I)
and (1.2). Let (Kj)jN=1 C (0,00), then for all (u°,z°(~h-,-)) € H, the energy of the
system (LKdVd) defined by (1.6) decays exponentially, i.e, there exists C > 0 and
> 0 such that E(t) < CE(0)e ™ forall t > 0.

Proof We follow [21 [10] (see also [[17]). Note that for Uy € D(A) the energy of
satisfies for C; > 0

d T N T
GEO <=0 @a-N) [ wwortae Y [ oy e.0p
dt 0 = Jo

N ¢ N
+Z/ aj(x)|uj(t,x)|2dx+2/ |”j(t_hj,X)|2dx .
=10 j=1Y )

Integrating between 0 and 7 > § we have

(3.3)
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T N T
E(T)-E(0) <-C (2a—N)/O |u,(z,0)|2dt+2/0 |0y (2,0)2dt
j=1

N T 1z N T
+Z/ / aj(x)Iuj(t,x)|2dxdt+Z/ / luj (t = hj,x)|2dxd |.
= 0 0 j=1 w; J0

The last expression can be rewritten as

T N T p¢
_ " 2 L s (100 2
Qa N)/O |u1 (,0)] dt+;/0 /0 a;(x)|u;(t,x)2dxdt

N T N T 1
+;/0 |6xuj(t,0)|2dt+;/wj/0 luj(t = hj,x)*dxdt < o (EO=ET).

Using that the energy is non-increasing and we get
T N T p¢;
E(T) <E(0) <C|(2a —N)/ |u1(t,0)|2dt+Z/ / a;j(x)|u;(t,x)*dxdt
0 —Jo Jo
J=1

N T N -
+;/0 Iaxuj(t,0)|2dz+;//0 luj(t—hj,x)|*dxdt S(%(E(())_E(T))

wj
which implies

C

E(T) <yE(0), withy = <1. (3.4)

C
Ci
Now as the system is invariant in time, we can repeat this argument on [(m —
)T,mT] form=1,2,--- to obtain
E(mT) <yE((m-1T) <--- <y™E(0).

Hence we have E (mT) < e *™T E(0) where u = Ti In( %) >0.Lett > . Then there
exists m € N* such that (m —1)T <t < mT, and then using again the non-increasing
property of the energy we get

1+

1
E(t) < E((m=1T) < e *"m DT E() < —¢ M E(0).
Y
By density of D(A) in H we can extend our result to any initial data in H. O

Remark 3.4 Note that if @ = N/2 the term of ”“‘(t’o)”2L2(0,T) disappears of (3.3)
which is consistent with Remark 3.3

To end this part we give the proof of Theorem inspired by [21} 13} 9].



Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network 29

Proof of Theorem[1.2):

Let (go,go(—ﬁ-, -)) € H with ||(go,§0(—ﬁ-, MDlg < rfor some r > 0 that will be chosen
after, then the solution u of (KdVd) can be decomposed into u = it + & respectively
solutions of

6,ﬁj(t,x)+6xﬁj(t,x)+8§ﬁj(t,x)+aj(x)ﬂj(t,x)
+bj(x)12j(t—hj,x)=0, xE(O,fj),t>0,j=1,~--,N,
ij(t,0) = ity (¢,0), Vj,k=1,---N,
S, 0% (1,0) = —ait (1,0), t>0,
i@(t,6;) =0y (1,6;) =0, t>0, j=1,---,N,
ij(0,x) = u?.(x), x€(0,¢)),
i (t,x) = 25(1,x), (t,x) € (=h;,0) % (0,¢;).
(3.5)
Byt ; (1,x) + Oyl (£,X) + 03 (t,x) +a; (x)il; (2, x)
+bj(x)b7j(t—hj,x) = —ujﬁxuj, X € (O,fj), t>0, j= 1,---,N,
ij(t,0) = i (¢,0), Vj,k=1,---N,
> 03i(1,0) =—aﬁ1(t,0)—%u%(t,0), t>0,
ﬁj(l,fj)Zaxﬂj(l,fj)ZO, t>0,j=1,"',N,
#j(0,x) =0, x € (0,¢)),
ij(t,x)=0, (t,x) € (=h;,0)x(0,¢;).
(3.6)

In simple words & is solution of (CKdVd) with initial data (u°,z°(-A-,-)) and @
is solution of (2:28) with null initial data and source terms f; = u;0yu; and g =
—%u%(l, 0). Then using Proposition Proposition and Theorem we have
Nu(T),2(D)ller < 11&(T), Z(D) | + 1 (T), 2(T) |
<C (||23xﬂ||u o.rL2(7) + ||M%(f,0)||L2(o,T)) +¥YUoll < 0ol +Cllull3,

where y < 1. Our plan now is to deal with the term ||u||2. Multiplying (RdVd) by u;
and integrating in (0, s) X (0,£;) we can get

N s s
IIZ(s,.)Ilizm+Z/O |axuj(;,())|2ds+(2a_N)/o 1 (2.0 [2ds
=1
: 3.7
N s l; ) o . )
2 [ [ a=bptuPasds < 1. 41221 g

x(2L;-x)
Iz
J

Now multiplying by gjuj withg; = we can obtain

N T l:
2 J
||”1(t’0)“iz(o,T) < C||U()||%,+§Z:/0 /0 u?(t,x)dxdt.
=1
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AsVj=1,--,Nu; € L*>(0,T;H'(0,¢;)) and H'(0,¢;) embeds into C([0,¢;])
we get following [3, [17]

- T b 3 2 2
Z/o /o juj P dxdt < CTV2 Ul el 2 0.7 1 )
J=1

and then
s (4.0 0.7 < ClTIE +CT2 U0l Nl 202 -
On a similar way multiplying by xu; and using the last inequality we
deduce

10l 072y < € (100l + 1Tl a2 0.1 1)

Using Young’s inequality, we can find C > 0 such that

100012 0 722y < € (10134 +1Wolly ) (3.8)

Combining the estimates (3.7) and (3.8)) we get

(T, 2Tl < 1ol (v+CllUollzs +CIIUo I, ) (3.9)

Taking ||Up||i < € for € small enough such that y + Ce + Ce® < 1, then the proof
follows in the same way as Theorem 3.2} |

3.3 Semi-global Stabilization

The aim of this section is to prove Theorem [I.3] that is a semi-global result without
restriction on the lengths and for @ > N /2. The main idea is to obtain an observability
inequality as working directly with the nonlinear system (KdVd). In this context
two main difficulties appears, the first one is to pass to the limit in the nonlinear term
and the second that Holmgrem’s Theorem does not apply in the nonlinear case.

Proof of Theorem|I.3]:
To prove this result we adapt the techniques of[3]]. We need the next Unique Continu-
ation Property of Saut and Scheurer.

Theorem 3.3 (Theorem 4.2, [20]) Let L > 0 and y € L*>(0,T; H*(0, L)) be a solution
of
VitYx+tYxxxt+tYYx = 0,

such that y(t,x) =0, for (t,x) € (t1,t2) X w, where w is a nonempty open subset of
(0,L). Then y(t,x) =0, for (t,x) € (t1,t2) x (0, L).
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First defining z;(t,0,x) = uj|w,(t— hip,x) x €wj, p € (0,1), for u solution of
J

(KdVd), we can check that

hjdrzj(t,p,x) +8pz;(t,p,x) =0, x€wj,p€(0,1),>0,
7 (£,0,x) =u;(t,x), xewj,t>0, (3.10)
7j(0,p,x) = uj|wj(—hjp,x) = zg(—hjp,x), p€(0,1).

Multiplying (3.10) by z; and integrating on (0, s) x (0, 1) X w; we can obtain

N T
1
0 2 2 2
12" (=, ) < ||g<s,-,->||m>+z;h—]_ /0 /m 1zt 1,x)Pdxdr.
j= o J
Now integrating this relation on (0,7)
2 o T ! 2
T bog < [ [ [ leittpoPasdpar
=170 0 Jo;

N T
+21/ 27 (t,1,x)|?dxdt.
Shid Ju, !

Note now that for T > Ty we have

T pl T pl
/ / / |zj(t,p,x)|2dxdpdt=/ / / |uj(t—phj,x)|2dxdpdt
0 0 wj 0 0 wj

T t T T
=/ / Iuj(s,x)lzdxdsdt < —/ |uj(s,x)|2dxds
0 Ji-hjJw; hjdn; o,
T— T T

hj T
= // |uj(s,x)|2dxds+—/ |uj(s,x)|2dxds
hi JnjJo, hj Jr-n; Jw;
T T
< —/ (Juj (2,2) [+ |uj (£ = hj,x) P dxdt
hj 0 a)j ’ ’
<C

T T
/ / aj|uj|2dxdt+/ |z, (t,1,%)|*dxdt |,
0 wj 0 w_,~

which gives us

N T T
T||§0(_ﬁ.,.)||i2(g) <C Z./o / aj|uj|2dxdt+‘/0 / Izj(t,l,x)|2dxdt .

J=1 J J
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Multiplying (KdVd) by u; and integrating on time and space, we have

s N s (,’j
llu(s, )2 +(2a/—N)/ i1 (2,0)|dr +2 / / a;|u;>dxdt
LA(7) 0 Jz_:‘ 0 Jo I

N K N K j
+Z;/0 |6xu,-(t,0)l2dt+221/0/0 b (= hyx)u; (t,x)dxde = [|u]12, ..
J= J=

Integrating again over (0,7) this relation, we get,
02 ’ 2 N 2
e R S 253w .00
Jj=
T N T ¢
+(2a—N)T/ Iul(t,0)|2dt+2TZ/ / ajlu;*dxdt
0 mJo Jo

N T pf;
+2TZ;/0 /0 bjuj(t—hj,x)u;(t,x)dxdt.
=

Note now that
T pt
/ / bjuj(t—nh;,x)u;(t,x)dxdt
0o Jo

1 T 1 [T
s—/ / bj|uj|2dxdt+—/ / bjlu;(t—hj,x)|*dxdt,
2 0 w»,— 2 0 (/.)_,’

T T
I gy < €[ [ 0.0z gy =) [ a0

N T 5 N T 2 .
+Z£ |(9xbtj(l,0)| dl+Z[; A aj|uj| dxdt
/=t =
N T
2 [ [ e paar .
=170 Jej

Joining the estimates for u” and z° we get

N ¢ N
|u)?dx + h/
5 [ wapace o

A e

T N T T
< C(‘/o ”Z(t’-)”iz(ﬂd“rz/o |6xuj(t,0)|2dt+(2a—N)/0 |luy(2,0))*dt
J=1

N T pt ) N T )
+Z/O /0 ajlujl dxdt+2/0 /_|z,(z,1,x)| dxdt |.
J=1 J=1 @i

and then

1
'/0 &j(x) |Z?(—hj,p,X)|2dxdp
j



Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network 33

This inequality is quite similar to the observability inequality (Obs). Moreover to
prove our result it is enough to get that for any 7, R > 0 there exists C = C(R,T) >0
such that for any solutions of (KdVd) with ||Up||gz < R we have

T N T T
Nu(t, )2, dt < C / |8u~(t,0)|2dt+(20—N)/ |uy (2,0)|?dt

N T pt ) N T )
+Z/O /0 ajlujl dxdt+Z/0 /_|z,(z,1,x)| dxdt |.
J=1 J=1 @;

Suppose that this inequality does not hold. Then there exists (#"), e C B solution
of (KdVd) with ||Uy ||z < R such that

T
KW a2, e

lim =
o T ¢ T n
" O (1O, + (20 = I (RO, o+ ZX 1 a4 B [ [ 120010 Pt

0.

Take " = [|u" [l 20,722 (79> ¥ := T and y(1,p,x) = v;?iwj(t— hip,x) x € wyj,
p €(0,1). Then, v" satisfies

Btv;.‘(t,x) + va;.‘(t,x) + B;v;’ (t,x)+a; (x)v;?(t,x)
+bj(x)v';(t—hj,x)+/l"v;.‘(t,x)(9xv;.’(t,x) =0, xe€(0,¢;),t>0,j=1,---,N,

v1(1,0) = vi(1,0), N Vj,k=1,---N,
T vH(5,0) = —avi (1,00 = "= (1 (1,00, 1> 0,
v;?(t,fj)zﬁxv;?(t,fj)zO, t>0,j=1,---,N,
V"Il 220,722 (7)) = 1-
(3.11)
and

N T pt
105" (O o7, + Ca= MV ON o+ D [ [ oy Pava

j=1

! (3.12)

N T
+Z/O ‘|y3?(t,1,x)|2dxdt—>0.
j=1 @j

Now multiplying (3-IT)) by v} and integrating over (0,7) % (0,#) X (0,¢;) we can
get

T
T“Kn(o’ )”]]2_‘2(7) <C (A ”Kn(t’ )”]i2(7~)dt+ ||5xKn(t,0)||2Lz(o’T) + ”Kn(_ﬁ" )”]iz(g)

+(2a—N)IIV?(I’O)”@(O,T)) '

Now for T > ¥,
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N 1 N 0
1
W g = [ [ WihePded=Y o [ woRars
j=17wj J0 j=1 I Jwj d=h;
N 1 T—h; ) N 1 T )
< — [V (t,x)|"dtdx = —/ / Wi (t—h;,x)| dtdx
;hj /wj[h, / ;hj wiJo 7 !

N 1 T
Z— / / |y (1, 1,%)Pdtdx.
=1 hj Jw,; Jo

These estimates show us that (v"(0,-)),ey is bounded in L2(77), also we can see
that from the well-posedness of (KdVd) we get
A" = w20 102(m) <TNUG e < TR.

Consequently in the same sense as (3.8)) we can obtain

19122 0 oy < € (U813 + 105 1 )

Thus (v*)nen € L2(0,T;HL(7)) is bounded and

IV0xvill2 0.0 0.60) < IV le o1z 1Y 120, m1 (7))

what implies that (v;?axv;?)neN is subset of L2(0,7; L' (0, £))).

With this we can see that d,v"} = —(6;1/;.‘ OV AV +a v+ by (1= hyj))
is bounded in L%(0,7; H2(0, ¢;)) and hence by Aubin-Lions Lemma we can deduce
that (v"),,en is relatively compact L2(0,T;1L%(77)) and hence we can assume that v"
converges strongly at v in L?(0,T;L*(7")) with [[v|l;2(0.712(7) = 1. Furthermore,
passing to the limit on (3.12)) we get

N T
10O )+ 2= N1 (1.0 g+ D /0 / v, (1 — hy)Pdxdr
j=1 wj

N T p¢
’ 2 CR 2 2
+Z/O /0 a;lvjl dxdtS11m1nf(Il(?xg"(t,O)HLz(O’T)+(2a—N)||v7(t,0)||L2(O’T)
<

N T ¢ N T
ni2 n 2
+ E A A ajlva dxdt + E A _|vj(t—hj)| dxdt |.
j=1 j=1 wj

Thus v;(¢t,x) =0in (=h;,T) Xw; and (2a —N)v;(t,0) = 0xv;(¢,0) =01in (0,T)
for all j =1,---,N. Also as (1"),ey is bounded, we can extract a convergent sub-
sequence such that A" — A > 0, consequently v satisfies [|v|| ;2o r..2(7)) = 1 and the
following equation
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ath+8ij+8£Vj+/1Vjaij =0, Vx € (O,f)j), t>0, j= 1,---,N,
(2a=N)v;(1,0) = d,v;(1,0) =0, Vj=1,---N,
Vj(l‘,fj)Zaij(l‘,gj)ZO, Vj=1,"'N,

L 0%v;(1,0) = —avi(£,0) = A5 (v (1,0))%, 1> 0,
vj(t,x)=0 (I,X)E(—hj,T)ij.

1. If 2 =0 the system satisfied by v is linear, then thanks Holmgrem’s Theorem v =0,
that contradicts the fact that [|v|| ;2o r.12(7)) = 1-

2. If 2> 0. In this case we have to prove that v; € L?(0,7;H>(0,¢;)) in order to
apply Theorem Consider w; = d,v; then

6,wj+6ij+6§wj+/le6xvj+/lvj6ij =0, X € (O,fj), t>0,j=1,---,N,
(2Q_N)W](t’0)=aij(t’0)=07 V]:17N’
wj(t,t’j):aij(t,fj):o, Vj=1,---N,

03w ;(1,0) = —awi (1,0) = 12w, (1,0)v; (1,0), £ > 0,
wj(t,x)=0 (t,x) € (=h;,T) X wj,

w;(0,x) ==v"(0,x) =v"’(0,x) = v (0,x)v’(0,x), x€(0,¢), j=1,---,N.

Note that w;(0,x) € H3(0, ¢;), with Lemma A.2 [3]] we can get that w;(0,x) €
L2(0,¢;)andw; € C([0,T],L*(0,6))NL*(0,T;H'(0,¢;)). Thus d3v ;= —(d,v; —
Oxv;—Av;0yv; € L*(0,T;L*(0,T)) that implies v; € L*(0,T; H>(0,¢,)). Apply-
ing Theoremwe obtain that v; =0 forall j =1,---, N that contradicts the fact
that [|v[lz20,722(7) = 1-

Finally we obtain that is valid for a solution (KdVd) with |Up||lz < R. We
conclude as in the linear case.

]

Remark 3.5 We can observe that the semi-global character is given by the assumption
lUoller < R which is necessary in our proof. Specifically it is used to show that
(A")nen is bounded. An interesting open problem is the following: Is is
globally well-posed and globally exponentially stable?

4 Stabilization when not all damped terms are activated

It is known that to obtain exponential stability of a single KdV equation we only need
to add a damped term if the length is critical (L € N) [L7]. In the network case, more
precisely in [[1]] Theorem 3.6, the authors consider damping terms a; applying on the
critical lengths edges except at most on one edge.

Now we will prove Theorem|T.4]following closely Section 6 of [21]] and [11]. First
note that if (1.8)) holds the energy of (KdVd) defined by satisfies
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N

d

GEW < =Ca=Mln 0P =Y o0 -2Y, [ ajujias
= PP a;

jel

+> (b,-—g,)|uj(z—h,-,x)|2dx+2/ (bj+&7)|uj|dx

JeIT Jerv @i
+j;*‘/‘;j(_zaj(x)+bj(x)+§j(x))|uj(l‘,x)|2dx—J;‘/('O’fj)/wj a; ()l (1,3 Pdlx
w0 [ (b0 = &) (1 = hj) P,

jer+Y wj

From the last inequality we can see that in this case the energy of the system
is not decreasing in general, this by the action of the terms b +&; > 0in w);
for j € I. Following [[L1] we consider the next auxiliary problem for which the energy
will be decreasing. This system is close to (KdVd)

6,uj(t,x)+(9xuj(t,x)+uj(t,x)(9xuj(t,x)+(9)3(uj(t,x)
+a;(x)uj(t,x)+bj(x)u;j(t—hj,x)+nb;(x)u;(t,x)1;(j)=0,x€(0,£;), t >0, j=1,---,N,
u;j(t,0) =ui(t,0), Vj,k=1,---N,

S 03u(1,0) = —au (1,0) - Fud (2,0), >0,

uj(t,t;) =0cu;(t,{;) =0, t>0,j=1,---,N,
uj(O,x)zug(x), x€(0,¢)),

uj(1,x) = 29(1,%), (t,x) € (=h},0)x (0,£).

(Aux)
where 1;(j) is the indicator function of the set I and n > 0. Then we consider the
energy (I.6) with &; =nb; for j € I, that is

N ¢
E(r):JZ:;/O |uj|2dx+n2hj/

jel @,

1
+Zhj‘/w-./o‘ Eiluj(t—hjp,x)|*dxdp
J

Jer*

1
/ bj|uj(t—hjp,x)|2dxdp
:J0
! .1

where in this case for all j € I, ¢; is a non-negative function belonging to L*(0,¢;)
such that supp &; = supp b; = w; and

bj(x)+co <&j(x) <2aj(x)=bj(x)—co, inw;j, for j el 4.2)

Easy calculations show us that if 7 > 1, then
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d N
GED < -Qa-N)u (.0 - ) |axu,(z,0)|2—22/ ajlu;Pdx

=1 jel vsupp a;
# (L= [ byl Y (=) [ bjluy(r=hy) P
jel wj jel wj

+Z/wj(—Zaj(x)+bj(x)+gj(x>)|uj(r,x)|2dx—Z/(M)/wja,.(x)|uj(;,x)|2dx

jel* jerr

0 b0 =& (= hjx)Pdx <0,

jeI+Y @j

The main idea to deal with the case when supp b; ¢ supp a; is to show the
exponential stability of the linearization around 0 of via a Lyapunov function
following Section 3.1 and then pass to using a perturbation result.

More precisely we are going to use the following theorem.

Theorem 4.1 (Theorem 1.1, [16]) Let X be a Banach space and let A be a the
infinitesimal generator of a Cy semigroup T (t) on X satisfying ||T (¢)|| < Me®“?. If B
is bounded linear operator on X, then A+ B is the infinitesimal generator of a Cy
semigroup S(1) on X satisfying ||S(¢)|| < Me(@+MIBIDY)

Remark 4.1 As we we said before we use a Lyapunov approach for the auxiliary

system, for that we expect that our result holds for L < ?ﬂ', a > n/2 and small initial

data. Also observing Theorem we must require that ||b|| .~ (7 is small enough.

We start by proving the well-posedness of the linearization of around 0. We
omitted the details because they are closely similar to Section[2]

(9,uj(t,x)+6xuj(t,x)+8$uj(t,x)+aj(x)uj(t,x)
+bi(X)u;(t—hj,x)+nb;j(x)u;(t,x)1;(j)=0, x€(0,¢),t>0,j=1,---,N,
u;j(t,0) = u(t,0), Vj,k=1,---N,

S 03u;(1,0) = —au; (1,0), t>0,

u;(t,6;) = dyu;(t,6;) =0, t>0, j=1,---,N,
uj(O,x)zu?(x), x€(0,¢)),

uj(t,x)=z?.(t,x), (t,x) € (=h;,0)x(0,¢;).

(LAux)
We set again z;(t,0,x) =u; |m_,» (t=hjp,x) x € w;, p € (0,1). Note that in this
case as £; = nb; the inner product defined for H in Section@becomes

{

[ESEN

N ag 1
)(§)>H:;/o Mj(x)vf(x)de“”th/ /0 bj(x)z;(p,x)y;(p,x)dpdx

jel wj

1
+Zh1‘/w_/0 &i(0)z;(p,x)y;(p,x)dp.

Jer*
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Then (LAux) can be written as

{U,(t) =AgU(t), t >0

U(0) = Us. 3)

0
u u
where. U= (z) v (z"lw(—ﬁﬁ
—~(Dx(T)+DUT ) u—a.+u—b.«z(1,-)—nb’ . +u
AgU = 1
0 —Z.*Dp(‘T)g

) and the operator Ay is defined by:

in which
bj, jel
I L A ,] )

(é )] { 0’ j c I*
and D(Ap) = D(A).
Theorem 4.2 Assume a, b € L®(7") componentwise non-negative that satisfy (I.1)
and (I9). Let Uy € H and > 1. Then there exist a unique solution U € C([0,0); H)
of @3). Moreover if Uy € D(A) then U is a classical solution and

U e C([0,00); D(Ay))NC([0,00); H).
Proof LetU = (%) € D(Ay), then

N
(AU, U) < (% —a) 13 (0) —%Z(@xu,(O))Z—Z/ ajlu;Pdx
j=1

je1 Vsupp a;

1 1
+§Z(1—U)Lbj|u,|2dx+52(1—n)Lbj|uj(t—h,)|2dx

jel Jjel
_% Z -/(o,fj)/w,- a;(x)|uj(t,x)Pdx + Z (—a;(x)+ bj§X) " fféx) N (1,2)|*dx

jer* jeI+Y @j

+% Z /wj(bf(x)_‘fj(x))mj(l—hj,x)lzdx <0.

jeI~
thus A is dissipative. Moreover
e (v) ((Dxm +DUT))y —a.*v+nb.*5(0.) - nb'. *z)
O =

1

2y

N N
d“v:
D(Ay) = ( ),26 (]_[H3(o,fj>)mHé<T>,Z 7 (0 =(@=N)vi(0),
j=1 Jj=1

I'< I<

N
1
0 j(0) =0, ¥j =1, ,N, y e [ [L2(H'(0,1) xw)), y;(1,%) =—T—]v,|wj(x)

Jj=1

b
for j el and y;(1,x) :—g—jvj|w,(x) for j € 1*}.
j J
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LetV = (5) € D(A)), then

N N
(ALY, v><—12|a V(612 + (N a)vf(O)—Z/ ajlv,|*dx
supp a;

Jj= J=1

2
+§:/ (——+ )b (x)v+ (x)dx+2/ ( +é+b—)|"/|2dx

= o, 2 2%
—Z/ ahlPdc-3 3 [ &1y 0Pde <0
jel* i) \wj jerr Y wj
thus A is dissipative. O

Now to prove the exponential stability of we consider the following
Lyapunov function:

V() =E@)+mVi+uV, (4.4)

where uy, pup > 0, E(¢) is defined by (@.)), Vi (¢) defined in (3:T)) and V;(r) is given by

1
V0= 30 [ [ =)yl hip o) Psap

jel

1
+ 3 / /0 (1= o)l (t = h; o) 2dxdp.
JeI~

Proposition 4.1 Assume a, b e L®(T) componentwise non-negative that satisfy (I.1))

and (T9). Let« > 5, > 1 and (¢, )N C (0,+00) such that L < iﬂ Then for every
Uy € H, the energy of (CAux) deﬁned by @I) decays exponentlally, that is, there
exists C > 0, y > 0 such that

E(t) < CE(0)e "

where

(3ﬂ1ﬂ—/114L2) _min H2 H2 }
SL2(1+Luy) el 2h;(n+p2)’ jel* 2, (&) +12)

C= (1+max :L,ul,&,&}).
n by

v < min{
4.5)

for uy and u» such that

-1 1 -b; 2a;i—b;—&;
O<u < 1,)7—,—(20[ N), mm 1nf§ ,inf 4= bi=¢
L N el* | w; i wi Lbj

()<,uz <min{n—1—Lul,miln2aj—bj—§j—Lulbj}.
Jerr
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Proof Let u be a regular solution of with Uy € D(Ap). Clearly with this
definition of V (¢) we have that

E()<V() < (1 +max{Lu1, “2,”2})E(t).
n by

Now, integrating by parts we get

—E(t)<(N 2a) |uy (1,0) > - Z|a u;(1,0)| —22/ ajlujPdx

7e1 V/supp a;

+(1—;7)Z/ bjlujl dx+(1—n)2/ bjluj(1—hj,x)2dx

Jjel jel

+Z (—2aj+bj+§j)|uj|2dx—2/ aj|uj|2dx

jer-J wj jel* v/ supp aj\wj

30 [ by =€y (e —hyx)Pdx,

jeIr=v @j

together with
d N ¢ N 7 N
avl(;):Z/ |uj|2dx—32/ |8Xuj|2dx—22u1(t,O)[)xuj(t,O)
: 0 : 0 -
= Jj=1 Jj=1
—ZUZ/ xb; |u,| dx — ZZ/

N
xaj|uj|2dx—22/ xbjuj(t,x)uj(t—hj,x)dx,
o

Jel supp a;
1
vz(r) Z/ b; |u,|dx+2/ |uj |2 dx Z/ j/ lu; (= hjp,x)*dpdx
Jjel jer jel 0

//luj(t— Jpx)l dpdx.
wj

Using integrations by parts and Poincaré’s inequality, we can easily check that for
vy>0

jeI*

N
d
3D+ V() < (N-2a+1N) |1 (£,0)” + (11 - 1)2 |0 (1,0)?
j=1
+Z/w bi(l—=n+ur+ui1L)|uj| dx+z bi(1- r]+/,11L)|uJ(t—h,,x)|2dx

jel jel v wi

+Z (—Zaj+bj+§j+,u2+L/,t1bj)|uj|2dx
jel*v @i
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+ D[ =&+ mLbluy(e—hy)Pdx

jeI*Y @j

1
> [ | | Cvmiturem =l e=hip 0P

Jjel

1
2 /%/0 Qyhj(ua+&j) = p)luj(t = hjp,x) Pdx

jeI*
AL (g +2pyL+2 Ny ot
+[ (1 +2pu1y 7)_3#1 Z/ (Ot (1, 2.
n? o
Taking
-1 1 —b; . 2a;—bj—¢&;
0<m < {1170 L g vy minling 720 g 240174
L N jel* |w; Lbj =~ wj Lb;

0<u <min{n—l—L,ul,miInZaj—bj—fj—Lulbj},
Jelr

and using that L > ‘/7571 we can take
3uim — i 4L?
7Smin{( kel ),min 2 ,min 2 }
8L2(1+L,ul) jel 2/’11(7]+,l12) jeI* Zhj(fj-i-,uz)

d
With this EV(r) +2yV(t) <0 which implies
E(t) < (1 +max {L,ul , &, &}) Ege™ 2.
n - bo
By density we can extend the result to Uy € H. O
Now we will obtain a stability result of (CKdVd) using a perturbation argument.

Note first that the operator A introduced in Section [2] and associated with (CKdVd)
can be written as

A=Ay +8B,
where D(A) = D(Ap) and B is the bounded operator on H defined by
1
BU = (”Q *E) U= (E) €H.
0 z

Proposition 4.2 Assume a, b € L*(7) componentwise non-negative that satisfy (1.1
and (T9). Let > &, n > 1 and ({’j);\il C (0,+00) such that L < ‘/7§7T, then for every
Uy € H there exists a unique mild solution U € C([0, ), H) for (LKAVd). Moreover if

Uo € D(A) then the solution is classical and U € C([0,00); D(A)) NC'([0,00), H).
Furthermore there exists 6 = 6(a,n, L, h) > 0 such that if

lblle(r) <6,
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then for every Uy € H, the solution of (LKdVd) satisfies
E(t) <CE(0)e™", >0,
for C, y > 0 defined in Proposition{d.1]

Proof Tt is enough to apply Theorem We note that ||B|| < 5]|b|lL~(7) and then
remark that

Y . e Y
=5 +VCnl|bllLe(7) <0 &= [|bllL=(7) < :
2 - = e

O

Finally, we obtain the local exponential stability for in the case when supp b ¢
supp aj, for j € I* c {1,---,N} stated in Theorem 1.4

Proof of Theorem[I.4]:
We just adapt the proof of Theorem [2.2] and Theorem [I.2] to obtain the exponential
stability of the nonlinear case using the stability of and small initial data. O

5 Numerical Simulations

The purpose of this section is to illustrate the stabilization results obtained in this
work. For that we are going to present some numerical simulations adapting the
schemes used in [2, 5| [14]. We choose a final time 7 and for simplicity we take
t;=L and aj, b; constant on their support for all j =1,---,N. We build a uniform
spatial and time discretization of Ny +1 and N; + 1 points respectively, separated
by the steps Ax = L/N, and At = T/N;. To deal with the delay term we choose
the delay step Ap = 1/N,. Now we introduce the notation u;(nAt, le) = u - and
zj(nAt, kAp, zAx)—z g fori=0,--- Ny, k=0,---,N, and n=0,--- , N;. We use
the following approxirﬁa:tion for the derivatives:

Yi+1 —Yi
—Ax 5

Yi—Yi-1

Yi+1 = Yi-1 + €L+l — €k
Ax Dpex = :

D+yv = s
! 2Ax p Ap

X

D)_cyi = Dyy; =

In order to approximate the term of third order 47 we use D;D;Dx Now, to consider
the nonlinear terms we use explicit approximation y”D7y” and for the nonlinear
boundary condition we use a forward approximation for the second derivative which

gives

1 n+l 2 n+l 1 n+l 1 n \2 .
(er ) “io T anE it ians e =73 Il Non= T Ny

Note now that by the boundary conditions we have that u" N uJ N =0, u uy
foralln=0,-,N; and j,k=1---,N. Now we define Lo, the sét of 1ndex such that
i €1, ifiAx € w;. Then taking C DiDID. +D, our scheme can be seen as

XXX
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1 n+l _ _ 2 n+l 1 n+l _ _1c.n \2 - —1...
((Ax)2+a)uj,0 2% T a3 2 3(’4%0) s j=1, ,N, n=1 , N¢,
n+l n
“T+(Cu"+l)L+a]u"+ +bjzji N, +uf Diu ul;=0,i€ly;, i#0,j=1---.N,
n+l_ u"
i - AR +(Cu;1+l)l+u D; ]"l-—O, iE{l,---,N}\ij, i#0,
Jj=1--,N,
2 -
hj bt +(D}, 7;1 =0, k=1,---,N,,
Ui N = 4G N1 =0 Jj=L---.N,
jok=1. N,
0= Ui i€l j=1,-.N,
u‘?’,:uj?(iAx) i=1,---,Ny, j=1,---,N
Zélk—zo(kAp,le) k:1,...,Np,iele,j: L, ,N.
5.1

Now we use this scheme with the following parameters, N =4, L =2 and
a 3, for the discretization we use Ny =100, N, = 100, the initial conditions are
= = (1-cos(2nx/L)) and z = (1 =cos(2nx/L))cos(2nph;). As we say before
We consider that the feedback terms are constant on their support, and we take
wi = (O,L/Z), W)y = (0,L/4), w3 = (O,L/Z) and Wy = (0,L/4).

For Figure |Z| we use T'=5, Ny =100 and delay h; =1, hy =0.5, h3 =1 and
hs = 1. We can see that when there is not feedback terms (a; = b; = 0), the energy
is exponentially decreasing and if we only activate the feedback term without delay,
the energy decays more quickly. If we activate both feedback terms with and without
delay the energy still decrease exponentially but slowly. Similar case happen if we not
activate a feedback term without delay but we consider a feedback term with a small
delay (a4 =0, b; =0.5). Finally if we consider only the action of delay feedback terms
we can observe that in this case the energy decays very slowly.

-70

,.—0b10
J

a.=b =0
i
a=10, b =0
i i
=b =1
3

1—a2—a31a—0b b b 1b‘05

0.5 1 25
time

Fig. 2 Time-evolution of 7 — In(E (¢)) for different values of feedback terms.
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For Figure@we use 7' =10, N; =200, a; =0 for j =1,---4. In this figure we can
observe that in the case a; = 0 the energy decays exponentially if the feedback terms
with delay are small enough. Also we can see that if the delay is bigger the feedback
term with delay has to be smaller as written in Theorem [T.4]

15 T T

—h,=h,=0, h =05, h =1,b=20
---h=1,b=20
10 h=1,b,=25

time

Fig. 3 Time-evolution of ¢ — In(E (¢)) for different values of feedback with delay term.

For Figure@we consider 7' =2, N; = 100, delays h; = 0.1, hp =0.2, h3 =0.3 and
h4 =0.4, feedback terms a1 =2, a,=4,a3=6,a4=8,b;=0.5,b,=1.5,b3=2.5and
b4 =3.5. We show In(E(¢)) for different initial conditions u? =60(1 —cos(2nx/L))
and zg. =0(1 —cos(2nx/L))cos(2mph;), for § = 0.5, 2, 5. We show the graphics of

In (%) in order to normalize the energy. Here we can see that the decay rate does

not seem to depend of the initial data.

-10

In(E)

A5+ E

-20 -

25 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time
E(t)
E(0)

Fig. 4 Time-evolution of # — ln( ) for different values of 6 > 0.
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To end we consider T =2, N, = 100, delays h; = 0.1, h, = 0.2, h3 =0.3 and
hg = 0.4, feedback terms a; =2,a>=4,a3=6,a4=8,b1=0.5, b, =1.5, b3=2.5
and by = 3.5. We calculate the theoretical decay rate given by Theorem [[.1} we
get In(E (1)) < 2.9283 -1.2143-10""7¢. Now we make a linear regression for the
numerical obtained data and we get In(E (7)) ~ 4.1129 — 12.766¢. From here we can
see that the theoretical decay rate given by Theorem [I.T]is much smaller than the one
obtained numerically.

6 Conclusions

In this paper, was studied the well-posedness and exponential stability of a KdV
equation on a Star Shaped Network with internal delayed feedback terms. The well-
posedness was addressed including a new variable in order to take into account
the delay and then studying the linearization around O of our system we obtain the
local well-posedness for the nonlinear equation using the Banach fixed-point theorem.

First was considered the case where the support of delayed terms b; are included
in the support of the feedback terms without delay a;. In this was possible obtain the
local exponential stability using a Lyapunov functional, this result holds for restricted

lengths L < ‘/7§7r, a> % and gives us an estimation of the decay rate. This estimation

of the decay rate depends strongly on the Lyapunov Function used. Secondly using a
contradiction argument an observability inequality for the linear system was derived
that gives the exponential stability of the non linear system without restrictions on the
lengths and @ > &. On a similar way working directly with the nonlinear system a
semi-global stabilization result was obtained.

In the last stabilization results the case where non necessarily the support of de-
layed terms b; are included in the support of the feedback terms without delay a
has been considered. If this is the case and if the feedback delayed term b is small

\/‘

enough, the local exponential stability for L < 737r and a > % has been obtained.

Finally some numerical simulations have been presented. We showed how feed-
back delayed terms affects the stability (see Figure [2]and Figure [3). Also we observe
that numerically in the case a; = 0 if the feedback delayed terms b; is big enough
the system becomes unstable. Besides, we showed that the decay rate given by Theo-
rem[II]is smaller than those obtained in simulations.

To conclude we present some open questions to be investigated:

1. As was said in Remark [3.1] the restriction on L comes from the multiplier x in
V1. Finding a new multiplier in order to obtain a result less restrictive is an open
problem.

2. In this paper was considered that the delay acts internally. We are working on a
delay term acting on the central node.
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. The tools used in this work are inspired by [9]]. For that a future research could be

to study a KdV equation with a saturated control on a Star Shaped Network.

. Typically the KdV equation is globally well-posedness in a bounded domain, the

main difficulty to reach global well-posedness in the network case is Proposi-
tion[2.6] A global well-posedness of the KdV equation in a Star Shaped Network
is an open problem.

. In [[7] a stabilization problem for the linear Kuramoto-Sivashinsky with delayed

boundary control was studied. Studying a Kuramoto-Sivashinky equation on net-
works with or without delay is also a possible future work.
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