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DEPENDABLE &  

EXPLAINABLE LEARNING  

DEEL PROJECT 

IRT Saint Exupéry and ANITI in Toulouse, 
IVADO and CRIAQ in Montreal, have joined 
forces to build with their partners a “startup la-
boratory” on the theme of explainable and de-
pendable artificial intelligence: DEEL (DEpend-
able & Explainable Learning).  

It brings together manufacturers from the aero-

nautics, space, automotive and academic sec-

tors, both French and Canadian. 

ABOUT DEEL  

DEEL is a team of 60 people, with a wide range 
of profiles including internationally renowned 
academic researchers, data scientists and the-
matic engineers specialized in operational 
safety and certification. This integrated team is 
located in Toulouse and Québec, with the ob-
jective of responding to scientific challenges of 
an industrial inspiration.  

It enables manufacturers to secure their 

critical systems by obtaining guarantees on 

the performance of artificial intelligence 

functions. 

 OBJECTIVES 
 To create internationally recognized, visi-

ble, and identified scientific and technologi-
cal knowledge on the explainability and ro-
bustness of artificial intelligence algorithms 
in an automatic and statistical learning con-
text.  

 To create conditions within the project itself 
for the rapid transfer of work to its industrial 
partners through the development of skills 
and the provision of tools. 

 To make the scientific community and the 
general public aware of the emblematic sci-
entific challenges built with the partners. 

RESEARCH INDUSTRY 

DATA 

SCIENCE 
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1 Introduction 

 THE ML CERTIFICATION WORKGROUP 

Machine Learning (ML) seems to be one of the most promising solution to automate par-

tially or completely some of the complex tasks currently realized by humans, such as driv-

ing vehicles, recognizing voice, etc. It is also an opportunity to implement and embed new 

capabilities out of the reach of classical implementation techniques. However, ML tech-

niques introduce new potential risks. Therefore, they have only been applied in systems 

where their benefits are considered worth the increase of risk. In practice, ML techniques 

raise multiple challenges that could prevent their use in systems submitted to certification2 

constraints. But what are the actual challenges? Can they be overcome by selecting ap-

propriate ML techniques, or by adopting new engineering or certification practices? These 

are some of the questions addressed by the ML Certification3 Workgroup (WG) set-up by 

the Institut de Recherche Technologique Saint Exupéry de Toulouse (IRT), as part of the 

DEEL Project.  

In order to start answering those questions, the ML Certification WG has decided to restrict 

the analysis to off-line supervised learning techniques, i.e., techniques where the learning 

phase completes before the system is commissioned (see §2.1). The spectrum of ML tech-

niques is actually much larger, encompassing also unsupervised learning and reinforce-

ment learning, but this restriction seems reasonable and pragmatic in the context of certi-

fication. The scope of the analysis is more precisely defined in §1.3. 

The ML Certification WG is composed of experts in the fields of certification, dependability, 

AI, and embedded systems development. Industrial partners come from the aeronautics4, 

railway,5 and automotive6 domains where “trusting a system” means, literally, accepting 

“to place one's life in the hand of the system”. Some members of our workgroup are in-

volved in both the AVSI (Aerospace Vehicle Systems Institute), the SOTIF (Safety Of The 

Intended Functionality) projects, and the new EUROCAE (European Organisation for Civil 

Aviation Equipment) WG-114 workgroup.  

Note that the DEEL ML Certification workgroup is definitely not the only initiative dealing 

with trust and machine learning. However, it is singular for it leverages on the proximity of 

the members of the DEEL “core team” that gathers, at the same location, researchers in 

                                                
2 We use the term “certification” in a broad sense which does not necessarily refer to an external 
authority. 
3 In this document, “ML certification” will be used in place of “Certification of systems hosting ML 
techniques” 
4 Represented by Airbus, Apsys, Safran, Thales, Scalian, DGA, and Onera. 
5 Represented by SNCF. 
6 Represented by Continental and Renault. 

DISCLAIMER: This White Paper about "Machine Learning in Certified Systems" pre-
sents a snapshot of a work that is still in progress. Faced to the span and complexity of 
the problem, we have had to make choices among the topics to develop, to bound the 
depth of the analysis, and to leave out some “important details”. Nevertheless, we con-
sider that, even though they are preliminary, the results given in this paper are worth 
being shared with the community. 
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statistics, mathematics and AI coming from partner laboratories (IMT,7 IRIT,8 LAAS9), and 

specialists and data scientists coming from the IRT and the industrial partners.  

 OBJECTIVES OF THIS WHITE PAPER 

This White Paper targets the following objectives: 

 Sharing knowledge 

 Identifying challenges for the certification of systems using ML  

 Feeding the research effort. 

1.2.1 Sharing knowledge 

Standards like DO-178C/ED-12C, EN50128, or ISO 26262 have been elaborated carefully, 

incrementally, and consensually by engineers, regulators and subject matter experts. We 

consider that the same approach must apply to ML techniques: the emergence of new 

practices must be “endogenous”, i.e., it must take roots in the ML domain, and be sup-

ported by data science, software, and system engineers. In order to facilitate this emer-

gence, one important step is to share knowledge between experts of different industrial 

domains (automotive, aeronautics, and railway). This is a prerequisite to create a common 

understanding of the certification stakes and ML technical issues.  

1.2.2 Identifying challenges for the certification of systems using ML 

Once a common ground has been established between experts, the next step is to identify 

challenges considering conjointly the characteristics of ML techniques and the various cer-

tification objectives. To identify why ML techniques are that different from classical tech-

niques (i.e., non-ML) from the perspective of certification is one of the objectives of this 

White Paper. Nevertheless, two significant differences are worth being mentioned right 

now. First, ML algorithms, based on learning, are fundamentally stochastic whereas clas-

sical solutions are (essentially) deterministic. Second, the behaviour of ML components is 

essentially determined by data, whereas the behaviour of classical algorithms is essen-

tially determined by instructions. These differences and their impacts on our capability to 

certify systems are further elaborated in the rest of this document.  

1.2.3 Feeding the research effort 

The physical and organizational proximity of the “core team” of the DEEL project with the 

workgroup is a singularity compared to other initiatives. In practice, members of the core 

team, i.e., data scientists and mathematicians from industry and academia, participate ac-

tively to the workgroup meetings. Those discussions feed AI and Embedded Systems re-

searchers with accurate and sharp challenges directly targeted towards certification objec-

tives. 

 SCOPE OF THE DOCUMENT 

The scope of this document is defined by the following restrictions:  

 We only consider off-line supervised learning (see §2.1 for details).  

                                                
7 Institut de Mathématique de Toulouse : https://www.math.univ-toulouse.fr/. 
8 Institut de Recherche en Informatique de Toulouse : https://www.irit.fr/. 
9 Laboratoire d’Analyse et d’Architecture des Systèmes : https://www.laas.fr/public/. 
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 Focus is on ML subsystems and algorithms. System level considerations are only 

addressed in section “Resilience” (§4.3). 

 We consider the use of ML algorithms in systems of all criticality levels, including 

the most critical ones.  

 We consider systems with or without human in the loop.  

 Issues related to implementation, i.e., how ML models are realized in software, 

hardware or a combination thereof are not specifically addressed in the document. 

However, we do know that they raise various concerns about, for instance, the 

effects of floating-point computations, the determinism of end-to-end response 

times, etc.  

 Issues related to maintainability are also marginally addressed. 

 The study is neither restricted to a specific domain nor to a specific certification 

framework. If focus is somewhat placed on large aeroplanes when considering the 

aeronautical domain, results are applicable to all other domains of aviation includ-

ing rotary wing aircrafts, UAVs, general aviation, Air Traffic Management (ATM) 

systems, or other ground systems such as simulators. 

 Cybersecurity is not addressed. 

Important notice on terminology (Fault, Error and Failure): Fault and errors are given dif-

ferent definitions according to the domain and the references, but they agree on the fact 

that they are the more or less direct cause of a system failure, i.e., a situation where the 

system does not longer perform its intended function. In this white paper, and according 

to Laprie [1], we will mainly use the term “fault” to designate “the adjudged or hypothesized 

cause of a modification of a system state that may cause its subsequent failure”. However, 

in paragraphs where this causality chain is not the main topic, we may use faults and errors 

interchangeably (or the term “fault/error”). Besides, the word “error” has another significa-

tion in theory of Machine-Learning, and specific footnotes will point out sections where this 

definition holds. 

 ORGANIZATION OF THE DOCUMENT 

Section 1 is a brief introduction to the document. 

Section 2 provides a general overview of the context of ML certification. It introduces the 

Machine Learning techniques and details the industrial needs and constraints. 

Section 3 describes the analyses performed by the workgroup, in order to identify the ML 

certification challenges.  

Section 4 presents the main ML certification challenges from an industrial and academic 

point of view. Note that subsections 4.2 to 4.8 have been written by different subgroups 

and can be read independently. 

Section 5 concludes this White Paper and summarizes the main challenges identified.  
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2 Context 

 MACHINE LEARNING TECHNIQUES 

 “Machine learning is a branch of artificial intelligence (AI) […] which refers to automated 
detection of meaningful patterns in data. [It covers] a set of techniques that can “learn” 
from experience (input data).” [2]. Machine Learning uses techniques coming from the 
fields of AI, statistics, optimization, and data sciences. 

For the categories of Machine Learning (ML) techniques considered in this document, “ex-

perience” comes under the form of a set of “examples” compiled into a “training dataset”. 

In practice, learning provides a system with the capability to perform the specific tasks 

illustrated by those “examples”. Usually, ML is used to perform complex tasks difficult to 

achieve by means of classical, procedural, techniques, such as playing go, localizing and 

recognizing objects on images, understanding natural languages, etc. 

Figure 1 gives a simple example of such a task: the ML component classifies its inputs 

(characterized by their features) based on a parameterized ML model. The objective of the 

ML approach is to learn these parameters in order to be able to take (or infer) decisions.  

Inputs

 

Figure 1. Using ML to perform a classification operation  

Machine Learning covers a large variety of applications, methods, and algorithms. In the 

rest of this section, we will first give some elements of classification of ML techniques, 

according to the way data are collected (the protocol), and the learning strategies. We 

present a short taxonomy of the main Machine Learning algorithms and finish with an 

overview of intrinsic errors10 introduced by ML approaches. 

2.1.1 Elements of classification of ML techniques 

2.1.1.1 Protocol for data collection  

The protocol used to collect data is the first important criterion of classification. Many cri-

teria, such as the type of data sources, the type of sampling methods, etc., should be taken 

into account to precisely characterize a protocol. However, for the sake of simplification, 

we will consider here only two main dimensions:  

 Passive vs active acquisition, i.e., data acquisition independent (resp. depend-

ent) of the ML decisions taken during the learning phase. 

 Offline vs online learning, i.e., learning relying on a “frozen” training set, or learn-

ing relying on data acquired during operation.  

2.1.1.2 Learning strategies  

In the literature, we commonly find four types of learning strategies: 

                                                
10 In this paragraph, the term error has no link with Laprie’s definitions given in §1.3. It corresponds 
to the standard definition in Machine Learning theory. 
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 Supervised learning: With a labelled training dataset 𝑆 =  {𝑥𝑖, 𝑢𝑖}  𝑥𝑖 ∈ 𝑋 (input 

space), and 𝑢𝑖 ∈ 𝑈 (decision space), the system learns a function ℎ𝜃, of parame-

ters 𝜃, as close as possible to the target function, or distribution. 𝑈 is discrete for 

classification problems and continuous for regression or density estimation prob-

lems.  

 Semi-supervised learning: The system learns using both a small amount of la-

belled data {𝑥𝑖 , 𝑢𝑖} and a large amount of unlabeled data {𝑥′𝑖} in the training dataset 

S.  

 Unsupervised learning: The system learns underlying structure of data using an 

unlabeled dataset 𝑆 =  {𝑥𝑖}.  

 Reinforcement learning: The system learns by interacting with its environment, 

in order to maximize long-term reward. Exploration of the input space is determined 

by the actions taken by the system (active acquisition). 

In this document, we focus on passive offline and supervised learning, as it seems to 

be a reasonable first step towards certification. 

2.1.2 Taxonomy of Machine Learning techniques 

Table 1 gives a short list of the most common ML techniques. It indicates their main ad-

vantages and drawbacks. Each kind of ML technique will rely on one or several hypothesis 

function space(s) (ℎ𝜃), and one or several exploration algorithms (not listed in this docu-

ment) to minimize a loss function on the training dataset (more details and mathematical 

formulations in §4.2.3). Much literature can be found on each technique, and for readers 

that need more details, we can advise to refer to [2]. 

Table 1. Taxonomy of ML techniques 

Techniques Applications Pros Cons 

Linear models: Linear 
and logistic regressions, 
support vector machines 

classification, regres-
sion 

Good mathematical 
properties (proof), eas-
ily interpretable 

Linear constraints induce a 
poor performance in com-
plex or high dimension prob-
lems 

Neighbourhood mod-
els: KNN, K means, 
Kernel density 

classification, regres-
sion, clustering, den-
sity estimation 

Easy to use Relies on a distance that 
can be difficult to define in 
high dimension problems 

Trees: decision trees, 
regression trees 

classification, regres-
sion 

Fast, applicable on any 
type of data 

Unstable, unable to cope 
with missing data 

Graphical models: na-
ive Bayesian, Bayesian 
network, Conditional 
Random Fields (CRF) 

classification, density 
estimation 

Probabilistic model 
(confidence in out-
puts), cope with miss-
ing data 

Difficult to extend to contin-
uous variables; complex to 
train 

Combination of mod-
els: Random Forest, 
Adaboost, gradient 
boosting (XGboost) 

classification, regres-
sion, clustering, den-
sity estimation 

Efficient, with any type 
of data 

Lots of parameters, not effi-
cient on high dimension 
data (such as image) 

Neural networks (NN), 
Deep Learning (DNN) 

classification, regres-
sion 

Easily adaptable, ef-
fective on high-dimen-
sional data 

Many parameters, computa-
tion complexity 
 

 

2.1.3 Biases and errors in ML 

In the previous sections, we have seen that in order to learn the ML model parameters for 

a given application, we will have to choose: the protocol, the input space and the dataset, 
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the hypothesis function space (ℎ𝜃), the exploration algorithm of ℎ𝜃 space (local or global, 

gradient descent, etc.), and the loss function and performance metrics (error rate, mean 

square error, log-likelihood, etc.). 

Each choice will introduce biases, but those biases are actually inherent to the learning 

process. Given these biases, the literature points out three types of errors11 induced by a 

ML mechanism (see Figure 2): 

 Approximation error: this error is the distance between the target function 𝑓 (un-

known) and the closest function in the hypothesis function space ℎ𝜃∗. This error is 

correlated to the choice of the hypothesis function. 

 Estimation/Generalization error: this error is the distance between the optimal 

function ℎ𝜃̂ achievable given the training dataset and the closest function ℎ𝜃∗. This 

error is correlated to the choice of the training dataset that is only a sample of the 

input space. 

 Optimization error: this error is the distance between the function found by the 

optimization algorithm ℎ𝜃′, and the optimal function ℎ𝜃̂. Given the dataset, the op-

timization algorithm might not reach the global optimal function ℎ𝜃̂ but only find a 

local minimum ℎ𝜃′ (or just a stationary point). 

Note that these errors, intrinsic to the ML process, will come in addition to more common 

errors such as input or rounding errors.  

 

 

Figure 2. Errors in Machine Learning: the H1 ellipse represents the set of all functions in 
which we can find the target (unknown function). H2 and H3 are examples of hypothesis 

function spaces (H2 is more expressive than H3). ℎ 𝑖
∗  are the best candidates in each 

function space (approximation error), ℎ𝑖̂ are the best candidates given the training da-
taset (estimation error), and ℎ𝑖

′ are the elements learnt (optimization error).  

 THE NEEDS FOR MACHINE LEARNING 

After this quick introduction to Machine Learning techniques, and before addressing the 

certification of systems using those techniques, it may be worth saying a few words about 

why we are considering integrating ML in those systems.  

                                                
11 In this paragraph, the term error has no link with Laprie’s definitions given in §1.3. It corresponds 
to the standard definition in Machine Learning theory. See §4.2.3 for more details and mathematical 
formulations. 
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Technically, ML solves problems that were generally considered intractable, such as the 

processing of natural language, the recognition of objects, and more generally the extrac-

tion of complex correlations in huge datasets and their exploitation in real-time. The spec-

trum of possible applications is huge, from giving autonomy to cars, aeroplanes, trains, or 

UAVs, offering new man-machine interaction means, to predicting failures, possibly lead-

ing to an improvement of the overall safety of systems. Let us briefly consider the needs 

for Machine Learning for automotive, railway, and aeronautics systems. 

2.2.1 Automotive 

Since its creation, the automotive industry has always been a fertile ground to create or 

integrate innovative solutions. Machine Learning techniques are no exception to the rule.  

Data are now massively produced everywhere inside companies (engineering department, 

manufacturing, marketing, sales, customer services…). Combining these data and new 

Machine Learning techniques is a means to revisit existing processes, identify new needs, 

and create new products to satisfy them. 

In the marketing field, ML techniques may be used to leverage information collected in 

showrooms in order to improve the knowledge about customers and better satisfy their 

needs. Such applications, having no impact on safety and a limited impact on business, 

are strong opportunities with low risks. 

In the field of predictive maintenance, ML techniques are well suited to identify abnormal 

patterns in an ocean of data. In addition, for a given car, they can account for the driving 

conditions and the driver profile. Again, these techniques will probably not have a direct 

impact on the safety of drivers and passengers because safety rules regarding car mainte-

nance remains applicable to avoid hazardous situations. Nevertheless, they can be useful 

to prevent customers from facing unpleasant situations. 

In the manufacturing field, those techniques can also improve and reduce the cost of qual-

ity control. Until now, this control is done by a human operator who is in charge of identi-

fying all potential manufacturing defects. Such defects may simply affect the aspect or the 

comfort of the vehicle, but they may also have a strong impact on its safety. This is for 

instance the case of the welding points of the car’s body. Ensuring the conformity of weld-

ing point requires large efforts and costs due to the imperfection of human verification. 

Using a camera coupled with a machine-learning based computer vision algorithm to de-

tect welding points not complying with specifications would thus be of great interest. In this 

case, guarantees must be given that the ML system is at least as performant as the human 

it replaces. Therefore, in the context of manufacturing, Machine Learning Algorithms could 

have a positive impact on global safety of the product if we can bring guarantees regarding 

their performance. 

Last but not least, Machine Learning techniques conditions the emergence of Automated 

Driving.  

Figure 3 presents the 5 levels of automation usually considered by the international auto-

motive community.  

Level 0, not shown on the figure, means “no automation”.  

Level 1 and 2 refer to what is usually called ADAS (“Advanced Driving Assistance Sys-

tems”), i.e. systems that can control a vehicle in some situations, but for which the driver 
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is always supposed to be able, at any time, to take back control of the vehicle. Moreover, 

the driver remains fully responsible for driving the vehicle.  

Starting from level 3, delegation for driving is given to the vehicle under certain circum-

stances, but at this level, the driver is still supposed to be able to take back control of the 

vehicle at any time, when required by the system, but in a defined delay.  

At last, Levels 4 and 5 give more and more driving delegation to the vehicle without mon-

itoring of driver on a specific use case (level 4) or on all use cases (level 5). 

 

Figure 3. The five levels of automation (picture taken from the SIA conference « Les ap-

plications du véhicule autonome, nécessités et limites ») 

Automated Driving (AD) is a well-known field of application for Machine Learning. In par-

ticular, Deep Learning (DL) and convolutional networks applied to computer vision have 

enabled to develop efficient camera-based perception systems and have contributed to 

the rise of ADAS and Autonomous driving applications. Thank to these techniques, the 

vehicle is now able to perceive its environment better than ever. However, there are still 

severe obstacles to reach the level of dependability required for a system that can take 

control of a motor vehicle. 

As ADAS and Automated Level 1 and 2 functions impose that the driver remains respon-

sible for driving, one could think that safety is not at stake for these levels of automation. 

This concerns, for instance, functions heavily depending on camera-based perception sys-

tems using ML techniques such as AEB (Advanced Emergency Braking System) that are 

now under regulation, ACC (Active Cruise Control), or LKA (Lane Keeping Assist). How-

ever, having dependable Machine Learning algorithms to reduce false positives and false 

negatives is already a very strong concern.  

Nevertheless, the most critical situations are obviously observed for Levels 3 to 5. In these 

situations, driving responsibility being delegated to the vehicle, at least for a while and 

under certain circumstances, performance guarantees must be provided to demonstrate 

the safety of the automated function.  

Providing such guarantees is not only a long-term concern. For instance, a first Level 3 

system regulation has already been adopted in June 2020 at UNECE for the safe intro-

duction of ALKS (Automated Lane Keeping Assist System) by 2021. Even if the condition 

https://www.sia.fr/publications/609-applications-vehicule-autonome-necessites-limites
https://www.sia.fr/publications/609-applications-vehicule-autonome-necessites-limites
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of use are still restrictive (“[…] on roads where pedestrians and cyclists are prohibited and 

which, by design, are equipped with a physical separation that divides the traffic moving 

in opposite directions. […] operational speed of ALKS systems [limited] to a maximum of 

60 km/h […]”12), this new regulation makes concrete the need for dependable Machine 

Learning and certification procedures. 

Beyond the objective of reducing road casualties thanks to AD (human factor is the first 

contributor to road accidents) the benefits of this new technology are potentially large: 

 Reducing traffic and pollution by creating dedicated traffic lanes for AD vehicles. 

Indeed, when associated with connectivity (between vehicles and infrastructures) 

AD can significantly reduce safety distance required between vehicles and so in-

crease traffic flow. 

 On demand Transport in Urban context. 

 AD Shuttle service complementary to existing transport network. 

 AD Shuttle in rural areas. 

 Urban Logistics for last kilometer delivery. 

 Logistics in confined areas (Airport, Port, Mines …). 

 Valet Parking. 

 etc. 

From a technological perspective, ML in automotive concerns: 

 Sensor fusion. The difficulty of integrating large amounts of heterogeneous, multi-

source, data may be addressed by Machine Learning techniques. Examples range 

from fusing video data with radar, LiDAR, infrared, ultrasound, geographical, me-

teorological, etc. ML may also be used to develop so-called virtual sensors, i.e. 

numerical models that can reliably infer physical quantities from other sensor data. 

These virtual sensors can either replace or be used as backups of their physical 

counterparts, depending on whether the subject of cost or robustness is considered 

a priority. 

 Dimensionality reduction. Selecting both the right (i.e. relevant) content and 

amount of information needed to be exchanged and processed from the vastness 

of available data, in order to detect or predict a certain state or object, is always a 

great concern for the data driven process, as it has a direct impact on the reliability 

of the system and its operational costs. 

 Time series forecasting. As most of the vehicle-related data have embedded a 

strong temporal component, many problems can be formulated as (multi-variate) 

time series predictions. Forecasting examples include prediction of traffic jams, 

parking availability, most probable route, short-term speed horizon, road conditions 

according to weather, etc. 

 Anomaly detection. Detecting abnormal cases or patterns in the data can high-

light early errors or even prevent the occurrence of events with serious conse-

quences. Anomaly detection is a hot and challenging research topic (usually due 

to the rare occurrence of the patterns) with a strong practical impact. Examples of 

applications range from fault detection in manufacturing processes to predictive 

                                                
12 See https://www.unece.org/info/media/presscurrent-press-h/transport/2020/un-regulation-on-
automated-lane-keeping-systems-is-milestone-for-safe-introduction-of-automated-vehicles-in-traf-
fic/doc.html    

https://www.unece.org/info/media/presscurrent-press-h/transport/2020/un-regulation-on-automated-lane-keeping-systems-is-milestone-for-safe-introduction-of-automated-vehicles-in-traffic/doc.html
https://www.unece.org/info/media/presscurrent-press-h/transport/2020/un-regulation-on-automated-lane-keeping-systems-is-milestone-for-safe-introduction-of-automated-vehicles-in-traffic/doc.html
https://www.unece.org/info/media/presscurrent-press-h/transport/2020/un-regulation-on-automated-lane-keeping-systems-is-milestone-for-safe-introduction-of-automated-vehicles-in-traffic/doc.html
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maintenance or to the detection of abnormal driver behaviours (e.g. to ensure a 

required level of attention in semi-autonomous driving). 

 Optimization. The objective is to optimize specific quantities, such as the time or 

costs of certain phases of the car assembling pipeline, the trip time or the delivery 

time (routing), the energy consumption of (individual or fleet of) vehicle(s), the pol-

lutant emissions, etc. 

 Planning and reasoning. Perceptual capacities concern almost exclusively of de-

cision-making on very short time scales. They are a necessary yet not sufficient 

component of any intelligent system. Planning and reasoning are usually required 

to be implemented on the higher-levels of the perception-action loop of any proper 

autonomous agent. Historically, these problems have been addressed by symbolic 

AI techniques, expert systems, and planning theory. However, Machine Learning 

is expected to gain momentum in this area in the years to come. 

From a purely technological point of view, we may also differentiate among the possible 

loci of the Machine Learning components, namely whether they are embedded, cloud-

based, or a combination of the two (or other hybrid technologies). 

2.2.2 Railway 

Natural language processing, artificial vision, time series prediction and more generally 

artificial intelligence technologies are widely applied in non-critical systems in the railway 

industry (services, maintenance, and customer relations).  

As a case study, Rail operations at SNCF comprise managing 15,000 trains a day before, 

during, and after their commercial service; defining timetables; rotating rolling stock and 

supervising personnel; providing travel information and recommending itineraries; and 

managing traffic flows into, out of, and at stations. With passenger and freight volumes 

continually growing, transport offers expanding to keep pace with demand, and infrastruc-

tures sometimes being at full capacity locally, operating a rail system is becoming increas-

ingly complex. Travelers expectations are changing too: they want quicker responses, 

more personalized service, and greater reliability.  

Under these circumstances, the operation of rail systems is evolving, and the use of artifi-

cial intelligence offers new ways of optimizing the capabilities and raising the operational 

performance of systems, and improving the overall quality of service. 

AI is already used in various operations, such as real time traffic resource and passenger 

flows optimization, response to unforeseen events with projected evolution, decision-mak-

ing based on predictive simulations, comparison and recommendation of solutions, etc. AI, 

and more specifically ML, is not meant to replace rail operators, but to help them making 

better and faster decisions by analyzing a much larger set of parameters than the human 

mind can process, with the required level of safety. For efficient interactions with operators, 

data visualization and new man/machine interfaces will be crucial.  

ML techniques may also be used in safety critical systems. Safety critical tasks can be 

divided in two categories:  

 Tasks performed by machines (signalling, speed control, train and network super-

vision and regulation, etc.). 

 Tasks performed by human operators (driving, visual control of train before opera-

tion, checking various elements, etc.). 
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Today, tasks of the first category are performed by systems that do not rely on ML. Their 

behaviour is completely deterministic and certified by the European railway authorities. 

However, ML could be profitable here by giving the capability to process data near the 

sensors that produce them, thus avoiding network latency times and gaining in reactivity. 

Note that beyond the specific issues raised by ML, processing data closer to sensors and 

actuators will also have to face the classical problems of space constraints, electromag-

netic compatibility issues (EMC), communication, etc. 

The second category, safety critical human operator tasks, is perfectly covered by a num-

ber of detailed and precise regulations, and by a three-year safety cycle for operators. 

However, as humans are obviously not perfectly deterministic, ML may also be a way to 

raise the overall safety of the system.  

So, ML can be used to improve the realization of both categories of tasks. However, the 

focus is currently mainly on human operator tasks that could be supported or replaced by 

systems embedding ML algorithms. Finally, this boils down to moving these tasks from the 

second to the first category, going from safety critical human task to safety critical auto-

matic systems, with all the consequences on the certification process that this new kind of 

automated tasks may introduce. 

The most obvious example of this trend is the autonomous train. 

Autonomous train 

Why making train autonomous? The main objective with autonomous trains is to operate 

more trains on existing infrastructure by optimizing speeds and enabling traffic to flow more 

smoothly. More trains on the same stretch of track means the possibility of transporting 

more people and goods. For example, with the extension of the RER E commuter line to 

Nanterre, in the western Paris region the frequency will increase from 16 to 22 trains an 

hour between Rosa Parks and Nanterre in 2022. Autonomous trains operating at optimal 

speeds and connected through a common control system, rail service will be more respon-

sive and resilient to varying conditions. For customers, this will mean improved regularity 

and punctuality. Energy consumption will also decrease with autonomous trains. An 

onboard system will be able to calculate the most energy-efficient running for a given track 

route. Here, too, the impact will be very significant in view of the railway group’s €1.3-billion 

annual energy bill. 

Of course, autonomous trains will go into commercial service only when all conditions to 

ensure total safety have been met: this means a level of safety which will be at least as 

high, if not higher than, today’s (i.e. GAME principle described in §2.3.2.1). Capacity, reg-

ularity, lower energy consumption: all these benefits will add up to improved competitive-

ness for rail transport.  

Driverless railway mobility is not a new thing. The first automatic metro was introduced in 

the 80’s and ATO (Automatic Train Operation) and now ATS (Automatic Train Supervision) 

systems are widely used all over the world. However, these systems fall into the first cat-

egory described above: no ML inside and a system completely certified, end to end. This 

of course comes with clear constraints: the necessity to operate in a controlled environ-

ment, and the requirement of a completely new infrastructure and new trains. 

However, the goal with the newest autonomous train projects is to achieve a new level of 

autonomy by dealing with open environment (obstacle detection for example is mandatory). 
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For some projects, this has to be done without any change in the network infrastructure. 

In this context, helping or replacing the driver shall be seen as a direct transfer of human 

tasks to the machine: the latter has to operate the train according to the external signals, 

it has to detect any abnormal behaviour, react to any unplanned event in environment, 

deal with weather conditions, etc. 

To achieve these goals, railway industry needs to gain confidence on systems embedding 

ML techniques and find out ways to certify those systems. 

2.2.3 Aeronautics 

Most of the uses of Machine Learning described in the previous two sections are also 

relevant for Aeronautics. In this section, the specifics of aeronautics are highlighted, but 

the level of details is limited, in order to avoid redundancies with the previous sections. 

In aeronautics, many functions are already automated: a modern aircraft can be automat-

ically piloted in almost all phases of flight, even in adverse environmental conditions. Nev-

ertheless, the pilot remains today the first decision-maker on board, and the last resort in 

case of abnormal situation. 

Machine Learning (and more broadly Artificial Intelligence) has multiple potential applica-

tions in safety-critical aeronautical systems such as  

 Support the pilots in their tasks. 

 Provide new operational capabilities. 

 Optimize aircraft functions by augmenting physical sensing (virtual sensors). 

 Reduce aircraft operating costs thanks to ML-based health monitoring and predic-

tive maintenance. 

 Enable unmanned operations. 

 Etc. 

ML is indeed a powerful tool to augment the capabilities of a human. ML can help listen to 

the Air Traffic Control instructions, monitor the systems, and detect a conflict or an abnor-

mal behaviour. As systems are getting more and more complex, ML can also help the pilot 

to analyse the situation, and can highlight the most relevant information. These capabilities 

can be classified in three main categories: 

 Perception (computer vision, natural language processing), for instance to in-

crease the situational awareness of the pilot. 

 Anomaly detection, for instance to help the pilot identify any malfunction, failure, 

or discrepancy. 

 Recommendation and decision making (planning, scheduling, reasoning), for 

instance to provide the pilot with options on how to conduct and optimize the flight. 

These new capabilities can also be useful on the ground, where ML techniques could 

equally support the work of Air Traffic Controllers. 

If these techniques prove to be effective, they could then pave the way to new operational 

capabilities, such as automated take-off, Single Pilot Operations (one pilot supported by a 

virtual copilot), and overall an increased level of automation. ML could also support the 

rise of Unmanned Aircraft Systems (UAS) operations, and, on a longer term, autonomous 

commercial air transport (including freight transport). 
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This evolution will not be limited to the commercial aviation. It will also have a significant 

effect on the general aviation (including Search and Rescue operations), military opera-

tions, etc.  

 CERTIFICATION PRACTICES 

This section provides an overview of the current and upcoming certification practices in 

the automotive, railway, and aeronautical domains. This section does not intend to provide 

a detailed description of all applicable certification standards and regulations, but rather 

aims at enabling readers that are not familiar with certification to understand the basic 

principles of certification in each domain. 

2.3.1 Automotive 

2.3.1.1 Overview  

There is no certification for cars equipment but, when a new vehicle model is placed on 

the market, it must conform to a set of norms at the national and international levels. Be-

sides this vehicle type certification, industrial standards are also adopted on a voluntary 

basis, at least for the commercial advantages that the adherence to these standards po-

tentially offers. The main examples for our topic of interest are: 

 Euro-NCAP (European New Car Assessment Program): it defines a list of safety 

equipment that the car may have. It delivers also a notation (expressed with 

“stars”) to any new vehicle model depending on how much its equipment covered 

by this standard meet the requirements. 

 ISO 26262: this standard “applies to all activities during the safety lifecycle of 

safety-related systems comprised of the hardware components (named E/E for 

Electrical/ Electronic) and the software components” of the automobile vehicle. 

The general characteristics of this standards are: 

o It proposes mitigation means against risks coming from E/E failures. 

o It considers systematic failures from software and hardware and random 

failures from hardware. 

o On the software part, the main principles are: 

 Strong management of requirements and their traceability. 

 Cascade of different levels of requirements. 

 High importance of the verification of the implementation of these 

requirements through different levels of test. 

 Configuration management of all elements of the software lifecycle. 

o However, software analysis differs since the functional requirements are 

differentiated from the safety ones, which implies to carry out an independ-

ence analysis ensuring their respective consistency.  

2.3.1.2 Towards new practices 

During the ISO 26262 revision process (2016-2018), the necessity for a complementary 

approach to the component “failure-oriented approach” that was considered in the 

ISO 26262 emerged. The idea was that some limitations of an equipment could lead to the 

violation of some safety goals without any failure in any system of the vehicle.  

These limitations concern the intention of a function that is not achieved in some conditions, 

not the realization of the function. Therefore, these limitations cannot be mitigated by the 
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application of the ISO 26262, which is focused on the occurrences or consequences of 

failures.  

To address this problem, a workgroup was formed to deal specifically with the safety of 

the intended function (SOTIF). The result of this work is the new ISO standard ISO PAS 

21448. 

The SOTIF classifies operational scenarios according to their impact on the safety 

(safe/unsafe) and the a priori knowledge one may have concerning their occurrence in 

operation (known/unknown13). This is represented on Figure 4. 

As any other methodology aimed at ensuring safety, the main objective of the SOTIF is to 

maximize or maintain the “safe areas”, i.e. the proportion of operational scenarios leading 

to a safe situation, and minimize the “unsafe area”, i.e. the proportion of operational sce-

narios leading to an unsafe situation while keeping a reasonable level of availability of the 

system under design. 

The originality of the SOTIF lies in the fact that it addresses explicitly the case of the un-

known and unsafe operational scenarios. It proposes an iterative approach to reduce the 

occurrence of these situations “as much as possible with an acceptable level of effort”.  

The SOTIF is complementary to the ISO 26262. The ISO 26262 proposes means to han-

dle the design and random errors; the SOTIF extends the ISO 26262 by considering the 

effects of the “the inability of the function to correctly comprehend the situation and operate 

safely [… including] functions that use Machine Learning”, and the possible misuse of the 

system.  

The specific limitations of the ML algorithms, including their capability “to handle possible 

scenarios, or non-deterministic behaviour”, typically fits in the scope of the SOTIF.  

The SOTIF proposes a process to deal with those situations. In particular, it proposes an 

approach to verify the decision algorithms (see §10.3 of the SOTIF) and evaluate the re-

sidual risk. For instance, Annex C proposes a testing strategy of an Automatic Emergency 

Braking (AEB) system. An estimation of the probability of rear-end collision in the absence 

of AEB is obtained from field data. Considering that the probability of occurrence of the 

hazardous event shall be smaller than this probability, the number of kilometres of data to 

be collected (for the different speed limits) in order to validate the SOTIF can then be 

estimated. The process may be iterated up to the point where the estimated residual risk 

is deemed acceptable.  

                                                
13 We come back on the concept of known/unknown, known/known, etc. in Section 4.2.3.1. 
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Figure 4. Operational scenarios classification as per SOTIF 

This approach allows but manages the performance limitations inherent to ML. In particular, 

it explicitly allows unknown situations for which no learning data will be provided during 

the learning phase but provides a methodological framework to reduce them and their 

impact on safety. 

2.3.2 Railway 

2.3.2.1 Overview 

In accordance with European regulations, the railway system is broken down into structural 

subsystems (infrastructure, energy, control-command and signalling, rolling stock) and 

functional subsystems (operation and management of the traffic, including the organization, 

maintenance, including the organization). 

The standards given in Table 2 are applicable to the hardware and software parts of sys-

tems/sub-systems/equipment. Before an application for Safety approval can be consid-

ered, an independent safety assessment of the system/sub-system/equipment and its 

Safety Case shall be carried out to provide additional assurance that the necessary level 

of safety has been achieved. The resulting Safety Assessment Report must explain the 

activities carried out by the safety assessor to determine how the system/sub-sys-

tem/equipment (hardware and software) has been designed to meet its requirements. It 

can also specify some additional conditions for the operation of the system/sub-sys-

tem/equipment. 

In addition to the strict application of standards, European regulation 402/2013/EC re-

quires railway operators to implement a “common safety method relating to the assess-

ment and evaluation of risks” to all modification, whether technical, organizational or oper-

ational, of the railway system. The Common Safety Method (CSM14) describes how the 

safety levels, the achievement of safety targets and compliance with other safety require-

ments should be fulfilled. 

                                                
14 Common Safety Methods: the CSM is a framework that describes a common mandatory Euro-
pean risk management process for the rail industry and does not prescribe specific tools or tech-
niques to be used 
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The risk acceptability of the system under assessment shall be evaluated by using one or 

more of the following risk acceptance principles:15 

1. Compliance with a recognised and context-specific code of practice (see Ta-

ble 3) to deal with conventional risks that are not necessary to explicitly re-identify 

if there is no technical or functional innovation or evolution of the environment and 

context. 

2. Comparison with a “similar reference system”.16 This principle existed previ-

ously to the CSM in France as GAME (Globalement Au Moins Equivalent): it is 

possible to accept a new system if it is shown that the deviations from the existing 

system, having the same functionalities and operating in a similar environment to 

the system to which it is compared, do not introduce new risks or increase existing 

risks. 

3. Explicit risk analysis to demonstrate quantitatively or qualitatively that the risk is 

kept low enough to be acceptable. 

In the end, the Certification Authority is based on the opinion of an expert: This independ-

ent expert will evaluate the subject and the means of evidence for the safety demonstration 

in order to obtain the confidence. If this condition is not met, additional evidences may be 

required. 

  

                                                
15 They ensure that the objective of maintaining the level of security imposed by the legislation is 
respected. Article 5 of the 19/03/2012 French decree states: “Any changes concerning a system or 
under the system including the national rail network operated, such as the integration of a new 
system, implementation of new technologies or changes in the organization, procedures, equipment 
or sets of equipment included in rail infrastructure, rolling stock or operations, are carried out in 
such a way that the overall level of safety of the national rail network is at least equivalent to that 
existing before the development considered.” 
16 The reference system may be a subsystem that exists elsewhere on the railway network, similar 
to that which is planned after the change, provided its functions and interfaces are similar to those 
of the sub-system evaluated and placed under similar operational and environmental conditions. 
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Table 2. Simplified representation of requirements for railway certification 

 
Interoperability Directive 

(EU) 2016/797 
Safety Directive (EU) 

2016/798 

 

 

System 

Set of TSI,17 NNSR/TR18 

(Notified National Safety 
Rules / Technical Rules, 
EN 50126, EN 50128, 

EN 50129) 

CSMs and NNSR/TR18 (Noti-
fied National Safety Rules 

/Technical Rules), EN 50126, 
EN 50128, EN 50129) 

HW/SW Standards called by TSI 50126, 50128/50657, 50129 

Mechanical Standards called by TSI 
EN 15566, EN 15551, 

EN 16286-1, EN 15085-5, … 

Fire Standards called by TSI EN 45545 

Etc. … … 

 

 

 

Table 3. Overview of the main railway standards 

Requirements Objectives 

EN 50126-1:2017 
EN 50126-2:2017 

“Railway Application – The Specification and Demonstration of Reliability, 
Availability, Maintainability and Safety (RAMS) – Part 1: Generic RAMS Pro-
cess” & “Part 2: System Approach to Safety” 

EN 50128:2011 “Railway applications – Communication, signalling and processing systems 
– Software for railway control and protection systems” 

EN 50657:2017 “Railways Applications – Rolling stock applications – Software on Board Roll-
ing Stock” 

EN 50129:2018 “Railway applications – Communication, signalling and processing systems 
– Safety related electronic systems for signalling” 

EN 45545 (part 1 to 7) “Railway applications – Fire protection on railway vehicles” 

UIC 612 
ISO 3864-1 
EN 13272 

“DRIVER MACHINES INTERFACES FOR EMU/DMU, LOCOMOTIVES 
AND DRIVING COACHES” 

EN 15355:2008 
EN 15611:2008 
EN 15612:2008 
EN 15625:2008 
UIC 544-1 oct 2004 
EN 15595:2009 

“Railway applications – Braking” 

… … 

  

                                                
17 Technical Specifications for Interoperability: TSI are specifications drafted by the European Rail-
way Agency and adopted in a Decision or Regulation by the European Commission, to ensure the 
interoperability of the trans-European rail system 
18 Notified National Safety Rules /Technical Rules: NNSR/TR National rules refer to all binding rules 
adopted in a Member State, regardless of the body which issues them which contain railway safety 
or technical requirements, other than those laid down by Union or international rules, and which are 
applicable within that Member State to railway undertakings, infrastructure managers or third parties 

Rules,  

Methods, 

Standards 

Law 
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2.3.2.2 Towards new practices 

The CENELEC EN-50128 standard recognises that default prediction (trend calculation), 
defect correction, and maintenance, and monitoring actions are supported very effectively 
by Artificial Intelligence-based systems in various parts of a system. This does apply ex-
clusively to SIL0 as it is not recommended for higher SIL (Safety Integrity Level) levels.  

There is currently no specific work at the French and European level to introduce any 
breakthrough concerning AI certification. Instead, continuity of the process of publishing 
new TSIs is favoured. This is illustrated by the latest Loc & Pas TSI, which deals with 
“innovative solutions”. 

Indeed, to allow technological progress, it may be necessary to introduce innovative solu-
tions not complying with defined specifications (i.e. that do not meet TSI specifications or 
to which TSI evaluation methods cannot be applied). In this case, new specifications and 
/ or new evaluation methods associated with these innovative solutions must be developed 
and proposed. 

Innovative solutions can involve the “Infrastructure” and “Rolling Equipment” subsystems, 
their parts and their interoperability components. If an innovative solution is proposed, the 
manufacturer (or his authorized representative established in the E.U.) lists the discrepan-
cies with the corresponding provision of the TSI attached and submits it to the European 
Commission for analysis. Then, the Commission may consult with EU Agency for Railways 
and, if necessary, with relevant stakeholders. Finally, if the Commission approves the pro-
posed innovative solution, the functional and interface specifications and evaluation 
method required to enable the use of this innovative solution are developed and integrated 
into the TSI during the process review. Otherwise, the proposed innovative solution cannot 
be applied. 

Pending the revision of the TSI, the approval given by the Commission is seen as a state-
ment of compliance with the essential requirements of the Directive (E.U) 2016/797 and 
can be used for the evaluation of subsystems and Projects. 

2.3.3 Aeronautics 

2.3.3.1 Overview 

The certification framework for an airborne equipment that includes hardware and software 

is summarized in Figure 5. This Figure, which concerns large aeroplanes, is based on FAA 

and EASA processes but it would be similar for other countries and authorities.  

From the applicable CS25 document (Certification Specification and Acceptable Means of 

compliance for Large Aeroplanes), there is a link to ED-79A/ARP4754A and ED-

135/ARP4761 that provide a list of recommended practices for safety at function, aircraft, 

and system levels. For analysis at component level, depending of the system’s nature, 

documents such as ED-80/DO-254 (for hardware), ED-12C/DO-178C (for software) and 

ED-14G/DO-160G (for environmental conditions) can be used. 
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DO178B -ED12B
"Software considerations in airborne systems and equipment"

Industrial Rules 
to build 
compliance

GuidelinesGuidelinesGuides

FAR/CS 25.1309 "Equipment, Systems and Installations"

AC/AMC 25.1309 "System design and analysis”

Advisory Circular – Acceptable Means of Compliance

ED-79A (ARP4754A)
"Certification considerations for highly-integrated or complex aircraft systems"

ED-80 (DO-254)
”Design assurance guidance for airborne electronic hardware"

ED-135 (ARP4761)
"Guidelines and methods for conducting the safety assessment process
on civil airborne systems and equipment ”

Airworthiness Regulation Requirements 
Federal Airworthiness Requirements / Certification Specification (EASA)

Recommended Practices for system safety assessmentAircraft & System

Level

Component

Level

ED-14G (DO-160G)
"Environmental conditions and test procedures for airborne equipment"

ED-12C (DO-178C)
"Software considerations in airborne systems and equipment"

Airworthiness 
Standards for Safety

Law

 

Figure 5. Aeronautics certification framework: example of large aeroplanes (partial view) 

This framework includes several layers: 

 High-level airworthiness objectives described in the certification regulations (in 

particular CS 25.1309 for any system or equipment onboard an aeroplane, but 

also CS 25.1301 for intended function and CS 25.1302 for human factors). 

 Detailed industry standards recognized by the certification authorities as ac-

ceptable means of compliance to the objectives. In particular: 

o Recommended practices for system certification (ED-79A / ARP4754A and 

system safety assessment (ED-135 / ARP4761). 

o Development assurance standards for Hardware (ED-80 / DO-254) and 

Software (ED-12C / DO-178C). 

o Standard for environmental tests on airborne equipment (ED-14G / DO-

160G). 

Certification of airborne equipment that includes software and hardware in the aeronautical 

domain usually relies on the application of these regulations and standards. Although 

these regulations and standards are intended to be independent from any specific tech-

nology, they have been written at a time when Machine Learning was not as mature and 

promising as today. Consequently, they do not cover well some of the specificities of this 

technology, leading to the various challenges for certification identified later in this White 

Paper.  

These standards overall rely on a typical development process for airborne equipment that 

includes the following steps: 

 Aircraft function development. 

 Allocation of aircraft function to system. 

 System description and architecture. 

 Safety assessment and allocation (Functional Hazard Assessments). 

 Requirements capture (all requirements, including safety ones). 

 Requirements validation. 
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 Implementation. 

 Verification. 

 Safety demonstration. 

 System integration, verification and validation. 

The ARP4754A standard also defines a development assurance process to establish con-

fidence that a system has been developed in a sufficiently disciplined manner to limit the 

likelihood of development errors that could impact aircraft safety.  

It must be noticed that before thinking about a system architecture, the analysis must start 

by the definition of the main functions and then the sub-level functions. Then, a Functional 

Hazard Assessment is realized (and later updated) in order to characterize the severity 

associated to the loss of a function or “Failure Condition”. The severity, ranging from NSE 

“No Safety Effect” to CAT “Catastrophic”, is used to determine the architecture of the sys-

tem (e.g., a simple or a redundant architecture). The Development Assurance Level (DAL) 

of the function is also assigned based on the severity, and the possible system architecture 

mitigations. The more severe the Failure Condition, the greater the DAL (E to A). 

It is now widely accepted that that existing standards may not be fully applicable to systems 

embedding ML components, and even if applicable, they may not comply with the actual 

intent of certification. Therefore, an evolution of the underlying development process is 

proposed in §4.1, in order to introduce possible adaptations of these standards to allow for 

ML-based products certification. 

2.3.3.2 Towards new practices 

Overarching properties 

As part of its effort towards “Streamlining Assurance Processes”, the Federal Aviation Ad-

ministration (FAA) launched in 2016 an initiative called “Overarching Properties”. The ob-

jective of this initiative is to develop a minimum set of properties such that if a product is 

shown to possess all these properties, then it can be certified. As of 2019, the three over-

arching properties retained are: 

1. Intent. The defined intended functions are correct and complete with respect to the 

desired system behaviour. 

2. Correctness. The implementation is correct with respect to its defined intended 

functions, under foreseeable operating conditions. 

3. Innocuity. Any part of the implementation that is not required by the defined in-

tended behaviour has no unacceptable safety impact. 

These properties are, by construction, too abstract to constitute an actionable and com-

plete means of compliance for certification. In practice, they shall be refined to be applica-

ble, leaving an opportunity to establish a specific set of properties for the certification of 

ML systems.  

Abstraction layer 

On the European side, and in order to evaluate more flexible and efficient ways for soft-

ware and hardware qualification, the EASA (European Union Aviation Safety Agency) pro-

posed the concept of “Abstraction layer”.  
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The objective is to propose an abstraction layer “above the existing standards” (DO-

178C/ED-12C and DO-254/ED-80), that captures the properties required for certification, 

independently from the technology and process used. Unlike the FAA with the “Overarch-

ing properties”, the EASA opted for a bottom-up approach in order to leverage the experi-

ence gained on the existing standards. 

The Abstraction layer will probably not constitute an actionable and complete means of 

compliance for ML certification. If used for ML certification, the Abstraction Layer evalua-

tion framework may have to be supplemented to assess any new methodology specific to 

the ML development. 

The current and future structure of the certification framework, together with the Overarch-

ing Properties and Abstraction Layer initiatives, are depicted in Figure 6. 
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Figure 6. FAA’s Overarching properties and EASA’s abstraction layer 
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3 Analysis 

The aim of this White Paper is to point out some of the most important challenges for the 

certification of systems embedding ML. In this section, we briefly describe the approach 

used by the ML Certification Workgroup to identify these challenges. The challenges them-

selves are presented in Section 4. 

 CERTIFICATION OBJECTIVES, CHALLENGES, AND HIGH-LEVEL PROPER-

TIES 

A certification objective is a property which satisfaction contributes to show that a system 

meets the applicable certification specifications (e.g., “the algorithms are accurate”, “the 

architecture is consistent”, etc.). A challenge is a particular difficulty to demonstrate that a 

system meets those specifications. 

So, why is Machine Learning raising specific challenges for certification? 

Machine Learning is data-driven, i.e. the behaviour of a ML-based system is learnt from 

data. With respect to classical systems, ML requires new development activities such as 

data collection and preparation (cleaning, labelling, normalization…) and model training 

(model selection, hyper-parameter tuning…). Existing development assurance standards 

used for certification (e.g. DO-178C/ED-12C, ISO26262, EN50128) are not data-driven 

and do not consider these ML-specific development activities. Therefore, existing certifi-

cation objectives are not sufficient to address the ML-based systems. 

Facing this lack of applicable certification objectives, the workgroup started its work from 

a simple question:  

What properties should a ML-based system possess to be certified? 

To answer this question, the working group decided to establish a list of properties which, 

if possessed by a ML technique, was considered to have a positive impact on the capability 

to certify a ML-based system using this technique. Those properties, called High-Level 

Properties (HLPs), carry the ML certification objectives.  

 HIGH-LEVEL PROPERTIES 

High-Level Properties have been considered, collectively, to be necessary (but not suffi-

cient) for the development of ML in the industrial domains represented in the workgroup.  

The list of HLPs considered in this White Paper is given hereafter. The definitions proposed 

have been discussed among members, considering the literature and the existing stand-

ards. 

 Auditability: The extent to which an independent examination of the development 

and verification process of the system can be performed. 

 Data Quality: The extent to which data are free of defects and possess desired 

features. 

 Explainability:19 The extent to which the behaviour of a Machine Learning model 

can be made understandable to humans. 

                                                
19 Many terms such as Interpretability and Transparency can be found in the literature. §4.6 will give 
the definitions used by the Working Group.  
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 Maintainability: Ability of extending/improving a given system while maintaining 

its compliance with the unchanged requirements. 

 Resilience: Ability for a system to continue to operate while an error or a fault has 

occurred. 

 Robustness: (Global) Ability of the system to perform the intended function in the 

presence of abnormal or unknown inputs / (Local) The extent to which the system 

provides equivalent responses for similar inputs. 

 Specifiability: The extent to which the system can be correctly and completely 

described through a list of requirements.20 

 Verifiability: Ability to evaluate an implementation of requirements to determine 

that they have been met (adapted from ARP4754A). 

 HIGH-LEVEL PROPERTIES AND CERTIFICATION 

In this document, HLPs are essentially introduced to identify the objectives and challenges 

raised by the certification of ML-based systems. Later, those HLPs might be integrated, 

explicitly or implicitly, in a ML certification framework. This framework will follow and/or 

combine the following approaches for certification:  

 Process-based certification: the completion of a predefined development assur-

ance process during the development of a product is the assurance that this prod-

uct complies with the requirements laid down in the certification basis.  

Most of the standards currently used for certification are “process-based”. In this 

approach, HLPs are demonstrated as part of the full process. For example, “Spec-

ifiability” may be demonstrated at the specification activity; “Verifiability” and “Ro-

bustness” may be demonstrated as part of the verification activity, “Resilience” may 

be demonstrated as part of the safety assessment activity, etc. 

 Property-based certification: the demonstration by the applicant that a prede-

fined set of properties is met by a product is the assurance that this product com-

plies with the requirements laid down in the certification basis. In this approach, the 

HLPs may be some (or all) of the properties to be demonstrated.  

Even though there is a growing interest for this approach, one of the difficulties is 

to prove that the selected set of properties completely covers the desired certifica-

tion objectives. A clear consensus on an acceptable set of properties has not been 

reached yet, but “property-based” certification is in line with the Overarching Prop-

erties initiative, and it remains an option considered for the future.  

Those two approaches are not exclusive and can be combined. Whatever the certification 

framework chosen, we believe that the ability to demonstrate the HLPs will be a key ena-

bler for ML-based system certification. Depending on the system and the certification strat-

egy, the HLPs to be demonstrated, as well as the depth of demonstration may vary, but in 

any case, this list of HLPs summarizes the main challenges of ML certification. 

 HIGH-LEVEL PROPERTIES ANALYSIS APPROACHES 

Once the High-Level Properties selected, the next step is to identify the challenges in 

meeting these HLPs. Towards that goal, we have considered three complementary ap-

proaches:  

                                                
20 Requirement: an identifiable element of a function specification that can be validated and against 
which an implementation can be verified. 



 

PAGE 24 
 

 An approach based on the analysis of a typical ML-system development process. 

 An approach based on the identification of non-ML techniques, already imple-

mented in certified systems, raising similar challenges to those encountered on ML 

techniques (called similarity analysis). 

 An approach based on the selection of ML-techniques that do not raise some or all 

of the previous challenges (called backward analysis). 

Those approaches are briefly introduced hereafter. 

3.4.1  ML component development process analysis 

This approach aims to analyse a typical ML development process and to determine the 

effect of the actions and decisions taken by a ML designer on the HLPs. It is aimed at 

pointing out the steps in the process where faults21 having an impact on the HLPs are most 

likely to be introduced.  

Note that, by construction, the results produced by a ML component will generally be “er-

roneous” due to statistical nature of the learning process. Here, a fault in the ML compo-

nent design process is a human-made action (including choices) that could have an impact 

on the overall safety of the system. 

As shown partially22 on Figure 7, this analysis shall cover all engineering activities. For an 

implementation based on neural networks, for instance, it shall include the specification of 

the function, the acquisition of the datasets, the choice of the initial values of the weights, 

the choice of the activation function or optimization method, the choice of the implementa-

tion framework, etc.  

                                                
21 Fault, error and failure correspond to Laprie’s definition (see §1.3 and §4.2.2.1) 
22 For sake of conciseness, implementation steps are hidden in this figure. 
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Figure 7. Simplified supervised Machine Learning Workflow 

The diagram shows the main phases along with some of the actions taken by the designer. 

For instance, during the “weight initialization phase”, the designer has to select one partic-

ular method among those available. In this phase, a fault may be introduced by choosing 

an inappropriate method (for instance, using an “all-to-zero” initialization, see Figure 8).  

This example is obviously trivial, but it illustrates the principle of the analysis: identify where 

faults can be introduced and their consequences on the system’s behaviour, and define 

appropriate prevention, detection and elimination, and/or mitigation means. These means 

involve development process activities (i.e., provide guidance to prevent the fault to be 

introduced, provide appropriate verification means to activate and detect the fault/error, 

etc.) and system design activities (to mitigate the effect of the fault/error).  

Unfortunately, finding the consequence of a fault on the system safety was intractable in 

practice, due to the opacity and complexity of ML training phase. So, we moved from the 

final safety properties to the intermediate HLPs. 

Figure 8 illustrates how the engineering choices could impact a given HLP (robustness). 

This systematic analysis is aimed at identifying the effects of ML design choices on confi-

dence they can give on ML component through the HLPs.  
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Figure 8. From High-Level Properties to Engineering choices 

3.4.2 Similarity analysis 

Another approach is to search for situations where non-ML systems showing characteris-

tics “similar”23 to those encountered on ML systems have already been successfully certi-

fied. 

Hereafter, we consider three specific cases:  

 Kalman filters 

 Computation of worst-case execution times 

 Complex COTS processors. 

3.4.2.1 Kalman filters 

Kalman Filtering (KF) is a predictive filtering technique used, for instance, to compute the 

position and altitude of robots or aircrafts. KF algorithms are “similar” to ML techniques in 

the sense that (i) they implement a statistical estimation process, (ii) their behaviour de-

pend strongly on empirical data (the covariance matrix) and on hypotheses on the inputs 

(the distribution of the noise), (iii) they produce outputs that are associated with an estima-

tion of the result quality (an confidence ellipsoid). Note that KF algorithms also show strong 

differences with ML: their input space is usually small (e.g., the position and velocity of a 

mobile); they embed a model of the physical system (to perform the prediction) ; errors 

used by KF algorithms are estimated on the basis of physical models representing upper 

bounds of actual errors. Anyway, as for ML, their dependency on data (point (ii) above) 

makes verifying the correctness of the algorithm implementation not sufficient. A combina-

tion of mathematical demonstrations and tests is actually required to assess the intended 

function (including precision, stability, etc.).  

In practice, the use of KF in aircraft positioning systems is covered by the DO-229 standard 

[3] which gives very detailed recommendations about validation of this algorithm (type and 

number of tests), on the basis of a precise (yet statistical) knowledge of the system’s en-

vironment (satellite positioning errors, gravity model, ionospheric error models, etc.). 

Hence, confidence is obtained by applying a function-specific standard. For ML-based sys-

tems, this approach would mean establishing a specific standard for each function. 

                                                
23 “Similar” is taken in an abstract sense. 
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Work is still needed to determine to what extent such statistical approaches could be ap-

plied to ML-based systems. At least, the computing power available thanks to supercom-

puters and clouds makes safety demonstration based on “massive testing” a solution to 

be explored for ML certification. However, computing power is not sufficient, and a con-

vincing testing approach also requires robust data collection and test processes to assure 

effective statistical representativeness. 

3.4.2.2 Worst-Case Execution Times 

Statistical analysis is also a method for the estimation of Worst-Case Execution Times 

(WCET) of software components deployed on the very complex processors and System-

on-Chips used today in embedded systems [4].  

Can these statistical techniques be transposed to ML based systems?  

Here again, practices cannot be easily transposed to the ML domain: those hardware com-

ponents are not strictly considered as “black boxes” and statistical analysis is strongly 

supported by analyses of the hardware and software (see e.g., CAST-32A [5] and soon to 

be published AMC 20-193). 

3.4.2.3 Hardware COTS 

Explainability is a challenge for ML system, but it is already a challenge for the complex 

software or hardware systems deployed today [6]. So, could current practices be applied 

to ML systems? 

Let us consider again the case of the complex COTS processors used on embedded sys-

tems. As already noticed, complexity of those components is usually so high that they can 

partly be seen as black-boxes. So, how do current certification practices address this is-

sue?  

In aeronautics, the development of complex hardware is covered by the DO-254/ED-80 

with some additional guidance given in AMC 20-152A [7]. Section 6 of [7] addresses the 

specific case of Off-the-Shelf devices (COTS), including complex processors. The selec-

tion, qualification and configuration management of those components is addressed in the 

“Electronic Component Management Process” (ECMP) which shall consider, in particular, 

the maturity of the component and the errata of the device. As stated in Appendix B of [7], 

maturity can be assessed by the “time of service of the item”, the “widespread use in ser-

vice”, “product service experience”, and the “decreasing rate of errata”. This approach is 

perfectly adapted to general purpose components used at a large scale in critical and non-

critical devices (mobile devices, home appliances, etc.), and for a long time, as it is the 

case for processors. This will certainly be very different for a ML component dedicated to 

a specific task.  

The “input domain” of a processor is also well defined: a processor implements an Instruc-

tion Set Architecture (ISA) that specifies very strictly how the software will interact with the 

processor. The existence of a well-defined interface, shared by all applications, makes it 

“easier” to leverage on field experience to get confidence on the component. Again, the 

variability of the operational domain may be significantly higher for ML components, mak-

ing confidence based on field experience harder to justify.  

Finally, software verification activities will also contribute to gaining confidence on the com-

ponent. As stated in [8, Sec. 9.2], “The development assurance of microprocessors and of 
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the core processing part of the microcontrollers and of highly complex COTS microcon-

trollers (Core Processing Unit) will be based on the application of ED-12B/DO-178B to the 

software they host, including testing of the software on the target microprocessor/micro-

controller/ highly complex COTS microcontroller”. Stated differently, the hardware is con-

sidered to be (partially) tested along with the software it executes.  

So, even though complexity and a certain lack of transparency seems to be common is-

sues of both COTS processors and ML components, solutions and recommendations ap-

plicable to the former seem to be hardly applicable to the latter. 

3.4.3 Backward analysis 

The “backward analysis” takes the problem the other way round by considering first the 

ML solutions possessing some “good” properties for certification, and then determining to 

which problems they can be applied, with what guarantees, and under what limits. We 

illustrate this approach with decision trees and NNs.  

3.4.3.1 Decision trees and explainability 

The property of explainability has been introduced in the previous section and is developed 

in §4.6. Explanations may be needed by different actors and for different reasons. For 

instance, a pilot may need explanations to understand the decision taken by its ML-based 

co-pilot in order to be aware of the current situation and take control of the system if needed. 

An engineer may need explanations to investigate the origin of a problem observed in 

operation or after an accident.24 Explanations may also be required to understand and then 

to act or react, but also to gain confidence on the system that takes decisions. 

All ML techniques are not equivalent with respect to explainability. Let us consider for in-

stance the case of decision trees.  

Decision trees predict the label associated with an input taking a series of decisions based 

on distinctive features [2]. They can be used for different types of applications such as 

classification or regression problems [9]–[11].  

For decision trees, providing an explanation simply consists to expose the decisions taken, 

from the root to the leave of the decision tree. This property enables to provide a full de-

scription of the decision process after learning, and a comprehensive set of Low-Level 

Requirements for software implementation. Clearly, demonstrating the HLP explainability 

is easier for decision trees than for, for instance, NNs. 

3.4.3.2 Reluplex and provability 

Formal verification methods (FM) such as deductive methods, abstract interpretation, or 

model checking, aims at verifying that a model of a system satisfies some property on a 

mathematical basis. Grounded on mathematics, these methods bring two fundamental 

properties, namely soundness and completeness, which can hardly be achieved by other 

means such as testing or reviews. FM are already considered as viable verification meth-

ods at item level by authorities (see DO-333/ED-216 supplement to the DO-178C/ED-12C).  

In the current context, the objective is to demonstrate the compliance of an ML implemen-

tation to its specification in all possible situations, without explicitly testing the behaviour 

of the system in each of them. Completeness is very difficult to achieve by testing for 

                                                
24  E.g., to ensure the “continued airworthiness” in aeronautics [11, Sec. AMC 25.19]. 
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problems with a very large dimensionality (as it is often the case with problems solved by 

ML). Whatever the testing effort, it will only cover an infinitesimal part of the actual input 

space. Confidence in the test could be improved drastically if equivalence classes25 can 

be defined but, unfortunately, it is not yet very clear how those classes can be defined in 

the case of, for instance, NNs. Being able to apply a formal verification technique on a ML 

design would represent a significant improvement over testing.  

So, are there ML techniques amenable to formal verification?  

The answer is yes: formal methods have already been considered in the domain of Ma-

chine Learning [12]. For instance, the Reluplex method [13] is used to verify properties on 

NN with ReLU activation functions. It is based on the classical Simplex algorithm, extended 

to address ReLU constraints. As for the Simplex itself, the technique gives satisfying re-

sults in practice despite the problem being NP-complex. It has been applied successfully 

on NN of moderate size (8 layers of 300 nodes each, fully connected).  

Reluplex has been used on an NN-based implementation of an unmanned collision avoid-

ance system (ACAS-Xu), a system generating horizontal manoeuvre advisories in order 

to prevent collisions. The ML implementation of the ACAS Xu is a small memory-footprint 

(3Mb) alternative to the existing implementation based on lookup tables (2Gb).26  

This technique provides formal guarantees on properties that can be expressed using lin-

ear combinations of variables, which means that only a subset of the possible functional 

properties can be verified that way. For instance, on the ACAS-Xu, safety properties such 

as “no unnecessary turning advisories”, “strong alert does not occur when intruder verti-

cally distant”, etc. have been verified. Reluplex has also been applied to demonstrate the 

𝛿-local and global robustness.27 Such formal proof, providing demonstration for HLPs ro-

bustness and verifiability, may be alleviating some of the requirements put on the learning 

phase. 

 FROM HIGH-LEVEL PROPERTIES TO CHALLENGES 

Based on the identification of the HLPs and the three types of analyses performed (ML 

development process analysis, similarity analysis and backward analysis), the certification 

workgroup has identified seven major challenges for ML certification: 

1. Probabilistic assessment 

2. Resilience 

3. Specifiability  

4. Data Quality and Representativeness 

5. Explainability 

6. Robustness 

7. Verifiability 

The close relationship between HLPs and challenges appears clearly in this list, where 

we find six HLPs (2 to 7) among the seven main challenges identified. The other HLPs 

                                                
25 An equivalence class is defined with respect to some fault model so that “any test vectors in a 
class will discover the same fault”. 
26 The ACAS Xu was too complex for manual implementation. The strategies considered to reduce 
the size of the data required to implement the functions are described in [14].  
27 A NN is 𝛿-locally robust if for two inputs 𝑥 and 𝑥’ such that  ‖𝑥 − 𝑥′‖ ≤ 𝛿 the network assigns the 

same label to 𝑥 and 𝑥′.  
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can often be linked to one of these seven main challenges. These main challenges are 

presented in details in the next Section. 
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4 Challenges of Machine Learning in Certified Systems 

Challenges have been organized in seven main categories: Probabilistic assessment 

(§4.2), Resilience (§4.3), Specifiability (§4.4), Data Quality and Representativeness (§4.5), 

Explainability (§4.6), Robustness (§4.7), and Verifiability (§4.8).  

Before detailing them individually, we propose to show where those challenges mainly 

arise in the general Machine Learning development process depicted on Figure 9. 

 

Figure 9. General (simplified) development process 

 

 CHALLENGES IN A TYPICAL ML DEVELOPMENT PROCESS 

In accordance with the scope of the document presented in §1.3, the ML development 

process described here will be limited to off-line supervised learning techniques. Taking 

into account online learning or unsupervised/reinforcement learning, would require various 

modifications of this process that are not discussed thereafter. 

This process is extremely simplified. In particular, it leaves no room for loops, reiterations, 

etc., In addition, for sake of simplicity, each challenge has been allocated to a unique 

phase of the process although some of them, such as explainability and verifiability, could 

actually concern multiple phases.  

4.1.1 Context 

One can anticipate that ML algorithms use will vary from the design of a single part of a 

system function to the design of the whole system itself. The ML model development, as 

part of the full system, will require the system expertise and should therefore be addressed 

at system level. In addition, without being mandatory, it is likely that resilience of ML-based 

systems will require mitigations at system level. For these reasons, the process presented 

here starts at system level, and is not limited to component or item level. 

In the following, we consider that part of the intended function of the system is realized by 

a ML component (Figure 10). 

1. Safety assessment 

2. Development of system architecture 

3. Safety requirements and DAL / SIL assignment 

4. ML-based component specification 

5. Data selection and validation 

6. Model selection, training and verification 

7. ML-based component implementation 

8. ML-based component verification 

9. ML-based component integration in the system 

10. Operation and maintenance of the system 
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Before going into more details, it is reminded that the goal of certification process is to give 

confidence, based on a set of structured evidences, on the capability of the system to 

correctly and safely perform its intended function.  

 

Figure 10. ML Components within a system under design 

4.1.2 Safety assessment 

The safety assessment aims at identifying the failure28 conditions of the system, associ-

ated hazards, their effects, and their classification (e.g. no safety effect, minor, major, haz-

ardous, catastrophic). It enables identifying top-level safety requirements for the whole 

system. The safety assessment is then refined and updated throughout the system devel-

opment process together with the system architecture. The probabilistic nature of ML (see 

§2.1) raises specific issues on the way system safety requirements are verified. 

MAIN CHALLENGE #1: PROBABILISTIC ASSESSMENT 

For safety critical systems, quantitative safety analysis is used to assess properties such 
as “the probability of a catastrophic event of an aircraft shall be lower than 10-9 per flight 
hour”. Similarly, Machine Learning techniques rely on mathematic practices that include 
statistics and probabilities. Nevertheless, despite their similarities, the two domains often 
employ different definitions and interpretations of key concepts. This makes difficult the 
endeavor of establishing a safety assessment methodology for ML-based systems. 

4.1.3 Development of system architecture 

Several system architectures may be used to implement the same intended function. The 

choice of a specific architecture is made considering the top-level safety requirements (see 

previous section), as well as other technical, economic, and programmatic constraints. For 

each architecture, the safety requirements allocated to the ML-based component and its 

interfaces with other components must be considered with specific care. Due to the prob-

abilistic nature of Machine Learning, resilience, defined as the ability for a system to con-

tinue to operate while a fault/error has occurred, is a primary concern when designing the 

system architecture. 

MAIN CHALLENGE #2: RESILIENCE 

Resilience is crucial to ensure safe operation of the system. Resilience typically raises 
challenges regarding the definition of an “abnormal behaviour”, the monitoring of the 
system at runtime, and the identification of mitigation strategies. With Machine Learning, 
these challenges are made more complex because of the usually wider range of possi-
ble inputs (e.g. images), the difficulties to adopt classical strategies (e.g., redundancy 
with dissimilarity), and the ML-specific vulnerabilities. 

                                                
28 See definition in §4.2.2.1. 
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4.1.4 Safety requirements and DAL / SIL assignment 

Once the system architecture is defined, the safety requirements and Design Assurance 

Level / Safety Integrity Level (DAL / SIL) can be assigned to the ML-based component. 

Design assurance aims at limiting the likelihood of development faults, in order to fulfill the 

requirements. 

The safety requirements are derived from the safety allocation and the system architecture. 

Safety requirements may be qualitative (e.g. no single failure) or quantitative (probability 

of erroneous output, probability of loss, etc.). The DAL / SIL corresponds to the level of 

rigor of development assurance tasks. It is chosen in relation to the severity of the effects 

of the failures of the component on the system. For example, if a development fault could 

result in a catastrophic failure condition, then the greatest DAL / SIL is selected for this 

component.  

4.1.5 ML-based component specification 

At this stage, requirements have been allocated to the ML-based component. This activity 

concerns safety requirements, functional requirements, customer requirements, opera-

tional requirements, performance requirements, physical and installation requirements, 

maintainability requirements, interface requirements, and any additional requirements 

deemed necessary for the development of the ML-based component. 

As shown on Figure 11, those requirements have to be further refined and completed up 

to the point where they allow the development of the ML-based component. Some top-

level requirements specify general expectations, whereas other level requirements specify 

implementation details. In particular, in the case of supervised learning, data could be con-

sidered as detailed requirements of the intended behaviour of the ML-based component. 

Similarly, the structure of the ML model, its parameters and hyper-parameters could also 

be considered as detailed requirements for the ML-based component. 

 

Figure 11. Refinement of the specification 

MAIN CHALLENGE #3: SPECIFIABILITY 

Specifiability is the ability to describe the intended function of a system in terms of func-
tional, safety, operational, and environmental aspects. This practice allows engineers to 
designate the target of the development process and to demonstrate that this target has 
been hit. Nowadays, this is a pillar to build acceptably safe systems. Because ML tech-
niques are often used to address problems that are by nature hard to specify, they raise 
specific challenges to include them in safe systems, the question of trust being one of 
these challenges.  
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4.1.6 Data selection and validation 

The final behaviour of the ML-component is largely determined by the selected data. The 

goal of this activity is to select data with the expected quality attributes (representativeness, 

lack of undesired bias, timeliness, partitioning, accuracy, integrity, consistency, complete-

ness…). Once data are selected, data validation consists in verifying that the desired qual-

ity attributes are indeed present. Validation can be performed by systematic check of cer-

tain attributes, sampling, cross-check, etc. 

MAIN CHALLENGE #4: DATA QUALITY AND REPRESENTATIVENESS 

Machine Learning-based systems rely on the exploitation of information contained in 
datasets. Therefore, the quality of these data, and in particular their representativeness, 
determines the confidence on the outputs of the ML-based components.  
The qualification of a dataset with respect to properties related to quality can be partic-
ularly complex, and depends strongly on the use case.  

4.1.7 Model selection, training and verification 

Together with data selection, model selection and training are crucial to the correct design 

of the ML-based component. There are many models available, and many ways to train a 

model. Certification standards should impose neither a specific model nor a specific train-

ing technique. The focus should rather be on the properties, such as explainability and 

robustness that the model must possess after training. Other properties such as maintain-

ability, auditability, etc. could also be checked at this stage. 

The depth of demonstration of these properties can vary depending on the requirements. 

If these properties are required for the overall safety demonstration, then in-depth demon-

stration is necessary. However, if no requirement stems from the safety assessment and 

component specification, then the ML model could remain a “black box”, without explain-

ability and/or robustness demonstration. 

Some verification activities can be performed directly on the model, before implementation. 

If it is the case, it should be demonstrated that the results of these verification activities are 

preserved after implementation (see §4.1.9 for more details on the verification activities). 

 

MAIN CHALLENGE #5: EXPLAINABILITY 

The opacity of ML models is seen as a major limitation for their development and de-
ployment, especially for systems delivering high stake decisions. Quite recently, this 
concern has caught the attention of the research community through the XAI (eXplain-
able Artificial Intelligence) initiative which aims to make these models explainable. The 
ongoing investigations highlight many challenges which are not only technical but also 
conceptual. The problem is not only to open the black box but to establish also the pur-
pose of explanations, the properties they must fulfill and their inherent limits, in particular 
in the scope of certification. 

 

MAIN CHALLENGE #6: ROBUSTNESS 

Robustness is defined as the ability of the system to perform the intended function in 
the presence of abnormal or unknown inputs, and to provide equivalent responses within 
the neighbourhood of an input (local robustness). This property, which is one of the 
major stakes of certification, is also a very active research domain in Machine Learning. 
Robustness raises many challenges, from the definition of metrics for assessing robust-
ness or similarity, to out-of-domain detection, and obviously adversarial attacks and de-
fence.  
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4.1.8 ML-based component implementation 

At this step of the product lifecycle, the behaviour of the ML-based component is fully 

defined and can be implemented.  

The three main implementation phases, i.e., hardware production, software coding, and 

hardware / software integration (see Figure 12) being similar to those performed on tradi-

tional systems, existing development standards can be applied. Therefore, the implemen-

tation of ML-based components is not addressed in this White Paper. Nevertheless, the 

workgroup is aware that a particular attention shall be taken on the implementation errors 

that may be introduced during this phase: incorrect representation of the computed weights 

on the target, insufficient memory or processing resources, accuracy and performance 

degradation with respect to the model used during learning, reduction of the arithmetic 

precision, etc.  

 

Figure 12. ML-based component implementation 

4.1.9 ML-based component verification 

The purpose of this step is to check that the requirements are indeed fulfilled by the ML-

based component. Various verification strategies can be adopted, depending on the veri-

fication means available: 

 Testing (including massive testing and adversarial testing) 

 Formal methods 

 Service experience 

 Etc. 

Verification shall be performed on the integrated ML-based component, but “verification 

credits” can also be taken from verification activities performed on the model before imple-
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mentation or performed at item level (software / hardware). Whatever the strategy, verifi-

cation is done against the requirements captured during the ML-based component speci-

fication (including innocuity29), so verification and specification challenges are tightly linked. 

MAIN CHALLENGE #7: VERIFIABILITY 

A large and ever-growing set of methods and tools, ranging from formal mathematical 
methods to massive testing, is available to verify ML-based systems. However, under-
standing the applicability and limits of each of them, and combining them to reach the 
verification objectives raises many challenges...  

4.1.10 ML-based component integration 

Once the ML-based component has been designed, implemented, and verified, it can be 

integrated in the system under design, and system-level verification activities can be per-

formed. Note that those activities can also contribute to the verification of the ML-based 

component (cf. §4.1.9), and reciprocally. 

4.1.11 Operation and maintenance 

After entry into service, the system is operated and maintained. Specific challenges (in 

addition to the previous ones) may be raised by these phases of the life-cycle, including 

the ability to maintain, repair, and update the ML-based component. These aspects shall 

be taken into account as part of the development of the system, but they are not addressed 

in this document. 

4.1.12 Summary and possible variations in this process 

As stated in the beginning of this section, our development process is highly simplified. In 

practice, the steps are not strictly executed from top to bottom. In particular, the safety 

assessment is not performed once for all at the beginning, but it is updated all along the 

lifecycle and finalized only once the system is finished. In addition, we do not show trans-

verse activities that play a significant role in the development process such as requirement 

validation, configuration management, certification liaison, etc. Finally, all the steps in this 

process are not mandatory.  

Depending on the certification strategy, the effort of demonstration spent at each step of 

the process may vary, just like the “potentiometers” introduced in EASA trustworthy build-

ing blocks [15]. For example, if the top-level requirements stemming from step 1, step 2 

and step 3 can be completely demonstrated through formal proof in step 8, it may be ac-

ceptable to alleviate all or part of the intermediate steps. On the contrary, if verification 

methods in step 8 are weak, then additional effort should be made for those intermediate 

steps in order to provide confidence in the development. More generally, the aim of this 

process is to ensure that the ML-based component is correctly and safely performing its 

intended function: if this can be achieved without performing all the steps described above, 

some of them could become optional.  

The next subsections further detail each of the seven main challenges identified above.  

                                                
29 “Any part of the implementation that is not required by the defined intended behaviour has no 
unacceptable safety impact.”, see §2.3.3.2. 
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 MAIN CHALLENGE #1: PROBABILISTIC ASSESSMENT 

4.2.1 Introduction 

Safety critical systems must comply with dependability requirements. Such compli-

ance is typically achieved by validation and verification activities but also by a control 

of the development process. A highly critical function such as the flight control system 

of an aircraft is considered to have catastrophic consequences in case of malfunction. 

Thus, regulation impose for a large transport aircraft that (i) no single failure shall 

lead to the loss of the function and (ii) the function shall not be lost with a rate greater 

than 10-9/h. These dependability requirements are propagated down to software com-

ponents. This is done on the basis of current standards (e.g. DO178C) for “classical” 

software.  

We argue that ML-based software should not be treated as “classical” software. New 

safety analysis methodologies must be developed to assess the capability of such 

systems to comply with safety requirements. Thus, the fundamental question raised 

by this statement is: (Q1) How to develop safety approaches and analyses on 

systems including ML-based applications? 

Both fields, i.e. Machine Learning and safety analysis, rely on statistical tools and 

probabilistic reasoning to assess the behaviour of a system. Nevertheless, despite 

their similarities, as we will present in the following paragraphs, the two domains often 

employ different definitions and interpretations of key concepts. So, (Q2) Can we 

adapt probabilistic safety assessment approaches to assess the dependability 

of ML-based systems?  

Besides, one of the motivations for this subject is that it has a direct impact on the 

engineering. Indeed, from the level of risks of the systems to develop (see definitions 

below), the current norms and standards define 1) an applicable design level (DAL,30 

ASIL,31 Software Level,32 etc.) and 2) a set of rules to design and develop the system, 

the rigor of which depends on this level. The underlying principle is that the stricter 

the rules are, the smaller the likelihood to introduce faults during the engineering 

should be. Rules are introduced so that the likelihood of the remaining faults intro-

duced during the system design can be considered as an acceptable risk.  

Considering that the uncertainties of a ML model is contributing to the level of risk of 

the system to which it belongs, it is important to identify at which level this contribution 

is done, and to consider conjointly the ML model faults/errors, the engineering faults, 

and the global system risk. As shown on Table 4, three cases can be distinguished, 

each one determining a specific engineering effort. This strong dependency between 

the ML uncertainties and the risk level motivates a formal definition of each case; this 

is addressed in the next section. 

                                                
30 Development Assurance Level, defined in ARP 4754A 
31 Automotive Safety Integrity Level, defined in ISO-26262 
32 defined in DO-178/ED-12 

DISCLAIMER: this section presents the first conclusion of a work in progress. It may 
contain several inaccuracies, inconsistencies in vocabulary and in concepts, and surely 
lacks references. 
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Table 4. Contribution of the ML to the system risk level 

Case Situation for engineering the model System level consideration 

ML uncertain-
ties level is 
quite higher 
than the ac-
ceptable risk for 
the system 

In this case, the model uncertainties level itself can-
not ensure the acceptable level of risk for the system. 
The reduction of engineering faults by the application 
of the standards is not relevant. 

A mitigation mean, independ-
ent of the MLM shall be intro-
duced at system level, ensur-
ing that the uncertainties of 
the model are correctly “fil-
tered” 

ML uncertain-
ties level is of 
the same order 
of magnitude 
than the ac-
ceptable risk for 
the system 

In this case, all the sources of faults have to be con-
sidered. The engineering must conform to the stand-
ards to ensure that the engineering faults are under 
a good level of control. The mix of the faults/errors 
due to the ML uncertainties level with the engineer-
ing faults must be at the level of the accepted risk of 
the system. 

The MLM can be in direct line 

with the FE33 (taking into ac-

count additionally that the 
double or triple faults protec-
tions demanded by the stand-
ards) 

ML uncertain-
ties level is 
quite lower 
than the ac-
ceptable risk for 
the system 

As the engineering faults have a higher contribution, 
these only must be considered, applying the existing 
standards. 

*MLM : Machine Learning Model 

4.2.2 Reminder on safety 

4.2.2.1 Some vocabulary 

As a reminder, see §1.3, we use Fault/Error/ Failure definitions from Laprie [29], which 

might differ from specific domain standard definitions (for instance ED-135 / ARP4761): 

Failure: An event that occurs when the delivered service deviates from correct service. 

Error: The part of the system state that may cause a subsequent failure: a failure occurs 

when an error reaches the service interface and alters the service. 

Fault: The adjudged or hypothesized cause of an error (for instance an incorrect action or 

decision, a mistake in specification, design, or implementation). 

4.2.2.2 Uncertainties and risk 

To develop a safe system, the main objective is to ensure that there will be no failure – i.e., 

the effect of some error – with an unacceptable safety impact under foreseeable conditions.  

All experimental measurements can be affected by two fundamentally different types of 

observational errors: random errors and systematic errors. 

Random errors refer to distinct values obtained when repeated measurements of the same 

attribute or quantity are taken. Random errors include for example the effect of Single 

Event Upset (SEU) on electronic components. They are stochastic and unpredictable by 

nature (i.e. uncertainty about the measurement cannot be further reduced). In this context, 

uncertainty is seen as an inherent part of the measuring process. In some cases, statistical 

methods may be used to analyse the data and determine the distribution of observations 

and its attributes (mean, variance, mode...). 

                                                
33 Feared Event 
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Systematic errors are not determined by chance but are introduced by a limit in the 

measuring process. They are predictable (although not always easily detectable), in 

the sense that the measurement always produces the same value whenever the ex-

periment is performed in the same way. For these reasons, systematic errors are 

sometimes called statistical biases. 

In practice, most measurements are affected by both types of errors and separating 

or analyzing them may prove difficult or costly. 

System design standards address both types of errors, but they typically make a clear 

distinction between how they affect hardware and software components. For example, 

ISO 26262 defines random hardware errors34 as errors “that can occur unpredictably 

during the lifetime of a hardware element, and that follow a probability distribution. ” 

The same standard defines systematic errors as error “related in a deterministic way 

to a certain cause that can only be eliminated by a change of the design or of the 

manufacturing process, operational procedures, documentation or other relevant fac-

tors”. While this standard addresses both types of errors in the case of hardware 

components design, it focuses exclusively on systematic errors in the case of soft-

ware design. 

However, all ML-based modelling are stochastic by nature and therefore affected by 

random errors. Moreover, as this modelling is usually data-driven, it is implicitly af-

fected by data measurement errors, therefore by both types of errors. ML acknowl-

edges both types of errors, which usually translates to the bias-variance problem. 

The bias error is accounted by erroneous assumptions in the learning algorithm. The 

variance is the error incurred from sensitivity to small fluctuations in the training da-

taset. In order to minimize the expected generalization error, all ML modelling must 

solve a bias-variance trade-off. 

According to these considerations, we argue that in their current form, software de-

sign standards do not apply to ML-based software. Consequently, we argue that new 

norms must be formulated in order to address in a rigorous fashion both types of 

errors in a ML-based system design. 

Definition (ARP4761 Event): An occurrence which has its origin distinct from the air-

craft, such as atmospheric conditions (e.g., wind gusts, temperature variations, icing, 

lighting strikes), runaway conditions, cabin and baggage fires, etc. 

Definition (ARP4761 reliability): The probability that an item will perform a required 

function under specified conditions, without failure, for a specified period. 

The system analysis studies the potential safety impacts of system failures, giving 

them a level of severity/criticality. This level of severity is assigned to the failure that 

provokes the consequence, for instance with an FMEA (failure mode and effects anal-

ysis).  

Definition (ARP4754A / ARP4761 Risk): The combination of the frequency (probabil-
ity) of an occurrence and its level of severity. 
 
 

                                                
34 ISO 26262 uses the term of Failure instead of Error. We intentionally uses the term error for term 
consistency in this White Paper (see §1.3 and previous definitions)  
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A risk is associated to a maximum likelihood of occurrence, depending on its severity. 
Those values are decomposed in regions, as represented in Figure 13. 

 

Figure 13. Acceptable risk in safety [inspired by ARP4754A/ED-79A]. Y axis is failure 
rate per flight or driving hour 

When a failure rate objective is assigned to a system, the design of the system shall be 

done in a way that enforces that this failure rate is not exceeded. To ensure that, an anal-

ysis of the system is performed based on its components part list, and using usual reliability 

prediction standards (e.g., MIL HDKB 217F, UTE-C 80-811).  

4.2.2.3 Probabilities  

As identified by the author of [16], according to the safety assessment activity, the inter-

pretation of the probabilistic measures can be frequentist or Bayesian.  

The frequentist interpretation of probabilities assumes that events are likely to occur during 

repeated experiments. Thus, the assessment of the probability of rare or even unique 

events is in practice intractable with this interpretation of the probabilities. The frequentist 

interpretation is classically used to estimate the failure rate of components based on re-

peated and large-scale solicitation tests [17]. 

The Bayesian interpretation of probabilities encompasses the modelling of uncertainty 

(about a subjective belief for instance), that is by definition a notion that cannot be objec-

tively measured by its frequency (since it is subjective). The Bayesian interpretation can 

be used for instance to extrapolate the failure rate of a component from a well-known con-

text to a new one.  

For the author of [16], if the considered event is likely to occur, the frequentist interpretation 

is preferred over the Bayesian one since it provides an objective estimation of the likeli-

hood of the event. However, for rare events (i.e. highly severe failure conditions), the fre-

quentist approach cannot be used. The classic safety assessment methods (like FTA or 

FMEA) allow computing some probabilistic quantification over such rare events thanks to 

assumptions about the propagation of component failures within the studied system. Thus, 

the probabilities measures can be interpreted as an uncertain proposition based on the 

subjective knowledge of the analyst and the probabilities of component failures (generally 
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evaluated using a frequentist approach). At our best knowledge, the classical safety as-

sessment does not quantify the uncertainties concerning the accuracy of the assessment 

results. More pragmatic ways have been chosen to deal with uncertainties for instance: 

1. The deliberate introduction of a “pessimism” bias in the assessments.  

2. The restriction of the assessment goal to the “foreseeable conditions” [18]. 

3. The continuous revision of the safety assessment thanks to the lessons learned on 

incidents and accidents.  

4. The diversification of the safety analyses performed on the same system (FMEA, 

FTS, CMA, …). 

4.2.3 Reminder on Machine Learning  

4.2.3.1 Uncertainty and risk 

Uncertainty is usually defined as “imperfect or unknown information about the state of a 

system or its environment”. Uncertainty can occur at various levels and raises two funda-

mental questions:  

 How to estimate uncertainty?  

 How to operate with uncertainties? i.e. how to combine multiple uncertain obser-

vations to infer statements about the world?  

Answers to those questions are given respectively in the scientific field of “uncertainty 

quantification” and “uncertainty propagation”. 

The ISO standard 31000 (2009) and ISO Guide 73:2002 define risk as the "effect of un-

certainty on objectives". So, a risk characterizes a known event (i.e., an event that may 

occur in the future) for which either the occurrence or the consequences or both are un-

certain, i.e. unknown. But this constitutes only a strict subset of the full uncertainty spec-

trum: we generally consider also the known knowns (where all the elements, i.e. the event, 

its occurrence and its consequences are all known or can be inferred or predicted with 

very high accuracy), the unknown knowns (e.g. body of knowledge that had been forgotten 

or ignored), and the unknown unknowns.  

Among all these classes, the last one is raising the biggest challenges since the occur-

rence, the consequence, and the nature of the event itself are uncertain. This concept is 

usually illustrated by the example of the black swan: prior to seeing (i.e. acknowledging 

the existence of) any black swan, it may be impossible to conceive the existence of a black 

swan. In this condition, not much can be said about its supposed occurrence or conse-

quences under such circumstances...  

Even though the class of unknown unknowns is infinite, given our prior knowledge about 

the world, we may argue that most unknown events are only theoretical, i.e. not foreseea-

ble. Under such hypothesis, general safety objectives can be cast as an optimization prob-

lem: maximizing the known knowns while minimizing the unknown unknowns.  

Any optimization efforts incurring costs, in practice, the theoretical optimization problem 

translates to a practical problem of finding a suitable trade-off between the safety require-

ments and the design and operational costs required to achieve them. 
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4.2.3.2 Prediction goals of Machine Learning 

In the following sections, we come back to fundamental concepts used in Machine learning 

that were introduced in §2.1.3: loss, risk and empirical risk. We focus our attention to the 

common supervised learning setting.  

Suppose we already have access to an offline dataset(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛), where 𝑋𝑖 de-

notes the attributes vector associated with the 𝑖-th example, and where 𝑌𝑖 is the associated 

label. Depending on the application at hand, the variables 𝑋𝑖 and 𝑌𝑖 can be discrete or 

continuous.  

Informally, the goal is to predict what the value of 𝑌 will be, given a new value of 𝑋. De-

pending on the application, we may be satisfied with a single prediction (the “likeliest one”), 

a set of predictions that “most likely” contain the true value of 𝑌, or prediction(s) with “like-

lihood” score(s). 

We start with the first goal (outputting a single prediction) and recall classical concepts in 

supervised machine learning: loss function, risk, and empirical risk. 

In the sequel 𝑓 denotes a predictor (or machine learning model) that maps any new input 

𝑋 to a prediction 𝑓(𝑋). The function 𝑓 is typically chosen so as to fit the training dataset 

(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) perfectly or purposely imperfectly (see below). 

4.2.3.3 Error35 and loss function 

A discrepancy between the true outcome 𝑌 and its prediction 𝑓(𝑋) is interpreted as an er-

ror. Errors can be measured in several ways: as a binary value, noted 1{𝑓̂(𝑋)≠𝑌} which 

equals one when the prediction is incorrect or zero when the prediction is correct, or as a 

measure of “how far” the prediction is from the expected outcome (e.g., |𝑓(𝑋) − 𝑌| or 

(𝑓(𝑋) − 𝑌)2).36  

The function that measures the error, denoted 𝐿(𝑓(𝑋), 𝑌), where 𝐿: ℝ × ℝ → ℝ+ is called 

the loss function. The loss function, which is chosen by the ML designer, plays an important 

role in machine learning. We will address that point soon but, before, let us first consider 

the relation between the loss function and the risk. 

4.2.3.4 From Loss to Risk37 (or generalization error) 

One of the main goals of supervised machine learning is to build predictors 𝑓 that have 

very low generalization error, i.e., that perform well on new unseen data. This notion, which 

coincides with the statistical notion of risk, is defined as follows [2]: 

Given a joint distribution of data and labels 𝑃𝑋,𝑌, a measurable 

function 𝑔 and a nonnegative loss function 𝐿, the risk of 𝑔 is de-

fined by 𝑅(𝑔) = 𝔼𝑃𝑋,𝑌
(𝐿(𝑔(𝑋), 𝑌)). 

 

                                                
35 In this paragraph, the term error has no link with Laprie definitions described in §1.3 and §4.2.2.1. 
36 Note that in the special case of binary classification (i.e., when both 𝑌 and 𝑓(𝑋) lie in {0,1}) all the 

errors 1{𝑓̂(𝑋)≠𝑌}, : |𝑓(𝑋) − 𝑌| and (𝑓(𝑋) − 𝑌)2 are equal. 
37 This notion of (statistical) risk has no relation with the safety risk define in §4.2.2.1. 
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Put differently, the risk of a predictor 𝑔 is the average error (“expected error”) over all pos-

sible new input-label pairs (𝑋, 𝑌) drawn at random from the distribution 𝑃𝑋,𝑌. 

The Bayes risk is the smallest risk among all possible predictors: 

𝑅∗ = inf
𝑔

𝑅(𝑔) 

The Bayes risk is an ideal target that can serve as a theoretical benchmark to quantify how 

“good” is a predictor 𝑓. This leads to the concept of excess risk, i.e., the difference between 

the risk of 𝑓 and the Bayes risk: 

𝑅(𝑓) − 𝑅∗ 

The excess risk can usually be decomposed into multiple terms, e.g., approximation error, 

estimation error, optimization error. 

Unfortunately, both the risk and the excess risk are unknown in practice. Indeed, compu-

ting any risk 𝑅(𝑔) would require to know exactly the distribution 𝑃𝑋,𝑌, while in practice we 

typically only have access to samples from that distribution. 

The only measurable risk is what is called the empirical risk. 

4.2.3.5 From Risk to Empirical Risk 

The empirical risk is the average loss over the dataset (𝑋1, 𝑌1), (𝑋2, 𝑌2), … (𝑋𝑛, 𝑌𝑛): 

Given a dataset (𝑋1, 𝑌1), (𝑋2, 𝑌2), … (𝑋𝑛 , 𝑌𝑛), a measurable function 

𝑔, and a non-negative loss function 𝐿, the empirical risk is defined 

by  

𝑅̂(𝑔) =  
1

𝑁
∑ 𝐿(𝑔(𝑋𝑖), 𝑌𝑖)

𝑁

𝑖=1

 

If the (𝑋𝑖 , 𝑌𝑖) are independent random observations from the same joint distribution 𝑃𝑋,𝑌,38 

then the empirical risk 𝑅̂(𝑔) is a “good” approximation of the true but unknown risk 𝑅(𝑔).  

Typical machine learning models 𝑓 are obtained by approximately minimizing 𝑅̂(𝑓𝑤) over 

a class of functions 𝑓𝑤 (e.g., neural networks with weights 𝑤). An imperfect fit to the da-

taset (via, e.g., regularization techniques) may be preferred to favour simple models that 

may perform better on new unseen data. 

How close the empirical and true risks 𝑅̂(𝑓𝑤) and 𝑅(𝑓𝑤) are is key to understand how well 

a model learned from a specific training set will perform on new unseen data. In statistical 

learning theory, generalization bounds are guarantees typically of the form: 

With probability at least 1 − 𝛿  over the choice of 

(𝑋1, 𝑌1), (𝑋2, 𝑌2), … (𝑋𝑛, 𝑌𝑛) 𝑃𝑋,𝑌 ~  
𝑖.𝑖.𝑑.  for all weights 𝑤   

  𝑅(𝑓𝑤) ≤  𝑅̂(𝑓𝑤) + 𝜖(𝑛, 𝑤, 𝛿) 

                                                
38 We say in this case that the dataset (𝑋1, 𝑌1), (𝑋2, 𝑌2), … (𝑋𝑛, 𝑌𝑛) is drawn i.i.d. from 𝑃𝑋,𝑌. 



 

PAGE 44 
 

These bounds imply that a model 𝑓𝑤 with small empirical risk 𝑅̂(𝑓𝑤) also has a small risk 

𝑅(𝑓𝑤), that is, it performs well on new unseen data. 

Examples of 𝜖(𝑛, 𝑤, 𝛿) or related quantities are given by VC-bounds, Rademacher com-

plexity bounds, PAC-Bayesian bounds, among others. It is however important to note that 

most historical bounds do not explain why deep learning models perform well in practice 

(the term 𝜖(𝑛, 𝑤, 𝛿) is large for practical values of n). Improving such bounds towards dis-

tribution-dependent or structure-dependent generalization bounds for neural networks is 

the focus of renewed theoretical interest. 

4.2.3.6 The importance of the loss function 

The choice of the loss function 𝐿 during the design of the ML algorithm is very important 

for several reasons.  

First, the loss function is used to measure the prediction performance of the machine-

learning model𝑓. As the objective of the learning process it to maximize this performance 

(or minimize the loss), the loss function formalize the learning goal and different loss func-

tions may correspond to different goals. For instance, choosing a loss function that penal-

izes harmful prediction errors may be pertinent if the ML-based component is used in a 

safety-oriented system. 

Other technical aspects must also be considered when choosing the loss function: 

 The computational power required to minimize the loss on a given training set de-

pends on the loss function.  

 The ability of a machine learning model to generalize (i.e., to perform well on pre-

viously unseen data) and its robustness to distribution changes could depend on 

the loss function. 

4.2.3.7 From loss function to performance metrics 

We outline below some classical and simple examples of performance criteria that are 

asymmetric and could provide hints on how to design a safety-relevant loss function.  

In the context of hypothesis testing (which can also apply to binary classification, where 

∈ {0,1}) , machine learning terminology makes a clear distinction between two types of 

errors. The type I error is the rejection of a true null hypothesis (also known as a false 

positive). For binary classification, such an error occurs when 𝑌 = 0 𝑏𝑢𝑡 𝑓(𝑋) = 1. The 

type II error is the non-rejection of a false null hypothesis (also known as a false negative). 

For binary classification, such an error occurs when 𝑌 = 1 𝑏𝑢𝑡 𝑓(𝑋) = 0. 

Other metrics/indicators can be used along with a loss function. Such indicators depend 

on the targeted problem, and can highlight or hide some behaviours (as every statistical 

measure). For example, for classification tasks, Precision, Recall and F1-Score are often 

used to assess the performance of an algorithm [19] and [20] (see Figure 14). 
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Figure 14. Basic metrics in AI models (from Wikipedia). 

In short, for a classifier, when optimizing Precision, designers try to avoid being wrong 

when identifying true cases (in order to reduce the occurrence of false positives). Whereas, 

when optimizing Recall, designers try to be very good at discriminating true cases from 

others (in order to minimize the situation of missing a true case). Optimizing F1-score (𝐹1 =
2.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
) means you do not want to choose Recall over Precision or the other way 

and find the best trade-off. 

4.2.3.8 From dataset to reality 

ML metrics are computed on a particular dataset, which means that the performance 

measure is only an empirical assessment of the true performance of the algorithm (named 

training error, Errtrain). In fact, the true performance of the algorithm, named operational 

performance (or also test error, Errtest) will be probably very different from the empirical 

one, and this performance will be obviously worse as the real-life diversity challenges the 

model ability to "infer" a good result when dealing with unseen cases.  

4.2.3.9 Machine learning and probabilities 

Probabilities in the ML world 

As stated above, ML modeling is stochastic by nature and in most cases can be recast in 

probabilistic terms. The probabilistic assessment of ML models crucially depends on vari-

ous factors, such as the design of the experiment (e.g. training/validation), the eventual 

input probabilities (priors) and their interpretation. 

It is rather easy to mechanically apply transformations to some numerical data (e.g. soft-

max) to further comply with probability calculus axioms (‘non negative’ and ‘unit measure’). 

However, without careful considerations, once performed such operations, the probabilis-

tic interpretation given to the final results may be very incorrect. For instance, it is well 

known that you can find adversarial example with high softmax output, see Figure 18). 

ML modeling aims at building function approximations f such that f(x) approximates y, 

where x and y are respectively input and output data samples. The function f is para-

metrized by some set of parameters z that will be inferred from data. By defining a likeli-

hood function this problem can be recast as an optimization problem. The ML literature 
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proposes two major formulations of it, depending on the nature we assign to the parame-

ters z. If we posit that the 'true' parameters are single values, the problem can be formu-

lated as a maximum likelihood estimation (MLE) one. Alternatively, if we treat the 'true' 

parameters as random variables, the problem is stated as maximum a posteriori estimation 

(MAP). We thus emphasize that the probability assessment of any ML model depends on 

these choices (by means of which we find the aforementioned frequentist or Bayesian 

interpretations of probabilities). 

Finally, we recall that most classical results in probability theory are deduced from the 'law 

of large numbers'. However, in many practical scenarios this provides only a very crude 

approximation of the studied phenomena and some hypotheses necessary for a sound 

probabilistic assessment may not hold (see for example the “independent and identically 

distributed” (i.i.d.) hypothesis). 

In light of the above considerations, we argue that we should proceed with great care 

whenever we perform a probabilistic assessment of ML models. Without the necessary 

precautions, it may provide very misleading conclusions. This is particularly important in 

the case of phenomena characterized by very rare events, which are of special interest for 

any sound risk assessment. 

Calibrated probabilities 

Let us consider an arbitrary ML classifier capable of associating a probability distribution 

to its outputs (labels). Intuitively this probability may be interpreted as the confidence of 

the classifier's decision. Unfortunately, unless particular care is taken, this interpretation is 

usually wrong. As argued previously, it is rather easy to transform some arbitrary distribu-

tion as to satisfy in principle the axioms of probability calculus (e.g. applying a softmax). 

Nevertheless, this will not guarantee that the calculated probability will conform to some 

true observations. An alternative method, named conformal prediction [21], aims to provide 

such alignment. Conformal prediction uses experience to determine precise levels of con-

fidence in new predictions. Some of the advantages of such a method are that it can be 

applied to any ML model capable of outputting a probability distribution and that it does 

not require re-training the model. 

This process is similar to a calibration process, in this case the aim being the calibration 

of predicted probabilities to some observed probabilities. As in typical calibration proce-

dures, this methodology requires a different dataset (calibration dataset) used solely for 

this purpose (i.e. distinct from the training and validation datasets). 

Probabilistic properties 

As a general statement, probabilistic assessment aims at providing probabilistic bounds 

for certain numerical quantities that may be deemed critical from a safety perspective. 

Sometimes, these quantities cannot be measured directly, and the designer may seek to 

ensure certain properties for the system / model (e.g. robustness). In most of such cases, 

providing strict bounds for such quantities / properties is generally an intractable or imprac-

tical problem, especially when no internal knowledge of the application domain or the 

model is taken into account. In some contexts, imposing soft constraints on the desired 

objectives may transform the problem into an easier one (e.g. proving robust guarantees 

with (1−ϵ) probability). We think that such probabilistic formulations can be appropriate to 

address certain properties to better support safety-aware decisions. 
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4.2.4 Mixing the two worlds 

4.2.4.1 Uncertainty and risk 

Issue 1.1: How to estimate uncertainty? 

As presented previously, the safety risk is usually assessed by taking into account two 

factors: (i) the probability of a critical event occurrence (e.g. a failure); (ii) the expected 

harm resulting from that event. Estimating each factor raises difficulties that are not specific 

to but enhanced in the case of ML-based systems (unknown/unknown):  

1. How to identify all the possible events (not only failures)? 

2. How to estimate the probability of occurrence of each event? 

3. How estimate the harm associated with each event? 

Safety solutions can be seen as a trade-off between the design and operation costs to 

handle uncertainties on the one hand and the potential harmful consequences of the sys-

tem's behaviour on the other hand. 

Issue 1.2: How can we relate the different notions of probability in the ML and safety do-

mains? 

As shown earlier in this section, ML models are evaluated by various metrics usually ob-

tained by testing the model on validation dataset(s), e.g. the error rate in the case of a 

classification task. Given the fundamentally stochastic nature of any ML model, its outputs 

will be affected (at least partially) by random errors. As argued in §4.2.2.2, ML-based com-

ponents are affected by both systematic and random errors. If the current software design 

standards (e.g., ISO26262 part 6) were to explicitly address the latter type of errors, the 

(acceptable) error rate of the model should be part of the system specifications, similarly 

to the specifications of hardware components. 

As required by the secondary question (Q2), stated in the introduction of this section, this 

proposition mandates us to provide the necessary means to translate the performance of 

the model (evaluated on a dataset) to the operational performance of the system (evalu-

ated during its operation). 

4.2.4.2 Loss function 

Issue 2: Usually, in ML, the loss functions do not distinguish the misclassifications de-

pending on their safety effect. Let us consider the example of Pedestrian Detection in im-

ages from cars' front camera. A misclassification occurs when a pedestrian is not detected 

(which in terms of safety is catastrophic as the person could be injured) or when a pedes-

trian is wrongly detected (which in terms of safety is solely major, as it could lead to a 

useless abrupt braking). 

Result 2: The author of [22] proposes a formal and domain-agnostic definition of the risk, 

identified as the central notion in safety assessment. According to this paper, the main 

objective of safety is risk minimization, whatever the explicit definition of these risks (usu-

ally defined in terms of mortality). The risk here is the expected value of the “cost of harm", 

highlighting that the exact cost is not known but its distribution can be available. The author 

assumes that it exists a function able to quantify the harm of a mis-prediction in a given 

context (L: X ×  Y2  → ℝ). The “safety" of a given model can then be probabilistically as-

sessed by providing the harm expectation of a model h as 𝔼[L(X; h(X); Y)]. A safe model 
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is thus a model minimizing such harm expectation and can be obtained by integrating the 

harm measure in the loss function.  

Limitation 2: This definition of the risk is a bit different from the one proposed in the aero-

nautic standard ARP4754A/ED-79A, which relies on the notion of severity and probability 

(or frequency). Perhaps, an alternative definition of the risk incorporating the “formal as-

pect" (i.e. definable as a function) of [22] but linked to the notion of severity would be a 

good starting point. Such a definition would enable to express classical safety requirement 

such as “safety reserve" (safety margin, safety factor). 

4.2.4.3 From dataset to reality 

Issue 3: With ML, probabilities are assessed on the dataset and not on the real environ-

ment thus cannot be used, as is, as safety indicators.  

Result 3: Fortunately, for binary classification with 0-1 loss, Vapnik and Chervonenkis and 

other researchers have stablished the following theorem (VC theorem) that bounds the 

probability of having an operational error39 greater than the sum of the empirical error and 

the generalization error (𝛿). 𝛿 depends on the number of samples (𝑁) used during training, 

and the complexity of the model (VC), and the confidence level 𝜀 : 

𝑃(𝐸𝑟𝑟𝑡𝑒𝑠𝑡 ≤ 𝐸𝑟𝑟𝑡𝑟𝑎𝑖𝑛 + 𝛿) ≥ 1 − 𝜀 𝑤ℎ𝑒𝑟𝑒 𝛿 = 𝑓(𝑉𝐶, 𝑁, 𝜀) 

The model complexity 𝑉𝐶 – or VC dimension – is unfortunately really hard to evaluate for 

most ML models (this is an ongoing research). For instance, the VC dimension for a 10-

12-12-1 Multi-Layer Perceptron is the number of network parameters, here 301. 

An example of upper bound of 𝛿 is given by the following relation:  

 𝛿 ≤ 𝐶1√
𝑉𝐶

𝑁
+ 𝐶2√

log (1/ε)

𝑁
, for some absolute constants 𝐶1 > 0 and 𝐶2 > 0  

In order to exploit the VC-theorem, the two members have to be in the same order of 

magnitude: 

1. Errtest: the same order of performance during training must be obtained as the 

operational one. 

2. 𝜹: the first part of the upper bound of 𝜹 depends on the model complexity, and the 

number of samples in the training set N. Numerically, to obtain an upper bound of 

𝛿 ≈ 10−5 with a model where 𝑉𝐶 =  105 (deep learning example), the number of 

samples N must be at least around 1015. This result shows that this approach is 

very limited, but it also pushes to obtain more accurate theorems and properties 

than those used here. Research is on-going, and some tighter error bounds have 

been proved in some cases leading to non-negligible yet smaller values of 𝑁. 

Limitation 3: the previous approach is theoretically correct but practically intractable. Thus, 

there is currently no solution to tackle the open question of linking probabilities of errors 

on the dataset to the reality. For instance, if we want to develop a pedestrian system which 

will have a Recall of 0.999999 over 1 000 000 samples, meaning that we miss 1 pedestrian 

                                                
39 Reminder, in this paragraph, the term error has no link with Laprie definitions described in §1.3 
and §4.2.2.1, but correspond to the standard definition in theory of Machine Learning  
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every 1 000 000 cases, we have to make an assumption of how close our empirical error 

is from our operational error. 

4.2.4.4 Interpreting probabilities 

The relationship between the likelihood of the model performance and the "acceptable 

failure rates" of safety is established by the distribution over the time of the events to be 

observed. 

For example, for a pedestrian recognition: 

 AI model: images are given to be recognized, and the performance corresponds to 

a number of recognized images, vs. a total number of images 

 Safety: a number of failures per hour of operation 

Convergence of the two: it is necessary to model a number of solicitations per hour of 

operation; therefore, a number of obstacles to be recognized per hour. 

Numerically, it gives: in the city, we can say that we have an obstacle per minute to recog-

nize; a performance of 10-3, therefore gives 60. 10-3 = 6.10-2 failures per hour of operation; 

in the countryside, we can say an obstacle every hour, therefore 10-3 failures per hour. 

Issue 4: Mixing probabilities of the two worlds: importance of interpretation 

Result 4: Papers [23] and [24] discuss “the meaning of probability in probabilistic safety 

assessment”. While probability calculus is well established in the scientific community, the 

interpretation of probability is hotly debated to these days. Numerous interpretations of 

probability have been proposed and contested. Amongst the most popular ones, we can 

mention the classical, the frequentist, the subjective, or the propensity interpretations. 

While the classical or frequentist ones “make sense” for game theory (where outcomes 

can be enumerated and evaluated a priori), they are very debatable when applied to do-

mains where events are very rare or unknown / unseen in the past (e.g. black swans, see 

§4.2.2.3). In these cases, a “subjective” interpretation of probability is more in tune with 

our intuition: it expresses degrees of belief of an agent w.r.t. possible events. While this 

interpretation has its own problems, we think that it is the most appropriate one to use in 

case of uncertainty quantification and propagation for a safety analysis. In any case, we 

highlight that any probabilistic assessment must state explicitly what type of interpretation 

is assigned to the probabilities used by the analysis. We think that the probability is not an 

intrinsic property of the world and should be used as a tool to build arguments in view of 

certification.  

4.2.5 Conclusion  

Software verification and validation methods typically used for certification purposes are 

limited in their abilities to evaluate ML-based software with respect to safety objectives.  

We think that in order to embed with confidence ML models in safety critical software, the 

certification and ML communities must work together to develop new tools, methodologies 

and norms to provide rigorous probabilistic assessment of a system integrating a ML-

based software in a safety perspective. In this context, we highlight the inherent stochastic 

nature of ML-based software and we argue that existing certification norms such as 

ISO26262:2018 or ARP4754A/ED-79A or DO178C/ED-12C do not properly address the 
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new types of errors introduced by this type of software. In an effort to reconcile the con-

cepts and objectives of the two communities, we draw parallels between them and formu-

late some of the major challenges that must be addressed from a probabilistic perspective. 

Those challenges are recalled hereafter. 

4.2.6 Challenges for probabilistic assessment 

For the Probabilistic Assessment theme, we identify the following challenges: 

 Challenge #1.1 Definition of environment / context / produced outputs / internal 

state.  

o How to identify all the possible events (not only failures)?  

o How to estimate the probability of occurrence for each event?  

o How to estimate the harm associated with each event? 

 Challenge #1.2: How to propose definitions of the risk incorporating more concepts 

(such as the estimation of harm effects) to express classical safety requirement 

such as “safety reserve" (safety margin, safety factor)? 

 Challenge #1.3: How to propose appropriate loss functions taking into account 

safety objectives? 

 Challenge #1.4: How to make the link between probabilities assessed on the da-

tasets and on the real environment (to be used as safety indicators)? Or, what are 

the possible means to translate the performance of the model (evaluated on a val-

idation dataset) to the operational performance of the system (evaluated during its 

operation)? 

 Challenge #1.5: How to find tractable methods to assess the operation error w.r.t. 

the empirical error?  
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 MAIN CHALLENGE #2: RESILIENCE 

4.3.1 Introduction 

In this White Paper, we use the term “resilience” as a synonym of “fault tolerance”, i.e., 

“the ability for a system to continue to operate while an error or a fault has occurred”. Note 

that the usual definition in the domain of dependable systems is slightly more specific: 

resilience is “the persistence of service that can justifiably be trusted when facing 

changes." [25], [26]. Changes include unexpected failures, attacks, increased load, 

changes of the operational environment, etc., i.e., “all conditions that are outside the de-

sign envelope”. Considering the changes of the operational environment is also of major 

importance in the case of ML systems, especially for those interacting with a complex, 

evolving environment (e.g., roads).  

Sticking to the first definition, what are the “faults and errors40” to be considered in a ML 

system?  

A ML component may be subject to various accidental or intentional faults, all along its 

lifecycle, during data collection, model design, training, implementation… In this chapter, 

we focus on the following two categories of faults that can appear during operation: 

o Operating conditions inconsistent with those considered during training. 

o Adversarial inputs. 

Those faults may also be considered as part of robustness analysis (see challenge #6 

Robustness, §4.7) but, here, we consider that the limits of robustness have been exceeded 

and that mitigation means at system level are required.  

4.3.2 Monitoring in ML and runtime assurance 

Many of the challenges identified in this White Paper show the difficulty to ensure design-

time assurance and this chapter points out the necessity to consider runtime assurance. 

The main idea is to surround the unsafe ML component with a set of low-level monitors 

and controllers (e.g., “safety nets”) ensuring the safety properties by detecting and mitigat-

ing the hazardous behaviours of the unsafe component.  

Monitors check if the system stays in its nominal functioning domain by observing its inputs 

(e.g., their ranges, frequencies…), its outputs, or some internal state variables. They can 

use assertions, memory access check, “functional monitoring”, etc. Some methods like the 

one proposed in [27] propose an adaptation of the simplex architecture to the monitoring 

of a neural controller, using a decision block able to detect an error and to switch from the 

neural controller to a high assurance – but less performant – controller.  

Monitoring the system inputs can be used to ensure that the operational conditions match 

the learning conditions. In [28], a technique is proposed to monitor the distance of the 

input/output distribution observed during operation with the one observed during the learn-

ing phase, and raise an alert when this distance exceeds some threshold. Others, such as 

[29], propose to collect neuron activation patterns during the learning phase and, thanks 

to online monitoring, detect the occurrence of an unknown activation pattern possibly indi-

cating an erroneous prediction. However, such monitors (out-of-distribution detection, or 

                                                
40 A definition of those terms is given in §1.3. 
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abnormal activation patterns) are still on-going research topics, and their reliability is 

not guaranteed.  

Some on-going works [28], [29] propose a runtime verification approach based on an 

adversarial runtime monitor, i.e., a mechanism based on the generation of adversaries 

at runtime aimed at assessing whether the ML system is able to provide a correct an-

swer. 

4.3.3 Ensuring resilience 

Most of the techniques applicable to classical (non-ML systems) are also applicable to 

ML systems; we present some of them in the next paragraphs. 

Redundancy41 can be used to detect or mask faults/errors. Redundant architectures 

rely on spatial redundancy (i.e., the component is replicated with or without dissimilar-

ity) and/or temporal redundancy (i.e., the behaviour is replicated on the same compo-

nent), depending on the faults/errors to be tolerated. Typical redundant architectures 

involve two (duplex) or three (triplex) components, depending on whether safety and 

availability is at stake: with two components, the system may detect an error and switch 

to a safe state whereas with three components, the system may stay operational (fail-

op) and possibly detect and exclude the faulty component or possibly place it back into 

a non-erroneous state. To be applied for ML-based systems, the difficulty resides in 

the cost of these strategies in terms of computing resources and/or computation time 

and in the prevention of Common Mode Faults.  

Dissimilarity may be used to prevent Common Mode Faults, but dissimilarity is difficult 

to ensure for ML components since it requires the capability to have multiple solutions 

to the same problem (multiple ML techniques, multiple model architectures, etc.) de-

pending on the fault models (see Table 5). Unfortunately, ML technique are generally 

used to implement functions for which no non-ML solution is actually applicable with 

the same level of performance. Providing dissimilar ML solutions and being able to 

estimate to what extent Common Mode Faults are prevented, is clearly a challenge. 

Assuming that multiple and dissimilar solutions are available, voting may be used to 

mask errors. For example, if three components produce a binary output, the one pro-

vided by at least two out of the three components is selected. 

As already presented, monitoring may be used to detect error by verifying some cor-

rectness properties on the system. Monitoring may be based on different forms of re-

dundancies, from a complete functional redundancy (the monitoring component per-

forms the same function as the monitored component) to some partial redundancy (ver-

ification of some invariant, computation of an inverse function, etc.). Again, systems 

using ML are usually difficult to monitor: independence of redundant ML solutions is 

difficult to demonstrate, inverse functions cannot be computed, invariants are difficulty 

to express, etc. In some cases, a solution consists in using a classical implementation 

(ensuring safety) to monitor a ML implementation (ensuring other performances).   

 

                                                
41 Generally speaking, “redundancy” refers to the property of some element (e.g., software or hard-
ware component) that can be removed from a system without modifying the function performed by 
the system. Hence, a monitoring mechanism, or an error detection code is actually a form of redun-
dancy.  
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Table 5. Proposition of dissimilarities between ML components 

Dissimilarity 
origin 

Comment Resilience with respect to…  

Training da-
taset 

MLs components are 
trained using different da-
tasets 

…training set corruption 
Noise mitigation 

Model Different kind of models 
are used (ex : decision 
tree and neural net) 

…specific model vulnerabilities 

Implementation Models are embedded us-
ing different framework 

…faults due to development framework 

Inputs ML components can take 
as inputs different sensor 
chains 

…local weaknesses of the ML component  

HW Models are not embedded 
in the same HW compo-
nent 

…HW failures 

 

4.3.4 Relation with other HLP and challenges 

Monitoring being one of the system-level solution to ensure safety, resilience is tightly 

linked to the monitorability HLP. As the provision of explanations may be a means to 

monitor a system (in the sense that “if no explanation can be provided to a decision, the 

decision is deemed suspicious”), resilience could be also linked to explainability but, in 

practice, this approach seems hard to apply. Anyway, non-explainable models may be 

harder to monitor. 

Resilience is also strongly coupled with the various forms of robustness:42 intrinsic ro-

bustness – i.e., the ability to guarantee a safe functioning in the presence of input data 

different from training data –, robustness to attacks, or robustness to classical implemen-

tation problems. As explained in §4.3.1, resilience is a property required when input are 

beyond the nominal operating range of the ML component, as shown on Figure 15 below: 

 The green area is the nominal work domain where the ML component delivers 
the expected service. 

 The light orange area represents the extended work domain ensured by the 
robustness property.  

 The dark orange area represents situations where the bounds of the robust-

ness domain have been exceeded. The ML component fails but system-level 

mechanisms prevent a global system failure. 

 The hatched red area represents situations where the bound of the resilience 

domain have been exceeded. The system fails. 

                                                
42 Robustness is addressed in details in Section 4.7.1.2. Note that, in this document, we 

only consider robustness at the level of the ML component. 
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System failure System failure

Nominal work domain

Robustness work domain

Resilience work domain

 

Figure 15. Illustration of robustness and resilience 

4.3.5 Challenges for resilience 

Resilience is certainly a required property of ML-based systems, in particular when con-

sidering the lack of robustness of some ML techniques (e.g., artificial neural networks) to 

some adversarial attacks. However, ensuring resilience for a ML-based system raises var-

ious challenges:  

 Challenge #2.1: How to detect erroneous or out-of-domain inputs of a ML model, 

in particular when considering the possible failures of the acquisition system or the 

presence of intentionally corrupted data?  

 Challenge #2.2: On what system architectures can we rely to ensure the safe op-

erations of ML–based systems? 

o Challenge #2.2.1: Can we rely on Runtime Assurance? How to monitor ML-

based systems?  

o Challenge #2.2.2: Can we rely on multiple dissimilar ML-systems? And how 

to assess dissimilarity?  

 Challenge #2.3: How to create ML models "robust by design", to reduce the need 

for resilience requirement at system level? 

 Challenge #2.4: How to create a confidence index characterizing the proper func-

tioning of the ML component? 

 Challenge #2.5: How to recover from an abnormal operating mode in an ML sys-

tem? 
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 MAIN CHALLENGE #3: SPECIFIABILITY 

4.4.1 Introduction 

For avionics systems, ARP4754A/ED-79A defines specification as “a collection of require-

ments which, when taken together, constitute the criteria that define the functions and at-

tributes of a system, component, or item”. The specification process supports the capture 

of the intended function of the system in terms of functional, safety, operational and envi-

ronmental aspects as well as the implementation and verification processes. The concept 

of “intent”, which was introduced by the working group on Overarching Properties for avi-

onics [37], helps to answer to the following question: “are we sure that the development 

team has understood what they were supposed to develop?”. The aim is to be sure that 

the specification is correct and complete with respect to the intended behaviour for the 

system. 

Then Specifiability becomes the ability to capture the needs and constraints of a system. 

4.4.2 Impact on certification 

  

4.4.2.1 Why does the specification of ML based Systems raise new challenges? 

The development of Machine Learning (ML) based Systems differs from traditional system 

development in several aspects of its lifecycle, the specification step in particular must be 

adapted accordingly. 

In the development of classical systems, for the development of a new system, the speci-

fications are usually set up using an iterative loop between the expression of system needs, 

and the choices of the implementation solutions. Like with the SOTIF [30] that proposes 

an iterative approach to reduce the occurrence of the unknown and unsafe operational 

scenarios, this loop remains for ML systems but with an increased “complexity”.  

One of the challenges of specification for a ML based system is to demonstrate that the 

expected behaviours and constraints (in terms of functional, safety, operational and envi-

ronmental aspects) are actually contained in the specification. Pedestrian detection is one 

classical example: even though ML algorithms perform pretty well at detecting pedestrians 

(in some conditions), defining unambiguously what a “pedestrian” is remains an open issue.  

Let us elaborate on that problem.  

According to Merriam-Webster, a pedestrian is “a person going on foot”. Clearly, this ex-

cludes persons on wheeling chairs.43 So, the specification may be rewritten using the word 

“person” instead of “pedestrian” in order to reflect the actual intent. The word “person” now 

reflects the intent but is very ambiguous. Looking for “person” in the dictionary leads lead 

to “human”, which does not help that much. At the end of the day, we end up replacing 

one term by (supposedly) more primitive terms, without ever reaching a fixed point. Note 

that this problem does not exclusively affects ML. Indeed, any non-mathematical definition 

suffers from this kind of ambiguity. But this issue shows up more particularly in domains 

                                                
43 Note that we may consider that, in this precise case, the specification was simply invalid and not 
only ambiguous. 
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where ML excels, i.e., domains where there exists a large semantic gap between the con-

cept expressed in the specification (e.g., a “human” or some “opinion”) and the data actu-

ally available to the system (an “image” or some “piece of text”).  

Faced to such difficulties, the training dataset may be used to complement a set of explicit 

specification items, possibly iterating with the expression of the system needs (for instance 

removing loopholes that the ML system may be able to learn). In some cases, data may 

even be the only way to specify the intended function (during the initial training phase and 

even iteratively during future trainings). In addition, the dataset may also introduce unex-

pected behaviours. For these reasons, the dataset must be considered as a part of the 

system specification. Therefore, the dataset shall at least comply with the quality require-

ments applicable to classical specification items: correctness, completeness, compliance, 

consistency, accuracy, and so on. But other properties such as fairness, representative-

ness of the real environment, etc. may be necessary. For instance, representativeness is 

necessary to ensure the completeness of the specification. Therefore, the specifiability 

challenge is tightly linked with challenges related to the data quality and representative-

ness.  

In conclusion, if the completeness of a specification is usually difficult to achieve and to 

demonstrate – as shown with the “pedestrian detection problem” – this difficulty is even 

greater when dealing with some of the specific problems addressed by ML. Therefore, to 

validate the final specification, i.e., to give confidence that it complies with the system 

needs and with the safety constraints is definitively a specific challenge for the develop-

ment ML-based systems.  

4.4.3 Link with HLPs  

“Specifiability” is related to other HLPs: 

 Robustness, because the behaviour of the ML based system in front of abnormal 

conditions should be specified at system layer. 

 Data quality, because the System specification should be the basis to assess the 

quality of the data and because the data could be part of the specification as ex-

plained in the previous section. 

 Verifiability, because the System specification would be the basis to the verification. 

4.4.4 Challenges for specifiability 

Several challenges can be identified concerning specifiability: 

 Challenge #3.1: How to identify the additional behaviours introduced during 

training in order to: 

o Complete the system specifications? 

o Assess the potential safety impact? 

o Accept or to reject those additions? 

o Assess robustness? 

 

 Challenge #3.2: What criteria could be used to close the iteration loop on sys-

tem specification during training to take into account the behaviour that could 

have been added during this phase? 
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 MAIN CHALLENGE #4: DATA QUALITY AND REPRESENTATIVENESS 

4.5.1 Introduction 

Although Machine Learning through graphical and model-driven approaches is a promis-

ing field of research [31], most Machine Learning achievements are based on a data-driven 

approach [32]. Data-driven decision making refers to the practice of basing decisions on 

the analysis of data rather than on intuition [33] or on rules.  

Since data must be adapted to the intended task [34], [35], the issue of guaranteeing the 

quality and the representativity of the data when creating a dataset for a given task is 

central. The following paragraphs address these two properties in details.  

4.5.2 Data Quality 

Data quality is the “fitness [of the data] for the intended purpose” [34]–[37]. This definition 

can be refined as “the absence of the defects/noise in the dataset (biases, outliers, erro-

neous data, imprecise data, etc.)” [38]. 

In the 1950s, several definitions of data quality were proposed: “the degree to which a set 

of inherent characteristics fulfil the requirements” (General Administration of Quality Su-

pervision, 2008); the “fitness for use” [39]; the “conformance to requirements” [40]. Later, 

with the development of information technology, focus was placed on the evaluation crite-

ria to assess data quality standards [41]. In the 90’s, scholars proposed to characterize 

quality according to several “quality dimensions” aiming at decomposing the problem of 

verifying the quality of data with respect to some specific purpose [41], [42].  

Quality dimensions concerned properties such as Accuracy (in data generation), Accessi-

bility, Completeness, Consistency, Relevance, Timeliness, Traceability, and Usability. 

Other properties such as Provenance and Interpretability address the problem of providing 

reasons to trust data that can have different sources. The properties to be considered and 

the relative importance given to a specific property are definitively problem-dependent [36], 

[37].  

But, once a specific subset of quality dimensions is retained, how do we measure and 

assess the quality of data? 

4.5.2.1 Metrics for data quality 

Assessing the quality of data requires an evaluation framework for asserting expectations, 

providing means for quantification, establishing performance objectives, and applying an 

oversight process [42]. Note that the activities for data quality evaluation should be carried 

out before the selection of the subsets for a Machine Learning task. These activities should 

focus on different aspects of data collection, and on the representativeness of the dataset. 

The metrics, or means of quantification, depend on the dimension under scrutiny: 

 Accuracy depends on data gathering/generation and measures the faithfulness to 

the real value. It also measures the degree of ambiguity of the representation of 

the information. 

 Accessibility measures the effort required to access data [35]. 

 Consistency measures the deviation of values, domains, and formats between the 

original dataset and a pre-processed dataset [43].  
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 Relevance and Fitness, with two-level requirements: 1) the amount of accessed 

data used and if they are sufficient to realise the intended function and 2) the de-

gree to which the data produced matches users’ needs [35]. 

 Timeliness measures the “time delay from data generation and acquisition to uti-

lization” [35]. If required data cannot be collected in real time or if the data need to 

be accessible over a very long time and are not regularly updated, then information 

can be outdated or invalid. 

 Traceability reflects how much both the data source and the data pipeline are 

available. Activities to identify all the data pipeline components have to be consid-

ered in order to guarantee such quality. 

 Usability is a quality bound to the credibility of data [35], i.e. if their correctness is 

regularly evaluated, and if data exist in the range of known or acceptable values. 

 

4.5.2.2 Means of quantification 

The first step of the assessment process is to set the goals of the data collection and define 

the characteristics of the data for each quality dimension. This, in order to evaluate the 

data quality and eventually set a baseline that fits the desired goals [35].  

Data quality and its evaluation depend on the application and its environment. For instance 

in social media data, timeliness (and sometimes freshness) and accuracy are the most 

relevant features to assess the quality of data. 

To monitor and trace raw data, additional information are needed because multiple data 

are often queried from different sources, with no guarantee of coherence [44]. In particular, 

data quality shall vary depending on the degree of structure the data embed. It is intuitive 

that dimensions and techniques for data quality depends on the types of data: fully struc-

tured, semi structured (when data has a structure, which has some degree of flexibility, 

e.g. XML), or unstructured. Obstacles related to unstructured data are discussed later in 

the document. 

The data processing methods and procedures involved in the implementation of a ML 

component must also comply with the applicable development assurance practices [9]. 

Obviously, data quality activities are also required for the development of ML components, 

from the acquisition of data to their eventual composition and correction. This active re-

search field has proposed for instance composition algebra for data quality dimensions. 

Frameworks like the DaQuinCIS [10] provides support for data quality diffusion and im-

provement, and proposes detection of duplicates in datasets and data cleaning techniques. 

Finally, confidence can be increased by means of manual activity such as independent 

scrutiny of datasets, for example by measuring the same attribute in different ways or 

through reliability analysis. The empirical assessment of the data quality is another mean 

to increase trust in the dataset, even if it implies the challenge of collecting the “true” value 

of a data item, which may be unknown. 

4.5.2.3 Outliers 

In [45], an outlier is defined as “a pattern in data that does not conform to the expected 

normal behaviour”. Outliers are incorporated sometimes in the definition of noise (intended 

as data inaccuracy) [46]. Outliers can represent issues for some analysis methods [47], 

but can be relevant for others applications, or even can arise from correct data points, and 
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be catered for with robust analysis techniques [38][48]. Thus, outliers detection is also ap-

plication dependent. 

4.5.2.4 Missing data 

Missing data implies “repair” activities that must be scrutinised [49]; from data augmenta-

tion, to manually improving data collection. The direct maximum likelihood and multiple 

imputation methods have received considerable attention in the literature [50]. These 

methods are theoretically appealing with regard to traditional approaches because they 

require weaker assumptions about the cause of missing data, producing parameter esti-

mates with less bias and more statistical power [51]. 

Missing data can occur in a dataset for several reasons; e.g. a sensor failing, or lack of 

response from sampled individuals. Response data bias, and low statistical power are the 

two main consequences of missing data [51]. 

 The response bias occurs when the results deriving from the collected data are 

different from the ones that would be obtained under a 100% response rate from 

sampled individuals. 

 A low statistical power means that the data sample is too small to yield statistically 

significant results.  

The degree of stochasticity involved in the data absence has an impact on the nature and 

magnitude of the deriving bias. For instance, the systematic absence of data generally 

leads to a greater bias in parameters estimates than a completely random pattern [51]. 

4.5.3 Data Representativeness 

The concept of data representativeness refers in statistics to the notion of sample and 

population [52]. A sample is representative of a population if it contains key characteristics 

in a similar proportion to the population [53]. Transposed to the world of Machine Learning, 

the sample corresponds to the dataset available for the development of the model (training, 

validation, testing), and the population corresponds to all possible observations in the field 

of application. 

The subject of data representativeness has been debated for many years and remains a 

subject on its own. As mentioned in the introduction, representativeness is a concept in-

herited from the statistical field, and is a qualifier of a sample (dataset). It appears that the 

definition of a representative sample depends on the nature of the sampling design (prob-

abilistic or not) [54]. If the distribution of the population is not known, it is impossible to 

demonstrate that as sample drawn from this population is representative of this population. 

This limit also naturally applies to Machine Learning and ensuring representativeness is 

still a challenge today: how to ensure that the characteristics of a learning, validation or 

test dataset strictly respect those of the environment from which they were extracted? We 

provide no complete answer in this document, but we propose to focus the discussion on 

three specific topics, important for future research:  

 Assessment of representativeness. 

 Obstacles related to unstructured data. 

 Fairness. 
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4.5.3.1 The challenge of assessing representativeness 

According to [54], the polysemy of “representativeness” makes its precise assessment 

impossible. Nevertheless, the assessment of the representativeness of a sample can be 

approached by (i) the evaluation of the sampling design, (ii) the construction of sampling 

plans, and (iii) the quality control of the sampling. Ensuring representativeness boils down 

to complying with certain key criteria in the realization of each of the following three steps 

[55]: 

1. Determine data quality objectives regarding the problem being addressed. 

2. Prepare the sampling plan. 

3. Evaluate the quality of the sample plan. 

The objective of the first step is to define a set of questions allowing to identify clear ob-

jectives, population, and issue to build a sampling plan. The definition of the population 

relies on the Operational Design Domain44 in which the Machine Learning model is trained, 

validated, and tested is crucial. If the operational design domain is not available/ fully 

known, the usage of the model must be restricted. 

The second step depends directly on the results of the first step. The type of confidence 

(statistical or core business) will also have an influence on the design of the sample [55], 

and on the generalization capabilities. 

When statistical confidence is required, random sampling, or any other probabilistic sam-
pling, may be used to build a sample that reflects the characteristics of the population. As 
explained in Section 4.5.3.2, this approach is difficult to implement in the case of unstruc-
tured data.  

When the confidence is based on the judgment of an expert, the final quality of the sample 

will be the responsibility of the professional and will not require random sampling. Thus, it 

is an expert who validates the scope of the operational design domain and evaluates the 

relevance of the sample collected.  

Depending on the knowledge of the population (see step 1), multiple sampling methods 

can be used. We describe them briefly below, based on [56]:  

 Probabilistic methods (confidence based on statistics): 

o Simple Random Sampling: Observations (units of data to be analysed) 

are collected according to a random process. Each observation of the pop-

ulation has the same chance of being drawn in the sample. Depending on 

the answers to the questions in Step 1, sampling must take into account the 

spatial and temporal variability of the population (domain of use). Theoreti-

cally, the random sample should contain the same proportions of each type 

of observation as in the population, even the rarest ones. In practice, biases 

may occur, for example, because of an inability to achieve a truly random 

method, or because there is a probability of over-representation of certain 

groups. 

                                                
44 The concept of “operational design domain” (ODD) is defined in SAE J3016. It denotes the oper-
ating conditions under which a given system is specifically designed to function.  
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o Clustered sampling presupposes that the operational design domain (the 

population) is homogeneous in its composition. The domain is then seg-

mented into “clusters”, a subset of the clusters is randomly chosen and all 

observations from the selected clusters are sampled. 

o Stratified sampling is based on dividing a heterogeneous population into 

mutually exclusive strata and on applying probability sampling in each stra-

tum (the simple random method being the most common). Stratification is 

carried out with respect to a variable of interest that is often simple and 

categorical (in the case of societal studies: gender, age group, nationality, 

etc.). This method has the advantage of maintaining in the sample a pro-

portionality identical to that of the population for a variable of interest. 

o Systematic sampling assumes that the entire population is known, and 

defines sampling intervals according to the desired sample size. Thus, an 

observation will be sampled every k observation, k being the ratio between 

the number of possible observations in the population and the size of the 

desired sample. This method may be of interest to ensure the uniformity of 

the quality of a production line, for example. 

o Multiphase sampling combines the methods presented previously, for in-

stance by performing random sampling for each of the clusters obtained by 

clustered sampling. 

 Non-probabilistic methods (confidence based on business expertise). 

Sampling based on “business knowledge”, acquired through experience, can be 

as valid as the traditional probabilistic approach when it comes to studying a spe-

cific phenomenon. 

Among these methods, we will mention only two of them: 

o Subjective sampling: This method is based on the appreciation of the pro-

fession, depending on whether an observation has a typical or atypical 

characteristic. It is then possible to focus on anomalies, to the detriment of 

representativeness. 

o Convenience sampling: This method, which retains in the sample the data 

provided by individuals who voluntarily present themselves, is generally not 

applicable in an industrial context and is more appropriate in societal stud-

ies. 

Note that each of these methods is likely to induce a bias that will affect the model's per-

formance and robustness, and this needs to be taken into account.  

In addition to the choice of the sampling method (answering “how”), the size of the sample 

itself plays a fundamental role in representativeness (answering “to what extent”). The 

question of sampling effort is particularly addressed in ecology, a discipline in which it is 

necessary to find a cost/completeness trade-off when studying environments or commu-

nities. One of the most commonly used methods is the rarefaction curve [57], which en-

courages continued sampling effort until an asymptote of a number of species in an envi-

ronment is reached. Other tools involving coverage rates complement this approach and 

are aimed to reduce bias. Similar approaches are also found in econometrics. Saturation 

curves, for instance, reflect the evolution of the distribution potential of a good or service 
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in the market. This evolution also tends here towards an asymptotic plateau, unknown in 

advance. 

The third and final step is to validate the quality of the sampling plan, i.e., to assess its 

capability to generate samples that will represent the population. This can be done by 

identifying the potential errors produced by the sampling plan (human errors, systematic 

errors, and random errors) and by ensuring that they remain below an acceptable thresh-

old. This type of consideration includes the use of replicas. Thus, this step does not nec-

essarily aim to validate a sampling plan, but to invalidate it when the errors are too high. 

4.5.3.2 Representativeness and unstructured data 

When studying structured data, the description of a population from a sample is based on 

the collection of information relevant to the population. Thus, achieving representativeness 

implies comparing distributions in a semantically relevant space. However, the character-

istic of unstructured data, such as images or text, is not to be projected into this kind of 

space.  

In the field of natural language processing, for instance, the similarity between the seman-

tic networks of the samples and the semantic network of the original document [58] can be 

used to evaluate representativeness.  

The minimal and sequential representation of reality by a visual recording device makes it 

unlikely or even theoretically impossible to achieve a complete representation of a moving 

scene.  

But even in the case of unstructured data, certain use cases are more suitable for the 

constitution of supposedly representative samples. In the example of the early detection 

of breast cancer [59], the nearly 90,000 mammograms, obtained through a rigorous cap-

ture and calibration process, involve the same anatomical area. Thus, the variability of the 

images is essentially driven by age, genetics, body size, hormonal dynamics, eating habits 

breastfeeding activity by the patients, and, finally, by the possible presence of a cancer. 

The implementation of stratified sub-sampling and the definition of objectives targeted on 

these different criteria can lead to the reduction of some of the biases caused by the first 

sampling (possibly a convenience sampling). 

Other fields of application, involving for example video capture and object identifica-

tion/classification, make a similar approach futile, if not by severely restricting the opera-

tional design domain. 

An alternative approach consists in analyzing the input domains with respect to new inputs, 

or a sub-sample to reassure on the conformity of these with the training dataset. Con-

versely, any deviation from the input domain will warn of a risk of non-representativeness 

of the training dataset. Thus, in image analysis, it is not possible to guarantee a priori the 

representativeness of a sample, but it is possible to detect some cases of non-represent-

ativeness.  

4.5.3.3 Fairness 

Machine Learning methods exploit the information conveyed by the learning dataset, by 

looking at the different relationships between the observations, which includes their corre-

lations. In particular, they inherit the biases present in these data.  
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Some of these biases enable to increase the overall accuracy of a model when they are 

related to properties that are relevant to the targeted problem, and can be generalised to 

other observations. On the contrary, some biases are very specific to the data which is 

used to build the model and are related to a mere correlation (e.g. the well-known snow 

background on the wolves and husky classification [60]). Learning such correlations could 

hamper the prediction of the algorithm outside of the training sample. As a consequence, 

the control of possible underlying biases is a crucial issue when trying to generalise ma-

chine learning based algorithms and certify their behaviour.  

The source of biases are multiple. In industrial cases, collected data may first not be rep-

resentative of the operational design domain. Another common issue comes from unbal-

anced training samples or errors in the acquisition and/or labelling of the data leading to 

misclassified examples. 

In all cases, removing unwanted correlation will help recovering the standardised behav-

iour of the algorithm and increase its accuracy. Research on biases in machine learning 

has grown exponentially over the very recent year. It includes the detection and identifica-

tion of biases as well as the design of new algorithms to bypass unwanted correlations in 

the dataset, either by removing them from the learning sample or by controlling the learning 

step by adding a constraint, which enforces the so-called fairness of the algorithm. Such 

methods are also closely related to domain adaptation or transfer learning algorithms. 

4.5.4 Discussion  

We have presented a list of criteria pertaining to Data Quality and also pointed out that 

their method of evaluation is prone to the subjectivity of the research or implementation 

teams, and depends on the targeted application and the operational design domain. The 

trust that will be placed in the dataset strongly depends on them. 

It is accepted that the achievement, even if only theoretically, of representativeness for a 

sample used as a basis for learning, validating and testing a Machine Learning model is 

at the very least uncertain or in some cases even impossible (e.g. image classification in 

an open environment) since such a principle is not particularly well defined. Representa-

tiveness being hard to assess, is it required for all the datasets used in the development 

of a ML system (learning, validation, test)? An approach, which is still very controversial 

within the working group, could be to impose the representativeness constraint only on the 

test dataset, used to evaluate performances for the demonstration of compliance. But al-

leviating this constraint on the training dataset is risky in several respects: it favours a late 

discovery of weak learning datasets possibly increasing the overall development costs; it 

increases the overall risk by removing one level of verification.  

By moving from statistical theory to the practice of Machine Learning in a critical context, 

it becomes relevant to rephrase the question "how to assess the data quality or data rep-

resentativeness of a sample?" to "Are both Data Quality and Representativeness es-

sential for the implementation of a Machine Learning model in a critical system?"  

Considering that that a model will not be trained on all the observations that may appear 

in the population/domain of use, or on a dataset that bring a total confidence about its 

quality, how to limit the impact of this gap on final safety? One solution consists to mitigate 

the risks introduced by the ML systems by appropriate monitoring means, redundancies, 

error masking and recovery mechanisms at system level. These solutions are discussed 
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in Section 4.3, where the counterpart of difficulty to assess representativeness, lies in Out-

Of-Distribution detection.  

The Data Quality and Data Representativeness High Level Properties are linked to the 

concepts of Data Fairness and Auditability. Data Quality property also contributes to the 

definition of Accuracy and Numerical Accuracy, while Data Representativeness also con-

tributes to Robustness, Fairness.  

4.5.5 Challenges for data quality and representativeness  

For the Data Quality & Representativeness theme, we identify the following challenges: 

 Challenge #4.1: How can we prove that a dataset is representative of the Operational 

Design Domain for a given usage?  

 Challenge #4.2: How can the representativeness of a dataset be quantified, in partic-

ular in the case of unstructured data such as texts or images?  

 Challenge #4.3: Which of the training, validation and test datasets should possess the 

data quality and representativeness properties? 

 

  



  

PAGE 65 

 MAIN CHALLENGE #5: EXPLAINABILITY 

4.6.1 Introduction 

The production of explanations is a central problem for the analysis of reasoning, commu-

nication, mental model construction, and human-machine interactions. It has been widely 

investigated in various scientific fields including philosophy, linguistic, cognitive psychol-

ogy, and Artificial Intelligence [61]. 

The automated production of explanations has been much more considered within the field 

of Artificial Intelligence through three principal domains [62]: 

 Expert System (in the 90’s). 

 Machine Learning (since 2000). 

 Robotics. 

In this chapter, we address the concepts of explanation and explainability in AI with a focus 

on Machine Learning. 

4.6.2 On the concept of explanation 

4.6.2.1 Explanation 

Many definitions have been proposed [63]–[66]. A reasonable one can be found in Wik-

ipédia (https://en.wikipedia.org/wiki/Explanation, 2019): 

An explanation is a set of statements usually constructed to describe a 

set of facts which clarifies the causes, context, and consequences of 

those facts. This description of the facts may establish rules or laws, and 

may clarify the existing rules or laws in relation to any objects, or phe-

nomena examined. The components of an explanation can be implicit, 

and interwoven with one another. 

An explanation is often underpinned by an understanding or norm that 

can be represented by different media such as music, text, and graphics. 

Thus, an explanation is subjected to interpretation, and discussion. 

In scientific research, explanation is one of several purposes for empiri-

cal research. Explanation is a way to uncover new knowledge, and to 

report relationships among different aspects of studied phenomena. Ex-

planation attempts to answer the "why" and "how" questions. Explana-

tions have varied explanatory power. The formal hypothesis is the theo-

retical tool used to verify explanation in empirical research. 

This definition emphasizes the three key aspects of an explanation:  

 Description of an existing phenomenon/system: an explanation provides infor-

mation about a phenomenon (or a system). 

 An explanation is dependent on a domain knowledge and its representation. 

 Explanation helps to complete the domain knowledge by uncovering new 

knowledge (concepts, relationship between concepts) required for validating some 

hypothesis not confirmed by the initial domain statement. 

https://en.wikipedia.org/wiki/Explanation
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To summarize, explanations enable a human to complete its mental models for under-

standing a phenomenon/system. “Understanding” means that the human has the capabil-

ity to do inferences (deduction, induction, abduction…) on the behaviour of the system 

without relying on experiments. It is worth noting that this definition leaves apart commu-

nication aspects. Indeed, the producer and the recipient of the explanation can be the 

same person. 

An explanation expresses a causal chain linking events for making clear a phenomenon 

[67]. “Making clear” is an elusive term which hides the tradeoff between interpretability and 

completeness of an explanation [63]: 

 Interpretability relates to the capability of an element representation (an object, a 

relation, a property...) to be associated with the mental model of a human being. It 

is a basic requirement for an explanation. For instance, watching a series of pic-

tures of a falling ball (the representation) can be interpreted as the usual trajectory 

of a falling body (the mental model). 

 Completeness, in the context of explainability, relates to the capability to describe 

a phenomenon in such a way that this description can be used to reach a given 

goal. 

This concept encompasses two main notions: 

o Precision, which indicates how much details must be provided to the hu-

man to let her/him execute mentally the inference in a right way with respect 

to her/his goal. For instance, there is no need to know the laws of general 

relativity or quantum mechanics to predict the trajectory of a ball. 

o Scope (or context) which defines the conditions in which the explanations 

are valid with the given precision. 

4.6.2.2 Explanations and AI 

In the AI domain, explanation generation has been considered for enabling the use of 

complex systems by their end users. The field of Expert systems has been one of the most 

active in this area.  

The logical process of Expert Systems is expressed through deductive inference rules (a 

⇒ b) which can be directly accessed, interpreted, and corrected by the domain expert 

using the system. This capability, which enables a quick transfer of knowledge from an 

expert to a machine without the intervention of an IT specialist, certainly justifies the strong 

interest for those systems in the 90’s.  

Unfortunately, the number of rules and the opacity of their selection in the inference pro-

cess have shown that the expressiveness power of a language is not sufficient for bridging 

the gap between the system processing and the user mental model. A synthesis of the 

numerous deductive inferences performed for a particular decision must be achieved for 

allowing the user to understand the rationale of the decision with his/her own cognitive 

limitations (which are not often well known). 

Several works [68] have shown that the synthesis cannot be just a reformulation of the 

triggered rules. Explanation generation must be structured through a dialog with the end 

user. Questions such as “what?”, “why?”, “how?” are the means for the user to “navigate” 

in the space of the synthetic information given by the system. This led to a second gener-

ation of expert systems whose joint purposes were to do inference that an expert could do, 
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and to explain the decision that an expert would do by considering the unknowns of the 

user [69]. 

4.6.2.3 Explanations and Machine Learning 

There is a wide consensus in the ML scientific and industrial community on the need to 

have the capability to explain the behaviour of a model produced by these technologies. 

The need to get explanations was justified a priori by many authors for: 

 Ensuring trust. 

 Establishing causal relationships between the input and the output of the model. 

 Catching the boundaries of the model. 

 Supporting its use by providing information about how the decisions have been 

taken.45 

 Highlighting undesirable biases. 

 Establishing how confident a model is with its own decisions. 

 Allowing the end users to identify faults/errors in the model. 

 Checking that the model does not violate some privacy rule. 

These objectives can be associated to three types of person profiles [65], [71]: 

 Regular users, i.e., the users of the ML based system. 

 Model developers, i.e., the data scientists in charge of developing the ML model 

and the domain expert who provides information about the domain. 

 External entities, i.e., regulatory agencies in charge of certifying the compliance 

of the models with required properties mainly related to safety and transparency. 

All these profiles are not expecting the same kind of explanations. Regular users need to 

get highly interpretable information but few details about the way the system has pro-

cessed the information during the inference. Model developers need precise information 

about the relationship between the input and the output of the model in order to validate it 

with precision; completeness in this case is the key driver for explanations. The case of 

“external entities” (scope of this chapter) will be discussed in more details later (§4.6.3), 

but it is worth noting that, in some circumstances, the regulatory authority may also request 

demonstration of explainability for the regular users. Beforehand, let us consider the in-

herent difficulty of getting explanations from ML models. 

ML models are not fully built by human. They are partially produced automatically from a 

set of observations (training set) meant to be representative of the objects/concepts to 

learn. The global strategy for building a ML model consists in selecting or building the 

features able to discriminate the observations with respect to their associated object/con-

cept. These selections rely on various heuristics used to avoid an exhaustive exploration 

of combinations of features that would not be tractable even for medium size problem. The 

observations used in the training set are the representation of the world chosen by the 

developer of the ML model and/or the system engineer. 

This process makes ML systems very different from classical software: 

                                                
45 This is for instance motivated by the compliance with GDPR which mandates a right for the end 

users to obtain such information [70, Secs 15 and 22]. 
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 The algorithm to build the ML model considers the training observations (a subset 

of the domain elements) as a whole for capturing the rationale of the decision 

model. 

 The algorithm to build the ML model is an ad hoc composition of mathematical 

algorithms and heuristics applied to the domain features brought by the training 

observations. Those algorithms and heuristics can be understood somehow by hu-

man beings (they have been established through the design of the ML algorithm), 

but their composition is not designed through a human analysis of the domain.  

The ML model is thus a computed artefact, associated to a specific domain which is not 

directly interpretable by a human. The various processing performed during the training 

and their representations must be interpretable to be part of the explanations. In other 

words, they must be associated explicitly with some domain concepts belonging to the 

mental model enabling a human to do some mental inference (cf. §4.6.2). So, while Expert 

Systems focus on communicating explanations in a human friendly way, ML systems re-

quire to step back: the end user must first be able to interpret the relationship between 

inputs and outputs to understand it (for instance, to validate it). 

This need is an important focal point for the academic and industrial ML communities. The 

kind of questions that must be answered to is basically: 

 Why has this observation (not) been associated to this class? 

 What is the role of a given input variables in the decision made by the model? 

Such questions can be useful for the ML designer and the end user. For instance, they 

may be used by the ML developer to determine the parts of the system to be fixed or they 

may be used by the end-user to understand the rationale of the ML decision/output and 

use it in a more appropriate manner or, at least, feel more comfortable for using it. The ML 

designer could also ask for more details about the relationship between the input and the 

output variables. In that case, he/she may require information about the internal represen-

tation of the domain produced by the ML algorithm (the latent space), which holds the 

features created/selected/aggregated by the algorithm. For now, it is not clear if an end 

user must also access to this space (white box approach) or if explanations based on the 

input and the output variables are enough (black box approach). 

Many approaches are currently being investigated for producing appropriate explanations 

[63], [65], [71], [72]. As of today, and as pointed out by many authors, the means for pro-

ducing accurate explanation, i.e. based on the real decision of the model, are not fully 

reliable or not even feasible [64], [73]. 

4.6.3 Explanations for certification of ML systems 

In the case of the certification of ML based systems, two general cases may have some 

requirements specific to the production of explanation: 

 Compliance with safety requirements.  

 Compliance with legal requirements. 

4.6.3.1 Compliance with safety requirements 

For certification, explanations can have two purposes: 

First, explanations can give confidence to the authority. Indeed, explanations are often 

enablers of confidence. If the behaviour of a ML model were explained with much precision 
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and with clear and correct indications about its relationship to the target domain, it would 

provide the authority with the ability to assess the system with a proper understanding of 

the design details and motivations. Unfortunately, as aforementioned, there is no guaran-

tee such explanations could be produced. Furthermore, concrete methods producing evi-

dence that an explanation about a ML model is correct are still lacking. Correctness of 

explanations may be achieved by recreating a causal model or through the identification 

of confidence metrics associated to an explanation… 

Second, explanations can help the end-user operating the system. In some situations, the 

end-user needs to understand the behaviour or the decisions made by a system, in order 

to control it in an effective manner. This can be referred as the controllability of the system. 

The need for explainability for controllability is discussed in more details later. 

The type of explanations depends on the impact of a failure of the system on safety, and 

on the level of autonomy. Hereafter, we distinguish three main levels of autonomy: 

 The system is fully autonomous 

 The system is autonomous but it can leave the control to an operator. 

 The system is monitored, and the control can be taken by an operator.  

Full autonomy 

A system is fully autonomous when the expected function can be achieved by the system 

without any intervention by a human. Transport systems are willing to reach that level, but 

the technology is still considered immature for that purpose. 

The deployment of such systems will only be allowed if strong guarantees about their be-

haviour are provided for a very wide range of circumstances. Should a catastrophic failure 

occur, a post-mortem analysis aiming at identifying clearly the root cause of the failure and 

the way to fix the system will be performed. This analysis may be supported by explana-

tions about the behaviour of the model in the circumstance of the failure.  

Additionally, the specification of the fix will also require a thorough analysis of this abnor-

mal behaviour to provide information to the data science expert (for the algorithmic as-

pects) and/or to the domain expert (if a causal interpretation of the model can be given). 

Even if this type of “debugging” does not fall within the scope of this White Paper, it can 

be assumed that evidences of the efficiency of the fix will have to be given. In this case, 

the usefulness of the explanations will depend on their ability to point out the root cause of 

the problem (as for any system). But more importantly, it will also depend on their ability 

to establish the scope of the failure which is not easily accessible since induced internally 

by the ML algorithms. 

Autonomy with the capability to transfer the control to a human operator 

In order to be able to transfer the control from a ML based system to a human, the system 

will require additional abilities to monitor the ML behaviour, which is also an active research 

field [74]–[76]. The idea is to add to the model some self-assessment capabilities that may 

detect situations:  

 Which are far from the ones considered for training the model (novelty, or out-of-

distribution detection). 

 For which the system has not enough discrimination means [77] and cannot rely 

on its own confidence. 
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If such situations are detected, the system might trigger some mitigation operations such 

as transferring the control to a Fail Safe module [78] or to a human operator (such as the 

car driver, the pilot of the aeroplane, a remote-control center, …) as recommended by 

some standards (for instance, the SAE’s level 3 expect a human may intervene per request 

of the autonomous car [79]). 

 

Figure 16. The system integration of a ML model requires a monitoring able to deal with 
contexts of execution not aligned with the model scope. 

The effectiveness of such approach relies on the capability of the operator to take-over the 

control in the most appropriate way [80]. It means that he/she must, in a very limited 

timeframe determined by the context of use of the application: 

 Be aware of the situation . 

 Understand the reason he/she must take-over the control of the system. 

 The nature of the problem which has not been solved by the system. 

 The set of actions he/she can perform. 

In such circumstances, controllability of a ML based system does not depend on the pre-

cise understanding of the relation between the input and output of the ML model. It de-

pends more on the understanding of the function of the system (i.e. the logical relationship 

between the categories of input and output), its limitations, and the means that are availa-

ble for continuing operation of the system. 

It is not necessary to understand the internal logic of the model [81]. It may even be coun-

terproductive since the situation may require a fast reaction. Understanding the rationale 

of the fail-safe strategy is more appropriate for the operator in determining the intent of the 

control transfer and the actions he/she must execute.  

For now, this level of autonomy is implemented without any ML techniques. The generation 

of explanation in this context can be thus performed through explanation planning, which 

exploits models of the dynamic behaviours which occur in the domain [82]. The assess-

ment of the efficiency of the explanations could be done with classical human-in-the-loop 

verification methods. 

Supervised autonomy 

Supervised autonomy is an approach followed by some industrials for tackling safety prob-

lems. It is close to the one described previously but, here, it is expected that the operator 

monitors the decisions of the system and bypass them in case of disagreement. The best-

known example is Tesla which recommends to the driver to keep their hands on the driving 

wheel even when the autopilot is activated [83].  
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Other examples are ML models used in medical diagnosis for establishing the cause of 

symptoms. The system may establish a complete diagnosis but this one is reviewed by a 

doctor before a final decision. The notion of autonomy here can be debated in the sense 

that the system decision remains under the control of an expert. However, the ML model 

can achieve an accurate diagnosis (as a human expert might do with more effort) without 

requiring the intervention of the expert during the processing of the data. In this situation, 

explanations are definitively required as in the case of expert systems (cf. § 4.6.2.2): to 

take a decision, the expert must understand the reason why the ML model has given a 

certain diagnosis among all the possible ones. 

In the case of autonomous vehicle, reaction time is much more critical than the complete-

ness of the explanation. The first objective is to ensure situation and risk awareness for 

managing takeover phases in very limited timeframe [80]. It means the operator must un-

derstand instantaneously what is the decision taken by the system and what are the ele-

ment of its environment involved in this decision. In other word, the interface between the 

user and the model must integrate as far as possible the operator’s perception of the en-

vironment and the input/output managed by the system. For instance, “augmented reality” 

tools may be used to display the identified threats and the vehicle trajectory so as to limit 

the driver’s cognitive load. From the explanations perspective, the challenge consists in 

identifying precisely and rapidly which input (or element of the environment) is responsible 

of the output (or the decision of the system). The causal interpretation of the processing 

achieved by the system is of less importance. 

As discussed previously (cf. §4.6.2.3), it is very hard to provide an interpretable and com-

plete explanation of a ML model. A precise and contextualized causal chain would be 

needed but, unfortunately, ML models are closer to Bayesian models than to causal mod-

els...   

A causal interpretation of the model could be then an answer to the need of explanations 

but, then again, this interpretation is hard to obtain for any given ML model [84] and existing 

approaches and tools are still exploratory. Besides, as stated by [73], if such causal models 

were to be obtained with a high level of completeness, they would well replace models 

such as those produced by neural network.  

4.6.3.2 Compliance with legal requirements 

Explainability is not only required for the sake of safety; it is also required for ethical rea-

sons. For instance, in an article one often called the “right to explanations” regarding au-

tomated data processing, the General Data Protection Regulation (GDPR, [70]), states: 

The data subject shall have the right to obtain from the controller confir-

mation as to whether personal data concerning him or her are being pro-

cessed, and, where that is the case, access to the personal data and the 

following information: […] 

(h) the existence of automated decision-making, including profiling, re-

ferred to in Article 22 (1) and (4) and, at least in those cases, meaningful 

information about the logic involved, as well as the significance and the 

envisaged consequences of such processing for the data subject. 

This highlights the social demand for an AI that people can understand and predict, but 

note that no specification is given about the explanation to give, in particular about their 

completeness [70, Sec. 5]. 

https://gdpr-info.eu/art-22-gdpr/
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Similar requirements emerge in new AI ethics policies. For example, one of the seven AI 

trustworthiness criteria published by the AI High Level Expert Group of the European Com-

mission is “Transparency” and includes explainability requirements. 

It is too early to know what level of completeness is expected by these regulations and 

policies. In the domain of safety-critical systems, we may assume that explainability re-

quirements will be mainly driven by safety requirements that probably exceed transparency 

requirements. 

4.6.4 Conclusion 

Providing explanations about ML models is a key feature for a better mastering of the 

systems using them. When these systems become critical, focus must be set on the ex-

planations allowing a human operator to supervise the decisions taken by the system. 

When these systems are subject to a certification process, challenges concern  

 The interpretability of the information communicated, i.e. “is the operator able to 

associate them with his/she own domain knowledge. 

 The completeness of the information communicated, i.e., “how much details must 

be provided to the operator with respect to the actions he/she must execute in a 

given timeframe?” 

Additional work is certainly needed, both on the refinement of the needs of explanation for 

certification and on the tools to explain ML. The involvement of ML, certification, and hu-

man factor experts is crucial to achieve the right level of explainability. 
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4.6.5 Challenges for explainability 

For the Explainability theme, we identify the following challenges: 

 Challenge #5.1: How to ensure the interpretability of the information communicated 

to the operator? How to ensure that the operator is able to associate them with 

his/her own domain knowledge / mental model? 

 Challenge #5.2: How to provide the necessary and sufficient information to the op-

erator regarding the actions he/she must execute in a given situation/timeframe?  

 Challenge #5.3: To what extent explainability is needed for certification? 

 Challenge #5.4: When is an explanation is acceptable? How to define explainability 

metrics to assess the level of confidence in an explanation? 

 Challenge #5.5: How to perform investigation on ML-based systems? How to ex-

plain what happened after an incident/accident? 
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 MAIN CHALLENGE #6: ROBUSTNESS 

4.7.1 Introduction 

4.7.1.1 The need for robustness 

Robustness is one of the major stakes of certification. The state of the art regarding the 

safety-critical development is that the software should be robust with respect to the soft-

ware requirements such that it can respond correctly to abnormal inputs and conditions. 

For instance, DO-178C/ED-12C defines the robustness as the extent to which software 

can continue to operate correctly despite abnormal inputs and conditions. It requires sev-

eral activities to meet the objectives:  

 Specify any robustness behaviour of the software using derived requirements 

(specification of any emerging behaviour of the software which is not traceable to 

input requirements). 

 Review design and code to verify that the robustness mechanisms are in place. 

 Develop test cases using specific software features (e.g. equivalence classes, 

invalid values, input data failure modes, overflow of time-related functions…) to test 

the robustness of the embedded software. 

Robustness can be seen as the system behaviour analysis in regard to any – known and 

unknown – environmental or operating perturbations. Considering the specific case of ML 

development, perturbations should be considered of a data-driven development process. 

The model is developed to fit the intended function by the use of appropriate datasets, 

learning process, and implementation process for target embodiment. While a human has 

the capability to adapt his/her behaviour (with respect to the intended function) whatever 

environmental or/and operating perturbations, the ML system has only memorized what it 

has captured from features during the learning phase. Therefore, the robustness of a ML 

system should logically relate to the robustness of the ML inference versus any variability 

of the input data compared to the data used during the learning process.  

Perturbations can be natural (e.g. sensor noise, bias…), variations due to failures (e.g. 

invalid data from degraded sensors), or maliciously inserted (e.g. pixels modified in an 

image) to fool the model predictions. Perturbations can also be simply defined as true data 

locally different from the original data used for the model training and that might lead to a 

wrong prediction and an incorrect behaviour of the system. The model inference should 

be robust to all of these perturbations that were not considered during the training phase, 

i.e. the model should develop the ability to “correctly” generalize from the features that 

were encountered during training. 

If these perturbations could be classified as “known” and therefore deemed more accessi-

ble to modelling, the trickier aspect comes from the “unknown” part. As far as the pertur-

bations can be defined, we remain in the paradigm of the current certification approach 

where robustness is apprehended with respect to the requirements. With a part of unspec-

ified behaviour (or behaviour untraceable to the upstream systems requirements) con-

tained in the training dataset, data-driven development makes ML very attractive to model 

functions that cannot be humanly definable (e.g. pedestrian detection, physical phenome-

non not properly mastered…) but makes robustness a difficult property to be possessed 

by safety-related system. 

The robustness may also be tackled from the model design perspective. Indeed, the be-

haviour of the ML system may be sensitive to the perturbations of the model design and 



  

PAGE 75 

implementation characteristics. For instance, perturbations of hyper-parameters, model 

architecture, or even slight changes of the computed weights when the model is embedded 

on target can adversely change the ML system behaviour at inference time. 

Possessing the robustness property remains a challenge in the frame of future ML system 

certification. However, such demonstration will have to stay commensurate to the encoun-

tered risks. Indeed, robustness approaches will have to be considered so that ML systems 

can be adopted for advisory functions. For more critical functions implementation, it will be 

the impact of lack of robustness on the system reliability that should be quantified (or 

bounded) in order to be acceptable versus the safety of the system in all foreseeable op-

erating conditions (cf. §4.3). 

4.7.1.2 General definition of robustness 

Analysing the behaviour of a system under normal (i.e. expected) functional conditions is 

a necessary yet insufficient condition to qualify with confidence the functioning of the sys-

tem under all possible operational scenarios. Appropriate tools and methodologies must 

be designed to analyse the behaviour of the system in abnormal conditions. One such tool 

is robustness analysis which aims to quantify the influence of small perturbations on the 

functioning of the system. Obviously, the results of such analysis strictly depend on the 

definitions of “small” and “perturbation”. 

“Small” requires the specification of metrics, e.g. estimating the similarity between normal 

and abnormal (yet possible) input values. It is generally acknowledged that designing a 

“good” similarity metric, especially for high dimensional domains, is very difficult, if possible 

at all. Thus, metrics are choices of the analyst and not intrinsic properties of the world 

(although they should reflect real phenomena). 

“Perturbation” refers to alterations of numerical quantities46 that may induce erroneous val-

ues. In the context of ML models, perturbations mainly affects the inputs. In addition, the 

implementation of the model can also be subject to numerical instabilities. 

Generally, we distinguish between local and global robustness:  

 Local robustness is concerned with the response of the system w.r.t. deviations 

(i.e. within a small “neighbourhood” of) from a given input value. A model is deemed 

robust if its responses to these deviations are similar or identical to the response 

provided by the original (i.e. unperturbed) input. 

 Global robustness takes into account the combination of multiple “input” devia-

tions with regards to the behaviour of the system. By “input” we refer to any type of 

factor that contributes to the behaviour of the system, be it input data or any design 

choice or internal (hyper-)parameter of the system. 

Robustness can be tested against known or unknown conditions. When conditions are 

known (e.g. admissible values can be specified), particular efforts may be invested to en-

sure that the system will behave as intended in the presence of those abnormal conditions. 

When the dimension of the input space is too large to be specified (e.g. pedestrian detec-

tion), it is impossible to define exactly what an abnormal condition can be. In such condi-

tions, robustness has to be evaluated against unknown conditions. 

                                                
46 for image or signal processing, but the perturbation can be of another nature for other data types 
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Robustness of a system (or model) may be estimated by two means. One relies on empir-

ical procedures to estimate the effects of a given perturbation on the behaviour of the 

system. The other one offers provable guarantees about these effects. 

Provable guarantees definitely are more desirable but are generally harder to obtain. In 

addition, depending on the hypotheses on which they rely upon, sometimes these guar-

antees may prove impractical (e.g. by providing bounds that are too conservative or too 

restrictive). 

From the above considerations, we should note that, ultimately, all robustness analysis 

tools rely on some human decisions. Indeed, even if the perturbations are generated ran-

domly, they are drawn from a domain (metrics, magnitude, structure) that is human defined, 

and that represents an approximation of the actual, real-world, phenomena. So, one has 

to be careful when interpreting the results given by these tools.  

Hereafter, we focus on two type of robustness properties: 

1. Ability of the system to perform its intended function in the presence of: 

a) Abnormal inputs (e.g. sensor failure). 

b) Unknown inputs (e.g. unspecified conditions). 

2. Ability to ensure coherency in the sense that for similar inputs, it provides an equiv-

alent response. e.g. “a network is delta-locally-robust at input point x (similar) if for 

every x' such that ||x-x'|| < delta, the network assigns the same label/output to x 

and x' (equivalent response)”. 

4.7.1.3 Link with other HLPs and challenges 

The scope of robustness is very large and has many intersections with other HLPs and 

challenges that are mentioned in this section. 

Firstly, as described in Section 4.7.1.1, robustness is closely linked to Specifiability and in 

particular the ability to specify the input requirements (§4.4).  

In traditional software engineering, robustness is analysed with regard to the functional 

specifications. However, ML-based modeling poses serious problems with regard to the 

feasibility of formulating complete and unambiguous functional specifications. Specifying 

types of perturbations, characteristics of the model's inputs or outputs that are required by 

the intended functionality is far from trivial or often even impractical/impossible. 

It has been seen in main challenge “Probabilistic Assessment” (§4.2), that performances 

commonly used in ML (e.g. accuracy) are often based on average evaluation over a da-

taset, which is definitely not a sufficient criterion to decide whether the system relying on 

is safe or reliable. Adversarial examples that will be described in next sections have shown 

that accuracy is not enough. Metrics to evaluate robustness must be considered and eval-

uated in order to assess the behaviour of a model (and ultimately a system relying on it). 

The general aim of ML modeling is to build models that generalize well, i.e. learn from 

seen data and make good predictions on unseen data. Ensuring that a model is robust to 

certain perturbations helps against model overfitting. 
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The confidence in the predictions of a model is directly related to its capacity of handling 

uncertainties, e.g. unknown inputs. The response of the model to subsets of such unknown 

inputs (namely small deviations from known ones) is the central theme of the robustness 

analysis. In this sense, robustness analysis can be seen as a valuable tool pertaining to a 

larger toolkit required by any sound probabilistic assessment of the behaviour of a model 

(§4.2).  

Robustness implicitly posits a question related to the Data Representativeness too (§4.5): 

do perturbation models are representative with respect to the possible operational condi-

tions of the system? In other words, are they realistic? Do they address well enough edge 

cases of the intended functionality?  

Besides, since lack of robustness can lead to failure, it is also linked to Resilience (§4.3). 

The latter will focus on capacity to enable system mitigations means, whereas this section 

will focus on algorithmic mitigation for robustness. 

The property of robustness is related to the property of Provability (§4.8.1) whenever it can 

offer provable guarantees concerning the behaviour of the model, without the need to de-

ploy the system in the target environment. On the other hand, given the limited scope (e.g. 

incomplete guarantees) of any robustness analysis methodology, it is often recommended 

that monitoring procedures are put in place to supervise the correct functioning of the sys-

tem under real operational conditions, as evoked above. 

To end with, security issues (cyber-attacks), or learning phase attacks, may also be a 

concern for robustness, but are out of scope of this White Paper. 

4.7.1.4 From robustness to antifragility 

A system (or model) is deemed to be robust if it can tolerate abnormal values. While this 

is a desirable property, it may not be the most desirable. According to [85] the response of 

a system with respect to perturbations can be characterized in the following ways: "A fra-

gility involves loss and penalisation from disorder. Robustness is enduring to stress with 

no harm nor gain. Resilience involves adapting to stress and staying the same. And anti-

fragility involves gain and benefit from disorder." (Figure 17). 

The notion of antifragility has been introduced by Taleb [86] and is defined as "a convex 

response to a stressor or source of harm (for some range of variation), leading to a positive 

sensitivity to increase in volatility (or variability, stress, dispersion of outcomes, or uncer-

tainty, what is grouped under the designation 'disorder cluster')". The concept draws par-

allels with “hormesis”, when the stressor is a poisonous substance and cells or organisms 

affected by small doses of it become better overall (e.g. improved survival probability). 

While many efforts have been made in the last decades to endow artificial systems with 

bio-mimetic capacities, current state of affairs acknowledge a vast distinction between or-

ganic and artificial intelligence. We are not aware of any current AI models that can be 

considered antifragile in the sense stated above. 

There are nevertheless certain claims that some software design methodologies follow 

antifragile design (see e.g. [85]). Some may claim that stochastic learning (as used e.g. in 

deep learning) constitutes an example of antifragile design. We regard these claims as (at 

least for the time being) either debatable or incomplete.  
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While in this paper, we focus our discussions to the concepts of robustness and resilience 

for offline learnt systems, we fully agree that we should strive to design more antifragile 

systems in the long run. 

 

Figure 17. Possible behaviour of a system in response to stress (from [2]) 

4.7.2 Scope of this main challenge 

From the above considerations, we can conclude that robustness should not be seen as 

a standalone challenge, neither should it be considered as a sufficient property to ensure 

the well-functioning of a system. Besides, the problems raised by robustness are usually 

NP-hard problems, and in practice, the design of any system is a trade-off between com-

plexity, robustness, scalability, developmental and operational costs, etc. 

The main scope of this section will be about: 

 Metrics for robustness assessment, and similarity measure. 

 Algorithmic means for enhancing/guarantee robustness. 

 Algorithmic means for detection abnormal or adversarial inputs. 

 Adversarial attacks and defence. 

4.7.3 State of the Art  

4.7.3.1 Abnormal inputs and unknown inputs  

Detecting abnormal or out-of-distribution (OOD) inputs is done classically on critical sys-

tems where specification of the abnormal inputs and conditions can be given (for 

instance temperature or speed sensors failure). But when dealing with high dimensional 

data (such as images, video or speech), and tasks where a part of unspecified behaviour 

exists (e.g. pedestrian detection), defining and dealing with abnormal or unknown inputs 

becomes very challenging (§4.4). 

Furthermore, the whole machinery of Machine Learning technics relies on the assumption 

that the learning sample conveys all the information. Hence, the algorithm is only able to 

learn what is observed in the data used to train the algorithm. So, no novelty can be fore-

cast using standard methods, while in practice new behaviour may appear in the observed 
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data. The incapacity of Machine Learning algorithms to process experiences outside the 

training domain is an important issue. 

In this domain, several topics are studied, first the detection of unknown/unknown inputs 

(not inside the train and test dataset distributions) in order to reject their processing or 

raise an alarm. Another research topic focus on the ability to learn these unknown exam-

ples (one-shot learning, lifelong learning…) to be able to adapt to new ones without a long 

and expensive retraining but is out of scope of this White paper which is restricted to off-

line learning. 

In all cases, the system should handle these unknown/unknown inputs to ensure that out-

puts are based on some knowledge acquired during the learning process. The ML subsys-

tem should be able to detect these unknown observations. 

In recent years, likelihood–based generative models have been proposed in order to cap-

ture the distribution of the training data. Three main categories are described in [87]: Au-

toregressive models [88], variational autoencoders [89], and flow based models [87], [90], 

[91]. The latter have been developed to explicitly estimate the density function of the da-

taset, and could be seen as good tools to estimate experiences outside of the distribution. 

However, recently [92], it has been shown that, even on some classical dataset, some flow 

based-model could estimate that an experience outside of the distribution has a high prob-

ability to belongs to the training distribution. 

Recent papers tackle the problem of detecting Out of distribution sample for Deep Neural 

Network. Liang et al. [93] propose a first out-of-distribution detector, called ODIN, applied 

on pre-learnt models, using temperature scaling of the output softmax layer, and input 

preprocessing in order to separate the output score of in and out-of-distribution. Lee et al. 

[94] propose a confidence score based on an induced generative classifier under Gauss-

ian discriminant analysis (GDA), using the Mahalanobis distance between test sample x 

and the closest class-conditional Gaussian distribution. Same authors [95] propose also a 

framework to train a DNN with a confidence loss to map the samples from in- and out-of-

distributions into the output space separately, using a generator of out-of-distribution in-

spired by generative adversarial network. 

The authors of [96] propose a probabilistic definition of robustness, which requires the 

model to be robust with at least (1−epsilon) probability with respect to the input distribution. 

4.7.3.2 Local robustness 

Literature on ML systems attacks and defences is huge, and many surveys gather refer-

ences [97], [98]. Three main categories of attacks are listed, depending on when and why 

such an attack may take place [98]: 

 Poisoning attacks trying to modify the learning data to influence the ML outcome. 

 Exploratory attacks trying to gather as much information as possible on a learnt 

system to understand or copy the system. 

 Evasion attacks trying to construct malicious inputs changing the decision of the 

learnt ML system. 

Poisoning and exploratory attacks, which respectively concern security and industrial prop-

erty protection, are not covered in this White Paper (§1.3). So, we focus on evasions at-

tacks. 
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In 2014, Szegedy et al [99] pointed out the lack of robustness of deep nets proposing a 

first method to find adversarial samples. For a learnt ML model 𝑓, an adversarial input is 

defined by: 

Given an input 𝑥 ∈ ℝ𝑚 ,and given a target label 𝑙 ≠ 𝑓(𝑥), find 𝑟 ∈ ℝ𝑚 , minimizing 

‖𝑟‖, such that 𝑓(𝑥 + 𝑟) = 𝑙 

Szegedy et al [99] have shown that for images, adversarial examples can be found adding 

noise that is invisible for the human. 

 

Figure 18. (left) original image, (center) adversarial noise, (right adversarial example 
classified as an ostrich 

The equation is linked to the property of local robustness that critical systems must ensure 

where one may want to ensure that around a sample x, the output of the ML system should 

remain the same: 

∀ 𝑟 ∈ ℝ𝑚, such that ‖𝑟‖ < 𝜖, 𝑓(𝑥 + 𝑟) = 𝑓(𝑥) 

Many methods have been proposed in literature to search for adversarial examples, de-

pending on adversarial capabilities and goals. 

Adversarial capabilities depend on the knowledge the adversarial method may know and 

learn about the ML system: 

 White-Box attacks: adversarial attack system knows ML type (NN, SVM,…) and 

has access to the internal states (weights, gradients…), and/or to the training set. 

 Black-box attacks: adversarial system has no knowledge on the internals of the 

ML system, but may have access to the training dataset distribution (non-adapta-

tive), or may be able to use the ML system as an oracle (adaptative), or only 

knows ML output on a restricted dataset (strict). 

Goals of the attack systems can also have different goals [97]: 

 Confidence reduction. 

 Misclassification: changing the decision for a given example to any class differ-

ent from the original one. 

 Targeted misclassification: changing the decision for a given example to a tar-

get class. 

[97] describes the complexity of the attack with regard to the capability and goal of the 

attack system, in the Figure 19. 
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Figure 19. Taxonomy of adversarial attacks and complexity 

With regard to the trustworthiness objective, robustness to any type of attack may be re-

quired, and so the easiest ones, i.e. white-box attacks for confidence reduction or misclas-

sification. Besides, since most of white-box attacks rely on gradient computation, Black-

box attacks have also been developed to find adversarial examples on ML methods (such 

as Decision Trees) where gradients cannot be computed (transferability of attacks).  

The last axis for attacks taxonomy is the norm used for defining the locality of the adver-

sarial example ‖𝑟‖. Classical norms used are: 

 L2 Norm ∑ 𝑟𝑖
2: L-BFGS [99], Deepfool-L2 [100], FGSM [101], JSMA [102], Carlini 

[103]. 

 L1 Norm ∑|𝑟𝑖| Deepfool-L1 [100], Carlini [103]. 

  𝐿∞ 𝑛𝑜𝑟𝑚 (max {|𝑟𝑖|}) Deepfool [100]. 

 L0 (count {𝑟𝑖! = 0}): Single pixel [104]. 

 Affine or perceptual transforms: Adef [105] Spatial attack [106][107]. 

But, as indicated in [103], for image processing system, “No distance metric is a perfect 

measure of human perceptual similarity, and we pass no judgement on exactly which dis-

tance metric is optimal. We believe constructing and evaluating a good distance metric is 

an important research question”.  

Since 2016, an arms race has occurred between researchers working on defence strate-

gies to make ML systems more robust and those working on adversarial attacks. Hundreds 

of papers are published every year on defence strategies, and a full survey is out of scope 

of this paper. A survey on attacks and defences can be found in [108]. [109] categorizes 

defence strategies in three main categories: modifying the training phase to include ro-

bustness to adversarial [110], [111], modifying the inference phase to defend [112], de-

tecting adversarial attacks [113]. In this latter category, as mentioned in the previous par-

agraph, some methods tackle the out-of-distribution detection. By considering adversarial 

inputs as out-of-distribution examples [93], [114]–[116]. 
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However, each published defence strategy has been broken within few weeks by new 

attacks (see for instance [117] breaking 6 defences). Up to now, no defence strategy is 

able to resist to any kind of attacks. It has also been shown in [118], [119] that there exist 

a trade-off between the standard accuracy of a model and its robustness to adversarial 

perturbations. So, neither applying defence strategies, nor failing to find an adversarial 

example will give a proof for local robustness.  

Research for mathematical guarantees using special kind of ML (for instance Lipschitz 

networks, or monotonous network), or formal proof of robustness (§4.8.1) could give some 

evidences, or at least define classes of equivalence around a given example. 

4.7.3.3 Robustness with regard to annotation 

Arguably the most successful results in recent Machine Learning (deep learning) were 

obtained using what is called supervised learning, where a sample dataset of tuples (input, 

expected output) is provided for training and testing purposes. This learning strategy, 

which is also the focus of our analysis in this document, necessarily relies on human an-

notations. The quality of human annotations can thus be seen as a meta-parameter of the 

training methodology and one may legitimately ask whether the performance of the model 

is robust to this factor. 

This is of utmost importance when applied to visual object recognition, where critical deci-

sions may directly depend on the correct identification of the objects. The authors of [120] 

aim to answer this question concerning a well-established challenge in Computer Vision, 

i.e. object recognition on CIFAR-10 [121] and ImageNet [122] datasets. They very carefully 

follow the data collection methodology to build new datasets for validation. In spite of their 

particular attention, they discover significant performance drops for all state-of-the-art ob-

ject recognition models on the new test datasets: 3-15% for CIFAR-10 and 11-14% for 

ImageNet in terms of accuracy. According to their analysis, the performance gap cannot 

be justified either by the adaptativity gap (hyper-parameter tuning) or generalization gap 

(induced by random sampling error). No visible signs of overfitting on original test sets 

could be identified. The authors conjecture that the “accuracy drop stem from small varia-

tions in the human annotation process. [...] Models do not generalize reliably even in a 

benign environment of a carefully controlled reproducibility experiment”. While the conclu-

sion seems disconcerting, it calls for a careful robustness analysis with respect to choices 

and parameters concerning the whole methodology used for training and validation of ML 

models. 

4.7.4 Challenges for robustness 

With regards to the need for robustness for Certification purpose (§4.7.1.1), the definition 

and scope of this paper (§4.7.2) and the short review of state of the art methods (§4.7.3), 

we propose a list of challenges organized into four objectives 

 Challenge #6.1: How to assess robustness of ML systems? How to measure simi-

larities in high dimension (image)? 

o Metrics for similarity: as explained before most of papers on local robust-

ness are dealing with ball in Lq norms (q=1,2,∞). But in high dimension, and 

particularly for images, similarity between two inputs cannot be reduced to 

a distance in Lq. Recent papers are focusing on Optimal transport/ Was-

serstein distance [123], or mutual information [124], but defining an ac-

ceptable similarity measure is still a challenge. 
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o Metrics for robustness: comparing robustness of ML systems is also a chal-

lenge. Attacks and defence papers often report the number of adversarial 

example founds for a given distance to samples in a dataset, but this is not 

acceptable for critical systems. Metrics for comparing robustness of ML sys-

tems should be defined. 

 Challenge #6.2: How to detect abnormal or adversarial inputs? 

o Out-of-distribution detection: As seen in §4.7.3.1, out-of-distribution detec-

tion or rejection in high dimension is still an open challenge [92] and have 

to be addressed for critical system implementation, to enable alarm raising 

when abnormal or out-of-distribution or even adversarial inputs are pro-

cessed (e.g. [93], [114]). 

 Challenge #6.3: What kind of ML algorithm can enhance or guarantee robustness? 

o Robustness by construction: Since the race between attacks and defence 

is endless, a challenge is to propose ML systems or loss that will provide 

local robustness by construction in specific cases (e.g., Lipschitz network 

[125], [126] or SafeAI loss [127] to enhance local robustness). 

o Guarantee of robustness: If global robustness in high dimension is a hard 

challenge, research can be done on special cases in lower dimension, or 

with special regularity for the intended function to prove (mathematical or 

formal proof) that the intended function is always respected.  

As a general note, we remind that robustness usually raises NP-hard prob-

lems. However, in certain contexts, knowledge about the application do-

main and the properties of the model can be exploited to develop practical 

solutions to the problems of robustness. In order for these methods to be 

useful for a certification endeavor, it is necessary that they are computa-

tionally efficient. This is a general challenge that is not proper to the robust-

ness analysis but is common to many challenges listed in this document. 

o Robustness assessment with respect to (hyper-)parameters of a model or 

methodology. 

While the paper is mainly focused on the robustness of a model with respect 

to its inputs, this is not the only type of robustness one should consider in 

order to be confident about the behaviour of the model. Many applications 

require for example that the model's behaviour is robust to small perturba-

tions of its parameters (e.g. the weights of a deep network) for example due 

to numerical truncations required by the target hardware on which the 

model is embedded. Others may require stability with regard to methodo-

logical parameters or hyper-parameters. Defining appropriate metrics in pa-

rameters space poses serious challenges. 

 Challenge #6.4: How to identify and take into consideration corner cases? 

o Corner case detection: robustness can also be qualified with regard to 

known input domain where a ML system works correctly, and where it fails. 

Providing tools for searching corner case domains is also a challenge.  

o Identifying and adding corner case examples that are slightly out of domain 

can also be a way to enhance robustness. 
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 MAIN CHALLENGE #7: VERIFIABILITY 

In this chapter, we explore the concept of verifiability, i.e., the ability of an artefact (an 

algorithm, a computer code) to be shown compliant with the requirements that it imple-

ments. We set the focus on two specific properties47 related to verifiability: provability and 

testability. And, we explore how these properties can contribute to the confidence about a 

ML algorithm.  

4.8.1 Provability 

Provability of a machine-learning algorithm is the extent to which a set of properties48 on 

this algorithm can be guaranteed mathematically.49 The larger this set, the higher the de-

gree of provability. Guarantees can come from any field of mathematics: optimization, 

mathematical logic, functional analysis etc. 

In this section, we will distinguish two different situations (see Figure 20):  

 A priori-provability or by-design provability: The desired property is mathematically 
“transferable” as a design constraint to the ML algorithm. Then, to prove the prop-
erty, it is necessary to demonstrate the validity of this transfer (i.e., if the design 
constraint is satisfied then the property holds on the model) and to demonstrate 
compliance with the design constraint. 

 A posteriori-provability: The desired property is verified on the model after training. 
This approach may also rely on some assumptions on the ML algorithm (e.g. the 
architecture, the size of the network, the activation function type for a NN...), but 
these assumptions depends on the problem (e.g. [128]). 

 

Figure 20. Provability hierarchy  

4.8.1.1 A priori-provability  

 “A priori provability” (or by-design) relies on appropriate design choices to ensure the ca-

pability to verify formally the model against some properties. 

Gaussian processes [129] are well known models constrained by a priori knowledge or 

assumption about the problem at hand. For example, smoothness of the model can be 

enforced by choosing the co-variance matrix form properly.   

Inspired by the work of Daniels, M. Velikova [130], F. Malgouyres et al. propose to ensure 

by design overestimating predictions in the case of a regression task of a monotonous 

                                                
47 Other properties could also be considered, such as « demonstrability » or « inspectability » if we 
refer to the usual verification means.  
48 Or “requirements” in order to be consistent with the definition of “verifiability”.  
49 In that sense, and despite its name, “provability” is not strictly related to deductive proof. It related 
to any verification method relying on a mathematical basis, including abstract interpretation, model-
checking, etc. 
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function [3]. This approach is of particular interest when underestimating the quantity to 

predict leads to safety concerns.  

Monotonic networks allow to introduce domain knowledge (monotonicity of the function to 

learn) and offer guarantees on outputs, or provide invertible function [131]. More infor-

mation can be found in [131]–[133].  

“Lipschitzness” is another design property providing guarantees about the network behav-

iour, especially in presence of perturbations. In [134], the authors explain that a small Lip-

schitz bound for a network implies some robustness to small perturbations (see also §4.7). 

Even if an upper bound of the Lipschitz constant of a Neural Network can be evaluated 

after training [134], several methods propose to enforce model’s regularity during training, 

for instance using a regularization term [135], [136], or as part of the layers [137]. Lipschitz 

constant is a natural counter measure to adversarial examples (outputs can only change 

in proportion to a change in its inputs), but it is not the only benefit of this property (e.g. 

optimal transport) [138]. 

4.8.1.2  A posteriori-provability  

A posteriori provability relies on the formal verification of the model. This approach is 

largely illustrated in the context of defences against adversarial attacks [139]. Recent 

works intend to prove the network robustness with respect to any kind of attack with a 

bounded perturbation amplitude.  

Abstract interpretation may be used to prove the correct behaviour of a network in the 

neighbourhood of a particular input. [128] gives an example of instance-wise provability.50 

In this work, the input domain is represented by a so-called abstract domain (e.g., intervals, 

boxes, or zonotops) whereas the neural network behaviour is represented by a set of ab-

stract transformations in the abstract domain. This technique is sound but incomplete in 

the sense that true properties may be unproved due to over-approximation of the input 

domain by the abstract domain. The authors use this approach to prove robustness to 

pixel brightening attacks.  

Other techniques have the capability to prove property for any input, and not only in the 

neighbourhood of some input. Reluplex [13], for instance, uses a SMT solver51 to prove 

properties or find counter examples. Unfortunately, Reluplex is still not scalable enough to 

address state of the art networks and some numerical limitations are also pointed out in 

[15]. So variants are proposed to overcome some of the limits of Reluplex [140], [141]. 

Concerning generalization capability, we can cite [142] where the authors derive a bound 

on the generalization capability of a network with respect to a given training set. This work 

is part of a long list of works [143], [144].  

One of the great problems of a posteriori techniques is their lack of scalability to deep 

neural networks. In general, papers address small MLP or small CNNs. We can guess that 

technics actually used in practical applications will be among ones able to address com-

plex (that is large and with complex architectures) networks.  

                                                
50 Instance-wise provability: Capacity to prove a property with respect to a particular input.  
51 SMT stands for “Satisfiability Modulo Theory”, a category of decision problems for logical formu-
las with respect to combinations of background theories expressed in classical first-order logic with 
equality [Wikipedia]. 

https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Theory_(mathematical_logic)
https://en.wikipedia.org/wiki/First-order_logic
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4.8.2 Testability 

Testability of a machine-learning algorithm is the extent to which a set of properties on this 

algorithm can be verified by testing. Testing, a method based on the execution of the sys-

tem in specific test scenarios, is one of the major verification means in current certification 

practices.  

Many testing methods have been proposed for systems implemented using non-ML tech-

niques. Some of them are obviously applicable to ML-based systems, in particular when 

they concern the compliance of an implementation with its low-level requirements. This 

concerns for instance the verification of the implementation of a ReLU function, the verifi-

cation of the absence of overflow on convolutions, the correctness of floating-point com-

putations, etc.  

The new difficulty with ML is to characterize the proper behaviour of the algorithms with 

respect to its high-level specifications, potentially huge input domain and with quite un-

known decision logic executed by the algorithm. Today, it is not clear how to perform this 

verification and if all the algorithms (algorithm associated to intended behaviour specifica-

tions and input domain specifications) can be tested properly.  

When a ML Machine Learning algorithm is tested, it is most of the time through some 

massive testing strategy. ML algorithm are made of one or several complex functions and 

they are employed in very complex environment. Functions and environments require spe-

cific testing strategies.   

In addition to this work, an interesting survey can be found in [145]. 

4.8.2.1 Testing the learnt function 

The behaviour of ML algorithms, in particular DNNs, is strongly data dependent and is 

controlled by a huge set of parameters. Those parameters control the decision frontiers of 

the algorithm, which can be very complex. This leads to the following consequences:  

 Since the behaviour of a ML component depends essentially on data, most inputs 

leads to the execution of the same code. Test coverage criteria based on the con-

trol structure of the implementation (e.g., coverage of each instruction, each deci-

sion, or each path…) do not bring that much information on the correctness of the 

behaviour ML component.  

 Ensuring the coverage of each parameter is neither feasible nor useful since the 

behaviour of the ML component depends on the combined effect of all parameters. 

 Exhaustive testing is usually impossible, and equivalence-classes on the inputs are 

extremely difficult to define (e.g. when the input is a set of pixels).  

So, an appropriate testing strategy should provide  

 A test vector selection process to explore “efficiently” the input space (both in time 

and in the gain in confidence). 

 Test coverage metrics taking into consideration that the behaviour of ML algorithm 

is essentially determined by data. 

In [146], testing is based on the study of the problem domain (e.g. size and ranges of input 

values, expected precision of floating point numbers), analyzing runtime options and their 
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associated behaviour coherence to prevent bugs potentially caused by a misuse of the 

input options, and analyzing the algorithm itself with creation of synthetic data design.  

A strategy of creating test images is also proposed in DEEP Xplore [147]. The authors 

describe how to optimize input images in order to make several networks to have a differ-

ent behaviour (e.g. different classification for the same input image). These images are 

corner cases for the tested networks. In addition, a neuron coverage metric is proposed. 

This metric measures how many neurons in the network are significantly activated. The 

authors argue that this metric is more useful than code coverage. Indeed, code coverage 

is 100% with almost all input images then not representative of the network activation level. 

A good activation coverage rate aims to reduce the risk of unobserved behaviour of the 

algorithm in operation (e.g. network weights).  

In [15], the authors adapt and mix well known Coverage-Guided Fuzzing and AFL testing 

procedures to test and debug neural networks. They point out why using standard CGF 

procedure in a naïve way will not perform good testing and they propose a new coverage 

definition, better suited to neural networks, based on the evaluation of the changes of the 

network state with respect to previous corpus data.  

[148] approach consists in creating test images by applying “mutations” to some seed im-

ages. If this mutated image causes enough coverage modification it is added to the image 

corpus, in addition if it validates some objective function, it is added to the test set. The 

objective function represents the feared event like numerical errors or behaviour incon-

stancies introduced by weight quantization.  

In addition, a test oracle is also needed to carry a test campaign. The oracle gives the 

expected output (the “ground truth”) that is compared to the actual output produced by the 

system under test. This oracle must be automated if massive testing is to be performed. 

Here again, ML raises strong difficulties because such an oracle is hard to implement with-

out relying on… machine learning. Another strategy may be to generate test scenarios 

where both the input and the output is known by construction, for instance using simula-

tion.52 But, then, the representativeness of the simulation must be questioned. 

4.8.2.2 Scenario testing 

The previous paragraph presents methods to test the robustness of an ML component, 

but adequate testing strategies are also required to cover the “normal situations”.   

The ML algorithm learns its behaviour from a finite set of examples (see §4.5 for a discus-

sion about these examples). As of today, control on what is actually learnt by the model 

can be considered from a certification point of view as too weak. Then, an intensive testing 

of the algorithm behaviour may be necessary (as a part of “Learning Assurance” set of 

tools [15]). The size of the input space, the complexity of the ML models implementation 

make mandatory the development of systematic (to explore every possible case) and pre-

cise (to provide guarantees on the testing procedure) testing strategies.  

VERIFAI [149] is a toolkit for the design and analysis of artificial intelligence-based sys-

tems. It pertains to the massive testing strategy family. The system should be associated 

with a simulator that generates the environment embodiment. To facilitate the exploration 

of a large amount of scenarios a probabilistic language, SCENIC [150], is used to describe 

                                                
52 For instance, if system generates a synthetic image of a « stop sign », it knows by construction 
that it is a stop sign. No oracle is needed. 



 

PAGE 88 
 

the objects and distributions over their parameters and behaviours in the environment. 

These distributions somehow contain some assertion about the environment.  

Approaches have been proposed to extend the first version of VERIFAI, in order to gener-

ate problematic scenarios (the one that violates the system and environment properties). 

Commercial companies like NVIDIA53 propose photorealistic scenario testing tools for au-

tonomous vehicle.   

4.8.2.3  Cross platform validation 

As seen in the previous paragraphs, and in the absence of more efficient strategies, testing 

ML algorithm currently requires a huge computational power to execute “enough” scenar-

ios, to cover the most problematic inputs for the algorithms, etc. Solutions may be found 

in cloud computing, Hardware In the Loop simulators, etc., but whatever the solution, a 

clear cross platform validation strategy must be developed.  

In addition, great care must be taken when transferring the model (possibly developed on 

a desktop computer) to the target platform. The effects of the modifications made to cope 

with the limited processing and memory of embedded platforms such as, for instance, 

weight quantization,54 must be carefully analysed.  

4.8.3 Provability and testability in the development process 

A ML-component will eventually be implemented by a piece of software and / or hardware, 

so (most of) the usual V&V objectives expressed in the standards (DO-178C, DO-254, ISO 

26262, etc.) remain applicable. However, the presence of bias introduced to the design of 

an AI algorithm, or other faults introduced during the learning phase that would lead to an 

unacceptable behaviour of the software with respect to the intended function and the safety, 

must be detected by an appropriate strategy integrated in the ML system development 

process.  

Therefore, we propose to map the provability and testability properties to a classical V-

model (Figure 21). Note that organizational questions (e.g. who realize the tests?) are 

currently not to be addressed.  

                                                
53 https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/ 
54 It has been shown that quantization of a neural network can improve is generalization capability. 
This surprising effect illustrates the need of particular attention during cross platform validation. 
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Figure 21. Provability and testability mapped in the V-model (green boxes are ML-dedi-
cated activities). 

4.8.3.1 Concept of operations 

A concept of operations document describes the characteristics of a system from the “user” 

point of view. The Operational Design Domain (ODD) is defined at this stage.  

Assumptions about this domain must be studied and carefully integrated to the world rep-

resentation used during scenario testing (massive testing). This work shall be performed 

by a team of domain experts, simulation experts and Machine Learning experts in order to 

ensure a high degree of accuracy and pertinence of the scenario testing procedure. The 

set of verification algorithms must be considered to show how confidence will be built in 

addition to the scenario testing tools. 

During concept of operation definition, mandatory properties of the ML algorithms are also 

defined. A priori provability of these properties must be studied during this phase.    

4.8.3.2 Requirements and architecture 

During the overall architecture design, a priori provable properties must again be carefully 

considered in order to define the architecture that will meet or enforce wishful/mandatory 

behaviour of the system. 

Cross platform validation requirements must be specified during system architecture defi-

nition. In particular, it must be carefully verified that a priori properties, e.g., Lipschitzness, 

will actually hold on the final platform despite some changes on the floating-point numbers 

representation (e.g., from 64-bit to 16-bit).   
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Depending on the technical choice, monitoring requirements are studied with the rest of 

the system requirements. In reality, monitoring is a part of the system himself. It is not an 

exogenous property. 

4.8.3.3 Detailed design 

We propose to map a posteriori provable properties with the detailed design. This may 

appear artificial and one can consider that a posteriori provable properties can be useful 

to study during overall architecture design. That is true. In the detailed design phase, these 

properties can be used as nice to have properties to facilitate the certification process. For 

example, regularity properties can be shown to reinforce robustness of the algorithm. Then, 

regularity may not be required by to perform the function but will be very useful to certifi-

cation. Including these points of attention during detailed design is highly valuable.  

Monitoring techniques are also introduced at this stage. 

4.8.3.4 Implementation 

Low level tests must be designed and performed during the implementation stage. The 

constraint of testing on the final platform and on the scenario-testing platform may be 

stronger than before. Indeed, the consequences of the massive usage of floating-point 

computations must be observed carefully. ML code testing tools must be defined and used 

at this stage.  

4.8.3.5 Integration test 

For complex systems, Model Checking consists in verifying that a system (or a model 

thereof) satisfies a property by exploring all its reachable states [151]. Model checking are 

now routinely employed in verification of digital hardware. The high running cost of such 

general model checking remains a major challenge.  

During integration test, cross platform validation tests complement the ML testing proce-

dures. 

4.8.3.6 Validation test  

Traditionally, monitoring allows the detection of abnormal behaviours via the observation 

of specific observable variables quantities such as the mean response time of a function, 

the number of requests to some API, the update time of some variable, the data recovery 

time, etc. Associated with user experience feedback, we obtain in a way a continuous 

improvement of the model: a resilience (see §4.3). Automating this feedback speeds up 

the process.  

Similarly, concerning ML deployment, validation goes beyond pure performance measure-

ment. Several points must be checked like dedicated robustness checking (adversarial, 

OOD etc.). Explainability techniques can also be applied to validate on what information a 

model bases its decisions.  

4.8.3.7 Discussion 

The mapping proposed intends to help to identify where specific actions must be per-

formed to adapt the “classical” V-Cycle to the new challenges of ML based critical systems. 

This is a first proposition and it will evolve with new tools/methods developments and will 

actual certification of ML based systems work. 
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In [151], the authors propose to put testing challenges in parallel with Complex Software 

challenges. Complex systems share with some ML algorithms the difficulty of being able 

to fully master the behaviour of the system by a human being. The authors present a set 

of methods like monitoring, model checking, data testing etc., some very close to the ones 

above, and deliver an optimistic message.   

4.8.4 Challenges for verifiability 

For the verifiability theme, we identify the following challenges: 

 Challenge #7.1: How to give a mathematical definition to the properties to be verified?

  

Indeed, proofs can be given if the properties at hand are mathematically well defined. 

For example in the case of adversarial robustness, proof are given for particular kind 

of attacks or in the case of bounded perturbations [132].  

 Challenge #7.2: How to make formal methods and tools applicable (and scalable) at 

an acceptable cost?  

For example, when convolutional networks become deep, Lipschitz bound becomes 

very difficult to evaluate accurately. Then the estimated bounds become uninformative. 

The same problem appears with Abstract Interpretation. 

 Challenge #7.3: How to provide universal guidelines for the algorithm construction, e.g. 

network design to guarantee (or at least reinforce) mathematical properties by con-

struction? 

For instance, we have described particular networks like monotonous function having 

by design useful properties. Unfortunately, there are still very few guidelines to con-

struct neural networks showing such a property. Nowadays performance first research 

trend should evolve to property first. 

 Challenge #7.4: How to define appropriate coverage metrics for the testing of ML com-

ponents? 

Concerning testing, a universal difficulty is to develop a useful fault/error model of the 

system in consideration. This fault/error model can be organized in different levels. 

These levels must be revisited to cope with ML based systems specificity. The already 

long history of testing as provided a set of tools and practices that must be applied to 

ML based system as is. For example, unitary testing of each functions are mandatory 

to prevent wrong component behaviour (stack overflow) and to ensure that the math-

ematical properties of the algorithm hold in its implementation. However, intermediate 

level of tests must be defined to take into account that ML algorithms behaviour is 

massively driven by some data (e.g. weights of a neural network). These tests defini-

tion is still an open problem.   

Challenges that are even more specific appear with imprecise specifications, from a 

certification point of view, of the function to provide, and size of the parameters space. 

As developers use different exploration strategies: explicitly constructing difficult inputs 

or by massive exploration of the input domain to find wrong situations for the system, 

to give guarantees on validity in definition and coverage of the test is highly non-trivial. 

 Challenge #7.5: How to take credit of tests done on simulations?   

When simulations are massively used for testing, at least at the early stages of devel-

opment, domain gap between simulated world and real world must be fully handled. 

 Challenge #7.6: How to specify and build test sets  

o To take into account that the behaviour of ML algorithms is essentially driven 

by the training data? 
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o When the input space (and often decision space) are high dimensional? 

o When the decision boundaries of the algorithm are complex? 

o Considering the existence of corner cases? 

 Challenge #7.7: When shall we stop testing? Does the size of the test dataset depend 

on the problem or the model size? 
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5 Conclusions 

In this White Paper, we have presented the objectives of the ML Certification 

Workgroup set up at IRT Saint Exupéry in the context of the ANITI and DEEL projects. 

An overview and taxonomy of ML techniques are given, followed by the needs for ML 

in the different safety critical domains of the project partners (aeronautics, automotive 

and railway). We have proposed three types of analyses: a detailed analysis of a typical 

ML-system development process, a similarities analysis between ML techniques and 

techniques already implemented in certified systems, and a backward analysis to point 

out ML-techniques and applications that do not show some of the other techniques’ 

challenges. The working group has identified a list of “High Level properties” (HLPs) 

that, if possessed by a ML technique, are considered to have a positive impact on the 

capability to certify the ML-based. 

The proposed analysis and the HLPs led the working group to define and work on 

seven “main challenges” for ML certification: 

1. Probabilistic assessment 

2. Resilience 

3. Specifiability 

4. Data Quality and Representativeness 

5. Explainability 

6. Robustness 

7. Verifiability 

Each of these topics has been studied by the working group to identify challenges 

raised by ML with respect to the current certification practices with the aim to become 

concrete scientific objectives for the core team of the DEEL project. 

The synthesis of all challenges is given hereafter: 

 Main challenge #1: Probabilistic assessment 

o Challenge #1.1 Definition of environment / context / produced outputs / 

internal state. More precisely, how to identify all the possible events (not 

only failures)? How to estimate the probability of occurrence for each 

event? How to estimate the harm associated with each event? 

o Challenge #1.2: How to propose definitions of the risk incorporating 

more concepts (such as the estimation of harm effects) to express clas-

sical safety requirement such as “safety reserve" (safety margin, safety 

factor)? 

o Challenge #1.3: How to propose appropriate loss functions taking into 

account safety objectives? 

o Challenge #1.4: How to make the link between probabilities assessed 

on the datasets and on the real environment (to be used as safety indi-

cators)? What are the possible means to translate the performance of 

the model (evaluated on a validation dataset) to the operational perfor-

mance of the system (evaluated during its operation)? 

o Challenge #1.5: How to find tractable methods to assess the operation 

error w.r.t. the empirical error?  
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 Main challenge #2: Resilience 

o Challenge #2.1: How to detect erroneous or out-of-domain inputs of a 

ML model?  

o Challenge #2.2: On what system architectures can we rely to ensure the 

safe operations of ML–based systems? 

 Challenge #2.2.1: Can we rely on Runtime Assurance? How to 

monitor ML-based systems? 

 Challenge #2.2.2: Can we rely on multiple dissimilar ML-sys-

tems? And how to assess dissimilarity? 

o Challenge #2.3: How to create ML models "robust by design", to reduce 

the need for resilience requirement at system level? 

o Challenge #2.4: How to create a confidence index characterizing the 

proper functioning of the ML component? 

o Challenge #2.5: How to recover from an abnormal operating mode in an 

ML system? 

 

 Main challenge #3: Specifiability 

o Challenge #3.1: How to identify the additional behaviours introduced 

during training in order to: 

 Complete the system specifications? 

 Assess the potential safety impact? 

 Accept or to reject those additions? 

 Assess robustness? 

o Challenge #3.2: What criteria could be used to close the iteration loop 

on system specification during training to take into account the behaviour 

that could have been added during this phase? 

 

 Main challenge #4: Data quality and representativeness 

o Challenge #4.1: How can we prove that a dataset is representative of 

the Operational Design Domain for a given usage?  

o Challenge #4.2: How can the representativeness of a dataset be quan-

tified, in particular in the case of unstructured data such as texts or im-

ages?  

o Challenge #4.3: Which of the training, validation and test datasets 

should possess the data quality and representativeness properties? 

 

 Main challenge #5: Explainability 

o Challenge #5.1: How to ensure the interpretability of the information 

communicated to the operator? How to ensure that the operator is able 

to associate them with his/her own domain knowledge / mental model? 

o Challenge #5.2: How to provide the necessary and sufficient information 

to the operator regarding the actions he/she must execute in a given 

situation/timeframe? 

o Challenge #5.3: To what extent explainability is needed for certification? 

o Challenge #5.4: When is an explanation is acceptable? How to define 

explainability metrics to assess the level of confidence in an explana-

tion? 

o Challenge #5.5: How to perform investigation on ML-based systems? 

How to explain what happened after an incident/accident? 
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 Main challenge #6: Robustness 

o Challenge #6.1: How to assess robustness of ML systems? How to meas-

ure similarities in high dimension (image)? 

o Challenge #6.2: How to detect abnormal or adversarial inputs? 

o Challenge #6.3: What kind of ML algorithm can enhance or guarantee ro-

bustness? 

o Challenge #6.4: How to identify and take into consideration corner cases?  

 

 Main challenge #7: Verifiability 

Provability 

o Challenge #7.1: How to give a mathematical definition to the properties to 

be verified? 

o Challenge #7.2: How to make formal methods and tools applicable (and 

scalable) at an acceptable cost? 

o Challenge #7.3: How to provide universal guidelines for the algorithm con-

struction, e.g. network design to guarantee (or at least reinforce) mathe-

matical properties by construction? 

Testing 

o Challenge #7.4: How to define appropriate coverage metrics for the testing 

of ML components? 

o Challenge #7.5: How to take credit of tests done on simulations?  

o Challenge #7.6: How to specify and build test sets…  

 To take into account that the behaviour of ML algorithms is essen-

tially driven by the training data? 

 When the input space (and often decision space) are high dimen-

sional? 

 When the decision boundaries of the algorithm are complex? 

 Considering the existence of corner cases? 

o Challenge #7.7: When shall we stop testing? Does the size of the test da-

taset depend on the problem or the model size? 

 

The DEEL project is now tackling part of these challenges, either from a scientific point of 

view within the Core team (e.g. Fairness, Robustness, Explainability challenges), or fol-

lowing a bottom-up approach towards industrial use cases (Acas-XU for collision avoid-

ance, railway signals images classification) within the certification workgroup. For any fur-

ther information please contact the heads of the workgroup (see page iii) 
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Glossary 

AEB  Automatic Emergency Braking  

AI Artificial Intelligence 

AVSI Aerospace Vehicle Systems Institute 

CAT Catastrophic 

CNN Convolutional Neural Network 

CSM Common Safety Method 

DAL Design Assurance Level 

DNN  Deep Neural Network 

EASA European Union Aviation Safety Agency 

EUROCAE  European Organisation for Civil Aviation Equipment 

FAA  Federal Aviation Administration 

FC Failure Condition 

FE Feared Event 

FHA Functional Hazard Assessments 

FM Formal verification Methods  

FMEA Failure Mode Effects Analysis  

GAME Globalement Au Moins Equivalent 

GDPR General Data Protection Regulation  

HLP High-Level Properties  

KNN K-Nearest Neighbours 

ML Machine Learning 

MLE Maximum Likelihood Estimation 

MLM Machine Learning Model 

MLP  Multi Layer Perceptron 

NN Neural Network 

NSE No Safety Effect 

OP Overarching Properties 

ReLU  Rectified Linear Unit 

SIL Safety Integrity Level  

SOTIF  Safety Of The Intended Functionality 

SVM Support Vector Machine 

TSI Technical Specifications for Interoperability 

UAV Unmanned Aircraft Systems 

WG Working Group 
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