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Verifying min-plus Computations with Coq
(extended version with appendix)?

Lucien Rakotomalala1, Pierre Roux1, and Marc Boyer1

ONERA / DTIS, Université de Toulouse, FRANCE

Abstract. Network-calculus is a theory that bounds delays in embed-
ded networks such as AFDX networks used in modern airplanes. Effec-
tive computations rely on operators from the min-plus algebra on real
functions. Algorithms on specific subsets can be found in the literature.
Such algorithms and related implementations are however complicated.
Instead of redeveloping a provably correct implementation, we take an
existing implementation as an oracle and propose a Coq based verifier.

Keywords: network-calculus · min-plus computations · Coq · functions
on real numbers.

1 Problem Statement

Network Calculus is a static analysis method used to bound worst case traversal
times of networks. It has noticeably been used since a few decades to certify
embedded networks, called Avionics Full DupleX (AFDX), on modern civil air-
crafts [9]. Basically, given bounds on emission rates of each end node of the
network and hypotheses on the scheduling policy implemented in each switch,
Network Calculus computes sound bounds on the time taken by any packet to
travel between any two nodes.

Network Calculus is based on tropical algebra, more precisely the min-plus
dioid of functions on real numbers (used to represent both time and amounts of
data). Thus, as an intermediate step in the analysis, the method produces alge-
braic formulas in this dioid, whose computation eventually gives actual numerical
bounds. Soundness of the bounds then crucially relies on both the soundness of
the Network Calculus theory and of those computations. The soundness of Net-
work Calculus theory is outside the scope of this paper [17], we will focus here
on verification of computations of algebraic operators in the min-plus dioid of
functions.

Efficient algorithms are known for these computations and a few effective
implementations do exist [6,7,8]. However, these algorithms are rather tricky,
hence the interest in formal proofs to greatly increase the level of confidence
in their results. We use the proof assistant Coq [13] to provide formal proofs
of correctness of such results. To avoid a costly entire reimplementation of the
algorithms, we adopt a skeptical approach, using existing implementations as
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untrusted oracles and only providing verified implementations of verifiers for
each algebraic operation.

Sections 2 and 3 introduce a few notations and give an overview of the objects
and operations manipulated throughout the paper. Then, Section 4 recalls the
state of the art. Sections 5 and 6 detail the formalization of these objects, while
Sections 7 and 8 prove some of their fundamental properties. Finally Section 9
prove the core soundness arguments of the expected verifiers, Section 10 discuss
the implementation and Section 11 concludes.

2 Notations

Let R denote real numbers, R+
4
= R ∩ [0; +∞[ and R 4

= R ∪ {−∞,+∞}. Let Q
denote rational numbers, Q+

4
= Q ∩ [0; +∞[ and Q?+

4
= Q+ \ {0}. Let N denote

rational numbers, N? 4
= N \ {0} and F denote functions from R+ to R. Let ∨

denote the logical or and ∧ the logical and. For any finite set S, let #S ∈ N
denote its cardinal and for any sequence s, last (s) denote its last element.

In Coq code appearing in this paper, nat will stand for N, R for R, Rbar for
R, R+ for R+, Q for Q, Q+ for Q+, Q+∗ for Q?+ and && for logical conjunction ∧.

We also use some list manipulating functions of Coq: nth, head and last.
nth x0 l i returns the element of index i (starting at 0) of the list l or x0 if l

contains less than i elements. n.+1 and n.−1 are the successor and the prede-
cessor of any natural number n (the predecessor of 0 is 0). The notation %/ is
used for euclidean division. To ease readability of the Coq code, we omit scope
annotations in the paper. For each result, we give the name of its Coq imple-
mentation: for instance F_UPP for Definition 1 below. The code is available at
https://www.onera.fr/sites/default/files/447/NCCoq.tar.

3 (min, plus) Operators on Functions

Network Calculus handles functions in F and uses (min, plus) operations over
this set: addition, minimum, convolution and deconvolution. We assume that
+∞ + −∞ = +∞. We first present these operators. Then, we introduce sub-
classes of F stable for these operators and amenable for effective computations.

3.1 (min, plus) Operators

The addition f+g and the minimum min (f, g) of two functions f and g of F are

pointwise extensions of the corresponding operators on R, that is f + g
4
= t 7→

f(t)+g(t) and min (f, g)
4
= t 7→ min(f(t), g(t)). We also use two operators, the

convolution f ∗ g and the deconvolution f � g that are not pointwise operators,
defined as:

f ∗ g 4
= t 7→ inf

u,v>0
u+v=t

(f(u) + g(v)), f � g 4
= inf {h|f 6 h ∗ g} . (1)

https://www.onera.fr/sites/default/files/447/NCCoq.tar


Title Suppressed Due to Excessive Length 3

f

t

g

t

f ∗ g

Fig. 1: Two functions f, g (on the left) and their convolution f ∗ g (on the right).
Intuitively, the convolution of two functions can be obtained by sliding one func-
tion along the other and taking the minimum hull.

where inf on a set S ⊆ F is inf{S} 4
= t 7→ inf {f(t)|f ∈ S}. On Figure 1,

we plot an example of convolution. Details can be found in chapter 2 of [5],
dedicated to (min, plus) theory.

3.2 Sub-classes of Functions for Effective Computation

Network Calculus tools do not manipulates the complete F class but only sub-
classes with good stability properties and effective computations [7].

In Network Calculus, it is quite common to have periodic behaviors. To de-
scribe them, we use functions that are ultimately pseudo-periodic (UPP), de-
noted FUPP. A function f belongs to the set FUPP if, given a point T (an initial
segment), a period d and an increasing element c, it holds, for all t greater than
T that f(t+d) = f(t)+c. To have a description of these functions, it is sufficient
to have the values of T , d and c and the description of the function on the initial
segment plus one period.

We consider the sub-class of F made of the Piecewise Affine (PA) functions,
denoted FPA. For these functions, it is sufficient to give, for each piece, the point
of discontinuity, the slope and the offset. These parameters can be recorded in
a list although this list can be infinite.

We define FUPP-PA
4
= FUPP ∩ FPA. Its elements can be finitely represented

by giving T, d and c from FUPP and the initial segment of the list from FPA

representing the function on [0;T + d).
The contributions of this paper are:

– a formalization in Coq of FUPP-PA in Sections 5 and 6 and stability properties
under (min, plus) operations in Sections 7 and 8.

– a check for correctness of addition, minimum and convolution in Section 9.

Intuitively, with the addition, if some tool provides three functions f , g and h
and claims that f+g = h, we want to check this relation with a finite number of
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t0 1 2 3 4 6 8 10 12 14
0
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11 T = 4

d = 4

c = 3

f : t 7→ min
(
2t,

⌈
t
2

⌉
+

⌈
t
4

⌉)
Finite representation:
– T = 4, d = 4, c = 3,
– discontinuities:
• abscissa [0, 1, 2, 4, 6],
• ordinate [0, 2, 2, 3, 5],

– slopes [2, 0, 0, 0, 0]
– offsets [0, 2, 3, 5, 6].

g : t 7→ min
(
1
3
t, t+8

11

)
Finite representation:
– T = 4, d = 4, c = 4

11
,

– discontinuities:
• abscissa [0, 3],
• ordinate [0, 1],

– slopes
[
1
3
, 1
11

]
– offsets [0, 1].

Fig. 2: f (solid) and g (dotted) are UPP-PA functions. Given a UPP-PA
function h with compatible parameters, to prove the equality f + g = h,
it is enough to check f(ti) + g(ti) = h(ti) for a list of ti:
[0; 0.1; 0.9; 1; 1.1; 1.9; 2; 2.1; 2.9; 3; 3.1; 3.9; 4; 4.1; 5.9; 6; 6.1; 7.9].

tests. To this end, we will prove that checking the equality f(ti) + g(ti) = h(ti)
on a set of points t1, ..., tn, plus some compatibility tests on initial segments,
periods and increments, is enough to ensure the equality on R+. We illustrate
this on Figure 2.

The minimum and convolution can be checked using similar arguments. Re-
garding the deconvolution, in practice Network Calculus only requires, given two
functions f and g, a function h such that h > f � g. It is then enough to check
that h ∗ g > f , that is min(f, h ∗ g) = f which only involve checking a minimum
and a convolution.

4 State of the Art

There exist two main classes of curves used in network calculus: the set of concave
or convex piecewise linear functions, C[x]PL [19], and the, strictly larger, set of
ultimately pseudo-periodic piecewise linear functions UPP-PA, commonly known
as UPP [7].

The class of the CPL linear functions has nice mathematical properties: it
is stable under the addition and the minimum, and moreover, the convolution
can be implemented as a minimum plus a constant. The data structure and
related algorithms are so simple that they, to our knowledge, have never been
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published. The class of convex piecewise linear functions has very similar prop-
erties, replacing minimum by maximum, and its (min,plus) convolution can also
be implemented very efficiently [5, Sect. 4.2]. Nevertheless, they cannot accu-
rately model packetized traffic, whereas the UPP-PA class gives better results
at the expense of higher computation times [8].

An open implementation of the operators on the C[x]PL class can be found
in the DISCO network calculus tool [4].

The algorithms of the operators on the UPP-PA class are given in [7]. An
open implementation has been developed but is no longer maintained [6] to our
knowledge. An industrial implementation exists, which is the core of the net-
work calculus tool PEGASE [10]. The UPP-PA implementation can be accessed
through an on-line console [1].

The Real-Time Calculus toolbox (RTC) does performance analysis of dis-
tributed real-time systems [22,23]. Its kernel implements minimum, sum, and
convolution on Variability Characterization Curves (VCC’s), a class very close
to UPP-PA, but no explicit comparison of those two classes has been done up
to now.

None of these implementations were formally proved correct.

The first works on the formal verification of network calculus computation
were presented in [15]. The aim was to verify that a tool was correctly using the
network calculus theory. An Isabelle/HOL library was developed, providing the
main objects of network calculus (flows and servers, arrival and service curves)
and the statement of the main theorems, but not their proofs. They were assumed
to be correct, since they have been established in the literature for long. Then,
the tool was extended to provide not only a result, but also a proof on how that
network calculus has been used to produce this result. Then, Isabelle/HOL was
in charge of checking the correctness of this proof.

Another piece of work, presented in [17], consists in proving, in Coq, the
network calculus results themselves: building the min-plus dioid of functions,
the main objects of network calculus and the main theorems (statements and
proofs).

The PROSA library also provides proofs of correctness for the response time
of real-time systems, but focuses on scheduling tasks for processors [11].

5 Ultimately Pseudo Periodic Functions

We now present the formal definition of the set of UPP functions.

Definition 1 (Ultimately Pseudo Periodic Functions, F_UPP). FUPP is
the set of functions f ∈ F such that there exists T ∈ Q+, d ∈ Q?+ and c ∈ Q for
which

∀t ∈ R+, t > T =⇒ f(t+ d) = f(t) + c. (2)

Remark 1. The values of T, d and c could have been in R. However, we know
from [7] that FUPP is stable over more operators if T, d and c are rationals. It is
not a practical restriction since Q is the set used in computation.
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We represent FUPP in Coq as follows.

1 Record F_UPP := {
2 F_UPP_val :> R+ → Rbar;
3 F_UPP_T : Q+; F_UPP_d : Q+∗; F_UPP_c : Q;
4 _ : ∀ t : R+, F_UPP_T 6 t →
5 F_UPP_val (t + F_UPP_d) = F_UPP_val t + toR F_UPP_c }.

This code means that a value of type F_UPP is:

line 2 a function F_UPP_val from nnR to Rbar. The notation :> is a Coq notation
for coercion: Coq introduces automatically F_UPP_val whenever we give a
value of type F_UPP when a function from R+ to Rbar is expected.

line 3 F_UPP_T, F_UPP_d and F_UPP_c, the three parameters T, d and c of (2).
lines 4 and 5 the property (2). We use toR to cast a rational as a real.

The command Record creates a constructor of F_UPP named Build_F_UPP. To
declare a value in F_UPP, Coq will require a function, three parameters and a
proof of (2).

6 UPP and Piecewise Affine Functions

We briefly presented in section 3 the set FUPP-PA of functions that are both
UPP and PA. We give in this section a formal definition.

In [7], this set was introduced as the intersection of two sets of functions:
FUPP and FPA, the set of PA functions. In this paper, we rather choose to
formalize the subset of functions in FUPP that are PA, as this greatly simplifies
the formalization.

To define PA functions, we need to record points of discontinuities and change
of slopes: jump sequences.

Definition 2 (Jump Sequence, JS). For any n ∈ N∗, we call Jump Sequence
(JS) a tuple a ∈ Qn+ such that a0 = 0 and: ∀i ∈ {0, . . . , n− 2} , ai < ai+1. We
call n the size of the JS and the set of JS of size n is denoted JSn.

We represent jump sequences in Coq as follows.

Record JS := {
JS_list :> seq Q+;
_ : (JS_list != [::]) && (head 0 JS_list == 0) && sorted < JS_list }.

A JS is a list: JS_list of Q+ that is not an empty list (denoted by [::] ), whose
initial element is 0 and which is sorted by the usual strict order <. The function
head is a total function: it returns the first element of a list or a default value
when empty, here 0.

Each piece is linear on an interval with a slope and an offset.

Definition 3 ((ρ, σ)-affine on, r_s_affine_on). Given ρ, σ ∈ Q and x, y ∈
Q+, a function f ∈ F is called (ρ, σ)-affine on ]x; y[ when, for all t ∈ ]x; y[:

f(t) = ρ(t− x) + σ. (3)
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We state this definition in Coq as follows.

Definition r_s_affine_on (f : F) (rho sigma : Q) (x y : Q+) :=
∀ t : R+, x < t < y → f t = toR rho ∗ (t − x) + toR sigma.

We want to define a subset of F = R+ → R. So, our functions can return
infinite values. The next definition formalizes this point.

Definition 4 (Affine on, affine_on). A function f ∈ F is affine on ]x; y[ if

(∀t ∈ ]x; y[ , f(t) = +∞) (4)

∨ (∀t ∈ ]x; y[ , f(t) = −∞) (5)

∨ (∃ρ, σ ∈ Q, f is (ρ, σ)-affine on ]x; y[). (6)

We state this definition in Coq as follows.

Variant affine_on (f : F) (x y : Q+) :=
| affine_on_p_infty of ∀ t : R+, x < t < y → f t = +∞
| affine_on_m_infty of ∀ t : R+, x < t < y → f t = −∞
| affine_on_finite rho sigma of r_s_affine_on f rho sigma x y.

We use Variant that is a disjunctive version of Record.
PA are then functions that are affine on all intervals of a JS.

Definition 5 (JS of a Function, JS_of). Let n ∈ N?, a ∈ JSn and f ∈ F .
We say that a is a JS of f , denoted a ∈ JS(f), when for all i < n − 1, f is
affine on ]ai; ai+1[.

We state this definition in Coq as follows.

Definition JS_of a (f : F) :=
∀ i, (i.+1 < size a) → r_s_affine_on f (nth 0 a i) (nth 0 a i.+1).

So, according to the previous definition, each PA function is associated to a
JS but it is not unique. We illustrate this in Figure 3. Also notice that a function
f ∈ F with a ∈ JS(f) is a PA function at least up to the last point of a.

t0 1 2 3 4

f(t)

Fig. 3: The function f is piecewise affine. a
4
= {0, 1, 3} and b

4
= {0, 1, 2, 3} are JS

of this function: a ∈ JS(f) and b ∈ JS(f). We notice that c
4
= {0, 2, 4} ∈ JS

but c /∈ JS(f).
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Definition 6 (UPP-PA Functions, F_UPP_PA). The set FUPP-PA of UPP-PA
functions is the set of functions f ∈ FUPP with T for initial segment and d for
period, such that there exists a ∈ JS(f) and last (a) = T + d.

We represent FUPP-PA in Coq as follows.

Record F_UPP_PA := {
F_UPP_PA_UPP :> F_UPP;
F_UPP_PA_JS : JS;
_ : JS_of F_UPP_PA_JS F_UPP_PA_UPP;
_ : last 0 F_UPP_PA_JS = F_UPP_T F_UPP_PA_UPP + F_UPP_d F_UPP_PA_UPP }.

The functions presented in Figure 2 belong to FUPP-PA. The list of abscissas
of discontinuities given in the caption are jump sequences of the functions.

A UPP-PA function with initial segment T and period d is PA in [0;T + d[
by construction, and also PA after T + d by periodicity. This point is developed
in the following property.

Lemma 1 (F_UPP_PA_JS_upto_spec in Coq). Let f ∈ FUPP-PA with a ∈ JS(f).
For any l ∈ Q+ such that last (a) 6 l, there exists a′ ∈ JS such that a′ ∈ JS(f)
and last (a′) = l.

7 Stability of UPP Functions by (min, plus) Operators

We now want to prove stability of FUPP over (min, plus) operators: addition,
minimum and convolution. These operators have been presented in Section 3.
We need another operator on rational numbers: a notion of least common integer
multiple such that, for any d, d′ ∈ Q, there exists k, k′ ∈ N satisfying kd = k′d′ =
lcmQ(d, d′).

Definition 7 (lcmQ?
+
). For all d, d′ ∈ Q?+, for all a, a′ ∈ Z and b, b′ ∈ N? such

that d = a
b and d′ = a′

b′ , we define

lcmQ?
+

(d, d′)
4
=

lcm
(
a lcm(b,b′)

b , a′ lcm(b,b′)
b′

)
lcm(b, b′)

(7)

where lcm is the least common multiple on Z.

Lemma 2 (dvdq_lcml in Coq). For d, d′ ∈ Q+, there is k ∈ N s.t. lcmQ?
+

(d, d′) =
k d.

We state this lemma in Coq as follows.

Definition lcm_Q (d d’ : Q) : Q :=
fracq (lcmz (numq d ∗ (lcmz (denq d) (denq d’) %/ denq d))

(numq d’ ∗ (lcmz (denq d) (denq d’) %/ denq d’)),
lcmz (denq d) (denq d’)).

Program Definition lcm_posQ (d d’ : Q+∗) : Q+∗ := mk_posQ (lcm_Q d d’) _.
Lemma dvdq_lcml d d’ : ∃ k : nat, lcm_posQ d d’ = k ∗ d.
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We first define lcm_Q: the definition of lcmQ?
+

on Q. The functions fracq, numq

and denq are respectively the constructor and destructors of Q. The command
Program Definition is similar to Definition except that it accepts holes _ and
automatically generates the corresponding proof obligations.

To ease notations, we want to transform this binary operator, into a set
operator such as

∑3
i=1 i = (1 + 2) + 3. There exists a library in Coq designed

with this objective: the bigop theory of Mathcomp [2]. To fully use this library,
we need to prove that lcmQ?

+
satisfies the monoid laws. In other words, we need

to prove that lcmQ?
+

is associative and has a neutral element. However, lcmQ?
+

does not have a neutral element. The lcm on N has a neutral element 1. It is not
the case for lcmQ?

+
: for instance lcmQ?

+

(
1, 23
)

= 2. To get out of it, we need to
extend the definition of lcmQ?

+
:

Definition olcm_posQ (x y : option Q+∗) : option Q+∗ := match x, y with

| None, _ ⇒ y | _, None ⇒ x | Some x, Some y ⇒ Some (lcm_posQ x y)
end.

The option type is used to extend the type of Q+∗ with a None element. Then,
this element is the neutral element for this optional definition of lcmQ?

+
. We add

then a Notation for the big operator.

Notation "\biglcm_posQ_ ( i < n ) F" :=
(odflt one_posQ (\big[olcm_posQ/None]_(i < n) some F)) : ring_scope.

\big[oclm_posQ\None]_(i < n) some F is the iterated application of oclm_posQ for
all i such that i < n on some F. The function odflt removes the option when it
is Some and returns a default value otherwise.

The following lemmas prove stability of FUPP by addition, minimum and
convolution.

Lemma 3 (F_UPP_n_add in Coq). Let n ∈ N?, f ∈ FnUPP with initial segments
T ∈ Qn+, periods d ∈ (Q?+)n and increments c ∈ Qn respectively. The sum

∑
i fi

is a UPP function with an initial segment maxi{Ti}, a period lcmQ?
+

i

(di) and an

increment lcmQ?
+

i

(di)
(∑

i
ci
di

)
.

Lemma 4 (F_UPP_n_min in Coq). Let n ∈ N? and f ∈ FnUPP with initial seg-
ments T ∈ Qn+, periods d ∈ (Q?+)n and increments c ∈ Qn respectively. Defining:

s
4
= min
i∈[0;n−1]

(
ci
di

)
I

4
=

{
i ∈ [0;n− 1]

∣∣∣∣ cidi = s

}
(8)

and assuming there exists M ∈ Q and m ∈ Qn such that:

∃i ∈ I, ∀t ∈ [Ti;Ti + di[ , fi(t) 6M + s t (9)

∀i /∈ I, ∀t ∈ [Ti;Ti + di[ ,mi +
ci
di
t 6 fi(t) (10)
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the function minni=1{fi} is UPP with an initial segment T̃ , a period d̃ and an

increment c̃ with d̃
4
= lcmQ?

+

i∈I
(di), c̃

4
= d̃ s and

T̃ = max

(
max
i/∈I

(
M −mi
ci
di
− s

)
, max
j∈[0;n−1]

{Tj}

)
.

These lemmas are a straightforward generalization of Proposition 6 in [7]
where it is proved for binary addition and minimum. This generalization is useful
for the next lemma on convolution of two UPP functions.

Remark 2. In the case of PA functions, it is easy to find values for M and mi

satisfying (9) and (10) by computing the bounds supt∈[Ti;Ti+di[ {fi(t)− s t} and

inft∈[Ti;Ti+di[

{
fi(t)− ci

di
t
}

.

Lemma 5 (F_UPP_conv in Coq). Let f, f ′ ∈ FUPP with initial segments T, T ′ ∈
Q+, periods d, d′ ∈ Q?+ and increments c, c′ ∈ Q respectively. For all M,M ′,m,m′ ∈
Q such that

M > sup
t∈[T,T+d[

{
f(t)− c

d
(t+ T ′)

}
+ f ′(T ′) (11)

m′ 6 inf
t∈[0,T [

{
f(t)− c′

d′
t

}
+ inf
t∈[T ′,T ′+d′[

{
f ′(t)− c′

d′
t

}
(12)

and similarly for M ′ and m, by permuting the primed and non-primed variables,

the convolution f ∗ f ′ is a UPP function with a period d̃
4
= lcmQ?

+
(d, d′), an

increment c̃
4
= d̃min

(
c
d ,

c′

d′

)
and an initial segment:

T̃ =


T + T ′ + lcmQ?

+
(d, d′) if c

d = c′

d′

max

(
M−m′

c′
d′−

c
d

, T + T ′ + lcmQ?
+

(d, d′)

)
if c

d <
c′

d′

max

(
M ′−m
c
d−

c′
d′
, T + T ′ + lcmQ?

+
(d, d′)

)
if c′

d′ <
c
d

(13)

This lemma is proved into Coq as F_UPP_conv. It generalizes Proposition 6 of [7]
by expliciting the initial value giving a value for T̃ . Remark 2 also applies here.

8 Stability of UPP-PA Functions by (min, plus)
Operators

We are now focusing on stability of FUPP-PA by (min, plus) operators. Let us
first define the union of two jump sequences.

Definition 8 (Union of two JS, union). For any n,m ∈ N∗, a ∈ JSn, b ∈
JSm, the tuple of size # ({ai|0 6 i < n} ∪ {bj |0 6 j < m}) containing the ele-
ments of {ai|0 6 i < n} ∪ {bj |0 6 j < m} sorted by increasing order, is called
union of the jump sequences a and b. This union is denoted a ∪ b.
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If jump sequences are implemented by lists, the union can be implemented by
the merge part of a merge sort, followed by a removal of duplicates. We state
this definition in Coq as follows.

Program Definition union (a b : JS) := @Build_JS (undup (merge 6 a b)) _.

The following Lemma gives a jump sequence for the sum of PA functions.

Lemma 6 (JS of n-ary Addition, JS_of_n_add). For n ∈ N?, for f ∈ Fn
and for a ∈ JSn, if for all i, ai ∈ JS(fi) and all the last points of a are equal
(∀i, j, last (ai) = last (aj)), then

⋃
i ai ∈ JS (

∑
i fi).

We state this lemma in Coq as follows.

Lemma JS_of_n_add n (f : ’I_n.+1 → F) (a : ’I_n.+1 → JS) :
(∀ i, JS_of (a i) (f i)) → (∀ i j, last 0 (a i) = last 0 (a j)) →
JS_of (\bigcup_i a i) (\sum_i f i).

The term bigcup_i is the notation for
⋃
i. Thanks to Lemma 1, the equality of

last points can always be satisfied. Stability of FUPP-PA by n-ary addition can
then be derived from this Lemma and Lemmas 1 and 3.

Whereas the jump sequence of a sum is the union of the jump sequences,
the minimum can introduce new points as shown in Figure 4. The following
definition gives such a jump sequence.

tci + σ′−σ
ρ−ρ′

ci+1ci

f ′

f

Fig. 4: Example of point added by the min operator in a JS. f and f ′ are re-
spectively (ρ, σ)-affine and (ρ′, σ′)-affine on ]ci; ci+1[ with different slopes ρ and

ρ′. Since we have ci + σ′−σ
ρ−ρ′ ∈ ]ci; ci+1[, this point must be added to the jump

sequence.

Definition 9 (Union min, union min). Let f and f ′ ∈ F with a ∈ JS(f) and

a′ ∈ JS(f ′) such that last (a) = last (a′). Set c
4
= a ∪ a′. We define the ∪min

operator as

∪min (f, f ′, a, a′)
4
= c ∪

ci +
σ′ − σ
ρ− ρ′

∣∣∣∣∣∣∣∣
∃i, i < #c− 1
∧ f is (ρ, σ)− affine on ]ci, ci+1[
∧ f ′ is (ρ′, σ′)− affine on ]ci, ci+1[

∧ ρ 6= ρ′ ∧ ci < ci + σ′−σ
ρ−ρ′ < ci+1.


(14)



12 L. Rakotomalala, P.Roux, M.Boyer

Using this ∪min operator, we can establish a JS for n-ary minimum.

Lemma 7 (JS_of_n_min in Coq). For all n ∈ N? and f ∈ Fn, if for all i,
ai ∈ JS(fi) and all the last points of a are equal then ⋃

i,j∈[0,n−1]

∪min(fi, fj , ai, aj)

 ∈ JS (min
i
{fi}

)
. (15)

Just as we mentioned for the addition, this Lemma and Lemmas 1 and 4
are sufficient to prove stability of FUPP-PA by n-ary minimum under mild con-
ditions 1.

We are now interested in the convolution of two UPP-PA functions. Like
in [7], we rely on the property that: ∀f, g, h ∈ F ,min(f, g)∗h = min(f ∗h, g ∗h).
Then, any UPP-PA function can be decomposed as the minimum of elementary
functions whose convolution is easy to compute.

In the following, we give such a decomposition.

Definition 10 (Cutting Operator, cutting_operator). Given f ∈ F , a ∈
JS(f) and i ∈ N such that i < #a− 1, we define the cutting operator:

(f ↓ a)i
4
= t 7→

{
f(t) if t ∈ [ai; ai+1[

+∞ otherwise .
(16)

We state this definition in Coq as follows.

Definition cutting_operator (f : F) a i : F := fun t ⇒
if i.+1 < size a && (nth 0 a i 6 t < nth 0 a i.+1) then f t else +∞ .

t

ρ

ρ′

x+ x′ x′ + y y + y′
σ + σ′

t

ρ′

ρ

x+ x′ x+ y′ y + y′

σ + σ′

Fig. 5: Convolution of two segments. Let f and f ′ be two functions that are
respectively (ρ, σ)-affine on [x; y[ and (ρ′, σ′)-affine on [x′; y′[ and +∞ elsewhere.
We plot the two cases of f ∗ f ′ on [x+ x′, y + y′[ : left is for ρ < ρ′ and right is
ρ′ < ρ.

The convolution of two functions (f ↓ a)i and (f ′ ↓ a′)j can be computed
by case disjunction in the same way as in Figure 5 but considering possible
discontinuities lead to more than two sub-cases.
1 existence of m and M for Lemma 4
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We need a last definition to specify the previous cutting operator.

Definition 11 (Cutting Below, cutting_below). Let f ∈ F and l ∈ R+, we
denote f<l the function that is equal to f up to l and +∞ afterwards.

Lemma 8 (cutting_operator_spec in Coq). Given f ∈ F and a ∈ JS(f), we
have f<last(a) = min

i<#a−1
(f ↓ a)i.

We can now give the decomposition of the convolution using these operators.

Lemma 9 (Piecewise Affine Convolution, PA_conv). Let f, f ′ ∈ F with
a ∈ JS(f) and a′ ∈ JS(f ′) and let l such that l = last (a) = last (a′). We have

(f ∗ f ′)<l =

(
min
i,j

(
(f ↓ a)i ∗ (f ′ ↓ a′)j

))
<l

. (17)

9 Finite Equality Criteria on UPP-PA

In Sections 5 to 8, we proved in Coq slight variations of results from the literature.
Here are the main results: the finite equality tests briefly introduced in Figure 2.

Definition 12 (Equality on a Segment, eq_segment). For all a ∈ JS, i ∈ N
and f, g ∈ F , we define eq segment(a, i, f, g), the following property:

f(ai) = g(ai) ∧ ∃x, y ∈ ]ai; ai+1[ , x 6= y ∧ f(x) = g(x) ∧ f(y) = g(y). (18)

We state this definition in Coq as follows.

Definition eq_segment (a : JS) i (f g : F) := f (a i) = g (a i)
∧ ∃ x y : R+, a i < x < a i.+1 ∧ a i < y < a i.+1 ∧ x 6= y ∧ f x = g x ∧ f y = g y.

This definition is useful to check equality on an interval. Given two functions f, g
both affine on ]ai; ai+1[, eq segment(a, i, f, g) ensures that f = g on [ai; ai+1[.

Combined with previous results, we get an equality criteria for the addition.

Proposition 1 (UPP_PA_n_add in Coq). For all n ∈ N?, f ∈ FnUPP-PA, f ′ ∈
FUPP-PA with initial segments T ∈ Qn+ and T ′ ∈ Q+, periods d ∈ (Q?+)n

and d′ ∈ Q?+, increments c ∈ Qn and c′ ∈ Q respectively, we define l
4
=

max{maxi{Ti}, T ′}+ lcmQ?
+

(
lcmQ?

+

i

(di), d
′

)
, and u

4
= (
⋃
i ai)∪a′, where for all

i, ai ∈ JS(fi) and last (ai) = l, a′ ∈ JS (f ′) and last (a′) = l. If
∑
i

(
ci
di

)
= c′

d′

then

∀i < #u− 1, eq segment

u, i,∑
j

fj , f
′

 (19)

is a sufficient condition for
∑
i fi = f ′.
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The condition (19) happens to be also necessary but we do not need to prove it.

Remark 3. This criteria can be computed in finite time. ai and a′ can be obtained
using Lemma 1. To check eq segment(a, i, f, f ′), one can take x = ai+ai+1

2 and
y = ai+x

2 .

We get similar criteria for the minimum and the convolution.

Proposition 2 (UPP_PA_n_min in Coq). Let n ∈ N? and f ∈ FnUPP-PA. For all
f ′ ∈ FUPP-PA with initial segment T ′ ∈ Q+, periods d′ ∈ Q?+ and increment
c′ ∈ Q, assume M and m satisfying the hypotheses of Lemma 4 and define

T̃ , d̃ and c̃ as in Lemma 4. We define l
4
= max(T̃ , T ′) + lcmQ?

+
(d̃, d′) and u

4
=(⋃

i,j ∪min(f<li , f<lj , ai, aj)
)
∪ a′, where for all i, ai ∈ JS (fi) and last (ai) = l,

a′ ∈ JS (f ′) and last (a′) = l. If c̃
d̃

= c′

d′ , then:

∀i < #u− 1, eq segment

(
u, i,min

j
(fj), f

′
)

(20)

is a sufficient condition for mini(fi) = f ′.

Proposition 3 (F_UPP_conv in Coq). Let f, f ′ ∈ FUPP-PA. For all f ′′ ∈
FUPP-PA with initial segment T ′′ ∈ Q+, period d′′ ∈ Q+ and increment c′′ ∈ Q,
assume M,M ′,m and m′ ∈ Q satisfying hypotheses of Lemma 5 and define T̃ , d̃, c̃

as in Lemma 5. We define l
4
= max(T̃ , T ′′) + lcmQ?

+
(d̃, d′′). Assume a ∈ JS (f)

and last (a) = l, a′ ∈ JS (f ′) and last (a′) = l, a′′ ∈ JS (f ′′) and last (a′′) = l

and define k
4
= #a− 1 and k′

4
= #a′ − 1. Assuming ã ∈ JS{0,...,k−1}×{0,...,k′−1}

such that for all i, i′, ãi,i′ ∈ JS ((f ↓ a)i ∗ (f ′ ↓ a′)i′) and last (ãi,i′) = l, define

u
4
=

 ⋃
(i,i′),(j,j′)

∪min

(
(f ↓ a)i ∗ (f ′ ↓ a′)i′ , (f ↓ a)j ∗ (f ′ ↓ a′)j′ , ãi,i′ , ãj,j′

)∪a′′,
(21)

if c̃
d̃

= c′′

d′′ then

∀j < #u− 1, eq segment

(
u, i,min

i,j

(
(f ↓ a)i ∗ (f ′ ↓ a′)j

)
, f ′′
)

(22)

is a sufficient condition for f ∗ f ′ = f ′′.

Just as for Proposition 1, these sufficient criteria can be checked in finite time.

10 Implementation

The implementation consists of 6.3k lines of Coq code. It uses the rational num-
bers defined in the MathComp library [16] and the real numbers from Coq’s stan-
dard library [21]. These real numbers are linked to the algebraic structures from



Title Suppressed Due to Excessive Length 15

MathComp thanks to the Rstruct.v file of the MathComp Analysis library [18].
This enables in particular the use of the big operators from MathComp [2]. The
extended real numbers R and a few other definitions on real numbers are based
on the Coquelicot library [3]. The real numbers from the standard library and
Coquelicot could probably now be fully replaced by the MathComp Analysis
library, which was in an early development stage when we started this work but
now looks much more usable. This would avoid many painful translations back
and forth between the two diferent formalizations.

To obtain executable Coq programs, some adjustments were required, such
as making the ρ and σ of Definition 5 explicit in the jump sequences. The final
executable version consist of 9k lines of Coq (including the previous formaliza-
tion) and uses the refinement of MathComp’s rational numbers by the one in
the bignums library [14] provided by the CoqEAL library [12].

Here is an example proof on the sum of the two functions f and g from
Figure 2. We first declare f and g:

Let f := F_of_sequpp (mk_sequpp 4 (* T *) 4 (* d *) 3 (* c *) [:: (0, (0, (2, 0)));
(1, (2, (0, 2))); (2, ( 2, (0, 3))); (4, ( 3, (0, 5))); (6, ( 5, (0, 6)))]).

Let g := F_of_sequpp (mk_sequpp 4 4 (4/11) [:: (0, (0, (1/3, 0))); (3, (1, (1/11, 1)))]).

Then a function h that we want to prove equal to f + g (this function could be
obtained from an external oracle):

Let h := F_of_sequpp (mk_sequpp 4 4 (37/11) [:: (0, ( 0, (7/3, 0)));
(1, (7/3, (1/3, 7/3))); (2, (8/3, (1/3, 11/3))); (3, (4, (1/11, 4)));
(4, (45/11, (1/11, 67/11))); (6, (69/11, (1/11, 80/11)))]).

We can then use our new tactic nccoq to automatically prove the equality:

Goal f + g = h. Proof. nccoq. Qed.

This tactic performs proofs by reflection: it reduces the goal to prove down to a
computation which is then performed by Coq and whose success concludes the
proof. This reduction is done with the help of the machinery provided by the
CoqEAL library [12].

11 Conclusion

Confidence in latency bounds computed by Network Calculus tools [8,20] relies,
among other parts, on the correctness of the evaluation of algebraic expressions
on (min, plus) operators [1,6]. Instead of developing another toolbox, we devel-
oped, formalized and proved equality criteria that can be checked in finite time
for each algebraic operation involved in actual computation of Network Calculus
bounds.

The expected usage of this library is to delegate the evaluation of arbitrary
algebraic expressions to an external tool [1] before checking the final result with
our Coq contribution. This external tool would then act as an untrusted oracle.
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19. H. Sariowan, R. L. Cruz, and G. C. Polyzos. SCED: A generalized scheduling
policy for guaranteeing quality-of-service. IEEE/ACM transactions on networking,
7(5):669–684, October 1999.

20. J. Schmitt and F. Zdarsky. The DISCO network calculator: a toolbox for worst
case analysis. page 8, 01 2006.
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This appendix contains pen and paper versions of the proofs formalized in
Coq in our code development.

A UPP-PA and Piecewise Affine functions

Definition 13 (JS below, JS_below). Let a ∈ JS and l ∈ Q+, the JS below of
a at l is the sequence c where, for all i such that ai < l, ci = ai and clast(c) = l.
We denote the JS below of a at l by a6l.

Definition 14 (UPP-PA JS upto definition, F_UPP_PA_JS_upto_def ). Let
f ∈ FUPP-PA with T, d as initial segment and period, a ∈ JS(f) and l ∈ Q+. We

call the sequence UPP-PA JS upto the sequence c where, for ad
4
= {x ∈ a|x > T},

n
4
=
⌈
l−(T+d)

d

⌉
and for all i:

c
4
= a

⋃
n′∈[1;n]

{x+ n′d|x ∈ ad} (23)

We denote it the sequence a upto l.

Proof (of Lemma 1, F_UPP_PA_JS_upto_spec). Take a′6l
4
= c6l. a

′ ∈ JS(f) is
proved by induction on n, defined in Definition 14 and last (a′) = l comes from
Definition of c6l.

B Stability of UPP functions by (min, plus) operators

Proof (of Lemma 2). Let d, d′ ∈ Q?+. Let’s prove that it exists k ∈ N such that
lcmQ?

+
(d, d′) = k d. By Definition of lcm, it exists k ∈ N such that

lcm

(
a

lcm(b, b′)

b
, a′

lcm(b, b′)

b′

)
= k

(
a

lcm(b, b′)

b

)
Thus, dividing both sides by lcm(b, b′),

lcmQ?
+

(d, d′) = k

(
a lcm(b,b′)

b

)
lcm(b, b′)

= kd.

Lemma 10 (Commutativity of lcmQ?
+
, lcm_nnQC). lcmQ?

+
is commutative.

Proof. This comes from the commutativity of lcm.

Lemma 11 (dvdq_lcm). For all d, d′ ∈ Q?+, m ∈ Q, k, k′ ∈ N, if m = k d and
m = k′ d′, then there exists k′′ ∈ N such that m = k′′ lcmQ?

+
(d, d′).
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Proof. Noting a
b

4
= d and a′

b′
4
= d′ as well as x

4
= a lcm(b,b′)

b , and y
4
= a′ lcm(b,b′)

b′ , we
have m lcm(b, b′) = k x and m lcm(b, b′) = k′ y. Notice that x and y are integers.
Let’s prove that lcm(x, y) divides k x. By definition of lcm this is true when
both x and y divide k x, that is when y divides k x which is true since k′ y =
k x = mlcm(b, b′). Thus, there exists some k′′ such that m lcm(b, b′) = k x =

k′′ lcm(x, y) and dividing by lcm(b, b′), we get m = k′′ lcm(x,y)
lcm(b,b′) = k′′ lcmQ?

+
(d, d′).

Lemma 12 (dvdq_ge_lcm). For all d, d′,m ∈ Q?+, k, k′ ∈ N, if m = k d and
m = k′ d′, then lcmQ?

+
(d, d′) 6 m.

Proof. According to Lemma 11, there exists k′′ such that m = k′′ lcmQ?
+

(d, d′).

If k′′ = 0 then m = 0 which is impossible so k′′ > 1.

Lemma 13 (Associativity of lcmQ?
+
, lcm_nnQA). lcmQ?

+
is associative.

Proof. Given a, b, c ∈ Q?+, we want to prove that lcmQ?
+

(
a, lcmQ?

+
(b, c)

)
=

lcmQ?
+

(
lcmQ?

+
(a, b), c

)
. By antisymmetry of 6, it is enough to prove two inequali-

ties. Let’s focus on the proof of lcmQ?
+

(
a, lcmQ?

+
(b, c)

)
6 lcmQ?

+

(
lcmQ?

+
(a, b), c

)
,

the proof of the other inequality being similar. Let’s denotem
4
= lcmQ?

+

(
lcmQ?

+
(a, b), c

)
By Lemma 2, there exist k such that m = k lcmQ?

+
(a, b) and k′ such that

lcmQ?
+

(a, b) = k′ a and k′′ such that lcmQ?
+

(a, b) = k′′ b and k′′′ such that

m = k′′′ c. Thus m = k k′ a = k k′′ b = k′′′ c. Lemma 11 gives some k′′′′ such
that m = k′′′′ lcmQ?

+
(b, c) and Lemma 12 concludes.

Lemma 14 (dvdq_biglcm). For all n ∈ N, d ∈ (Q?+)n, P ⊆ [0;n− 1] and for
all i ∈ P , it exists k ∈ N such that lcmQ?

+

j∈P
(dj) = kdi.

Proof. If P is a singleton then k
4
= 1 works, otherwise, by commutativity and as-

sociativity of lcmQ?
+

, we have lcmQ?
+

j∈P
(dj) = lcmQ?

+

(
di, lcmQ?

+

j∈P,j 6=i
(dj)

)
and Lemma 2

concludes.

Lemma 15 (UPP extension, UPP_extension). For all f ∈ FUPP with T ∈
Q+, d ∈ Q?+ and c ∈ Q respectively initial segment, period and increment, for
all k ∈ N?, f is also UPP with T ′ > T , kd and kc respectively initial segment,
period and increment.

Proof. Let’s assume that we have f ∈ FUPP with T, d and c such that : ∀t >
T, f(t+d) = f(t) + c. Let k be a natural number different from 0 and let’s prove
that

∀t > T ′, f(t+ kd) = f(t) + kc
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By induction on k, first case is the definition itself of UPP . Then let’s assume
that is true for k, we have:

∀t > T, f(t+ (k + 1)d) = f(t+ kd+ d)

= f(t+ kd) + c

= f(t) + kc+ c = f(t) + (k + 1)c.

Proof (of Lemma 3, F_UPP_n_add). Set T̃
4
= maxi{Ti}, d̃

4
= lcmQ?

+

i

(di) and c̃
4
=

d̃
∑
i
ci
di

. Let’s first prove that for all i and for all t > T̃ :

fi

(
t+ d̃

)
= fi(t) + d̃

ci
di
.

From Lemma 14, we have k such that d̃ = k di. So, since t > Ti, according to
Lemma 15, we have:

fi(t+ d̃) = fi(t+ k di) = fi(t) + k ci = fi(t) + k di
ci
di

= fi(t) + d̃
ci
di
.

Thus, for all t > T̃ :(∑
i

fi

)(
t+ d̃

)
=
∑
i

fi(t) + d̃
ci
di

=

(∑
i

fi

)
(t) + d̃

∑
i

ci
di

=

(∑
i

fi

)
(t) + c̃.

Proof (of Lemma 4, F_UPP_n_min). We know that it exists i0 ∈ I such that:
∀t ∈ [Ti0 ;Ti0 + di0 [ , fi0(t) 6M +s t. Let’s prove that: ∀t > Ti0 , fi0(t) 6M +s t.

Let t > Ti0 and define k
4
=
⌊
t−Ti0

di0

⌋
. Thus t−k di0 ∈ [Ti0 , Ti0 + di0 [ and, according

to Lemma 15:

fi0(t) = fi0 ((t− k di0) + k di0) = fi0(t− k di0) + k ci0

6M + s(t− k di0) + k ci0 = M + s t

since s =
ci0
di0

.

Furthermore, we know that: ∀i /∈ I, ∀t ∈ [Ti;Ti + di[ ,mi + ci
di
t 6 fi(t). Let’s

prove that: ∀i /∈ I, ∀t > Ti,mi + ci
di
t 6 fi(t). Let i /∈ I and t > Ti and define

k
4
=
⌊
t−Ti

di

⌋
. Thus t− k di ∈ [Ti, Ti + di[ and, according to Lemma 15:

fi(t) = fi ((t− k di) + k di) = fi(t− k di) + k ci

> mi +
ci
di

(t− k di) + k ci = mi +
ci
di
t.
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For all t > T̃ , for all i /∈ I, we have t > M−mi
ci
di
−s and since s < ci

di
we have(

ci
di
− s
)
t > M −mi. So M + s t 6 mi + ci

di
t. Combined with previous results,

this means that fi0(t) 6 fi(t). Thus

∀t > T̃ ,
n−1
min
i=0
{fi(t)} = min

i∈I
{fi(t)}.

Proving that for all t > T̃ and for all i ∈ I we have fi

(
t+ d̃

)
= fi(t) + c̃ will

then conclude the proof. According to Lemma 14 there is k such that d̃ = k di
so, according to Lemma 15:

fi

(
t+ d̃

)
= fi(t+ k di) = fi(t) + k ci = fi(t) + k di

ci
di

= fi(t) + d̃ s = fi(t) + c̃.

Lemma 16 (F_UPP_conv_f1_f1 ’ , F_UPP_conv_f2_f1 ’ , F_UPP_conv_f1_f2 ’ , F_UPP_conv_f2_f2 ’ ,
F_UPP_conv_aux). Let f, f ′ ∈ FUPP functions with initial segments T, T ′ ∈ Q?+,
periods d, d′ ∈ Q?+ and increments c, c′ ∈ Q respectively. The convolution of f
and f ′ satisfies

f ∗ f ′ = min(f1 ∗ f ′1, f2 ∗ f ′1, f1 ∗ f ′2, f2 ∗ f ′2) (24)

where

f1
4
= t 7→

{
f(t) when t < T

+∞ otherwise

f2
4
= t 7→

{
f(t) when t > T

+∞ otherwise

f ′1 and f ′2 are defined similarly, replacing f by f ′.
Each term of the minimum above is UPP

– f1 ∗ f ′1 from T + T ′ with period d and increment c
– f2 ∗ f ′1 from T + T ′ with period d and increment c
– f1 ∗ f ′2 from T + T ′ with period d′ and increment c′

– f2 ∗ f ′2 from T + T ′ + lcmQ?
+

(d, d′) with period lcmQ?
+

(d, d′) and increment

lcmQ?
+

(d, d′)min
(
c
d ,

c′

d′

)
.

Proof. This is the same as Proposition 6 in [7].
First, by distributivity of ∗ over min

f ∗ f ′ = min(f1, f2) ∗min(f ′1, f
′
2)

= min{f1 ∗ f ′1, f2 ∗ f ′1, f1 ∗ f ′2, f2 ∗ f ′2}.

Then, let’s prove that for all t > T + T ′, we have (f1 ∗ f ′1)(t) = +∞. Indeed,
(f1 ∗ f ′1)(t) = infu+v=t{f1(u) + f ′1(v)} and either u > T (so f1(u) = +∞) or
v > T ′ (so f ′1(v) = +∞).
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Let’s prove that for all t > T + T ′, we have (f2 ∗ f ′1)(t+ d) = (f2 ∗ f ′1)(t) + c.
For all t > T + T ′:

(f2 ∗ f ′1)(t+ d) = inf
06u6T ′

{f2(t+ d− u) + f ′1(u)}

= inf
06u6T ′

{f2(t− u) + c+ f ′1(u)}

= (f2 ∗ f ′1)(t) + c.

(f1 ∗ f ′2) is similar.
Let’s prove that for all t > T + T ′ + lcmQ?

+
(d, d′), we have:

(f2 ∗ f ′2)(t+ lcmQ?
+

(d, d′)) = (f2 ∗ f ′2)(t) + lcmQ?
+

(d, d′) min

(
c

d
,
c′

d′

)
.

For all t > T + T ′ + lcmQ?
+

(d, d′):

(f2 ∗ f ′2)(t+ lcmQ?
+

(d, d′))

= inf
T6u6t+lcmQ?

+
(d,d′)−T ′

{
f2(u) + f ′2(t+ lcmQ?

+
(d, d′)− u)

}
= min

(
inf

T6u6t−T ′

{
f2(u) + f ′2(t+ lcmQ?

+
(d, d′)− u)

}
,

inf
T+lcmQ?

+
(d,d′)6u6t−T ′+lcmQ?

+
(d,d′))

{
f2(u) + f ′2(t+ lcmQ?

+
(d, d′)− u)

})

= min

(
inf

T6u6t−T ′

{
f2(u) + f ′2(t+ lcmQ?

+
(d, d′)− u)

}
,

inf
T ′6v6t−T

{
f2(t+ lcmQ?

+
(d, d′)− v) + f ′2(v)

})
= min

(
inf

T6u6t−T ′

{
f2(u) + f ′2(t− u) +

c′

d′
lcmQ?

+
(d, d′)

}
,

inf
T ′6v6t−T

{
f2(t− v) +

c

d
lcmQ?

+
(d, d′) + f ′2(v)

})
= min

(
(f2 ∗ f ′2)(t) +

c′

d′
lcmQ?

+
(d, d′), (f2 ∗ f ′2)(t) +

c

d
lcmQ?

+
(d, d′)

)
= (f2 ∗ f ′2)(t) + min

(
c

d
,
c′

d′

)
lcmQ?

+
(d, d′).

Proof (of Lemma 5, F_UPP_conv). According to Lemma 16, and reusing its no-
tations, it is enough to prove that the following function is UPP:

min{f1 ∗ f ′1, f2 ∗ f ′1, f1 ∗ f ′2, f2 ∗ f ′2}.

When c
d = c′

d′ , according to Lemma 4, it is enough that:

∀t ∈
[
T + T ′ + lcmQ?

+
(d, d′), T + T ′ + 2 lcmQ?

+
(d, d′)

[
, (f2 ∗ f ′2)(t) 6M +

c

d
t.
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For any t ∈
[
T + T ′ + lcmQ?

+
(d, d′), T + T ′ + 2 lcmQ?

+
(d, d′)

[
, we have:

(f2 ∗ f ′2)(t)− c

d
t = inf

u+v=t
{f2(u) + f ′2(v)} − c

d
t

6 f(t− T ′)− c

d
t+ f ′(T ′)

6 sup
t′∈

[
T+lcmQ?

+
(d,d′),T+2lcmQ?

+
(d,d′)

[
{
f(t′)− c

d
(t′ + T ′)

}
+ f ′(T ′)

6 sup
t′∈[T,T+d[

{
f(t′)− c

d
(t′ + T ′)

}
+ f ′(T ′)

6M.

When c
d <

c′

d′ , according to Lemma 4, it is enough that:

∀t ∈
[
T + T ′ + lcmQ?

+
(d, d′), T + T ′ + 2 lcmQ?

+
(d, d′)

[
, (f2 ∗ f ′2)(t) 6M +

c

d
t

and

∀t ∈ [T + T ′, T + T ′ + d′[ ,m′ +
c

d
t 6 (f1 ∗ f ′2)(t).

The former is proved just as above, let’s focus on the latter. For any t ∈
[T + T ′, T + T ′ + d′[:

(f1 ∗ f ′2)(t)− c′

d′
t = inf

u+v=t

{
f1(u)− c′

d′
u+ f ′2(v)− c′

d′
v

}
= inf
u+v=t,u<T,v>T ′

{
f(u)− c′

d′
u+ f(v)− c′

d′
v

}
> inf
u∈[0,T [

{
f(u)− c′

d′
u

}
+ inf
v∈[T ′,T ′+d′[

{
f(v)− c′

d′
v

}
> m′.

When c′

d′ <
c
d , the proof is similar to the previous case.

C Stability of UPP-PA Functions by (min, plus)
Operators

Lemma 17 (Union JS, union_JS_of_l). For all f ∈ F and a, a′ ∈ JS such
that a ∈ JS(f) and last (a) = last (a′), we have (a ∪ a′) ∈ JS(f).

Proof. Let i a natural number. Let’s prove that f is affine on ](a ∪ a′)i; (a ∪ a′)i+1[.
We know that it exists j such that ](a ∪ a′)i; (a ∪ a′)i+1[ ⊆ ]aj ; aj+1[. By

hypotheses, f is affine on ]aj ; aj+1[ and so it is on ](a ∪ a′)i; (a ∪ a′)i+1[.

Lemma 18 (JS of add, JS_of_add). For two PA functions f and f ′ with
a ∈ JS(f) and a′ ∈ JS(f ′) such that last (a) = last (a′) then a∪a′ ∈ JS(f +f ′).
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Proof. Let i ∈ N. Using lemma 17, we know that (a∪a′) ∈ JS(f) and last (a) =
last (a′). Similarly with commutativity, we have (a ∪ a′) ∈ JS(f ′). Then, with
last (a) = last (a′) we know that f and f ′ are affine on ](a ∪ a′)i; (a ∪ a′)i+1[ and
so is f + f ′.

Proof (of Lemma 6). F_PA_n_add] Let n ∈ N? and f ∈ Fn. By induction on n,
initial case is proved using a1 ∈ JS(f1). Then, using Lemma 18, we have

an+1

(
n⋃
i

ai

)
∈ JS

(
fn+1 +

n∑
i

fi

)

and concludes the proof.

Lemma 19 (Subset of PA functions at t). Let f be a PA function with a ∈
JS(f). For i a natural number x, y ∈ Q+ such that x < y and ]x; y[ ⊆ ]ai; ai+1[,
then for any t ∈ ]ai; ai+1[

– if f(t) = +∞ then ∀t′ ∈ ]x; y[ , f(t′) = +∞ else

– if f(t) = −∞ then ∀t′ ∈ ]x; y[ , f(t′) = −∞
– otherwise, f(t) is (ρ, σ)-affine on ]ai; ai+1[ and

∃σ′ ∈ Q,∀t′ ∈ ]x; y[ , f(t′) = ρ(t′ − x) + σ′

Proof. Let f ∈ FPA with a ∈ JS(f), i ∈ N and x, y ∈ Q+ such that x < y and
]x; y[ ⊆ ]ai; ai+1[.

The first two cases are simple. For any t ∈ ]ai; ai+1[ we know that f(t) = +∞
or f(t) = −∞. Then, obviously, for all t′ ∈ ]x; y[ ⊆ ]ai; ai+1[, f(t′) = +∞ and
f(t′) = −∞ respectively.

For the case where, for any t ∈ ]ai; ai+1[, f(t) is rational meaning that it exists

ρ and σ such that f is (ρ, σ)-affine on ]ai; ai+1[. Let’s define σ′
4
= σ+ ρ(x− ai).

We know that: ∀t ∈ ]ai; ai+1[ , f(t) = ρ(t− ai) + σ so, we have

∀t′ ∈ ]x; y[ ,f(t′) = ρ(t′ − x) + σ + ρ(x− ai)
f(t′) = ρ(t′ − ai) + σ

Lemma 20 (∪min Property). Let f, f ′ ∈ FPA with a ∈ JS(f) and a′ ∈
JS(f ′), define c

4
= ∪min(f, f ′, a, a′) and let i ∈ N. If ci /∈ (a ∪ a′), then

(∀t ∈ ]ci; ci+1[ , f(t) < f ′(t)) ∨ (∀t ∈ ]ci; ci+1[ , f ′(t) < f(t))

Proof. For c
4
= ∪min(f, f ′, a, a′), with the hypothesis ci /∈ (a ∪ a′) and Defini-

tion 9, we know that

f is (ρ, σ)-affine on ]ci; ci+1[

f ′ is (ρ′, σ′)-affine on ]ci; ci+1[
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ρ 6= ρ′ and, for x
4
= ci + σ′−σ

ρ−ρ′ , we have x ∈ ]ci; ci+1[ and ci+1.

By case disjunction on ρ 6= ρ′, we first assume that ρ < ρ′. By definition
of ci+1, ci+1 6 (a ∪ a′)k+1 so ]ci; ci+1[ ⊆ ](a ∪ a′)k; (a ∪ a′)k+1[. So for all t ∈
]ci; ci+1[:

f ′(t)− f(t) = (ρ′ − ρ)(t− (a ∪ a′)k) + σ′ − σ
= (ρ′ − ρ)(t− ci′) + σ′ − σ

= (ρ′ − ρ)

(
t−
(
ci′ +

σ′ − σ
ρ− ρ′

))
= (ρ′ − ρ)︸ ︷︷ ︸

>0

(t− ci)︸ ︷︷ ︸
>0

so ∀t ∈ ]ci; ci+1[ , f ′(t) > f(t).
Then, let’s assume that ρ′ < ρ. Similarly, ∀t ∈ ]ci; ci+1[ , f(t) > f ′(t) and

concludes the proof.

Lemma 21 (∪min Property). Let f and f ′ be two PA function with a ∈ JS(f)

and a′ ∈ JS(f ′) and set c
4
= ∪min(f, f ′, a, a′). For i ∈ N, if it exists ρ, ρ′, σ, σ′ ∈

Q such that ρ 6= ρ′ and f and f ′ are respectively (ρ, σ)−affine and (ρ′, σ′)−affine
on ]ci; ci+1[, then:

(∀t ∈ ]ci; ci+1[ , f(t) < f ′(t)) ∨ (∀t ∈ ]ci; ci+1[ , f ′(t) < f(t))

Proof. Define c
4
= ∪min(f, f ′, a, a′) and assume that it exists ρ, ρ′, σ, σ′ such that

ρ 6= ρ′ and f and f ′ are respectively (ρ, σ)-affine and (ρ′, σ′)-affine on ]ci; ci+1[.
First assume that ci /∈ (a∪a′). The direct application of Lemma 20 concludes.

Let’s then assume that ci ∈ (a ∪ a′). and define x
4
= ci + σ′−σ

ρ−ρ′ . For all

t ∈ ]ci; ci+1[ we have:

f(t)− f ′(t) = (ρ− ρ′)(t− ci) + σ − σ′

= (ρ− ρ′)
(
t−

(
ci +

σ′ − σ
ρ− ρ′

))
= (ρ− ρ′)(t− x)

By definition, x /∈ ]ci; ci+1[ since x is a point added in c if ci < ci + σ′−σ
ρ−ρ′ <

ci+1.
Let’s first assume that x 6 ci. As ci < t, we have 0 < t−x. So, let distinguish

two cases from ρ 6= ρ′. If ρ < ρ′ then: ∀t ∈ ]ci; ci+1[ , f(t) < f ′(t). Otherwise,
ρ′ < ρ and: ∀t ∈ ]ci; ci+1[ , f ′(t) < f(t).

Otherwise, ci+1 6 x. As t < ci+1, we have t − x < 0. Let’s distinguish two
cases from ρ 6= ρ′. First is ρ < ρ′. Then, for all t ∈ ]ci; ci+1[ , f ′(t) < f(t).
Otherwise, for all t ∈ ]ci; ci+1[ , f(t) < f ′(t).

Lemma 22 (JS of min, JS_of_min). Let f and f ′ ∈ F with a ∈ JS(f) and a′ ∈
JS(f ′), if last (a) = last (a′) then we have ∪min(f, f ′, a, a′) ∈ JS (min(f, f ′)).
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Proof. Let i be a natural number and pose c
4
= ∪min(f, f ′, a, a′). Assume that

last (a) = last (a′) and pose mi
4
= ci+ci+1

2 .
Then, let’s assume that f(mi) = −∞. By Definition, we know that for j a nat-

ural number, we have ]ci; ci+1[ ⊆ ](a ∪ a′)j ; (a ∪ a′)j+1[ and by using Lemma 17,
we have j′ such that

]ci; ci+1[ ⊆ ](a ∪ a′)j ; (a ∪ a′)j+1[ ⊆ ]aj′ ; aj′+1[

So, by using Definition of PA functions, we have ∀t ∈ ]ci; ci+1[ , f(t) = −∞ and
so ∀t ∈ ]ci; ci+1[ ,min(f, f ′)(t) = −∞ since −∞ is absorbing for min.

By using commutativity of min, we have the same reasoning for f ′(mi) =
−∞.

Then, let’s assume that f(mi) = +∞. By using the same previous rea-
soning, we have ∀t ∈ ]ci; ci+1[ , f(t) = +∞. It remains two cases possible for
f ′(mi). First is f ′(mi) = +∞ : we have ∀t ∈ ]ci; ci+1[ , f ′(t) = +∞ and so
∀t ∈ ]cj ; cj+1[ ,min(f, f)(t) = +∞.

Second, if f ′(mi) ∈ R, then for a j′ such that ]ci; ci+1[ ⊆
]
a′j′ ; a

′
j′+1

[
, it

exists ρ′ and σ′ such that f ′ is (ρ′, σ′) − affine on ]ci; ci+1[. Then, g is also
(ρ′, σ′)− affinei on ]ci; ci+1[.

We have the same reasoning for f ′(mi) = +∞ by using commutativity of
min.

Finally, if f(mi) ∈ R, using the Definition of ∪min and Lemma 17, we have
ρ, σ ∈ Q such that f is (ρ, σ)-affine on ]ci; ci+1[. The only case remaining for
f ′(mi) is f ′(mi) ∈ R and so, with the same use of Lemma 17, it exists ρ′, σ′ ∈ Q
such that f ′ is (ρ′, σ′)-affine on ]ci; ci+1[.

We want to prove that exists ρ̃ and σ̃ such that, on the interval ]ci; ci+1[, the

function g
4
= min(f, f ′) is (ρ̃, σ̃)-affine on ]ci; ci+1[.

We want to prove that exists ρ̃ and σ̃ such that, on the interval ]ci; ci+1[, the

function g
4
= f ∧ f ′ is (ρ̃, σ̃)-affine on ]ci; ci+1[.

Let’s first assume that ρ 6= ρ′. So, using Lemma 21, we know that:

(∀t ∈ ]ci; ci+1[ , f(t) < f ′(t)) ∨ (∀t ∈ ]ci; ci+1[ , f ′(t) < f(t))

So, in the first case, ρ̃
4
= ρ, σ̃

4
= σ and in the other case ρ̃

4
= ρ′, σ̃

4
= σ′.

Let’s now assume that ρ = ρ′. So, let’s define ρ̃
4
= ρ and σ̃

4
= σ ∧ σ′. Since ∧

is distributive over +, we have

∀t ∈ ]ci; ci+1[ , g(t) = min{ρ(t− ci) + σ, ρ(t− ci) + σ′}
= ρ(t− ci) + min{σ, σ′}

and that concludes the proof.

Lemma 23 (JS for n-ary minimum, JS_of_n_min_aux). For all n ∈ N?,
f ∈ FnPA and a ∈ JSn×n such that for all i, j, ai,j ∈ JS(min(fi, fj)). We have: ⋃

(i,j)∈[0;n−1]2
ai,j

 ∈ JS (min
i
fi

)
. (25)
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Proof. Define c
4
=
⋃

(i,j)∈[0;n−1]2 (ai,j) and F
4
= mini(fi). We want to prove that

c ∈ JS(F ) that is, for all k < #c− 1:

(∀t ∈ ]ck; ck+1[ , F (t) = +∞)

∨ (∀t ∈ ]ck; ck+1[ , F (t) = −∞)

∨ (∃ρ, σ, ∀t ∈ ]ck; ck+1[ , F (t) = ρ(t− ck) + σ) .

Let k < #c− 1 and define the interval Ik
4
= ]ck; ck+1[ and a point t0

4
= ck+ck+1

2 .
First assume that F (t0) = −∞. So, it exists i0 such that fi0(t0) = −∞. By using

Lemma 17 and since c = ai0,i0 ∪
(⋃

(i,j)6=(i0,i0)
(ai,j)

)
, we know that it exists ki0

such that:
Ik ⊆

]
(ai0,i0)ki0 ; (ai0,i0)ki0+1

[
.

By definition of PA functions and since ai0,i0 is a JS for fi0 , we have:

∀t ∈
]
(ai0,i0)ki0 ; (ai0,i0)ki0+1

[
, fi0(t) = −∞

and so, ∀t ∈ Ik, fi0(t) = −∞. Thus

∀t ∈ Ik, F (t) = −∞

and that concludes that case.
Then assume that F (t0) = +∞. So, for all i, fi(t0) = +∞. Let i ∈ [0;n− 1].

Using the same reasoning as in the previous case, it exists ki ∈ N such that
Ik ⊆ ](ai,i)ki ; (ai,i)ki+1[ and

∀t ∈ Ik, fi(t) = +∞.

So, we have, for all t ∈ Ik, F (t) = +∞ and it concludes this case.
Finally assume that F (t0) ∈ R. Then it exists i such that F (t0) = fi(t0) and

by Definition, with the definition of PA and Lemma 19, we know that for some
ρi ∈ Q and σi ∈ Q, fi is (ρi, σi)-affine on Ik. To conclude this case and the
proof, let’s prove that:

∀j ∈ [0;n− 1] ,∀t ∈ Ik, fi(t) 6 fj(t) (26)

Let j be a natural number. First assume that fj(t0) = +∞. Since fj is PA,
by Definition and Lemma 19, we can conlude that ∀t ∈ Ik, fj(t) = +∞ > fi(t).
Then assume that fj(t0) = −∞. This case is resolved by contradiction since we
know that F (t0) ∈ R and F (t0) 6 fj(t0).

Finally, we have the case where fj(t0) ∈ R. We know that min(fi, fj) is a
PA function with aij ∈ JS(min(fi, fj)). By Definition and 19, we know that it
exists ρj and σj such that fj is (ρj , σj)-affine on Ik. So we want to prove that:

∀t ∈ Ik, ρi(t− ck) + σi 6 ρj(t− ck) + σj .

First prove that ∀t ∈ Ik,min(fi, fj) ∈ R. The cases ∀t ∈ Ik,min(fi, fj) = +∞
and ∀t ∈ Ik,min(fi, fj) = −∞ are impossible since fi and fj are resp. (ρi,
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σi)-affine and (ρj , σj)-affine on Ik. So, for some ρi,j , σi,j ∈ Q, we know that
min(fi, fj) is (ρi,j , σi,j)-affine on Ik.

Then, let’s do a disjunction on the order between ρi and ρj . First assume
that ρi = ρj . We know that F (t0) = fi(t0) 6 fj(t0), and so σi 6 σj . This case
is concluded with compatibility of addition.

t
x t0 t1ck ck+1

ρi

ρj

(a) ρi < ρj

t
xck ck+1t0t1

ρi

ρj

(b) ρj < ρi

Fig. 6: Illustration of impossible cases of x and ck

Then assume that ρi < ρj . Define a point x
4
= ck +

σi−σj

ρj−ρi such that fi(x) =

fj(x). An illustration is given in Figure 6a.
From fi(t0) 6 fj(t0), we have:

ρi(t0 − ck) + σi 6 ρj(t0 − ck) + σj =⇒ σi − σj 6 (ρj − ρi)(t0 − ck)

=⇒ x 6 t0 since ρi < ρj

Let’s define a point t1
4
= t0+ck+1

2 . By definition we have t0 6 t1 and with
x 6 t0, we finally obtain x 6 t1.

x 6 t1 ⇔ ck +
σi − σj
ρj − ρi

6 t1

=⇒ σi − σj 6 (t1 − ck)(ρj − ρi)
=⇒ fi(t1) 6 fj(t1)

=⇒ fi(t1) = min(fi, fj)(t1)

Knowing that fi(t0) = min(fi, fj)(t0), we can establish this equation system{
ρi(t0 − ck) + σi = ρi,j(t0 − ck) + σi,j

ρi(t1 − ck) + σi = ρi,j(t1 − ck) + σi,j

We subtract the first line to the second to obtain

ρi(t1 − t0) = ρi,j(t1 − t0)
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and so ρi = ρi,j since t1 6= t0. We apply this results to the first or the second
line to obtain σi = σi,j . We can conclude that fi = fi ∧ fj on Ik and fi 6 fj on
Ik.

Now assume that ρj < ρi. Define a point x as we did previously such that
ρi(x− ck) + σi = ρj(x− ck) + σj , illustrated in Figure 6b.

From fi(t0) 6 fj(t0), we have

ρi(t0 − ck) + σi 6 ρj(t0 − ck) + σj =⇒ (ρi − ρj)(t0 − ck) 6 σj − σi
=⇒ t0 6 x since ρj < ρi

Define a point t1
4
= ck+t0

2 . From t0 6 x and t1 6 t0, we have:

t1 6 x⇔ t1 6 ck +
σj − σi
ρi − ρj

=⇒ fi(t1) 6 fj(t1)

=⇒ fi(t1) = fi(t1) ∧ fj(t1)

Knowing that fi(t0) = (fi ∧ fj)(t0) on t0 and t1, we have this equation system:{
ρi(t0 − ck) + σi = ρi,j(t0 − ck) + σi,j

ρi(t1 − ck) + σi = ρi,j(t1 − ck) + σi,j

and it is concluded as we did previously with ρi = ρi,j , σi = σi,j and, in conclu-
sion, fi = min(fi, fj) on Ik and so fi 6 fj on Ik.

Proof (of Lemma 7, JS_of_n_min). It is a direct application of Lemmas 22 and
23.

Proof (of Lemma 8). Let t ∈ R+. To prove f<last(a)(t) = min
i<#a−1

((f ↓ a)i) (t),

first assume that t /∈ a. Then, we have last (a) < t so f<last(a)(t) = +∞ and, for
all i, t /∈ [ai; ai+1[ thus (f ↓ a)i = +∞ and concludes this case.

Then assume that t < last (t). So, it exists i such that t ∈ [ai; ai+1[. We
obviously have i > 0 since a is not empty. Thus, it remains to prove that:

f<last(a)(t) = min

(
(f ↓ a)i (t), min

j 6=i,j<#a−1

(
(f ↓ a)j

)
(t)

)
(27)

Let j < #a − 1. Since j 6= i and t ∈ [ai; ai+1[, we have t /∈ [aj ; aj+1[ and so

min
j 6=i,j<#a−1

(
(f ↓ a)j

)
(t) = +∞. Finally, f<last(a)(t) = f(t) and (f ↓ a)i (t) =

f(t) by Definition 10 and 11 respectively.

Lemma 24 (Cutting Below Convolution, cutting_below_conv ). Let f, f ′ ∈
F and l ∈ Q+. We have (f ∗ f ′)<l =

(
f<l ∗ f ′<l

)
<l

.

Proof. Prove that for t ∈ Q+, (f ∗ f ′)<l(t) =
(
f<l ∗ f ′<l

)
<l

(t). It is verified by
Definition 11 for l 6 t. So, we have t < l. So, let’s prove that:

inf
u>0,u6t

{f(u) + f ′(t− u)} = inf
u>0,u6t

{f<l(u) + f ′<l(t− u)}
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which is a alternative definition of convolution. It is verified since u > 0 and so
t− u < l.

Proof (of Lemma 9). Using Lemma 24 and 8, we have

(f ∗ f ′)<l =
(

min
i

((f ↓ a)i) ∗min
i

((f ′ ↓ a′)i)
)
<l

(28)

and the proof is concluded since ∗ is distributive over min.

D Finite Equality Criteria on UPP-PA

Lemma 25 (Inter JS Equality criterion on PA, PA_equality_on_segment ).
Let f and f ′ be two PA functions. Let a and a′ be JS such that a ∈ JS(f),

a′ ∈ JS(f ′) and last (a) = last (a′). We define c
4
= a∪ a′. For all i < #c− 1, we

have:

eq segment(c, i, f, f ′) =⇒ (∀t ∈ [ci; ci+1[ , f(t) = f ′(t))

Proof. This follows from Definition 12.

Lemma 26 (UPP_same_d_c_equality ). For all f, f ′ ∈ FUPP with initial segment

T and T ′ respectively, the same period d and the same increment c, let θ
4
=

max{T, T ′}. If for all t ∈ [0; θ + d[, f(t) = f ′(t), then we have

∀t, f(t) = f ′(t).

Proof. Let f and f ′ be two UPP function with initial segment T and T ′ re-
spectively, the same period d > 0 and the same increment c. Let’s define

θ
4
= max{T, T ′}. Let’s assume that for all t ∈ [0; θ + d[, f(t) = f ′(t). Let’s

prove that for all t ∈ R+, we have f(t) = f ′(t). Let t ∈ R+.
If t < θ, then by hypothesis, f(t) = g(t).
If t > θ, then let’s define k ∈ N a natural number such that:

k
4
=

⌊
t− θ
d

⌋
Then, because ∀a ∈ R, bac 6 a < bac+ 1, we have k 6 t−θ

d < k+ 1. Since 0 < d,
we have kd 6 t− θ < (k + 1)d and finally

θ 6 t− kd < θ + d

Thus, according to Lemma 15:

f(t) = f((t− kd) + kd) = f(t− kd) + kc

= f ′(t− kd) + kc = f ′((t− kd) + kd) = f ′(t).
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Lemma 27 (UPP_equality). For all f, f ′ ∈ FUPP with initial segment T and

T ′, period d and d′ and increment c and c′ respectively. Let θ
4
= max{T, T ′} and

δ
4
= lcmQ?

+
(d, d′). If c

d = c′

d′ and for all t ∈ [0; θ + δ[, f(t) = f ′(t) then we have

∀t, f(t) = f ′(t).

Proof. Using Lemmas 15 and 2, f and f ′ are UPP with same period δ and incre-
ment c

d (lcmQ?
+

(d, d′)) = c′

d′ (lcmQ?
+

(d, d′)). The conclusion follows from Lemma 26.

Lemma 28 (Finite Equality Criterion on UPP − PA, UPP_PA_equality).
For all f, f ′ ∈ FUPP-PA with initial segment T and T ′, period d and d′ and

increment c and c′ respectively, we define θ
4
= max{T, T ′}, δ 4

= lcmQ?
+

(d, d′),

l
4
= θ + δ and u

4
= a ∪ a′. Assume a ∈ JS(f) and a′ ∈ JS(f ′) such that

last (a) = last (a′) = l. If c
d = c′

d′ , then:

∀i 6 prev (a ∪ a′, θ + δ) , eq segment(a ∪ a′, i, f, f ′)

is a sufficient condition for f = f ′.

Proof. It is a direct application of Lemmas 27 and 25. Note that a and a′ can
be found using Lemma 1.

Proof (of Proposition 1, UPP_PA_n_add). From Lemma 3,
∑
i fi is UPP from

maxi{Ti} with period lcmQ?
+

i

(di) and increment lcmQ?
+

i

(di)
(∑

i
ci
di

)
. From Lemma 6,⋃

i ai ∈ JS (
∑
i fi). The conclusion follows from Lemma 28.

Proof (of Proposition 2, UPP_PA_n_min). From Lemma 4, mini(fi) is UPP from T̃
with period d̃ and increment c̃. From Lemma 7, u ∈ JS(mini(fi)). The conclusion
follows from Lemma 28.

Proof (of Proposition 3, UPP_PA_conv). From Lemma 5, f ∗ f ′ is UPP from T̃
with period d̃ and increment c̃. From Lemma 9, u ∈ JS(f ∗ f ′). The conclusion
follows from Lemma 28.
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