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A NEURAL NETWORK FOR SEMIGROUPS

EDOUARD BALZIN, BORIS SHMINKE

Abstract. Tasks like image reconstruction in computer vision,
matrix completion in recommender systems and link prediction in
graph theory, are well studied in machine learning literature. In
this work, we apply a denoising autoencoder-based neural network
architecture to the task of completing partial multiplication (Cay-
ley) tables of finite semigroups. We suggest a novel loss function for
that task based on the algebraic nature of the semigroup data. We
also provide a software package for conducting experiments similar
to those carried out in this work. Our experiments showed that
with only about 10% of the available data, it is possible to build a
model capable of reconstructing a full Cayley from only half of it
in about 80% of cases.
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1. Introduction

Semigroups. A semigroup structure is one of the basic algebraic struc-
tures that one can put on a set S. It consists of a binary operation
S × S → S, (x, y) 7→ x · y that satisfies the associativity identity: that
is, for all x, y, z in S, one requires x · (y · z) = (x · y) · z. The exam-
ples of such structures are many: groups and monoids, for example,
come equipped with associative binary operations. For another exam-
ple, given a (small) category C, denote MorC the set of all morphisms,
take S = MorC∪{0} and put f ·g = f ◦g if the composition is well de-
fined and 0 otherwise. If C has more than one object, the result will be
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Table 1. Number of equivalence classes of semigroups
up to isomorphism or anti-isomorphism [1].

Cardinality # semigroups up to equivalence
1 1
2 4
3 18
4 126
5 1,160
6 15,973
7 836,021
8 1,843,120,128
9 52,989,400,714,478

a semigroup that does not come from a monoid. Semigroup examples
also appear from automata.

If we restrict our attention to finite semigroups, the existing classi-
fication tables [1] are very counter-intuitive to any mathematician fa-
miliar with finite groups. Semigroups, classified up to an isomorphism
or anti-isomorphism (Definition 2.3), exist in abundance, as per Table
1 (to compare, there is only one finite group structure on a set of seven
elements). While certain results of classification exist, the most known
one being the Krohn–Rhodes decomposition theory [5], understanding
semigroups of cardinality (or order) up to 20 remains a challenging
task.

1.1. Machine learning of semigroups. This paper is our first at-
tempt to see if one can approach questions about semigroups using the
methods of machine learning. As a first question, we wanted to see
how we could explain what a semigroup is to a neural network, so that
the latter captures the algebraic character of the semigroup structure.

Given a finite set S, we can order its elements and present any binary
operation m : S × S → S as a multiplication table. A couple of
examples is given in Table 2. Such tables can be transformed into
a neural network input if viewed as tensors in (Rn)3, where n is the
cardinality of S. Such a tensor denoted (Mijk) takes values Mijk = 1
if the i’th element times the j’th element equals the k’th element, and
Mijk = 0 in all other cases.
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Table 2. Multiplication tables of Klein 4-group Z/2Z×
Z/2Z and of a 3-nilpotent semigroup on 5 elements.

1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 2 1 2
4 4 3 4 1

1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 1 2
4 1 1 1 2 1
5 1 1 2 1 2

The lack of classification of semigroups of higher order led us to
imagine, then, the following question: can one start with a multiplica-
tion table that is partially filled, and ask a neural network provide a
completion? This can be formulated as an autoencoder [2] problem on
(Rn)3.

In this paper, we have chosen n = 5. As noted above, semigroups
of cardinality 5 are already classified, and while our goal would be to
move into higher cardinalities, it is still of use to study a known list of
semigroups to propose a kind of neural network that is useful for under-
standing semigroup structure. Unlike in the problem of solving sudoku
[4] (also a problem of table completion that inspired some reflection
behind this project), we cannot rely on image-processing techniques
and related convolutional neural networks as they do not adequately
measure the structure of semigroups. The analysis of n = 5 case helped
us to formulate the problem and design the architecture that worked.

The 1160 equivalence classes of n = 5 correspond (as can be seen
from [1, 9]) to 183732 different tables, which is provides a sufficient
amount of data for our purposes. For the input of the autoencoder
in this case, both for training and testing, we take a table that is
produced from a semigroup by forgetting some multiplications, which
corresponds to “erasing” certain cells in the multiplication table. The
output tensor, the value of the autoencoder on such a partially filled
table, would have to correspond to a) a table that b) is associative.
In the context of supervised learning, the condition b) can be enforced
with different choices of loss functions. One choice would simply pe-
nalise the difference between the reconstructed table and the original
one. This choice is unnatural mathematically as tables can have non-
unique completions (Table 3) and also relies on knowing the resulting
semigroup.
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Table 3. Different semigroups giving the same partially
filled table.

1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 1 2
4 1 1 1 2 1
5 1 1 2 1 2

⇒

1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1
4 1 1
5 1 1

⇐

1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 2 2
4 1 1 2 2 2
5 1 1 2 2 2

Another, called the associator loss (3.1 below), translates the asso-
ciativity of semigroup multiplication into a certain probabilistic func-
tion on the neural network. This choice accepts associative answers
different from the original table and, interestingly, does not require
one to actually present a semigroup that completes the partially filled
table.

1.2. Acknowledgements. The authors of this paper are very grateful
to Jordan Emme, Wesley Fussner and Carlos Simpson for their remarks.
This work has been supported by the French government, through the
3IA Côte d’Azur Investments in the Future project managed by the
National Research Agency (ANR) with the reference number ANR-19-
P3IA-0002.

2. Basics of semigroups

Definition 2.1. A semigroup is a set S together with a binary opera-
tion · : S × S → S, (a, b) 7→ a · b, that is associative: for all a, b, c in S,
one has a · (b · c) = (a · b) · c.

One could thus say that a semigroup is an associative magma, or
a non-unital monoid. Various monoids and groups provide examples
of semigroups if we forget the extra properties (existence of units, in-
verses). In this paper, we only consider the case when the set S is
finite. We shall write (S, ·) to denote a semigroup or simply S when
this does not lead to confusion.

Notation 2.2. Let (S, ·) be a semigroup. Its opposite semigroup will be
denoted Sop = (S, ·op). Its underlying set is S and the multiplication
operation ·op is defined as a ·op b := b · a.
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Definition 2.3. A homomorphism, or simply a morphism of semi-
groups (S, ·) → (T, ∗) is a map of sets f : S → T such that for all
a, b ∈ S, one has f(a) ∗ f(b) = f(a · b). Two semigroups S, T are called
equivalent if there is an isomorphism between S and T or between S
and T op (the latter meaning that S and T are anti-isomorphic).

A semigroup map f is an isomorphism if and only if it is a bijection
of the underlying sets.

Just like with finite groups, the multiplication of finite semigroups
can be described in terms of a multiplication table. Our work deals
with those tables viewed as certain tensors that can be obtained as
follows.

Definition 2.4. Let (S, ·) be a semigroup and k a field (one can assume
k = R for the purposes of machine learning). Its associated semigroup
algebra k[S] is a non-unital k-algebra defined as follows. As a vector
space, k[S] =∼= k|S| is the free vector space on S, and the multiplication
operation is extended from · by k-bilinearity: (

∑
i λiai)(

∑
j µjbj) :=∑

i,j λiµj(ai · bj).

Any semigroup morphism S → T induces a non-unital algebra mor-
phism k[S]→ k[T ], and one has k[Sop] = k[S]op.

The multiplication operation, being bilinear, can be viewed as a map
m : k[S] ⊗ k[S] → k[S]. When S is finite, the semigroup algebra
k[S] is finite-dimensional as a vector space, and so we can view the
multiplication as a tensor m ∈ (k[S]∗)⊗2 ⊗ k[S].

From now on, assume that S is finite of cardinality n. If one denotes
S = {ei}ni=1, then the ei and their dual linear forms fj form bases of k[S]
and k[S]∗, respectively. The multiplication m can then be expressed as

m =
n∑

i,j,k=1

Mijk ek ⊗ fi ⊗ fj,

where Mijk is equal to 1 if ei · ej = ek and is 0 otherwise.

Definition 2.5. For a finite semigroup S, the coefficients (Mijk) are
called the structure constants of S. In this work, we shall also refer to
(Mijk) as the Cayley table of S.

Remark 2.6. If instead of k[S] we considered a general non-unital k-
algebra A that is finite dimensional as a k-vector space, with a basis
that one can also denote ei, the coefficientsMijk obtainable in the same
way from the multiplication A⊗ A → A would not consist only of 0’s
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and 1’s. The associativity condition for the basis vectors, (ei · ej) · ek =
ei · (ej · ek) gives the following equation on the coefficients:

(2.1 )
∑
m

(MijmMmkl −MimlMjkm) = 0.

A typical presentation of Mijk is usually done in a table format,
by putting ek or simply its index k in the ij-cell (as done in Table 2
above). One can imagine such a multiplication table being partially
filled, with some multiplications ei · ej not specified, an idea that we
formalise below.

3. Experimental setup

3.1. Data representation. Given a set S = {ei}ni=1, consider a func-
tion F : S × S × S → [0, 1]. We would like to treat this function as
a probability distribution for the potential multiplication: P(ei · ej =
ek) = F (ei, ej, ek). For this to make sense, the function F must satisfy
the following condition:

∑
k F (ei, ej, ek) = 1 for all possible choices of

i and j.

Definition 3.1. Call such a function F a partial Cayley table. A partial
Cayley table F is filled at 1 ≤ i, j ≤ n if there exists k such that
F (i, j, k) := F (ei, ej, ek) = 1.

Any semigroup structure on S provides us with the partial Cayley
table F (i, j, k) = Mijk that is actually filled at all i, j. Our definition
does not guarantee however that a partial Cayley table that is filled
at all i, j corresponds to an associative multiplication. For this reason,
define:

Definition 3.2. A partial Cayley table F : S×S×S → [0, 1] is solvable
if there exists a semigroup structure on S, with structure constants
(Mijk), such that Mijk = F (i, j, k) for all i, j at which F is filled.

As noted in the introduction, a solvable F can have multiple semi-
group solutions.

We can store F (i, j, k) as a tensor of one axis of dimension n3 (in [6]
parlance), e.g. using a lexicographical order of triples of indices (i, j, k).
These tensors are used as the main method of data representation in
this work.

Assume now that for a set S we specified only some multiplications
for a semigroup structure. This allows us to partially define the func-
tion F . If the result of multiplication ei · ej is not specified, we can
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Figure 1. Translating a multiplication table into as a
partially filled F : {0, 1, 2, 3}3 → [0, 1].

extend by employing a uniform distribution in such cases, i.e. assume
in that case that F (i, j, k) = 1

n
for all k (Figure 1).

3.2. Network architecture. One can consider a partial Cayley table
as a result of distortion of a corresponding fully filled table. Similarly,
arbitrary probabilistic tensors can be viewed as noisy counterparts of
zero-or-one tensors. A well-known way to get rid of distortions and
restore the original of an image is by using a denoising autoencoder [2].

For a scheme of the autoencoder architecture used in this paper see
Figure 2. Besides adding noise to its input, this network also cleans
its output of guesses of the cells which were not masked during noise
addition; these cells correspond to known fillings of the Cayley table.
In other words, if the input was filled at i, j so that ei · ej = el and the
output F (i, j, k) during the forward pass is a float between 0 and 1, it
then redefined as F (i, j, k) := 0 or 1 corresponding to k 6= l or k = l.

Another particular thing to note is that usually we have encoders
which move from higher dimensions to lower ones. Here we have input
and output both of dimension n3 and the hidden layers all of dimension
n5.

For more details we invite the reader to consult the source code
available at [9].

3.3. Loss functions. If x is an input for an autoencoder and y is its
output, we can define its loss function L (x, y) in a variety of ways.
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Figure 2. Autoencoder architecture used to generate
Cayley tables. The arrow from the input with added
noise to the “leave only denoised” layer corresponds to
restoring the values of initially known cells.

Since in our case values of x and y are probabilities of a joint distri-
butions, it could be a good idea to use some measure of dissimilarity
between these two distributions, e.g. their Kullback-Leibler divergence:

KL (x, y) :=
n∑

i=1

xi log
xi
yi
.

Note that this choice of a loss function does not explicitly enforce any
notion of associativity. The problem with this function is that after
applying corruption to x it can often be recovered as y non-uniquely,
yet the loss function (x, y) 7→ KL(x, y) will prefer y = x to any other
value of y, even if that value is associative.
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Another choice of a loss function is what we call the associator loss.
First, remember that y corresponds to the probability distribution
yijk = P {ei · ej = ek}. Then we can calculate probabilities of double
multiplications:

P {(ei · ej) · ek = el} =
n∑

m=1

P {em · ek = el|ei · ej = em}P {ei · ej = em}

=
n∑

m=1

ymklyijm.

Now we can define the loss function as a KL-divergence between the
distributions P {(ei · ej) · ek = el} and P {ei · (ej · ek) = el}:

(3.1 ) AL (x, y) := KL

(
n∑

m=1

yijmymkl,
n∑

m=1

yimlyjkm

)
.

This loss does not depend on x but only on probabilistic associativity
of y, and indeed it corresponds to interpreting in probabilistic terms
the coefficient equation (2.1 ) of Remark 2.6.

3.4. Noise. In our case, the noise which autoencoder is treating cor-
responds to the absence of some number of cells in a Cayley table. In
our experiments, both for training and testing, we take tables of semi-
groups of cardinality 5. Given any table F : S × S × S → R we then
add noise by re-setting F (i, j, k) = 1

5
for i, j corresponding to randomly

chosen 50% of cells of the original Cayley table.

3.5. Training and testing datasets. For this work we use an exten-
sive database of finite semigroups up to eight elements from [1]. If we
fix the number of elements that is less or equal to 8, we get the number
of classes of equivalence of semigroups (Definition 2.3) as well as their
presentation in [1]. In this paper, we used semigroups of 5 elements
for experiments: as mentioned, this corresponds to 1160 classes and
183732 potential tables.

In detail, we proceeded by dividing this set of 1160 equivalence
classes into three subsets: training, validation, and testing in propor-
tion 10/10/80. We then produced all Cayley tables of isomorphic and
anti-isomorphic semigroups corresponding to these classes of equiva-
lence, a procedure that one can view as a form of data augmentation.
Finally, we applied the noise as described in the previous section, but
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only to validation and testing sets. The training set gets its noise dur-
ing the training process, and 50% of cells to be masked are chosen at
random for every batch, and are not fixed in advance for all the training
process. Note that all partial tables appearing here are solvable.

3.6. Quality metrics. Since we train autoencoders, it is natural to
use the following metrics:

Definition 3.3. The guess rate is the percentage of outputs of a net-
work which coincide with their inputs before applying noise. The as-
sociative rate is the percentage of outputs of a network which satisfy
the assoiciativity condition.

The associative rate appears to be a better quality metric, since we
are interested not in exact reconstruction of inputs but in generating
associative tables. A half-filled table can be completed to different
semigroups, but the guess rate will only accept the original table for
its score.

3.7. Training process. We trained all the networks using the Pytorch
[6] framework, using an Adam optimizer [3] with the learning rate set
to 0.0001. The training was done for a maximum of 1000 epochs with
an early stopping applied if the loss did not go down for ten consecutive
epochs. The training was done on [7] cloud resources and took several
hours in total. We performed batch normalisation on each layer and
used random network parameter initialisation.

4. Results and discussion

First, we note that teaching an autoencoder to simply reconstruct
its input without knowing anything about associativity proved to be
not only unnatural but in fact bringing poorer results. Even in terms
of its main goal – finding the original table from the input with added
noise – the KL divergence loss is less adequate than the associator loss
(AL): see Table 4 for exact numbers. One way to interpret the KL-AL
guess ratio difference might be in observing that the AL network does
better at the associativity task overall, in particular it does better at
reconstructing the original table.

The AL network results are rather promising. We managed to pro-
duce a full associative table given only a half of filled cells as an input
in 82% of cases. That is even more impressive given that we relied
only on 10% of all available tables from the database, thus managing
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Table 4. Comparison of impacts of a loss function
choice. The associator loss network fares better not only
at producing associative tables, but also at guessing the
original table to which we applied noise.

Loss function used Guess rate Associative rate
KL divergence 0.0977 0.5838
Probabilistic associator loss 0.1453 0.8212

Table 5. Comparison of impacts of training set choice
on guess and associative rates (AL network).

Metric min average max std deviation
Guess rate 0.1362 0.13979 0.1463 0.0036
Associative rate 0.7878 0.8181 0.8468 0.0187

to generalise to 80% (which went to the test set). Our results remain
dependant on the choice of these 10% tables for a training set, with
deviation representing about 2 percent of the loss (see Table 5 for the
details).

These findings make us believe that an AL-type network could also
be successfully used for higher cardinalities. One could view the as-
sociator loss as the suitable "architectural adaptation" to the case of
semigroups: instead of convolutional layers, we are dealing with alge-
braic equations written into the loss function, in probabilistic terms.
Such a neural network can work on higher-dimensional data if adapted
properly. In fact, it can even accept as training set partial tables that
are known to be solvable; the latter can be verified with various model
searchers such as Mace4/Prover9 [8].

And if one is able to produce a train dataset in higher cardinalities,
the trained network can be viewed as a certain generator, that produces
full tables out of sets of identities corresponding to known cells in the
input. We do not know if all possible tables can be produced in such a
way, and verifying it for lower cardinalities is one of our future goals.
For the higher cardinality, one could ask if such a neural network could
produce any semigroup in its image if fed with random input. Finally,
one can imagine generalisations of such neural networks to other classes
of algebraic structures.
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