
HAL Id: hal-03175157
https://hal.science/hal-03175157v4

Preprint submitted on 29 Nov 2021 (v4), last revised 7 Sep 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Induced betweenness in order-theoretic trees
Bruno Courcelle

To cite this version:

Bruno Courcelle. Induced betweenness in order-theoretic trees. 2021. �hal-03175157v4�

https://hal.science/hal-03175157v4
https://hal.archives-ouvertes.fr

Induced betweenness in order-theoretic trees

Bruno Courcelle
LaBRI, CNRS, Bordeaux University

courcell@labri.fr

November 30, 2021

Abstract : Betweenness is an abstract topological notion that has
been studied for a long time in different structures. Informally, the
ternary relation B(x, y, z) states that an element y is between x
and z, in a sense that depends on the considered structure. In a
partially ordered set (N,≤), B(x, y, z) :⇐⇒ x < y < z ∨ z < y <
x. The corresponding betweenness structure is (N,B). The class of
betweenness structures of linear orders is first-order definable; in
other words, it is axiomatized by a first-order sentence. That of
partial orders is monadic second-order definable.

An order-theoretic tree is a partial order (N,≤) such that, the set
of elements larger that any element is linearly ordered, and any
two elements have an upper-bound. A rooted tree T ordered by the
ancestor relation is an order-theoretic tree. In an order-theoretic
tree, we define B(x, y, z) to mean that x < y < z or z < y < x or
x < y ≤ x t z or z < y ≤ x t z provided the least upper-bound
x t z of x and z is defined when x and z are incomparable. In
a previous article, we established that the corresponding class BO
of betweenness structures is monadic second-order definable. We
left as a conjecture that the class IBO of induced substructures of
the structures in BO is monadic second-order definable. We prove
this conjecture. Our proof uses partitioned probe cographs (related to
cographs), and their six finite minimal excluded induced subgraphs
called their bounds. This proof links two apparently unrelated topics:
cographs and order-theoretic trees.

However, the class IBO has finitely many bounds, i.e., minimal ex-
cluded finite induced substructures. Hence it is first-order definable.
The proof of finiteness uses well-quasi-orders and does not provide
the finite list of bounds. Hence, the associated first-order defining
sentence is not yet known.

Introduction

1

Betweenness is an abstract topological notion that has been studied for a
long time in different structures [1, 2, 16, 19, 21, 22]. Informally, the ternary
relation of betweenness B(x, y, z) states that an element y is between x and z
in a sense that depends on the considered structure. In a partially ordered set
(N,≤), B(x, y, z) :⇐⇒ x < y < z ∨ z < y < x. The corresponding betweenness
structure is (N,B). The class of betweenness structures of linear orders is first-
order definable, i.e., is axiomatized by a single first-order sentence; that of
partial orders is monadic second-order definable [8, 10, 18].

The betweenness structures of certain finite graphs have been studied in
[1, 2] and those of trees of various kinds in [4, 6, 7].

An order-theoretic forest (an O-forest in short) is a partial order T = (N,≤)
such that {x ∈ N | x ≥ y} is linearly ordered for any y, a notion studied by
Fräıssé [13] (under the name of tree). It is an order-theoretic tree (an O-tree
in short) if any two elements have an upper-bound. A rooted tree ordered by
the ancestor relation is an O-tree. The ordered set of rational numbers is an O-
tree in which no node has an immediate ancestor. In previous articles, we used
O-trees to define the modular decomposition and the rank-width of countable
graphs [4, 9].

The betweenness structure of an O-forest T = (N,≤) is (N,BT) such that

BT (x, y, z) :⇐⇒ x 6= y 6= z 6= x∧ [(x < y ≤ xt z)∨ (z < y ≤ xt z)]

where xtz denotes the least upper-bound of x and z. If xtz does not exist,
there is no triple (x, y, z) in BT . We denote by BO this class of structures. An
induced betweenness is a induced substructure of such (N,BT) where T can be,
equivalently, an O-tree.

In [4, 7], we have axiomatized by monadic second-order sentences several
classes of betweenness structures related to O-trees, in particular BO. We con-
jectured that the class IBO of induced betweenness structures in O-trees is
monadic second-order definable too. In the present article, we prove a slight
weakening of this conjecture by allowing the defining monadic second-order
sentence to use the finiteness set predicate Fin(X), expressing that a set X
is finite. Furthermore, as we explain below, this class is first-order definable,
however, the proof does not construct the defining sentence.

The proof of monadic second-order definability uses partitioned probe cographs.
They are related as follows to cographs, the graphs without induced paths P4.
A probe cograph is obtained from a cograph by choosing a subset L of its ver-
tex set and by removing the edges whose two ends are in L. In a partitioned
probe cograph, we keep track of L by labelling its vertices. A probe cograph is
obtained from a partitioned probe cograph by forgetting such labels. The path
P5 is a probe cograph. The path P6 is not.

The class of partitioned probe cographs is hereditary, i.e., is closed under
taking induced subgraphs. A bound of such a class C is a minimal induced
subgraph that is not in C, a terminology used by Pouzet [20]. Partitioned probe
cographs have six bounds, determined in [17].

The class of probe cographs is also hereditary. As it is 2-well-quasi-ordered
[11, 20], it has finitely many bounds, among which the path P6. We exhibit a

2

few others, without proving that the list is complete. This list is not completely
known. We define an algorithm, based on monadic second-order logic and de-
compositions of the graphs as tree-like unions of complete bipartite graphs that
could compute them. Unfortunately, this algorithm is intractable.

Our proof links two apparently unrelated notions: betweenness in O-trees
and a variant of cographs. To give an intuition about this link, we observe that
the cocomparability graph of an O-tree is a graph without induced P4, hence,
is a possibly infinite cograph (Proposition 3.5).

Finally, we use a result by Pouzet [20] to prove that the class IBO of ternary
structures has finitely many bounds, i.e., minimal excluded induced finite sub-
structures, hence is first-order definable. This proof uses well-quasi-orders of la-
belled ternary structures, and does not provide the finite list of bounds. Hence,
the associated first-order defining sentence is not known. We have no algorithm,
even intractable (as for probe cographs), to determine the bounds of IBO. We
explain this fact by exhibiting a property of clique-width that does not extend
from graphs to ternary structures, as we would need.

To summarize, we consider the following hereditary classes of graphs or
ternary structures having finitely many bounds:

cographs, the unique bound is P4;
partitioned probe cographs, they have six known bounds;
probe cographs, the finite set is unknown but computable;
IBO, the finite set is unknown and we have no algorithm, even intractable,

to compute it.

Summary: Section 1 reviews partial orders, graphs, clique-width, trees
and logic. Section 2 defines and studies probe cographs. Section 3 defines order-
theoretic trees. Section 4 proves the two logical characterizations of IBO. Sec-
tion 5 exhibits some bounds of the class of probe cographs. Section 6 states and
discusses three open problems.

Acknowledgement: I thank Maurice Pouzet for fruitful email exchanges,
from which I obtained the FO-definability of the class IBO, by a proof based
on one of his works. I thank the referees for many useful comments, especially
regarding references.

1 Definitions and notation

In this article, all graphs, trees, partial orders and, more generally, all relational
structures are countable, which means finite or countably infinite1. We denote
by [k] the set {1, ..., k}. In some cases, we denote by A]B the union of two sets
A and B to stress that they are disjoint.

1The restriction to countable structures makes it possible to define effective descriptions
and to obtain computability results. For example, it is decidable whether two regular join-trees
are isomorphic [5], Corollary 3.31.

3

Partial orders
For a partial order ≤,⊆, we denote respectively by <,⊂, the corresponding

strict partial order. We write x⊥y if x and y are incomparable for the considered
order.

Let P = (V,≤) be a partial order. For X,Y ⊆ V , the notation X < Y means
that x < y for every x ∈ X and y ∈ Y . We write X < y instead of X < {y}
and similarly for x < Y . We use a similar notation for ≤ and ⊥. The least
upper-bound of x and y is denoted by x t y if it exists and is then called their
join.

If X ⊆ V , then we define N≤(X) := {y ∈ V | y ≤ X} and similarly for N<.
We have N≤(X) ≤ X and N≤(∅) = V . We define L≥(X) := {y ∈ V | y ≥ X},
and similarly L>(X). We write L≥(x) (resp. L≥(x, y)) if X = {x} (resp. X =
{x, y}) and similarly for L>.

An embedding of a partial order P = (N,≤) into another one P ′ = (N ′,≤′)
is an injective mapping h : N → N ′ such that h(x) ≤′ h(y) if and only if x ≤ y.
Hence it is monotone (or isotone). It is a join-embedding if h(x)t′h(y) = h(xty)
whenever x and y have a join in P . We write P ⊆j P

′ if N ⊆ N ′ and the
inclusion mapping is a join-embedding. If P and P ′ are labelled, then the labels
are preserved in embeddings.

Graphs
Graphs are undirected and simple, which means without loops and parallel

(multiple) edges. We denote respectively by Pn, Cn,Kn a path, a cycle and a
clique with n vertices.

The notation u− v designates an edge with ends u and v. As a property, it
means also ”there is an edge between u and v”. We say then that u and v are
adjacent or are neighbours. The notation u− v − w − x shows the vertices and
edges of a path of 4 vertices. The notation u− v−w− x− u shows the vertices
and edges of a 4-cycle.

Induced subgraph inclusion is denoted by ⊆i and G[X] is the induced sub-
graph of G = (V,E) with vertex set X ⊆ V . Then, G− x := G[V − {x}].

We denote by G ⊕ H the union of disjoint graphs G and H. We define
G⊗H as G⊕H augmented with edges between any vertex of G and any vertex
of H. We can use the notation G1 ⊕ G2 ⊕ ... ⊕ Gn because the operation ⊕ is
associative, and similarly for ⊗. We can also use the notation ⊕(G1, G2, ..., Vn)
or ⊗(G1, G2, ..., Gn) if we consider t as a rooted tree whose internal vertices are
labelled by ⊕ or ⊗.

The diameter of a connected graph is the maximal distance between two
vertices, i.e., the minimum number of edges of a path between them.

By a class of graphs, we mean a set closed under isomorphism.

Rooted trees
In Graph Theory, a tree is a connected graph without cycles. It is convenient

to call nodes the vertices of a tree because in some proofs, we will discuss
simultaneously a graph and an associated tree. A rooted tree is a triple T =
(NT , ET , r) such that (NT , ET) is a tree and r ∈ N is a distinguished node

4

called its root. This tree can be defined from the partial order (NT ,≤T) such
that x ≤T y if and only if y is on the path from the root r to x. In most cases,
we will handle a rooted tree T as a partial order (NT ,≤T). In Section 3, we will
generalize rooted trees into order-theoretical trees, defined as partial orders, as
done by Fräıssé [13].

A leaf is a minimal node and LT denotes the set of leaves. The other nodes
are internal.

If x <T y, then y is an ancestor of x. A node x is a son of y if x <T y and
there is no node z such that x <T z <T y. The degree of a node is the number
of its sons. A node of degree 0 is thus a leaf.

The subtree of a rooted tree T = (N,≤) issued from a node u is T/u :=
(N≤(u),≤′) where ≤′ is the restriction of ≤ to N≤(u).

A rooted forest F is the union of pairwise disjoint rooted trees and RtF
denotes the set of roots of its trees.

A finite rooted tree T can be denoted linearly by T̃ defined as follows (which
is useful in inductive proofs) :

if T is reduced to r, then T̃ := r,

if T has root r and subtrees T1, ..., Tp issued from the sons of the

root, then T̃ := r(T̃1, ..., T̃p).

Any permutation of the sequence T1, ..., Tp defines the same tree because
there is no defined order between the sons of a node.

Relational structures and logic
A relational structure is a tuple S = (D,R1, ..., Rp) where D is a set, its

domain and R1, ..., Rp are relations of fixed arity. The signature of S is the se-
quence of arities of the relations R1, ..., Rp. We will consider classes of structures
having a fixed signature.

If S is a relational structure with domain N and X ⊆ N , then S[X] denotes
the induced substructure with domain X, and ⊆i denotes an induced inclusion
of relational structures of same signature.

We will use structures (N,≤) to describe a partial order, a rooted tree or an
order-theoretic forest (defined in Section 3), (V, edg) to describe an undirected
graph with set V of vertices where edg(x, y) means that there is an edge between
x and y, and (N,B) for a betweenness structure (cf. Introduction and Section
4), where B is a ternary relation. Additional unary relations will formalize
labellings of the elements of N or V .

The isomorphism of relational structures is denoted by '. The isomorphism
class of a structure S is denoted by [S]'. A set of structures is called a class
if it is closed under isomorphism. We say that it is finite if the set of its
isomorphism classes is finite. A class C is hereditary if it is closed under taking
induced substructures.

Properties of structures (and of graphs) will be expressed by first-order (FO)
or monadic-second order (MSO) formulas and sentences. A sentence is a formula
without free variables. For an example, that a graph has no induced subgraph

5

isomorphic to a finite graph H is FO expressible. That a graph is not connected
is expressed in its representing structure (V, edg) by the following MSO-sentence:
∃X[(∃x.x ∈ X) ∧ (∃y.y /∈ X) ∧ (∀x, y.(x ∈ X ∧ y /∈ X =⇒ ¬edg(x, y))].
The book [10] contains a detailed study of monadic second-order logic.
We will consider classes of countable (which means ”finite or countably in-

finite”) structures. Such a class is MSO (or FO) definable if it is the class of
countable models of an MSO (or FO)-sentence. It is uFO definable, if it is de-
fined by a universal FO-sentence, i.e., of the form ∀x, y, z...ϕ(x, y, z, ...) where
ϕ(x, y, z, ...) is quantifier-free.

The finiteness of an arbitrary set X is not MSO expressible. However it is if
some linear order on X can be defined by MSO-formulas in the case where X
is part of the domain of a structure with a nonempty signature (see Example
1.6 in [7]). This is the case for an example if N is the set of nodes of a tree of
bounded degree. An MSOfin-sentence is an MSO-sentence where the finiteness
set predicate Fin(X) expressing that a set X is finite can be used.

These definitions and the next proposition apply to graphs represented by
structures (V, edg).

A class of structures C is finitary if a structure S belongs to C if and only if
all its finite induced substructures belong to C. This implies that C is hereditary
and characterized by its subclass Cfin of finite structures. If C is finitary and
contains an infinite structure, then Cfin is hereditary but not finitary.

If C is finitary, then its bounds, forming the class Bnd(C), are the finite
structures not in C whose proper induced substructures are all in C. Then C
is the class of structures having no induced substructure isomorphic to one in
Bnd(C).

A class may be hereditary while having infinitely many bounds. Consider for
an example the class of graphs without cycles whose vertices have all degree 2;
then each cycle Cn, where n ≥ 3 is a bound of this class.

A routine proof can establish the following.

Proposition 1.1 : A class of structures is uFO definable if and only if it is
finitary and has a finite set of bounds (where finiteness is up to isomorphism).
If it is so, its finite structures can be recognized in polynomial time.

2 Cographs and related notions

In this section all graphs (and trees) are finite.

Definition 2.1 : Cographs
(a) A graph is a cograph if and only if it can be generated from isolated ver-

tices by the operations ⊕ and ⊗, if and only if it has no induced path P4. There
are many other characterizations [23]. The family of cographs is hereditary. Its
only bound is P4.

(b) Cographs can thus be defined by algebraic terms over ⊕ and ⊗ and
nullary symbols denoting vertices. For example, the cycle a − b − c − d − a is

6

defined by the term (a ⊕ c) ⊗ (b ⊕ d). To define it up to isomorphism, that is,
without naming the vertices, we will use the term (• ⊕ •)⊗ (• ⊕ •).

(c) We can use the notation t1 ⊕ t2 ⊕ ... ⊕ tn because the operation ⊕ is
associative, and similarly for ⊗. We can also use the notation ⊕(t1, t2, ..., tn) or
⊕(t1, t2, ..., tn).

(d) The syntactic tree of a term defining a cograph G = (V,E) is called a
{⊕,⊗}-tree. It is a rooted tree whose set of leaves is V and whose internal nodes
are of degree at least 2 and labelled by ⊕ or ⊗.

Definition 2.2 : 2-graphs
A 2-graph is a graph (V,E) equipped with a bipartition V1]V2 of its vertex

set V . We will say that x ∈ Vi is an i-vertex. The type of a finite path x1−x2−
...− xn in a 2-graph is the word b1b2...bn over {1, 2} such that xj is a bj-vertex
for each j = 1, ..., n.

Definitions 2.3 : Probe cographs
(a) A partitioned probe cograph (a pp-cograph in short) is a 2-graph obtained

from a cograph (V,E) by choosing a bipartition V1] V2 of V and removing the
edges between its 1-vertices.

(b) A probe cograph (a p-cograph in short) is obtained from a pp-cograph by
forgetting the bipartition (and the corresponding labelling of its vertices by 1
or 2).

(c) A bipartition of a graph (or its corresponding vertex-labelling by 1 or 2)
is good if it makes it into a pp-cograph.

(d) Partitioned probe cographs can be defined by terms, similar to those
that define cographs, using the operation ⊕ and the operation ⊗ that we redefine
as follows for 2-graphs: G⊗H is G⊕H augmented with all edges between an
i-vertex of G and a j-vertex of H, provided i and j are not both 1. These two
operations do not modify the vertex labellings of G and H. They are associative.
A nullary symbol •i(x) defines x as an isolated i-vertex. �

The path P4 = a−b−c−d with labelling of type 1212 is a pp-cograph defined
by the term •1(c)⊗ ([•1(a)⊗•2(b)]⊕•2(d)). To define it up to isomorphism, we
can use the term •1⊗([•1⊗•2]⊕•2). Note that •1(x)⊗•1(y) and •1(x)⊕•1(y)
define the same 2-graph. See also Example 2.5(1). �

We review some results from [11, 17].

Proposition 2.4 : (1) The class of partitioned probe cographs is hereditary.
Its bounds are the paths of types 11, 2222, 1222, 2122 or 21212 and the 2-graph
Q defined as the path a− b− c− d− e of type 12221 augmented with the edge
b− d. Partitioned probe graphs can be recognized in linear time.

(2) The class of probe cographs is hereditary and has finitely many bounds.
Its graphs can be recognized in linear time.

An immediate consequence of interest for the present article is that pp-
cographs are uFO definable among 2-graphs. The defining sentence is effectively

7

constructed from the six known bounds. Probe cographs are so, but the corre-
sponding uFO sentence is not known, because the complete list of bounds is not
either. However, their bounds are definable by a known MSO-sentence obtained
from the FO-sentence that defines the pp-cographs. We will discuss these points
in Section 5.

Examples 2.5: (1) The path P4 is not a cograph. It has good labellings of
types 1212 and 1221. Its labellings of type 1222, 2122 and 2222 are not good.

(2) The labelled path P5 = a − b − c − d − e of type 12121 is a pp-cograph
defined by the term •1(c)⊗ [(•1(a)⊗•2(b))⊕ (•1(e)⊗•2(d)]. No other labelling
of it is good, which follows from Proposition 2.4(1).

(3) The path P6 = a − b − c − d − e − f is not a p-cograph. Assume it has
a good labelling. The induced path a − b − c − d − e must have type 12121
and f must have label 2. But then b − c − d − e − f has type 21212, which
is not possible by (1). It follows that a p-cograph has no induced P6. Hence,
a connected p-cograph cannot have diameter 5 or more because otherwise, it
would contain an induced path P6. Furthermore, P6 is a bound of p-cographs.

(4) A similar proof using (1) shows that the cycle C5 is a bound of p-cographs.
All other graphs having at most 5 vertices are p-cographs. Proposition 5.5 will
present some bounds for p-cographs. �

3 Order-theoretic trees

Definition 3.1: Order-theoretic forests and trees.
(a) An order-theoretic forest (an O-forest in short) is a partial order J =

(N,≤) such that, for each x ∈ N , called the set of nodes, the set L≥(x) := {y |
y ≥ x} is linearly ordered. An O-forest is an O-tree if every two nodes have an
upper-bound. An O-tree is a join-tree2 if every two nodes x and y have a least
upper-bound, denoted by x t y and also called their join. An O-tree may have
no largest node. Its largest node if it exists is called the root. If xt y and y t z
are defined, then so is x t z and it belongs to {x t y, y t z}.

(b) If u < w, then we say that w is an ancestor of u.
(c) A line in an O-forest (N,≤) is a subset L of N that is linearly ordered

and convex, i.e., is such that z ∈ L if x, y ∈ L and x < z < y.
(d) A leaf is a minimal node. It has degree 0; the set of leaves is denoted by

LJ .
(e) A node x has degree 1 if there is y < x such that every node z < x

is comparable with y. For finite forests, this is equivalent to the definition in
Section 1. If we delete some nodes of degree 1 of an O-forest J, we obtain a
(possibly empty) O-forest J ′ that join-embeds into J (cf. Section 1) because a
node of degree 1 is not the join of any two incomparable nodes. �

2We used join-trees to define the modular decomposition and the rank-width of countable
graphs [4, 9].We studied them in algebraic and logical perspectives in [5].

8

The partial order (NT ,≤T) associated with a rooted tree T is a join-tree
such that L≥(x) is finite for each node x. Conversely, every O-tree having this
property is associated in this way with a rooted tree.

Definition 3.2 : Substitutions of lines in O-forests.
Let J = (N,≤) be an O-forest and, for each x ∈ N , let (Ax,≤x) be a

(possibly empty) linearly ordered set. These sets are assumed to be pairwise
disjoint. We let J ′ = J [x ←− Ax;x ∈ N] := (N ′,≤′) be the partial order such
that :

N ′ is the union of the sets Ax,

u ≤′ v if and only if either u ≤x v or u ∈ Ax ∧ v ∈ Ay ∧ x < y, for
some x, y.

It is an O-forest in which each nonempty set Ax is a line.

Definitions 3.3 : The join-completion of an O-forest.
Let J = (N,≤) be an O-forest and K be the set of upwards closed lines of

the form L≥(x, y) := L≥(x)∩L≥(y) for all (possibly equal) nodes x, y. If x and
y have a join, then L≥(x, y) = L≥(x t y). If they have no upper-bound, then
L≥(x, y) is empty.

The family K is countable. We let h : N → K map x to L≥(x) and Ĵ :=

(K,⊇). We call Ĵ the join-completion of J because of the following proposition,
stated with these hypotheses and notation.

Proposition 3.4 [7] : The partially ordered set Ĵ := (K,⊇) is a join-tree

and h is a join-embedding J → Ĵ . �

If we identify x ∈ N with h(x) := L≥(x), then h defines a join-embedding

of J into Ĵ . The join of h(x) and h(y) is L≥(x, y).

The following side proposition shows that cographs arise naturally from O-
forests. We recall that ⊥ denotes incomparability in a partial order.

Proposition 3.5: The cocomparability graph CC(J) := (N,⊥) of a finite
forest J = (N,≤) is a cograph.

Proof sketch: First we prove that the cocomparability graph CC(T) =
(N,⊥) of a finite rooted tree T = (N,≤) is a cograph. If T = a(T1,, Tn)
and n ≥ 2, then CC(T) = a ⊕ (CC(T1) ⊗ ... ⊗ CC(Tn)). If n = 1, we have
CC(T) = a⊕ CC(T1).

If J = (N,≤) is a finite forest, it is the disjoint union of rooted trees T1, ..., Tn,
then CC(J) = CC(T1)⊗ ...⊗ CC(Tn). �

If we define as a cograph any finite or infinite graph without induced path
P4, then this proposition extends to countable O-forests.

9

4 Betweenness in order-theoretic trees

We will consider ternary structures S = (N,B). If n > 2, the notation 6= (x1, x2,
..., xn) means that x1, x2, ..., xn are pairwise distinct, hence it abreviates an FO-
formula. If n > 3, then B+(x1, x2, ..., xn) abreviates the FO-formula

B(x1, x2, x3) ∧B(x2, x3, x4) ∧ ... ∧B(xn−2, xn−1, xn)

and A(x1, x2, x3) abreviates

B(x1, x2, x3) ∨B(x2, x1, x3) ∨B(x1, x3, x2).

Definitions and background 4.1 : Betweenness in O-forests.
(a) The betweenness relation of an O-forest J = (N,≤) is the ternary relation

BJ ⊆ N3 such that :

BJ(x, y, z) :⇐⇒ 6= (x, y, z) ∧ ([x < y ≤ x t z] ∨ [z < y ≤ x t z]).

We have BJ(x, y, z) if x < y < z. If xt z is undefined, then BJ(x, y, z) holds
for no triple (x, y, z).

We denote by BO the class of betweenness structures (N,BJ) of O-forests
J = (N,≤).

(b) The following related classes have been considered in [6, 7].

IBO is the class of induced substructures of the structures in BO.

QT (for quasi-trees3) is the class of betweenness structures of join-
trees.

IBQT is the class of induced substructures of structures in QT.

We have the following proper inclusions in [7] :

BO ⊂ IBO, IBQT ⊂ IBO and QT ⊂ IBQT ∩ BO.

The classes IBQT and BO are incomparable, and for finite structures, we
have QT = BO.

(c) The betweenness relation B of a rooted tree T = (N,≤), (hence (N,B)
∈ QT) satisfies the following properties for all x, y, z, u ∈ N :

A1 : B(x, y, z)⇒ 6= (x, y, z).

A2 : B(x, y, z)⇒ B(z, y, x).

A3 : B(x, y, z)⇒ ¬B(x, z, y).

A4 : B(x, y, z) ∧B(y, z, u)⇒ B+(x, y, z, u).

A5 : B(x, y, z) ∧B(x, u, y)⇒ B+(x, u, y, z).

A6 : B(x, y, z) ∧B(x, u, z)⇒ y = u ∨B+(x, u, y, z) ∨B+(x, y, u, z).

A7 : 6= (x, y, z)⇒ A(x, y, z)∨∃w [B(x,w, y)∧B(y, w, z)∧B(x,w, z)].

3Introduced in [4].

10

Conversely, every ternary structure satisfying these properties is in QT [4].
Hence, the class QT is FO-definable. It is not hereditary. Its closure under taking
induced substructures, denoted by IBQT, is uFO definable by Proposition 2.12
of [7]. It is defined by A1-A6 together with :

A8 : ∀u, x, y, z [6= (u, x, y, z) ∧B(x, y, z) ∧ ¬A(u, y, z)⇒ B(x, y, u)].

The class BO is MSO definable [6, 7]. The case of IBO was left as a con-
jecture. We will prove the following two results.

Theorem 4.2 : (1) The class IBO is effectively MSOfin definable.
(2) This class is uFO definable.

Assertion (2) is not effective: we do not know the defining sentence. To the
opposite, Assertion (1) is. It entails that the class of bounds of IBO is MSO
definable (among finite structures). One can prove that Bnd(IBO) is finite, but
this fact and the knowledge of the defining MSO-sentence are not sufficient to
yield an algorithm (see Section 6).

We will consider ternary structures (N,B) that always satisfy the uFO ex-
pressible properties A1-A6. These properties hold in every structure in IBO but
do not characterize this class (Proposition 3.22 of [7]).

4.1 Preliminary results on IBO

Defintion 4.3 : The Gaifman graph of a ternary structure S = (N,B) is the
graph Gf (S) whose vertex set is N and that has an edge u − v if and only if
u and v belong to some triple in B. We say that S is connected if Gf (S) is.
If it is not, then S is the disjoint union of the induced structures S[X] for all
connected components Gf (S)[X] of Gf (S).

Lemma 4.4: (1) A structure S is in IBO if and only if its connected
components are.

(2) If a structure S in IBO is connected, then it is an induced betweenness
structure of an O-tree.

Proof: (1) The ”only if” direction is clear by the definitions. Conversely,
assume that each connected component of a ternary structure S = (N,B) is in
IBO. For each of them S[X], let UX := (MX ,≤X) be a defining O-forest (we
have MX ⊇ X). We let NR be N ordered by reversing the natural order. We
assume these forests UX pairwise disjoint and disjoint from NR. We let W be
the union of NR and the UX ’s that we order as follows :

x ≤W y if and only if

x ≤ y in NR or x ≤X y for some component X, or x is in some MX

and y ∈ N.

11

Then W is an O-tree and B = BW ∩N3.

(2) Let S = (N,B) be such that B = BU∩N3 for some O-forest U = (M,≤).
Let M ′ be the union of the lines L≥(x) of U for all x ∈ N . Then U ′ := U [M ′] is
an O-forest and B = BU ′ ∩N3. We prove that it is an O-tree if furthermore S
is connected. If x and y belong to a triple in B, then they have an upper-bound
in M ′ by the definition of BU and, furthermore, any x′ ≥ x and y′ ≥ y also
have an upper-bound in M ′. Let u, v ∈M ′. There is a path x1−x2− ...−xn in
Gf (S) such that u ≥ x1 and v ≥ xn. Hence we have z1, z2, ..., zn−1 such that:

z1 is an upper-bound of u and x2,

z2 is an upper-bound of z1 and x3, ..., and finally

zn−1 is an upper-bound of zn−2 and v ≥ xn.

We have zn−1 ≥ u. Hence, U ′ is an O-tree.�

The converse of Assertion (2) may be false: consider a star T = (N,≤) with
root4 r and S := (N − {r}, B) where B := BT [(N − {r})]. Then, S is in IBO,
defined from a tree, but not connected as B is empty.

Definition 4.5 : Marked join-trees and related notions
(a) A marked join-tree is a 4-tuple T = (M,≤,M⊕,M⊗) such that (M,≤)

is a join-tree and M⊕,M⊗ are disjoint subsets of M that contain no leaf. We
let VT := M − (M⊕]M⊗). Its size is defined as |M |, the cardinality of M .

(b) We define the betweenness relation BT ⊆ V 3
T of T as follows:

BT (x, y, z) :⇐⇒ 6= (x, y, z) ∧ x tT z /∈M⊕ ∧
([x < y ≤ x tT z] ∨ [z < y ≤ x tT z]).

The join x tT z is always defined as T is a join-tree. We have BT (x, y, z) if
x < y < z.

We define the betweenness structure of T as ST := (VT , BT). Its Gaifman
graph has vertex set VT .

(c) If we delete from T all nodes of degree 1 belonging to M⊕]M⊗, we obtain
a marked join-tree having the same betweenness structure and that join-embeds
into T (cf. Definition 3.1(e)). We call reduced such a marked join-tree.

(d) If M⊕ is empty, then (VT , BT) ∈ IBQT.
(e) We say that a marked join-tree U = (N,≤, N⊕, N⊗) join-embeds into a

marked join-tree T = (M,≤,M⊕,M⊗) if there is a join-embedding of (N,≤)
into (M,≤) that maps N⊕ to M⊕ and N⊗ to M⊗.

Lemma 4.6 : Let T = (M,≤,M⊕,M⊗) be a marked join-tree.
(1) If U = (N,≤, N⊕, N⊗) join-embeds into T , then BU = BT [N ∩ VT].
(2) If X ⊆ VT and B = BT [X], then there exists U as in (1) such that

BU = B.

4All other nodes are adjacent to the root.

12

(3) If T1, ..., Tn, ... is a sequence of marked join-trees such that Tn ⊆j Tn+1

and T is the union of the Tn’s, then BT is the union of the increasing sequence
BT1
⊆i BT2

⊆i ...BTn
⊆i ...

Proof : (1) Since U join-embeds into T , if x, y ∈ N∩VT , then xtU y = xtT y
and this join belongs to M⊕ (resp. M⊗) if and only if it belongs to N⊕ (resp.
to N⊗). The result follows from the definitions.

(2) Let T = (M,≤,M⊕,M⊗) be a marked join-tree and N ⊆ M . Let us
remove from T all subtrees T/u that contain no node of N . We obtain U =
(N ′,≤, N⊕, N⊗), a marked join-tree that join-embeds into T and VU = N ∩VT .
Hence we have B = BT [N] = BU by (1).

(3) We have Tn ⊆j T for each n. The result follows. �

Proposition 4.7 : (1) A structure S = (N,B) is in IBO if and only if
B = BT for a marked join-tree T = (M,≤,M⊕,M⊗) such that VT = N .

(2) If N is finite, then T can be chosen finite of size at most 2 |N | − 1.
Proof: (1) ”If” direction. Let ST := (VT , BT) be defined from a marked

join-tree T = (M,≤,M⊕,M⊗). We will construct an O-tree U = (W,≤′) such
that M −M⊕ ⊆W and BU [VT] = BT .

For each node x in M⊕, we let NR
x be an isomorphic copy of N ordered by

reversing the natural ordering. Hence NR
x has no least element. We choose these

copies pairwise disjoint and disjoint with M .
We define U := T [x ←− NR

x ;x ∈ M⊕]. It is an O-tree by Definition 3.2
(where substitutions are defined).

If x tT z ∈M⊕, then x and z have no join in U .
Let x, y, z ∈ VT be such that BT (x, y, z) holds. If x < y < z or z < y < x

in T, then the same holds in U and BU (x, y, z) holds. Otherwise, x and z are
incomparable and x < y ≤ x tT z > z or x < x tT z ≥ y > z. Then, x tT z is
either in VT or is labelled by ⊗. In both cases, x tT z is the join of x and z in
U . Hence, BU (x, y, z) holds.

Conversely, assume that x, y, z ∈ VT and BU (x, y, z) holds. If x < y < z or
z < y < x in U, then the same holds in T and BT (x, y, z) holds. Otherwise, x
and z are incomparable and x < y ≤ x tU z > z or x < x tU z ≥ y > z. Then
x and z have a join m in T . It must be in VT ∪M⊗, otherwise, xtU z does not
exist because it would be the minimal element of NR

m. Hence BT (x, y, z) holds.
Hence S ∈ IBO.

”Only if” direction. Conversely, assume that S = (N,B) in IBO is defined
from an O-tree U = (M,≤) such that N ⊆ M and B = BU ∩ N3. We can
assume that for every y ∈ M , we have x ≤ y for some x ∈ N : if this is not the
case, we replace M by the union M ′ of the upwards closed lines LU≥(x) for all
x ∈ N and, letting U ′ := (M ′,≤), we have N ⊆M ′ and B = BU ′ ∩N3.

Let W = (P,≤) be the join-completion of U , cf Definition 3.3. We label by
⊗ a node in M −N , and by ⊕ a node in P −M . These latter nodes have been
added to U in place of missing joins, according to Proposition 3.4.

Claim : B = BW .
Proof : B ⊆ BW . Let B(x, y, z). If x < y < z or z < y < x in U then the

same holds in W and BW (x, y, z) holds.

13

Otherwise, x and z are incomparable and x < y ≤ x t z > z or x < x t z ≥
y > z in U . Then x t z is in N or is labelled by ⊗ in W . Hence, BW (x, y, z)
holds. Then x t z is not labelled by ⊕.

Conversely, assume that BW (x, y, z) holds. A similar proof establishes that
B(x, y, z) holds. �

If S = (N,B) in IBO is defined from an O-forest U = (M,≤) as opposed
to an O-tree, then its connected components are defined by O-trees. For each of
them, we have a marked join-tree. We put them together in a marked join-tree
with a root labelled by ⊕. (Similarly to the proof of Lemma 4.4(2)).

(2) Let S = (N,B) in IBO be finite and defined from a marked join-tree
T = (M,≤,M⊕,M⊗) such that N = VT and B = BT . By removing the nodes
in M⊕ ∪M⊗ of degree 1, we obtain a reduced marked join-tree that defines S
and has at most 2 |N | − 1 nodes. �

Remark 4.8 : We observed in Proposition 2.15 of [7] that a finite structure
in IBO may not be defined from any finite O-forest U (cf. Definition 4.1).
Marked join-trees remedy this ”defect” and yield Proposition 4.7, a key fact for
our proof.

Example 4.9 : We consider S = (N,B) in IBO defined from the infinite
O-tree on the left of Figure 1 where N = {0, a, a′, b, b′, c, c′, d, d′, e, e′} and the
dotted line represents NR, without a least node. We have:

(a) B(a′, a, 0), B(b′, b, 0), B(c′, c, 0), B(d′, d, 0), B(e′, e, 0),

(b) B+(a′, a, b, b′), B+(c′, c, d, d′), B+(a′, a, e, e′), B+(b′, b, e, e′),

B+(c′, c, e, e′) and B+(d′, d, e, e′).

We do not have B+(a′, a, c, c′) because a and c have no join.
The right part shows a finite marked join-tree T = (M,≤,M⊕,M⊗) where z

has been added as join of x and y and the nodes 2, 3, ..., n, ... of degree 1 above
z have been deleted (cf. Definition 3.1 for the degree).

We have M = N ∪ {1, x, y, z},M⊕ = {z},M⊗ = {1, x, y} and BT = B. �

Proposition 4.10 : The class IBO is finitary, that is, S is in IBO if and
only if each of its finite induced substructures is.

Proof : The ”only if” direction is clear as, by its definition, the class IBO
is hereditary, i.e., closed under taking induced substructures.

”If” direction. First, some observations. If S = (VT , B) is defined from a
marked join-tree T = (N,≤, N⊕, N⊗) and S′ ⊆i S, then the restriction T ′ of T
to {x ∈ N | x ≥ y for some y ∈ VT } is a marked join-tree that defines S′. By
reducing it (Definition 4.5(c)), we get T ′′ ⊆j T that defines S′.

14

Figure 1: See Example 4.9. In the O-tree to the left, we have 0 > 1 > 2 > 3 >
... > n > ... above x and y.

By Proposition 4.7, each finite structure S = (N,B) in IBO of size m = |N |
is defined by marked join-trees of size at most 2m−1. We let J(S) be the finite
set of all such join-trees, up to isomorphism.

For proving the statement, we let S = (N,B) be infinite. It is the union of an
increasing sequence S1 ⊂i S2 ⊂i ... ⊂i Sn ⊂i ... of finite induced substructures
that we assume to be in IBO.

We will use the following version of Koenig’s Lemma. Let A1, A2, ..., An,...
be an infinite sequence of pairwise disjoint finite sets, and A be their union.
Let R ⊆ A × A be such that for every b in An, n > 1, there is a ∈ An−1 such
that (a, b) ∈ R. Then, there exists an infinite sequence a1, ..., an, ... such that
(an−1, an) ∈ R for each n > 1.

The finite sets J(Sn) are pairwise disjoint. We define
R := {(T, T ′) | T ∈ J(Sn−1), T ′ ∈ J(Sn), n > 1 and T ⊂j T

′}.
It follows from Lemma 4.6(2) that if T ′ ∈ J(Sn) and n > 1, we have

(T, T ′) ∈ R for some T ∈ J(Sn−1).
Hence, there is an infinite sequence of marked join-trees trees
T1 ⊂j T2 ⊂j ... ⊂j Tn ⊂j ... such that Tn ∈ J(Sn) for each n.
By Lemma 4.6(3), their union is a marked join-tree T such that Tn ⊂j T

for each n. We obtain an increasing sequence of finite marked join-trees whose
union is a marked join-tree that defines S. Hence S ∈ IBO. �

The proof of Theorem 4.2(1) reduces to that of the following proposition.

Proposition 4.11: There is an MSO-sentence that characterizes the finite
connected structures in IBO among the finite ternary structures.

15

Proof of Theorem 4.2(1), assuming proved Proposition 4.11 :
Let ϕ be an MSO-sentence such that, for every finite ternary structure S =

(N,B) :

S |= ϕ if and only if S is connected and belongs to IBO.

Consider the MSOfin sentence ψ :

∀X.(γ(X) ∧ Fin(X) =⇒ ϕ[X]),

where γ(X) expresses that X is connected in the Gaifman graph Gf (S) and
ϕ[X] is the relativization of ϕ to X.

Relativizing a sentence to a set, here X, is a classical construction in logic,
see e.g. [10], Section 5.2.1 for monadic second-order logic. If S = (N,B) is a
ternary structure and X ⊆ N , then S |= ϕ[X] if and only if S[X] |= ϕ.

We prove that S |= ψ if and only if S is in IBO.
If S is in IBO, then every induced substructure S[X], in particular every

finite and connected one satisfies ϕ, hence S |= ψ.
Conversely, assume that S |= ψ. Let X be a finite subset of N . If it is

connected in Gf (S), then ϕ[X] holds hence S[X] is in IBO. Otherwise, it is a
disjoint union of connected sets in Gf (S). For each of them, say Y , the validity
of ψ implies that ϕ[Y] holds, S[Y] is in IBO and so are S[X] by Lemma 4.4(1)
and S by Proposition 4.10. �

4.2 Proof of Proposition 4.11

Proposition 4.11 is the main technical result. We will only handle finite objects:
graphs, rooted trees, rooted forests and structures (N,B). All trees and forests
will be rooted, defined as partial orders (N,≤) and simply called trees and
forests. We need some more definitions.

Definition 4.12 : Forests compatible with a ternary relation.
A rooted forest T = (N,≤T) is compatible with a relation B ⊆ N3 satisfying

Axioms A1-A6 (Definition 4.1) if, for all x, y, z ∈ N :

(i) if B(x, y, z) holds, then x <T y or z <T y,

(ii) if B(x, y, z) and x <T y >T z hold, then y = x tT z.
(iii) if x <T z, then B(x, y, z) holds if and only if x <T y <T z. �

Lemma 4.13 : Let S = (N,B) ∈ IBO be finite, connected and defined
from a finite reduced marked tree5 U = (N]N⊕]N⊗, ≤U , N⊕, N⊗).

(1) Then T := U [N] = (N,≤T) is a finite forest compatible with B, where
≤T is the restriction of ≤U to N .

5Every finite tree is a join-tree.

16

(2) The order ≤T is FO definable in the structure (N,B,R) where R is the
set of roots of T , i.e. of maximal elements with respect to ≤T . �

The forest T is not necessarily a tree because the root of U need not be in
N . This root cannot be labelled by ⊕, otherwise S is not connected (we exclude
the trivial case where N is singleton).

Proof : (1) Let S, T, U as in the statement.
(i) If B(x, y, z) holds, then:

either x <U y <U z or z <U y <U x,

or x⊥Uz ∧ [(x <U y ≤U x tU z) ∨ (z <U y ≤U x tU z)],
where in the latter case, x tU z ∈ N ∪N⊗.

In all cases, we have x <U y or z <U y, hence x <T y or z <T y.
(ii) If B(x, y, z) and x <T y >T z hold, then the above description of

B(x, y, z) shows that y ≤U x tU z. As we have x <U y >U z, we must have
y = x tU z. If y is not x tT z, we have m ∈ N such that x < m and z < m < y
in T and in U . But then y is not the join of x and z in U and y = x tT z.

(iii) Clear from the definitions because ≤T is the restriction of ≤U to N .

(2) If R = {r}, then x ≤T y if and only if x = y or y = r or B(x, y, r) holds.
Otherwise, the root of U is in N⊗ and has degree at least 2. Let x and y be

not in R.
Claim : (a) If r ∈ R, we have x <T r if and only if B(x, r, r′) holds for some

r′ ∈ R.
(b) We have x <T y if and only if B(x, y, r) holds for some r ∈ R.
Proof : (a) Assume that x <T r. There is r′ ∈ R such that r tU r′ has label

⊗. Hence B(x, r, r′) holds.
Conversely, if B(x, r, r′) holds for some r′ ∈ R, we have x <T r or r′ <T r

because T is compatible with B. As r and r′ are different and are distinct roots
of T , they are incomparable and we have x <T r.

(b) If x <T y, we have x <T y <T r for some r ∈ R. Hence B(x, y, r) holds
since T is compatible with B.

Conversely, if B(x, y, r) holds for some r ∈ R, then, we have x <T y or
r <T y. The latter is not possible as r is a root. �

Let ψ(R, x, y) be the following FO formula (an FO formula may have free
set variables and use atomic formulas x ∈ X):

x = y ∨ [x 6= y ∧ ∃r.(R = {r} ∧ [y = r ∨B(x, y, r)])]

∨[x 6= y ∧ ∃r, r′ ∈ R.(y = r ∧B(x, y, r′))]

∨[x 6= y ∧ y /∈ R ∧ ∃r ∈ R.B(x, y, r)].

By the claim, it defines x ≤T y since R is the set of roots of T .
We let ϕ(R) be the FO formula relative to ternary structures S = (N,B)

expressing the following:

17

”R ⊆ N , the binary relation x ≤ y on N defined by S |= ψ(R, x, y)
is a partial order and T := (N,≤) is a forest that is compatible with
B and whose set of roots is R”. �

Proposition 4.14 : Let S = (N,B) be finite and satisfy properties A1-A6.
(1) For every R ⊆ N such that S |= ϕ(R), if we let ≤ be defined by ψ(R, x, y),

then T := (N,≤) is a forest compatible with B.
(2) Every forest T := U [N] defined from a finite marked tree U = (N]N⊕]

N⊗, ≤U , N⊕, N⊗) such that BU = B is described by the formulas ϕ(R) and
ψ(R, x, y).

Proof : The first assertion follows from the definition of ϕ. The second one
follows from Lemma 4.13(2). �

All forests T compatible with B of potential interest for checking that S is
in IBO can be described in terms of their sets of roots R by the existential
MSO-formulas ∃R.ϕ(R) and ψ(R, x, y).

We will construct MSO-formulas to ”check” that a ”guessed” forest T sat-
isfies additional requirements implying that T := U [N] for some finite marked
tree U witnessing that S ∈IBO.

In some T that has been ”guessed”, we will insert (if possible) finitely many
nodes labelled by ⊕ or ⊗, so as to make it into the desired marked tree U . We
will insert nodes in T in the following cases:

(1) If a′ < a, b⊥a, B(a′, a, b) holds and there is no x in T such that {a, b} < x
and B(a, x, b) holds, then we insert a tU b labelled by ⊗ such that a tU b < m
where m is any upper-bound in T of {a, b}.

(2) If a′ < a, b⊥a but B(a′, a, b) does not hold, then we insert atU b as above
labelled by ⊕.

In Case (1) a and b may have a join m in T but we need to insert a ”new
join” a tU b < m.

Example 4.15 : The left part of Figure 2 shows a tree T constructed from
the following facts relative to N := {a′, a, b, c′, c, d, e′, e, 1, 0} :

(a) B+(a′, a, 1, 0), B(b, 1, 0), B+(c′, c, 1, 0), B(d, 1, 0), B+(e′, e, 1, 0),

(b) B+(a′, a, c, c′), B(a′, a, d), B(b, c, c′),

(c)B+(a′, a, 1, e, e′), B+(b, 1, e, e′), B+(c′, c, 1, e, e′) andB+(d, 1, e, e′).

Facts (b) indicate the need of joins at c, atd, and bt c labelled by ⊗ in the
marked tree U to be constructed. These joins are all equal to x in the tree in the
middle of Figure 2. The absence of facts B(a′, a, b) and B(c′, c, d) indicates the
need of ⊕-labelled joins y and z, respectively between a,b and x, and between
c,d and x. However, no triple in B necessitates that b and d have a ⊗-labelled
join. A corresponding marked tree is shown in the middle of Figure 2.

Consider now N ′ := {a′, a, b, d, e′, e, 1, 0} ⊆ N and B′ := B[N ′]. We get
a marked tree for B′ by deleting c, c′ and z from the previous one. However,

18

Figure 2: Example 4.15

another one is shown to the right, that defines (N ′, B′) where x is labelled by
⊗ and z by ⊕. �

We need more definitions. We let B, T, U and R, be as in Lemma 4.13.

Definitions 4.16 : Cographs and pp-cographs defined from T and, either
U or B.

(a) For each node x of T with sons y1, ..., ys, s ≥ 2, we define yi ∼x yj if and
only if i = j or yi tU yj 6= x so that this join has label ⊗ or ⊕. It is clear that
∼x is an equivalence relation.

We have yi ∼x yj if and only if B(yi, x, yj) does not hold, by (ii) of compat-
ibility, Definition 4.12.

(b) For each class C of the equivalence relation ∼x, we define Gx,C as the
2-graph (C,E,C1, C2) such that:

y ∈ C2 if and only if y′ < y for some y′ ∈ N ,

y − z is an edge6 if and only if y or z is in C2 and y tU z has label
⊗.

There are no edges between vertices in C1. Hence Gx,C is a pp-cograph. We
obtain a cograph if we add edges y − z such that y and z are in C1 and y tU z
has label ⊗.

(c) Let R = {r1, ..., rp}, p ≥ 2. We let Groot be the 2-graph (R,E,R1, R2)
defined as Gx,C above, where R replaces C and y ∈ R2 if and only if y′ < y for
some y′ ∈ N . It is also a pp-cograph. �

6E denotes the set of edges.

19

Lemma 4.17 : The edges y − z of Gx,C and Groot are characterized by
the FO formula (∃y′ < y.B(y′, y, z)) ∨ (∃z′ < z.B(z′, z, y)).

Proof : Consider x ∈ N having sons y and z in a class C of ∼x .
Let y− z be an edge of Gx,C such that y ∈ C2 and y tU z has label ⊗. Then

BU (y′, y, z) holds for all y′ < y and so does B(y′, y, z) as B = BU .
Conversely, if y′ < y∧ B(y′, y, z) holds, then the join y tU z must have label

⊗ or be in N . But in the latter case, it must be x as y and z are sons of x.
Hence, we have B(y, x, z) but then, we do not have y ∼x z. Hence, y − z is an
edge of Gx,C .

The proof is similar for Groot. The join y tU z cannot be in N as y, z are
distinct roots. �

It follows that the 2-graphs Groot and Gx,C can be defined from B and T
only, without using U that we are actually looking for. Furthermore, they can
be described by FO formulas in the structure (N,B,R).

The formulas ϕ(R) and ψ(R, x, y) are defined before Proposition 4.14.

Proposition 4.18 : Let S = (N,B) and T = (N,≤) be defined by the
formula ψ(R, x, y) from some R satisfying ϕ(R).

(1) There exists a marked tree U ⊇ T such that B = BU if and only if the
2-graphs Groot and Gx,C are pp-cographs.

(2) This condition is FO expressible in the structure (N,B,≤).
Proof: (1) The ”only if” direction follows from the previous constructions.
Conversely, assume that each 2-graph Gx,C (determined solely from T and

B by Lemma 4.17) as in the statement is a pp-cograph. By adding some edges
between its 1-vertices, we can get a cograph Hx,C ⊇ Gx,C . It is defined by an
{⊕,⊗}-tree tx,C (Definition 2.1(c)), a tree whose internal nodes are labelled by
⊕ or ⊗ and whose set of leaves is C.

Similarly, if T has several roots and Groot is a pp-cograph, there is a cograph
Hroot ⊇ Groot defined by a {⊕,⊗}-tree troot whose set of leaves is R.

By inserting in T the internal nodes of tx,C between x and the nodes in C,
for all relevant pairs (C, x), and those of troot above the roots of T , we get a
marked tree U such that U ⊇ T = U [N] and B = BU .

This can be formalized as follows. By bottom-up induction, we define marked
trees Tx and Tx,C for each x in N and equivalence class C of the relation ∼x.
We assume that the trees tx,C and troot are pairwise disjoint.

(a) If x is a leaf, then Tx := x. There is no set C to consider.
Otherwise, Tx := x(..., Tx,C , ...) where the list covers all equivalence classes

C of ∼x. (We use the linear notation of finite rooted trees defined in Section 1).
(b) If C = {y}, then Tx,C := Ty.
Otherwise, we use the {⊕,⊗}-tree tx,C to define Tx,C := tx,C [..., y ←−

Ty/y, ...], denoting the simultaneous substitution in tx,C of Ty for each y ∈ C
(it is a leaf of tx,C).

20

(c) To complete the construction, we define U := Tr if T is a tree with root
r ∈ N . Otherwise, U := troot[..., r ←− Tr, ...] denoting the substitution in troot
of Tr for each leaf r ∈ R (it is a leaf of troot).

It is clear that U is a marked tree (N] N⊕] N⊗, ≤U , N⊕, N⊗) and that
T = U [N].

Claim : BU = B.
Proof : Note that ≤T is the restriction of ≤U to N .
If x and z are comparable, then (x, y, z) ∈ BU if and only if x <U y <U z

if and only if x <T y <T z if and only if (x, y, z) ∈ B since T is compatible
with B.

We now assume x⊥z and (x, y, z) ∈ B.
Let u := x tU z. By the compatibility of T with B (point (ii)), we have

x <T y or z <T y.
(a) If u ∈ N , then u = xtT z. Again by compatibility (point (i)), we do not

have u <T y. Hence, we have x <T y ≤T u >T z or z <T y ≤T u >T x. The
same inequalities hold with ≤U hence (x, y, z) ∈ BU .

(b) Otherwise, u has label ⊕ or ⊗. Let x′ be maximal in N such that x ≤ x′
and z′ be similar for z.

(b.1) If x′ and z′ have no upper-bound in T , they are distinct roots and u is
an internal node of Groot.

As noted above, we have x <T y or z <T y. Assume the first, w.l.o.g.. Then
x <T y ≤T x′.

If u has label ⊗ then BU (x, y, z) holds by the definition of BU .
(If u has label ⊕ then BU (x, y, z) does not hold, but the definition of the

edges of Groot gives that BU (x, y, z) does not hold.)
(b.2) If x′ and z′ have a least upper-bound m in T , then, u <U m. We have

two cases:
Case 1 : B(x,m, z) holds. We cannot have y >T m, hence, we have x <T

y ≤T m >T z or z <T y ≤T m >T x. The same inequalities hold with ≤U ,
hence (x, y, z) ∈ BU .

Case 2 : if B(x,m, z) does not hold. Then x′ ∼m z′ (we cannot have
B(x′,m, z′)) and so x′ and z′ belong to a same class C of ∼m . Then we use the
same argument as above with Gm,C instead of Groot.

The proof that BU ⊆ B is similar. �
This completes the proof of Assertion (1).

(2) The following facts can be expressed in the structure (N,≤, B) such that
S = (N,B) satisfies A1-A6 and T = (N,≤) is a forest compatible with B by
MSO-formulas that are easy to write explicitely:

α(R,R1, R2) : R is the set of root of T , it is not singleton and (R1, R2) is
its partition defined in Definition 4.16(c).

β(x, y, z) : y < x∧ z < x∧ y ∼x z, (y and z are sons of x in T) cf. Definition
4.16(a).

γ(x,C,C1, C2) : C is a set of sons of x and an equivalence class of ∼x,
(C1, C2) is its partition defined in Definition 4.16(b).

η(R, y, z) : y − z is an edge of Groot.

21

η′(x,C, y, z) : y − z is an edge of Gx,C .
π(R) : R is not singleton and Groot is a pp-cograph (we use α and η).
π′(x,C, y, z) : Gx,C is well-defined and is a pp-cograph (we use γ and η′).
It is MSO expressible in (N,B,≤) by Proposition 2.4(1) whether the 2-

graphs Groot and Gx,C are all pp-cographs. The condition of Assertion (1) is
thus MSO expressible in the structure (N,B,≤) by an MSO-sentence µ. �

Proof of Proposition 4.11: We prove that an MSO-sentence can charac-
terize the finite connected structures in IBO among the finite ternary structures.
There is an MSO-sentence χ expressing that a ternary structure S = (N,B)
is connected and satisfies A1-A6. The sentence over S = (N,B) defined as
∃R.(ϕ(R) ∧ µ′(R)) where µ′ translates µ (of Proposition 4.18(2)) by using
ψ(R, x, y) to define ≤ expresses well that S is in IBO by Proposition 4.18(1).
Hence, χ ∧ ∃R.(ϕ(R) ∧ µ′(R)) is the desired sentence. �

4.3 Well-quasi-orderings and finite sets of bounds

We recall definitions and a result from [20].

Definitions 4.19 :
(a) If C is a hereditary class of finite structures S = (N,R1, ..., Rp), if m is

the maximal arity of a relation Ri, we denote by U(C) the class of structures
(N,R1, ..., Rp, U1, ..., U2m−1) for all S in C, where U1, ..., U2m−1 are unary
relations, hence that denote subsets of N .

(b) The class U(C) is well-quasi-ordered (implicitely by induced inclusion) if,
for every infinite sequence S1, S2, ... of structures in this class, there are n < m
such that Sn is isomorphic to an induced substructure of Sm, which we denote
by Sn ⊆i∼ Sm. �

With these hypotheses and notation, Corollary 2.4 of [20] (also Theorem7

13.2.3 of [13]) states the following. (The class of bounds Bnd(C) is defined in
Section 1. Its finiteness is up to isomorphism.)

Theorem 4.20 : If C is hereditary and U(C) is well-quasi-ordered, then
Bnd(C) is finite.

The structures in U(IBO) are of the form (N,B,U1, ..., U5) for (N,B) in
IBO. Let T be the set of finite structures T = (N]N⊕]N⊗,≤, N⊕, N⊗, U1, ..., U5)
such that (N] N⊕] N⊗,≤, N⊕, N⊗) is a marked tree (Definition 4.5(a)),
U1, ..., U5 are subsets of N and |N⊕]N⊗| < |N | .

Proposition 4.7(2) shows that every S in U(IBO) is defined from a marked
tree T belonging to T. We denote then S = S(T). Precisely, S(T) = (N,BT ′ , U1,

7Fräıssé states the result with 2m instead of 2m− 1 but translates from French the proof
by Pouzet.

22

..., U5) where T ′ is the marked tree T = (N]N⊕]N⊗,≤, N⊕, N⊗), cf. Definition
4.5(b).

Fact : If T ,T ′ are in T and T ⊆j∼ T
′ , then S(T) ⊆i∼ S(T ′).

It is a corollary of Lemma 4.6(1).

Proposition 4.21 : The class of finite structures in U(IBO) is well-quasi-
ordered.

Proof : Let S1, S2, ... be an infinite sequence of finite structures in U(IBO).
For each Sn, we let Tn in T be such that S(Tn) = Sn. By Kruskal’s Theorem,
Tn ⊆j∼ Tm for some n < m. The above fact yields Sn ⊆i∼ Sm. �

Theorem 4.2(2) : The class IBO has finitely many bounds.
Proof : The hereditary class of finite structures belonging to IBO has

finitely many bounds by Proposition 4.21 and Theorem 4.20. The result holds
by Proposition 4.10. �

Remark 4.22 : We recall from Definition 4.1 that IBQT is the class of
induced betweenness of join-trees. It is a proper subclass of IBO. The structures
in IBQT are defined from marked join-trees T = (N]N⊕]N⊗,≤, N⊕, N⊗) such
that N⊕ is empty (Definition 4.5(d)). The proof of Theorem 4.2(2) shows that
Bnd(IBQT) is finite, hence that IBQT is FO definable, without constructing
the defining sentence. The FO definability of IBQT is Theorem 3.1 of [7],
where the defining FO-sentence is the conjunction of Conditions A1-A6 and A8
of Definition 4.1.

In Section 6, we will explain why computing the bounds of IBO is even
harder than computing those of probe cographs.

5 Clique-width and the bounds of probe cographs

We first review clique-width, then, we discuss some properties of probe cographs,
in view of determining their bounds.

Definition 5.1 : Clique-width.
(a) Graphs are built with the help of vertex labels (in addition to the labels

of 2-graphs). Each vertex has a label in a set L. The nullary symbol a(x) where
a ∈ L, denotes the isolated vertex x labelled by a. The operations are the union
⊕ of disjoint graphs (it does not modify labels), the unary operation adda,b for
a, b ∈ L, b 6= a, that adds to a graph an edge between each a-labelled vertex and
each b-labelled vertex (unless they are already adjacent), the unary operation
relaba→b that changes every vertex label a into b.

(b) A term over the above defined operations is well-formed if no two occur-
rences of nullary symbols denote the same vertex (so that the graphs defined by

23

two arguments of any operation ⊕ are disjoint). We call them the clique-width
terms. Each term t denotes a vertex labelled graph val(t) whose vertices are
those specified by the nullary symbols of t. Its width is the number of labels that
occur in t. The clique-width of a graph G without labels from L (but possibly
with labels from another set like {1, 2}), denoted by cwd(G), is the least width
of a term t that denotes some vertex labelling of G.

(c) Clique-width terms may contain redundancies: for example, we have
adda,b(addc,d(adda,b(G))) = addc,d(adda,b(G)) and relaba→b(relaba→c(G)) =
relaba→c(G) for every graph G. It follows that each graph of clique-width at
most k is defined by infinitely many terms written with a fixed set L of k labels.
However, one can ”normalize” these terms so as to avoid redundancies. This is
done in Proposition 2.121 of [10]. Let us call normal such a term. Then, each
graph of clique-width at most k is defined by finitely many normal terms using
the labels in L := [k]. Furthermore, the set Nk of normal terms with labels in
[k] is recognizable by a finite automaton, see [10]. �

Proposition 5.2 : The maximal clique-width of a probe cograph is 4.
Proof : The upper-bound, observed in [11], is easy to establish. The bound

4 is reached by the probe cograph defined by the term (cf. Definition 2.3(c)):

[•1(1)⊕ (•1(2)⊗ •2(7))⊕ (•1(3)⊗ •2(8))]⊗
[•1(4)⊕ (•1(5)⊗ •2(9))⊕ (•1(6)⊗ •2(10))]

where the vertices 1,...,6 are 1-vertices and the vertices 7 to 10 are 2-vertices.
It has clique-width8 4. �

Proposition 5.3: Apart from P6, the finitely many bounds of probe cographs
have diameter at most 4 and clique-width at most 8. They are connected and
MSO definable.

Proof : Since the class of probe cographs is closed under disjoint union, its
bounds are connected.

We have observed that P6 of diameter 5 is a bound. Any other graph of
diameter at least 5 has an induced path P6, hence is not a bound.

If a graph has G−x has clique-width k, then G has clique-width at most 2k
[14]. Hence, as probe cographs have clique-width at most 4, their bounds have
clique-width at most 8.

If C is a hereditary class of finite graphs, then its bounds form the class:

Bnd(C) := {G | G /∈ C and G− x ∈ C for each vertex x of G}.

If C is defined by an MSO-sentence θ, then Bnd(C) is defined by the MSO-
sentence :

¬θ ∧ ∀X.(”X is the set of all vertices minus one” =⇒ θ[X])

8The verification has been done by using the software TRAG [12] that is accessible on-line.
It is based on [15].

24

By Proposition 2.4(1) the class of pp-cographs is FO-definable. Hence, the
class of probe cographs is MSO-definable: an existential set quantification is
useful to guess a good labelling of the given graph. The corresponding MSO-
sentence is known from the knowledge of the bounds of pp-cographs. However,
the class of probe cographs is FO-definable by Proposition 2.4(2), but we do
not know the corresponding sentence as the bounds of probe cographs are not
completely known. �

Theorem 5.4 : There is an algorithm that can compute the finitely many
bounds of the class of probe cographs. An upper-bound to their sizes is com-
putable.

Proof sketch : By Proposition 5.3, we can construct effectively an MSO-
sentence ξ that defines the class B of bounds of probe cographs among finite
graphs. By Theorem 6.35 of [10] or an algebraic version of it in terms of recog-
nizable sets (Corollary 5.59), one can build a finite automaton A that recognizes
the set of normal terms of width at most 8 that define the graphs in B. Then
L(A) is finite as we know that B' is. However, several terms in L(A) may de-
fine isomorphic graphs. As L(A) is finite, one can list its elements and thus the
graphs it defines after removing isomorphic duplicates.

The MSO-sentence ξ can be replaced by ξ ∧δ where δ is the MSO-sentence
expressing that a graph is connected and has a diameter at most 4. We obtain
in this way a more restrictive set L(A) without missing any graph in B except
P6, but we know it.

Pumping lemmas are classical tools of language theory by which one can
bound the sizes of the terms of a finite recognizable set defined by a given
finite automaton without listing them. However the obtained bound would be
ridiculous huge. �

This decision procedure is actually intractable, because of the complexity
of the sentence ξ and the size of the corresponding automaton, that needs to
handle clique-width terms with 8 labels.

Some bounds of probe cographs
By a bound, we mean a bound of probe cographs, hence, a graph in B.
We denote by G the edge-complement of a graph G. By substituting an edge

(i.e., the graph K2) to a vertex a of a graph G, we obtain the graph denoted by
G[a←− K2]. Its vertex a is replaced by the edge a1 − a2 and any edge a− x of
G is replaced by the two edges a1 − x and a2 − x. Note that G[a←− K2]− a1
is isomorphic to G. We have G[a←− K2][b←− K2] = G[b←− K2][a←− K2] if
b 6= a. It is the result of the simultaneous substitution of K2 for a and b, denoted
by G[a←− K2, b←− K2].

Proposition 5.5 : The following graphs, all of clique-width 3, are in B :
(1) The standard graphs C5, P6 and C6.
(2) The graphs C6, D and D derived from C6, see Figure 3.

25

(3) Four graphs obtained by substituting an edge to one or two vertices of a
path P4 or P5. See Figure 4.

(4) Two graphs obtained from the house H by substituting edges as in (3).
See Figure 5.

(5) Two graphs obtained as in (4) from two p-cographs with 5 vertices. See
Figure 6.

Proof : The proofs are based on the following observations (cf. Example
2.5) :

the only good labellings of P4 are 1212, 2121 and 1221,

the only good labelling of P5 is 12121,

the two good labellings of the ”house” H with vertices {a, b, c, d, e}
and top vertex c, cf. Figure 5, label by 1 either c and d, or c and b;
the other vertices are labelled by 2,

every good labelling of a graph is good for its induced subgraphs.

(1) See Examples 2.5 for C5 and P6. Let C6 = a−b−c−d−e−f−a. Assume
for a contradiction that it has a good labelling. By removing a, we get P5, hence
b and f must be labelled by 1, hence a must be labelled by 2. Similarly, b must
be labelled by 2. As P5 is a p-cograph, C6 is a bound. Hence, C5, P6 and C6

are bounds.
(2) The graph C6 is shown in Figure 3. By removing f , we get the ”house”

H with top vertex c that should be labelled by 1, so that either b or d should
be labelled by 1. Hence, f must be labelled by 2, but it is the top vertex of the
house C6 − c. Hence, C6 is not a p-cograph. However, it is a bound.

The graph D is obtained from C6 = a− b− c− d− e− f − a by adding the
edge c− f . By removing f , we see that a, c and e should be labelled by 1, and
f by 2. If we remove c, we get a path P5 of type 21212 which is not good.

From the graph D shown in Figure 3, we get two ”houses” by removing
either c or f . Both vertices should be labelled by 1, so that none of the others
can be labelled by 1.

(3) The path P5 = a−b−c−d−e has a unique good labelling of type 12121.
If we substitute K2 for any of a, c or e, we obtain a bound as the two vertices
of the substituted edge cannot be both labelled by 1. We obtain only two non-
isomorphic bounds, shown in the top part of Figure 4, because substituting an
edge to a and e give isomorphic graphs.

The path P4 = a − b − c − d has three good labellings of types 1212, 2121
and 1221. For each good labelling, at least one vertex in {a, b}, in {a, d} and
in {c, d} must be labelled by 1. It follows that P4[a ←− K2, b ←− K2] and
P4[a ←− K2, d ←− K2] shown in the bottom part of Figure 4 are bounds as
one checks easily. So is P4[c ←− K2, d ←− K2] isomorphic to the first one. We
obtain two non-isomorphic bounds.

(4) Every good labelling of the ”house” H shown to the left of Figure 5, must
label c by 1 and, either b or d, by 1. We obtain the two bounds H[c ←− K2]
and H[b←− K2, d←− K2] shown in Figure 4.

26

Figure 3: The bounds C6, C6, D and D of Proposition 5.5(1,2).

Figure 4: The bounds of Proposition 5.5(3).

27

Figure 5: The ”house” to the left (it is a p-cograph), and the two bounds of
Proposition 5.5(4).

Figure 6: Two p-cographs used in Proposition 5.5(5)

(5) Among the connected graphs with 5 vertices that are not cographs we
have are C5 and H. Figure 6 shows two others, H1 and H2.

Every good labelling of H1, labels b or d (or both) by 1. Hence H1[b ←−
K2, d ←− K2] is not a p-cograph. It is a bound because H1[b ←− K2] and
H1[d←− K2] are p-cographs.

Similarly, we get from H2, the bound H2[c←− K2, d←− K2].

The graphs C5, P6 and C6 are known to have clique-width 3. That H, C6,
D and D have clique-width 3 can be checked with [12] or proved directly. All
other bounds of (3),(4) and (5) are obtained by substituting K2 to vertices of
graphs of clique-width 3. Hence, they have clique-width 3. �

We do not know any graph of clique-width 4 or more that is a bound of probe
cographs. Hence, for now, we are far from the upper-bound 8 of Proposition 5.3.

6 Open problems

Problem 6.1 : Determine the set of bounds of probe cographs. What can be
said about them in addition to what is stated in Proposition 5.3 ?

Monadic second-order logic does not help for effective computations because
of the huge sizes of the automata constructed from MSO-sentences.

28

Problem 6.2 : Does there exist a monadic second-order transduction, cf.
Chapter 7 of [10], that transforms a finite ternary structure assumed to be in
IBO into a finite marked tree defining it?

In [7], we studied four classes of betweenness structures (cf. Definition 4.1) :
QT, IBQT, BO and IBO. Each betweenness structure S = (N,B) is defined
from a labelled O-tree, say T = (M,≤, N⊕, N⊗). This description covers all
cases, although labels are useless in some cases.

The question is whether some witnessing O-tree T can be defined by MSO-
formulas in the given structure S, in technical words, by an MSO-transduction.
An FO-transduction exists for QT and MSO-transductions exist for IBQT and
BO [7].

Theorem 4.2(1) establishes that the class IBO is MSOfin-definable, without
building an associated MSO-transduction. We recall that an MSO-transduction
transforms a structure with n elements into one with at most kn elements for
some fixed k. As a finite structure in IBO having n elements can be defined
from a marked tree with at most 2n − 1 nodes, it is not hopeless to look for
such a transduction. An intermediate result seems necessary: to find an MSO-
transduction that constructs, from a pp-cograph, a term that defines it. Such a
transduction exists for countable cographs given with an auxiliary linear order
[3, 9]. Such an auxiliary order would be useful, even perhaps necessary.

Problem 6.3 : Determine the set of bounds of IBO.

We have presently no result similar to Theorem 5.4 because ternary struc-
tures do not share certain good properties of graphs, as we now explain.

First we observe that, since we have an effective MSO characterization of
the finite structures in IBO by Theorem 4.2(1), we have one of the set of their
bounds because the proof for graphs (Proposition 5.3) extends to relational
structures.

The proof of Theorem 5.4 uses the fact that the bounds of probe cographs
have clique-width ≤ 8 (even if this upper-bound is overestimated). We miss a
corresponding fact for Bnd(IBO). First because there is no really convenient
notion of clique-width for ternary structures. However, we can replace the prop-
erty ”the graphs of C have clique-width at most k” by ”the structures of C are
all in τ(Trees) for some MSO-transduction τ” where Trees is the class of finite
rooted trees, and say that C is tree-definable. Bounded clique-width is equiv-
alent for a class of graphs to tree-definability ([10], Chapter 7). Furthermore,
the computability results for classes of graphs of bounded clique-width hold for
tree-definable classes of structures.

For a set C of structures of a fixed signature, we let C+ be the set of structures
S with domain N such that S[N − x] is in C for some x in N . If C is a set of
graphs of clique-width at most k, then the graphs in C+ have clique-width at
most 2k (see [14]), which is used to obtain the upper-bound 8 to the clique-
width of the bounds of probe cographs in Proposition 5.3. However, this fact

29

does not extend to tree-definable classes of structures as we prove below. Hence,
we cannot extend Theorem 5.4 to the computation of Bnd(IBO).

Proposition 6.4 : There is a tree-definable set of ternary structures C ⊆
IBO such that C+ is not tree-definable.

Proof : We will use results from [10]. Let SG = ([n], BG) where BG

consists of the triples (1, i, j) and (j, i, 1) for the edges i − j of some graph
G = ({2, 3, ..., n}, E) and i < j. Then SG is a ternary structure that satisfies
Properties A1-A6. It is in C+ where C is the set of trivial ternary structures
({2, 3, ..., n}, ∅), obviously in IBO. There is an MSO-transduction θ that trans-
forms each structure SG into G : it deletes 1 and replaces the triples (1, i, j)
and (j, i, 1) in BG by (i, j) and (j, i), thus defining E.

It is clear that C is tree-definable. If C+ would be, that is, if C+ ⊆ τ(Trees)
for some MSO transduction τ, then the MSO transduction θ ◦ τ would produce
all finite graphs from Trees (up to isomorphism), hence, all graphs would have
clique-width bounded by a fixed value ([10], Chapter 7), which is false. �

References

[1] M. Changat, P. Narasimha-Shenoi, and G. Seethakuttyamma, Be-
tweenness in graphs: A short survey on shortest and induced
path betweenness, AKCE International Journal of Graphs and
Combinatorics, 16 (2019) 96-109. (Available on ScienceDirect.com,
https://doi.org/10.1016/j.akcej.2018.06.007)

[2] V. Chvatal, Antimatroids, betweenness, convexity, in Research Trends in
Combinatorial Optimization, Springer, 2008, pp. 57-64.

[3] B. Courcelle, The monadic second-order logic of graphs X: Linear orderings.
Theor. Comput. Sci. 160 (1996) 87-143.

[4] B. Courcelle, Several notions of rank-width for countable graphs, J. Comb.
Theory, Ser. B. 123 (2017) 186-214.

[5] B. Courcelle, Algebraic and logical descriptions of generalized trees, Logical
Methods in Computer Science 13 (2017) Issue 3.

[6] B. Courcelle, Betweenness in order-theoretic trees, in Fields of Logic and
Computation III, Lecture Notes in Computer Science 12180 (2020) 79-94.

[7] B. Courcelle, Axiomatizations of betweenness in order-theoretic trees, Log-
ical Methods in Computer Science 17 (2021) Issue 1, pp. 11:1-11-42.

[8] B. Courcelle, Betweenness of partial orders, Theoretical In-
formatics and Applications, 54 (2020), see https://www.rairo-
ita.org/articles/ita/abs/2020/01/ita200028/ita200028.html.

30

[9] B. Courcelle and C. Delhommé, The modular decomposition of countable
graphs. Definition and construction in monadic second-order logic. Theor.
Comput. Sci. 394 (2008) 1-38.

[10] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Cambridge University Press, 2012.

[11] J. Daligault, M. Rao and S. Thomassé, Well-quasi-order of relabel func-
tions. Order 27 (2010) 301-315.

[12] I. Durand and M.Raskin, On line software TRAG, http://trag.labri.fr

[13] R. Fräıssé, Theory of relations, Studies in Logic, Volume 145, North-
Holland, 2000.

[14] F. Gurski, The behaviour of clique-width under graph operations and graph
transformations. Theory Comput. Syst. 60 (2017) 346-376.

[15] M. Heule and S. Szeider, A SAT approach to clique-width. ACM Trans.
Comput. Log. 16 (2015) 24:1-24:27.

[16] E. V. Huntington and J. R. Kline, Sets of independent postulates for be-
tweenness, Transactions of the A.M.S., 18 (1917) 301-325.

[17] V. B. Le and H. de Ridder, Characterisations and linear-time recognition
of probe cographs. Graph-Theoretic Concepts in Computer Science, (WG
2007), Lecture Notes in Computer Science 4769 (2007) 226-237.

[18] J. Lihova, Strict-order betweenness, Acta Univ. M. Belii Ser. Math. 8
(2000) 27-33. Available from https://actamath.savbb.sk/acta0804.shtml.

[19] E. Pitcher and M. F. Smiley, Transitivities of betweenness, Transactions of
the A.M.S., 52 (1942) 95-114.

[20] M. Pouzet, Un bel ordre d’abritement et ses rapports avec les bornes d’une
multirelation, Comptes Rendus Académie des Sciences, Série A, 274 (1972)
1677-1680.

[21] M. Sholander, Trees, lattices, order, and betweenness, Proceedings of the
A.M.S. , 3 (1952) 369-381.

[22] M. Sholander, Medians and betweenness, Proceedings of the A.M.S., 5
(1954) 801-807.

[23] Wikipedia, Cographs, https://en.wikipedia.org/wiki/Cograph

31

