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Abstract

Without invoking panpsychism or identifying consciousness as a weird
form of matter, without mind/body dualism, without the ignis fatuus of
the ‘hard problem’ and the many other such constructs that haunt con-
temporary consciousness studies, the asymptotic limit theorems of infor-
mation and control theories permit development of mathematical models
recognizably similar to the empirical pictures Bernard Baars and oth-
ers have drawn of high-level mental phenomena. The methodology re-
volves around constructing an iterated Morse Function free energy analog
from information source uncertainties associated with sources necessarily
‘dual’ in a formal sense to cognitive phenomena. This leads to an iter-
ated entropy-analog from which application of the Onsager approximation
from nonequilibrium thermodynamics gives large-scale system dynamics.
We make application to the dynamics of arousal and distraction as an
example. A modified version of the Kadanoff picture of phase transitions
in consciousness emerges from the Morse Function itself in a surprisingly
standard manner. It should be possible, on the basis of these probability
models, to develop new statistical tools for the analysis of empirical data
regarding cognition and consciousness.

Key Words: control theory, entropy gradient, free energy, groupoid, infor-
mation theory, Morse Function, phase transition, symmetry breaking

Nothing in biology makes sense except in light of evolution.

— T. Dobzhansky
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1 Introduction

The author, as an undergraduate, had a singular conversation with the mathe-
matician John Kemeny, later President of Dartmouth College. Kemeny noted,
with some considerable asperity, that physicists were wont to repeatedly pub-
lish rediscovered standard results from probability theory, derived using ‘child-
ish methods’. The results Kemeny referred to were, of course, the well-known
asymptotic limit theorems of the discipline, the Central Limit Theorem, the
Renewal Theorem, and so on.

From Dretske (1994) through Tononi et al. (2016), and so on, authors at var-
ious levels of scientific sophistication have repeatedly invoked ‘communication
theory’, ‘information theory’, and similar terms, in various attempts at formal
characterization of consciousness. Most often, however, this is done as state-
ment of a – sometimes elaborate – shibboleth rather than as a usable treatment
of the subject based on the asymptotic limit theorems of the discipline.

Dretske (1994), by some contrast, provides a – perhaps even the – funda-
mental insight:

Unless there is a statistically reliable channel of communication
between [a source and a receiver] . . . no signal can carry seman-
tic information . . . [thus] the channel over which the [semantic]
signal arrives [must satisfy] the appropriate statistical constraints of
communication theory.

The asymptotic limit theorems of information theory (Cover and Thomas
2006; Khinchin 1957) constrain any and all possible mathematical models of
consciousness, and we do well, as Kemeny recognized, to hew closely to them.
Embodiment, which is perhaps the most characteristic blindspot afflicting West-
ern consciousness studies, adds another asymptotic limit, the Data Rate The-
orem (Nair et al. 2007, described in the Mathematical Appendix), addressing
the minimum rate at which control information must be applied to stabilize an
inherently unstable system.

Here, we explore ways in which the asymptotic limit theorems of information
and control theories can be used to construct models of consciousness that rec-
ognizably hew to the picture written by Bernard Baars (1989, 2005) and others
as ‘global workspace’ theory (e.g., Dehaene and Nacche 2001; Dehaene et al.,
2011), models that aid in the creation of new – informed – speculation regarding
the phenomenon. The ultimate intent of any such models, however, is the cre-
ation of new statistical tools for the analysis of observational and experimental
data, the only sources of new knowledge, as opposed to new speculation.

Some biological context

Consciousness is an ancient evolutionary adaptation that provides selective ad-
vantage to organisms having identifiable neural systems. It involves a rapid,
highly tunable, strongly punctuated, ‘spotlight’ acquisition to attention and re-
sponse, typically characterized by a time constant of about 100 milliseconds.
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Consciousness is not some panpsychic phlogiston, cognitiferous aether, or a new
state of matter. The phenomenon gives selective advantage under competi-
tion, in spite of the sometimes tenfold metabolic free energy burden that neural
structures carry over other tissue forms (Wallace 2012b, and references therein).
Consciousness is about an embodied organism interacting with an embedding,
and often unfriendly, but highly structured, ecosystem.

That being said, there are, in most organisms, many roughly analogous
phenomena, tunable in very much the same sense, but acting far more slowly,
and, most critically, having multiple simultaneous ‘spotlights’:
• Glycan code cellular interactions (milliseconds to hours).
• The immune response (hours to days).
• Tumor control (days to years).
• Wound healing (minutes to about 18 months).
• Gene expression (through the life span).
• Institutional and sociocultural group cognition (seconds to centuries).
Since consciousness is constrained to approximately 100 millisecond response

times in neural systems – requiring significant rates of supply of metabolic free
energy – higher animals appear to sustain at most a single such ‘tunable spot-
light’. Slower systems, as they can entertain multiple, interacting, tunable spot-
lights, are far more complicated (e.g., Wallace 2012a, b). Consciousness is, then,
a bare – indeed, stripped-down – version of these richer mechanisms. Such gross
simplification is necessary for high-speed response to rapidly shifting patterns
of threat and affordance.

Some mathematical context

There are four asymptotic limit theorems of information and control theories
that are central to the study of embodied cognition and consciousness:
• The Shannon Coding Theorem (and ‘tuning theorem’ variants).
• The Source Coding or Shannon-McMillan Theorem.
• The Rate Distortion Theorem (itself a tuning theorem variant).
• The Data Rate Theorem (connecting information and control across in-

herently unstable systems).
These apply to stationary, ergodic phenomena. ‘Stationary’ means that the

probabilities remain constant in time, and ‘ergodic’ that time averages converge
to phase averages. Here, however, we will be interested in nonergodic systems,
more likely to represent real-world phenomena. Derivation of analogous – or
more precisely, different but relevant – formal results for such systems is no
small matter. The Ergodic Decomposition Theorem gives a Ptolemaic system,
not a Keplerian or Newtonian one (Hoyrup 2013). The resulting work-arounds
generate different classes of Keplerian ‘regression model’ statistical tools that
might be fitted to data.

As Wallace (2018) describes the matter,

...[W]hile every non-ergodic measure has a unique decomposi-
tion into ergodic ones, this decomposition is not always computable.
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From another perspective, such expansions – in terms of the usual
ergodic decomposition or the groupoid/directed homotopy equiva-
lents – both explain everything and explain nothing, in the sense
that almost any real function can be written as a Fourier series or
integral that reatins the essential character of the function itself.
Sometimes this helps if there are basic underlying periodicities lead-
ing to a meaningful spectrum, otherwise not. The analogy is the
contrast between the Ptolemaic expansion of planetary orbits in cir-
cular components around a fixed Earth vs. the Newtonian/Keplerian
gravitational model in terms of ellipses with the Sun at one focus.
While the Ptolemaic expansion converges to any required accuracy,
it conceals the essential dynamics.

Extending the approach of Wallace (2018), we adapt methods from nonequi-
librium thermodynamics to study both nonergodic systems and their ergodic
components – when decomposition is exact – in terms of groupoid symmetries
associated with equivalence classes of directed homotopy ‘meaningful sequences’.
The approach is based on recognition of information as a form of free energy
rather than as an ‘entropy’, mathematical form notwithstanding. In the extreme
case which will be the starting point individual pathways can be associated with
an information source function, but this cannot be represented in terms of a
‘Shannon entropy’ across a probability distribution.

An equivalence class structure then arises via a metric distance measure – de-
scribed later in Eq.(32) – for which the high probability meaningful sequences of
one kind of ‘game’ are closer together than for a significantly different ‘game’,
Averaging occurs according to siuch equivalence classes, generating groupoid
symmetries. The dynamics are then characterized by symmetry-breaking ac-
cording to ‘temperature’ changes that, contrary to Wallace (2018), must be
studied from first principles and may incorporate both underlying regulatory
mechanisms and the influence of embedding environments. The standard de-
composition can, in part, be recovered by noting that larger equivalence classes
across which uncertainty measures are constant can be collapsed into single
paths on an appropriate quotient manifold.

And, finally, a trick question: What – and under what conditions – is the
asymptotic limit theorem satisfied by the ‘integrated information’ of Tononi et
al. (2016)?

Information and free energy

Next, we take a page from Feynman (2000, p. 146) – literally – to argue that
information can be viewed as a form of free energy. That page recapitulates
what Feynman calls a ‘quite subtle’ argument by Bennett, showing how to
construct an ideal engine to convert the information within a message into
work, provided the system is ‘ergodic’, that is, equating time averages to phase
averages. Bennett’s machine is displayed in figure 1.
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Figure 1: From Feynman (2000). Bennett’s ideal machine converting informa-
tion within a message to work – free energy.

The ‘message tape’ is fed into the wheeled engine isothermally, generating
an average force against the piston, allowing the extraction of work.

There is a more direct way to see this, following the pattern of Wilson (1971).
For a physical system of volume V and partition function Z(K1, ...,Km, V ),
where the Kj are parameters and V is the volume, the free energy can be
defined as

F (K1, ...,Km) = lim
V→∞

log[Z(K1, ...,Km, V )]

V
(1)

For a stationary, ergodic information source, according to the Shannon-
McMillan Source Coding Theorem, system paths – messages, in a large sense –
can be divided into two sets, one of high probability consonant with underlying
grammar and syntax, and one of vanishingly small probability not so consonant
(Khinchin 1957).

Let N(n) be the number of high probability grammatical/syntactic paths of
length n. Then the Shannon uncertainty of the information source X can be
written as

H[X] = lim
n→∞

log[N(n)]

n
(2)

For stationary, ergodic information sources dual to cognitive processes one
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can construct a dynamic theory based simply on this homology (Wallace 2005,
2012):
• Define an entropy as the Legendre transform S ≡ −H(K) +K · ∇KH and

impose the dynamics of first-order Onsager nonequilibrium thermodynamics,
understanding that there is no microreversibility for information transmission,
and hence no ‘Onsager reciprocal relations’.
• Impose Wilson’s (1971) version of the Kadanoff model on H, using ‘bio-

logical renormalizations’ (Wallace 2005).
We are going to ber interested here, however, in nonergodic systems more

likely to characterize the real world, that is, systems for which time averages
are not given by phase averages. This requires some serious thought.

Basic variables

An embodied cognitive agent is embedded in, acting on, and acted on by, a
landscape of imprecision in effect, reaction, and result.

The agent enjoys three essential resource streams. These are, first, the rate
at which information can be transmitted between parts of itself, characterized
by an information channel capacity C. The second resource stream is the rate
at which sensory information about the embedding environment is available, at
some rate H. The third is the rate at which metabolic free energy and related
‘real’ resources can be delivered, M.

The resource rates, and time, will interact, generating a correlation matrix
analog Z of dimension 3. Any n dimensional matrix has n scalar invariants
– characteristic numbers that remain the same under certain transformations.
These invariants can be found from the standard polynomial relation

p(γ) = det[Z− γI] = γn − r1γ
n−1 + r2γ

n−2 − ...+ (−1)nrn (3)

Here, I is the n-dimensional identity matrix, det the determinant, and γ a
real-valued parameter. The first invariant is usually taken as the matrix trace,
and the last as ± the matrix determinant.

These invariants can be used to build a single scalar index Z = Z(r1, ..., rn).
The simplest such would be Z = C × H ×M. Scalarization, however, must
be appropriate to the system under study at the time of study, and there will
almost always be cross-interactions between these rates.

The important point for this analysis is that scalarization permits analysis of
a one dimensional system. Expansion of Z into vector form leads to sometimes
difficult multidimensional dynamic equations (Wallace 2020a, Section 7.1). See
the Mathematical Appendix for an outline.

2 Embodied cognition and its dynamics

Here, we follow closely the developments of Wallace (2018, 2020b).
Embodied entities are built from crosstalking cognitive submodules. These

range from individual cells, organs, social groupings, formal institutions, to
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embedding cultures and other environments. For humans in particular, every
scale and level of organization, individuals and their social workgroups are con-
strained, not only by their own experience and training, but by the culture in
which they are embedded and with which they interact.

They are likewise constrained by the the environment in which they operate,
including actions and intents of competing and cooperating entities.

Further, there is always structured uncertainty imposed by the large devia-
tions possible within the overall embedding environment.

Thus, a number of factors interact to build a composite information source
(Cover and Thomas 2006) representing embodied cognition. These are
• Cognition requires choice that reduces uncertainty and implies the exis-

tence of an information source formally ‘dual’ to that cognition at each scale
and level of organization (Atlan and Cohen 1998). The argument is direct and
agnostic about representation.
• Cognition requires regulation. As Wallace (2017, Ch.3) puts it,

Cognition and its regulation ... must be viewed as an interacting
gestalt, involving not just an atomized individual, but the individual
in a rich context... There can be no cognition without regulation,
just as there can be no heartbeat without control of blood pressure,
and no multicellularity without control of rogue cell cancers. Cog-
nitive streams must be constrained within regulatory riverbanks.

It is here that the Data Rate Theorem, or an appropriate generalization,
becomes manifest: there must be an embedding regulatory information source
imposing control information at a rate greater than an inherently unstable cog-
nitive process generates its own ‘topological information’. See the Mathematical
Appendix for details.
• For humans in particular, embedding culture is also an information source,

with analogs to grammar and syntax: within a culture, under particular cir-
cumstances, some sequences of behavior are highly probable, and others have
vanishingly small probability (Khinchin 1957), a sufficient condition for the de-
velopment of an equivalence class groupoid symmetry-breaking formalism.
• Spatial and social geographies are similarly structured so as to have inci-

dent sequences of very high and very low probability: night follows day, sum-
mer’s dirt roads are followed by October’s impassible mud streams.
• Large deviations, as described by Champagnat et al. (2006) and Dembo

and Zeitouni (1998), follow high probability developmental pathways governed
by entropy-like laws that imply the existence of another information source.

Embedded and embodied cognition is then characterized by a joint informa-
tion source uncertainty (Cover and Thomas 2006) as

H({Xi}, XV , X∆) (4)

The set {Xi} includes the cognitive, regulatory, and embedding cultural
information sources of the hierarchical system, XV is the information source
of the embedding environment, that may include the actions and intents of
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adversaries or collaborators, as well as ‘weather’. Finally, X∆ is the information
source of the associated large deviations possible to the system.

The essential point here is that crosstalk between coresident information
channels and sources is almost inevitable, a consequence of the information
chain rule (Cover and Thomas 2006). For a set of interacting stationary er-
godic information sources Xi, i = 1, 2, ..., the joint uncertainty of interacting
sources and channels is always less than or equal to the sum of the independent
uncertainties (Cover and Thomas 2006):

H(X1, X2, ...) ≤
∑
i

H(Xi) (5)

Each information source Xi is powered by some corresponding free energy
source Mi, and it takes more free energy to isolate information sources and
channels than to allow their interaction. Such a ‘second law’ conundrum con-
founds much of electrical engineering, particularly in the design and construc-
tion of microchips. Such ‘second law’ problems extend to all scales and levels
of organization.

Evolutionary process has taken this ‘spandrel’, in the sense of Gould and
Lewontin (1979), and built whole new cathedrals from it (Wallace 2012).

The next steps are somewhat subtle.
According to popular mathematical canon, there is really no serious work

to be done on nonergodic information sources as a consequence of the Ergodic
Decomposition Theorem (e.g., Gray 1988 Ch.7) which states that it is possible
to factor any nonergodic process into a sufficiently large sum (or generalized
integral) of ergodic processes, in the same way that any point on a triangle
can be expressed in terms of its extremal fixed point vertexes. As Winkelbauer
(1970) put it for information source uncertainty,

Theorem II. The asymptotic rate of a stationary source µ equals the es-
sential supremum of the entropy rates of its ergodic components:

H(µ) = ess. sup
z∈R[µ]

H(µz)

where the µz are ergodic.

Is this really a ‘simple’ result for dynamic systems that can suffer ‘absorb-
ing states’? Individual paths – and small, closely-related, equivalence classes
of them – are particularly important in biological phenomena, as opposed to
physical process. This is because each path may have a unique consequence
for the organism or other entity embedded in a stressful environment. After
all, there will only be a single ‘meaningful sequence’ associated with successful
capture by a predator.

Recall, further, that it is possible to approximate any reasonably well-behaved
real-valued function over a fixed interval in terms of a Fourier series. Recall that
it was, in the geocentric Ptolemaic system, via a sufficient number of epicycles,
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possible to predict planetary positions to any desired accuracy using such a de-
facto Fourier Decomposition. The underlying astronomical problem was both
considerably simplified and greatly enhanced by the non-geocentric empirical
observations of Kepler, explained by Newton, and fully elaborated by Einstein.

The phenomena of cognition and consciousness are considerably more com-
plex than the motion of the planets around the sun, and Keplerian laws must
still be found across many different physiological phenomena and organisms.
Newton and Einstein are nowhere on the horizon for theories of cognition and
consciousness.

Here, we significantly expand the development of Wallace (2018), deriving
from first principles, rather than imposing, a ‘temperature’ measure for noner-
godic cognitive systems.

We have, above, reduced the spectrum of resources and their interactions –
including internal bandwidth, rates of sensory information, and material/energy
supply – in terms of a scalar rate variable Z.

To explore some dynamic processes, we next introduce a first-order lin-
ear Onsager approximation abducted from nonequilibrium thermodynamics (de
Groot and Mazur 1984).

Here, we invoke an iterated free energy Morse Function (Pettini 2007) via a
formalized Boltzmann probability expression, in the sense of Feynman (2000).
This is done by enumerating high probability developmental pathways available
to the system as j = 1, 2, ..., allowing definition of a path probability Pj

Pj =
exp[−Hj/g(Z)]∑
k exp[−Hk/g(Z)]

(6)

This formulation, following Khinchin (1957) and Wallace (2018), will apply
to nonergodic as well as to stationary ergodic information sources and can be
used for systems in which each developmental pathway xj has its own source
uncertainty measure Hxj . This, however, is only defined as a Shannon ‘entropy’
for an ergodic system (Khinchin 1957).

The temperature g(Z), however, must now be calculated from Onsager-like
system dynamics built from the partition function, i.e., from the denominator
of Eq.(6).

The system’s ‘rate of cognition’ can then be expressed, as in chemical re-
action theory (Laidler 1987), by the probability such that Hj > H0, where H0

is the lower limit for detection of a signal under embodiment in a varying and
noisy environment, or for stability via the Data Rate Theorem, as described in
the Mathematical Appendix.

There is an important point implicit here: The ‘prime groupoid phase tran-
sition’. We are, in essence, imposing a symmetry-breaking version of the Source
Coding Theorem, the Shannon-McMillan Theorem, on the system, dividing all
possible paths into a small set – an equivalence class – of ‘meaningful’ sequences
consonant with some underlying grammar and syntax – in a large sense – and
a very large set of vanishingly small probability paths that are not consonant.
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Such an equivalence class partition imposes the first of many groupoid sym-
metry breaking phase transitions. We will discuss groupoid symmetries in more
detail below, but, in essence, we have used a groupoid symmetry-breaking phase
change to derive – or to impose – a fundamental information theory asymp-
totic limit theorem. Other such may emerge ‘naturally’ from related groupoid
symmetry-breaking phenomena, all related to equivalence classes of system de-
velopmental pathways.

This result can be seen, from a biological perspective, as in the same ballpark
as a much earlier phase transition, the sudden transmission of light across the
primordial universe after the first 370,000 years.

In sum, groupoid symmetry-breaking extends the Shannon-McMillan Source
Coding Theorem to nonergodic – and possibly non-stationary – information
sources. This is a major – if ‘trivially obvious’ – result to which we will re-
turn below. The Mathematical Appendix provides a brief introduction to the
standard groupoid algebra (Brown 1992; Cayron 2006; Weinstein 1996). The
central matter is that products are not defined for all possible pairs of elements,
leading to disjoint orbit partition.

The iterated free energy Morse Function F is defined by the relation

exp[−F/g(Z)] ≡
∑
k

exp[−Hk/g(Z)] = h(g(Z)) (7)

F is a Morse Function subject to symmetry-breaking transitions as g(Z)
varies (Pettini 2007; Matsumoto 1997). See the Mathematical Appendix for an
outline of Morse Function formalism.

We reiterate that these symmetries are not those associated with simple
physical phase transitions represented by standard group structures. Cognitive
phase change involves punctuated transitions between equivalence classes of high
probability signal sequences, represented as groupoids. As Tateishi et al. (2013)
put it, if experimental data can be grouped into equivalence classes compatible
with an algebraic structure, a groupoid approach can capture the symmetries
of the system in a way not be possible with group theory, for example in the
analysis of neural network dynamics. Deeper delvings into similar matters can
be found in Schreiber and Skoda (2010).

In this work, groupoid symmetries are driven by the directed homotopy
induced by failure of local time reversibility for information systems. This is
because palindromes have vanishingly small probability. In English, ‘ the ’ has
meaning in context while ’ eht ’ has vanishingly low probability. The ubiquitous
mathematical trope ‘except on a set of measure zero’ implies a fundamental
symmetry breaking.

Particularly complicated cognitive systems may require even more general
structures, for example, small categories and/or semigroupoids for analogs to
the standard symmetry-breaking dynamics of physical systems.

These more general symmetry-breaking phase changes represent extension
of the Data Rate Theorem (DRT) to cognitive systems. Again, the DRT states
that the rate at which externally-supplied control information must be imposed
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on an inherently unstable system to stabilize it must exceed the rate at which
that system generates its own ‘topological information’. The model is of steering
a vehicle on a rough, twisting roadway at night. The headlight/steering/driver
complex must impose control information at a rate greater than the ‘twisti-
ness/roughness’ of the road imposes its own information on the vehicle.

There may, then, be many phase analogs available to a cognitive system
as g(Z) varies, rather than just the ‘on/off’ of stability implied by the DRT
itself. We will make something of this in a following section that generalizes
‘renormalization’ analysis of phase transition.

Dynamic equations can be derived from from Eq(6) by invoking a first order
Onsager approximation in the gradient of an entropy measure constructed from
the iterated free energy Morse Function F via the Legendre transform

S(Z) ≡ −F (Z) + ZdF/dZ (8)

After some development,

exp[−F/g(Z)] =∑
k

exp[−Hk/g(Z)] ≡ h(g(Z))

F (Z) = − log(h(g(Z))g(Z)

g(Z) = − F (Z)

RootOf
(

eX − h(−F (Z)/X)
)

∂Z/∂t ≈ µ∂S/∂Z = f(Z) (9)

where the RootOf construct defines a generalized Lambert W-function in the
sense of Maignan and Scott (2016), Mezo and Keady (2015), and Scott et al.
(2006).

The last expression in Eq.(9) represents imposition of the entropy gradient
formalism of Onsager nonequilibrium thermodynamics (de Groot and Mazur
1984), for which f(Z) is the ‘adaptation function’, the fundamental rate at which
the system adjusts to changes in Z. Again, for information transmission there
is no ‘temporal microreversibility’, so that there can be no Onsager Reciprocal
Relations in these models.

After some further work,

f(Z) = Zd2F/dZ2

F (Z) =

∫ ∫
f(Z)

Z
dZdZ + C1Z + C2

−Z
∫
f(Z)

Z
dZ − log(h(g(Z)))g(Z)− C1Z +

∫
(f(Z)dZ + C2 = 0 (10)

Again, taking F = − log(h(g(Z))g(Z), with h determined by underlying
internal structure, leads to expressing g in terms of a generalized Lambert W-
function, suggesting an underlying formal network structure (Newman 2010).
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Specification of any two of f, g, h, in theory, allows calculation of the third.
Note, however, that h is fixed by the internal structure of the larger system, and
the ‘adaptation rate’ f is imposed by externalities. In addition, the ‘bound-
ary conditions’ C1, C2 are likewise externally-imposed, also structuring the
temperature-analog g(Z). Indeed, the ‘temperature’ g(Z) might well be viewed
as itself an order parameter.

We assume here that embodied cognitive systems can be characterized by the
scalar parameter Z, mixing material resource/energy supply with internal and
external flows of information under time constraint. There may be more than
one such composite irreducible entity driving system dynamics. More explicitly,
it may be necessary to replace the scalar Z with some m ≤ n-dimensional vector
having a number of independent – even orthogonal – components accounting for
considerable portions of the total variance in the rate of supply of essential re-
sources. The dynamic equations can then be reexpressed in a more complicated
vector form (Wallace 2020a, Section 7.1). See the Mathematical Appendix for
an outline.

In a similar way, it may be necessary to introduce nonlinear or higher order
Onsager models. An introduction to these matters can be found in Wallace
(2021a), involving, for example, expressions of the form

S = −F +
∑
j

ajZjdjF/dZj

∂Z/∂t ≈
∑
j

bjd
jS/dZj = f(Z)

∂Z/∂t ≈ dS/dZ × d2S/dZ2 + ... = f(Z) (11)

leading to formal algebraic power series treatments in the sense of Jackson et
al. (2017). These considerations take us beyond the simplest ‘Y = mX + b’
regression model analogs.

The dynamics are driven at rates determined by the adaptation function
f(Z). We can ask more detailed questions regarding what happens at critical
points defined in terms of the ‘temperature’ variate g(Z) through the abduction
of another approach from physical theory.

3 Toward a more general theory of embodied
cognition

We have, for cultural and historical reasons, focused largely on rapid, single-
workspace phenomena of neural consciousness having the 100ms time constant.
If we enthrone the Data Rate Theorem rather than rate of cognition, we can say
something regarding embodied cognition as a (or even the) more fundamental
gestalt. The argument – a significant condensation of Wallace (2021a) – is
surprisingly simple, and seems independent of such niceties as ergodicity of
information sources.
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Recall the Data Rate Theorem – e.g., figure 11 in the Mathematical Ap-
pendix. Stabilization of an inherently unstable control system engaged in some
fundamental task requires that control information be delivered at a rate greater
than the rate at which the unstable system generates its own ‘topological in-
formation’, say H0. We do not specify ‘H0’, except as a scalar entity that may
indeed change with time.

Most simply, we characterize H as the (scalar) rate at which external reg-
ulatory mechanisms provide such control information, and (yet again) define a
Boltzmann pseudoprobability

dP (H) ≡ exp[−H/g(Z)]dH∫∞
0

exp[−H/g(Z)]dH
(12)

where g(Z) and Z are as described above, supposing that the regulatory-action
process is itself composed of subcomponents that interact with each other and
with an embedding environment through both information exchanges and the
use of ‘materiel’ in various forms.

We define iterated free energy and entropy analogs as above from the ‘par-
tition function’ denominator of Eq.(12), obtaining the usual relations

exp[−F/g(Z)] ≡
∫ ∞

0

exp[−H/g(Z)]dH = g(Z)

g(Z) =
−F (Z)

W (n,−F (Z))

S ≡ −F + ZdF/dZ

∂S/∂t ∝ dS/dZ = f(Z)

f(Z) = Zd2F/dZ2

L(Z) =

∫∞
H0

exp[−H/g(Z)]dH∫∞
0

exp[−H/g(Z)]dH
= exp[−H0/g(Z)] (13)

where, again, W (n, x) is the appropriate Lambert W-function and L(Z) the
cognition rate. A more convoluted line of argument leada to the ‘generalized
Lambert W-functions’ of Eq.(9).

Embodiment – directly implying interaction with the embedding world –
appears to impose a certain draconian or procrustian simplicity, as Charles
Darwin, Alfred Russel Wallace, and many others have noted.

4 Examples

We have assembled enough tools for a simple application, recognizing the basic
punctuated transition in consciousness – on/off – as being roughly analogous to
the Data Rate Theorem in that there is a critical value of information flow rate
H0 for full function. That is, allowing a continuous approximation to the sum in
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the second expression of Eq.(9), we assume a minimum necessary critical limit
H0 and can write

exp[−F/g(Z)] =

∫ ∞
−H0

exp[−(H0 + x)/g(Z)]dx = g(Z)

F = − log[g(Z)]g(Z)

g(Z) =
−F (Z)

W (n,−F (Z))
(14)

where W (n, x) is the Lambert W-function of order n that satisfies the relation
W (n, x) exp[W (n, x)] = x. It is real-valued only for orders n = 0, −1 over
respective ranges − exp[−1] < x <∞ and − exp[−1] < x < 0.

The appearance of the Lambert W-function is a distinct red flag, imply-
ing the possibility of re-envisioning and reconstructing the underlying problem
in terms of a more fundamental, if substantially more abstract, submodular
network. See Newman (2010) for general arguments and examples, and Yi et
al. (2011) for an application to neural networks with time delays. Recall that
the fraction of nodes in the ‘giant component’ within a random network of N
nodes can be described in terms of the probability of contact between nodes
p as {W (0,−Np exp[−Np]) + Np}/Np. This expression is highly punctuated
in the variable Np, leading, as discussed in the next chapter, to an elementary
model of the accession to consciousness in a tunable linked system of cognitive
submodules.

Eq.(14) leads to an expression for the cognition rate – in an argument ab-
ducted from chemical reaction theory (Laidler 1987) – as

L(Z) =

∫∞
H0

exp[−x/g(Z)]dx∫∞
−H0

exp[−(H0 + x)/g(Z)]dx
= exp[−H0/g(Z)] (15)

Thus, in Eq.(9), we find h(g(Z)) = g(Z) and can carry out an explicit
calculation for g in terms of f(Z) from Eq.(10), giving

g(Z) =
−C1Z − Z

∫ f(Z)
Z dZ + C2 +

∫
f(Z)dZ

W (−C1Z − Z
∫ f(Z)

Z dZ + C2 +
∫
f(Z)dZ)

(16)

where, again, dZ/dt = f(Z(t)) defines the adaptation function f , and W (x) is
the Lambert W-function, taken here of of order 0 and real-valued for− exp[−1] <
x <∞.

It is important to recognize that, in higher animals, metabolic free energy
is provided by the hydrolysis of adenosine triphosphate (ATP) to diphosphate
(ADP). The free energy available from this reaction is significant, ranging be-
tween 30-60 KJ/mol, dependent on embedding physiological details. The energy
supplied by this process can be equivalent to thousands of degrees K, suggesting
that neural tissues, which typically consume metabolic free energy at a rate ten
times that of more ordinary tissues, can indeed be driven to operate at very
high ‘reaction rates’.
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Figure 2: From Diamond et al. (2007). Canonical forms of the Yerkes-Dodson
law, for simple and difficult tasks.

Arousal

Following Wallace (2021b), the Yerkes-Dodson law (Diamond et al. 2007) relates
complex task performance to arousal for individual animals under experimental
conditions. Figure 2, as adapted from Diamond et al. (2007), shows that,
depending on the difficulty of the task, there can be either a ‘topping out’ or an
inverted-U pattern for performance vs. arousal.

Typically, f(Z), the adaptation function, might be seen as taking an ‘expo-
nential’ form, i.e., f(Z(t)) = β − αZ(t).

In figure 3, we plot two expressions for L(Z), the cognition rate, from
Eq.(15), letting H0 = 1. Here, α = 0.1 and α = 1.0, while the arousal in-
dex, β, varies. C1 = −3 for both, while C2 takes the values −18 and −3. Here,
the lighter curve, corresponding to α = 1.0, represents the easier task.

With proper manipulation of parameters and boundary conditions, the for-
malism produces something remarkably like the Yerkes-Dodson law.

Figure 4, by contrast, examines the efficiency of cognition, L(Z)/Z, as a
function of the arousal β. Hard problems are are, in this model, clearly far more
demanding of resources than simple ones, suggesting that it is more efficient to
break up a hard problem into a series of simpler ones, or, perhaps more to the
point, to a parallel set of them.

Distraction

Conscious effort and attention is not only affected by arousal, but by distraction,
and it is not difficult to explore the dynamics of cognition rate L(Z) using
formalism available from the standard theory of stochastic differential equations
(Protter 2005).

This requires expanding the relation dZ/dt = f(Z(t)) = β − αZ(t) as

dZt = (β − αZt)dt+ σZtdBt (17)
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Figure 3: From Wallace (2021b). Cognition rates L(Z) vs. β as an arousal index
for simple and difficult tasks. Here, H0 = 1, taking α = 0.1 for the difficult and
α = 1.0, for the easier task. C1 = −3 for both, while C2 takes the values −18
and −3. The lighter curve, having α = 1.0, represents the easier task.

Figure 4: Cognition efficiency L(Z)/Z vs. arousal for the examples of figure 3.
It is, in this model, far more efficient to convert a hard problem into a series or
parallel set of simpler ones.
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Figure 5: Application of the Ito Chain Rule to the cognition rate L(Z), with
f(Z) = 1.1 − 0.1Z. The value of β has been taken as the peak for the more
difficult problem of figure 3. We find the solution set {σ, Z} for the nss relation
< dLt >= 0 using numerical methods. Instability begins at a much lower value
of σ than 0.447, the limit for variance in Z as driven by simple volatility for
α = 0.1. By contrast, L faces the possibility of a bifurcation instability for any
σ > 0, and fully collapses under the burden of distraction if σ > 0.07.

where the second term represents a standard model of ‘volatility’, with σ the
magnitude of the distracting ‘noise’ dBt, taken here as ordinary flat-spectrum
Brownian white noise. ‘Colored’ noise is possible, at the expense of mathemat-
ical complication (Protter 2005).

Using the Ito Chain Rule on Z2
t , (Protter 2005), ‘it is easy to show’ that,

for a nonequilibrium steady state (nss), the variance of Zt for the exponential
model is

< Z2 > − < Z >2=

(
β

α− σ2/2

)2

−
(
β

α

)2

(18)

For the difficult task of figure 3, α = 0.1 and, independent of arousal β,
variance in Z explodes if the noise burden σ >

√
0.2 ≈ 0.447.

What happens to the cognition rate of Eq.(15) under noise/distraction mea-
sured by σ? Again, it is possible to apply the Ito Chain Rule to L(Z) as it was
to Z2. We study the more difficult problem of figure 3, having α = 0.1, but fix
β = 1.1, i.e., at the peak value of the cognition rate L. The resulting relation
at nss – the solution set {σ, Z} to the equation < dLt >= 0 – is literally too
long to write on this page, but can be solved numerically via the implicitplot
function of the computer algebra program Maple 2020, giving figure 5.

The cognition rate L(Z) is very highly sensitive to the magnitude of distrac-
tion σ in this model. While, for the more difficult problem of figure 3, Z itself
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becomes unstable if σ > 0.447, L faces the possibility of a bifurcation instability
for any σ > 0, and collapses entirely if σ > 0.07.

Distraction and arousal under fixed delay

Imposition of a fixed, discrete, delay δt on the adaptation function f(Z) =
β − αZ(t), so that

dZ(t) = β − αZ(t− δt) (19)

gives a delay-differential equation. In general, these are most difficult to analyze.
Here, however, we can directly impose a solution to Eq.(19) as

Zs(t) ≡
β

α
(1− exp[st]) (20)

Application of Eq.(19) to this expression permits an explicit solution for s:

s =
W (n,−αδt)

δt
(21)

where, again, W is the Lambert W-function of order n.
Recall that, only for n = 0, is it real-valued, for − exp[−1] < x <∞, and for

n = −1, real-valued for − exp[−1] < x < 0. Lambert W-functions of all other
orders are complex-valued.

α× δt, the product of a rate and a time, is a dimensionless number driving
system dynamics. Yi et al. (2011) extend the general method to multidimen-
sional systems, using the matrix Lambert W-function. Figure 6 shows the real
and complex values of the n = −1 branch of Eq.(21), the fundamental form for
what we will do here, as functions of the product αδt.

There are two critical values for the (dimensionless) index αδt, derived from
the appearance of the Lambert W-function, here taken of order -1. The first
is at the point where the complex component becomes nonzero, i.e., when
αδt > exp[−1]. This signifies onset of dying oscillatory dynamics. The sec-
ond critical value is the value of αδt at which the real component of s becomes
greater than zero, triggering explosive growth in oscillations. Note that the pe-
riodicity, determined by the magnitude of the complex component, changes as
αδt increases beyond the first critical point.

Eq.(20) implies

dZs/dt = s(Zs − β/α) ≡ f(Zs) (22)

permitting, as above, analysis of the resource delivery system’s properties under
stochastic fog, via the stochastic differential equation

dZst = s(Zst − β/α)dt+ σZst dBt (23)

Again, the second term represents volatility under conditions of Brownian
noise.
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Figure 6: s from Eq.(21), taking n = −1, real-valued only for −exp[−1] <
−αδt < 0. There are two critical values for the dimensionless index αδt, derived
from the appearance of the Lambert W-function. The first is at the point where
the complex component becomes nonzero, representing the onset of dying oscil-
latory dynamics when αδt > exp[−1]. The second is the point at which the real
component of s becomes greater than zero, implying explosive growth in oscil-
lations. Periodicity, determined by the magnitude of the complex component,
changes as αδt increases beyond the first critical point.

Applying the Ito Chain Rule to Z2
s gives the variance as

< Z2
s > − < Zs >

2=

(
sβ/α

s+ σ2/2

)2

−
(
α

β

)2

(24)

Again, the system becomes grossly unstable if αδt > exp[−1]. Thus delay –
δt – can greatly exacerbate inherent stochastic instabilities.

However, even if s is real-valued and negative, sufficient noise, measured by
σ2/2, also triggers explosive instability.

Recall the expressions for g(Z) and L(Z) from Eqs.(3.2) and (3.3), assuming
a delayed adaptation function, so that ∂Zs/∂t = f(Zs(t)) = s(Zs(t) − β/α),
where s is from Eq.(21), so that Zs(t)→ β/α.

Numerical exploration finds instability in L can be imposed by even very
small delays δt.

We construct another Yerkes-Dodson ‘arousal’ analysis, showing cognition
rate as a function of β, letting Z = β/α and taking appropriate values for other
parameters. This is done in figure 7, where, for the stable – real-valued only –
solutions, we set α = 1, C1 = C2 = 3 and plot L(β) for δt = 0.04, 0.3, exp[−1],
taking the Lambert W-function of order −1 for s in Eq.(21) and 0 in the expres-
sion for g(Zs). As the fixed delay δt increases, the ‘inverted-U’ of institutional
cognition progressively collapses in a manner consistent with Delayed Auditory
Feedback studies in which an artificially-induced delay of about 175ms between
speech and hearing triggers extreme stress.

19



Figure 7: A Yerkes-Dodson ‘arousal’ analysis for cognition rate, setting n = −1
in the expression for s and n = 0 in that for g, with Z = β/α, α = 1, C1 =
C2 = 3. Here, δt = 0.04, 0.3, exp[−1]. Increasing fixed delay collapses cognitive
function.

Two-mode dynamics

Next, we examine what is perhaps the simplest possible example, a two-mode
nonergodic system for which the high probability meaningful sequences are as-
sumed to fall into two sets, each taken to be of the same size N , having source
uncertainties H± = H0 ± δ for a fixed δ > 0. The larger value represents the
‘on’ mode, and the smaller the ‘off’. Here, we – in effect – invoke the Ergodic
Decomposition Theorem, as the H± represent ergodic ‘extreme points’ across
the full nonergodic regime.

Some thought gives

exp[−F/g(Z)] = N exp[−H0/g(Z)]2 cosh(δ/g(Z))

F = − log[2N cosh(δ/g(Z))]g(Z) +H0

L(Z) =
exp[−δ/g(Z)]

2 cosh(δ/g(Z))
(25)

where L(Z) is again the cognition rate.
Again, we impose a first-order Onsager model, taking S ≡ −F + ZdF/dZ

and ∂Z/∂t ∝ dS/dZ = f(Z).
Approximating the resulting relations to fourth order in δ gives, surprisingly,

a second order expression as
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Figure 8: Yerkes-Dodson arousal plot approximation, showing cognition rate
L vs. β for the adaptation function f(Z) = β − αZ. Here, N = 1, 1000,
δ = 0.1, α = 1, Z = β and the boundary conditions are C1 = −2, C1 = −1.

−Z (ln(2) + ln(N))

(
d2

dZ2
g(Z)

)
+ Z

(
d2

dZ2 g(Z)

2g(Z)
2 −

(
d
dZ g(Z)

)2
g(Z)

3

)
δ2 ≈ f(Z)

(26)
We will again take f(Z) = β − αZ. The resulting equation can be explic-

itly solved for g(Z), leading to a distractingly complicated expression for the
cognition rate which we omit for clarity.

Figure 8, however, shows the resulting – and highly approximate – Yerkes-
Dodson arousal relations, i.e., the L(β), for two different values of N . Here,
α = 1, Z = β,N = 1000, 1, δ = 0.1, with the necessary two boundary conditions
as C1 = −2, C2 = −1.

Because of the simple structure – only two modes – we have been able to
explicitly derive the h-function relation of Eqs.(7) and(9).

Multi-mode dynamics

Suppose there a many, say N , possible H-values, clustered around a base value
H0. Then

exp[−F/g(Z)] =

N∑
j=1

exp[−(H0 + δj)/g(Z)] =
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exp[−H0/g(Z)]

 N∑
j=1

exp[−δj/g(Z)]

 (27)

We can estimate the sum in δj using the approximation

exp[−δj/g(Z)] ≈ 1− δj/g(Z) +
1

2

δ2
j

g(Z)2
(28)

Then

exp[−F/g(Z)] ≈

exp[−H0/g(Z)]

(
N −

∑
j δj

g(Z)
+

∑
j δ

2
j

2g(Z)2

)
(29)

so that

F (Z) ≈ − log

(
N +

∆

2g(Z)2

)
g(Z) +H0 (30)

where ∆ ≡
∑
j δ

2
j and we have adjusted H0 so that

∑
j δj = 0.

We again introduce an entropy-analog as S = −F + ZdF/dZ, and impose
Onsager dynamics as ∂S/∂t ∝ dS/dZ = f(Z).

Taking f(Z) = β − αZ, and assuming ∆/2g(Z)2 � N leads to

g (Z) =

2 ln(Z)Zβ − αZ2 + 2C1Z − 2βZ − 2C2

4W

n,−
√

(2 ln(Z)Zβ−αZ2+2C1Z−2βZ−2C2)2

∆

√
2

4

 (31)

where, again, W (n, x) is the Lambert W-function of order n.
Recall that W (n, x) is real-valued only for n = 0,−1 and only over limited

ranges in x, suggesting punctuated phase transitions in this expression, driven
by synnetry-breaking in the groupoids defining the real-value ranges of x.

The model leading to Eq.(31) is obviously fragile, but, assuming a Data Rate
Theorem limit H1 for a cognition rate defined as L ∝ exp[−H1/g(Z)], proper
choice of boundary conditions does indeed produce the ubiquitous inverted-U.
In figure 9, H1 = 1, n = −1,∆ = 1000, α = 1, C1 = −3, C2 = 1, assuming
Z = β/α. The approximation fails for large β.

5 Phase transitions

The possible appearance of the Lambert W-function in the argument above – for
the simple case h(g(Z)) = g(Z) – is a warning. The fraction of nodes within the
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Figure 9: Cognition rate example for Eq.(31). Here, L ∝ exp[−H1/g(Z)],
setting H1 = 1, n = −1,∆ = 1000, α = 1, C1 = −3, C2 = 1, Z = β/α. The
approximation is fragile and fails at larger β.

‘giant component’ of a random network of N nodes – here, taken as interacting
information sources dual to unconscious cognitive processes – can be described
in terms of the probability of contact between nodes, p, as (Newman 2010)

W (0,−Np exp[−Np]) +Np

Np
(32)

giving the results of figure 10. Note the threshold for onset of a giant component
in the random network case.

An important feature here is the topological tunability of the threshold dy-
namics implied by the two limiting cases, the star-of-stars-of-stars vs. the ran-
dom network.

Lambert W-functions thus appear to suggest existence of an underlying for-
mal network structure. For our purposes here – neural structures – we can
envision the underlying abstract network to be a set of information sources dual
to unconscious cognitive phenomena within the brain. These become linked
by ‘Np’ crosstalk, in the context of a tunable topology that shifts somewhere
between the two limits of the figure.

See figure 6 of Dehaene and Changeux (2011) for something similar.
Previous sections have abducted results from nonequilibrium thermodynam-

ics to consciousness theory, applicable to nonergodic, as well as ergodic, models
of cognition. Here, we abduct the Kadanoff renormalization treatment of phys-
ical phase transitions (e.g., Wilson 1971, Wallace 2005, 2012b), applying it to a
reduced version of the iterated ‘free energy’ Morse Function of Eq.(7), expanding
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Figure 10: Proportion of N interacting information sources dual to unconscious
cognitive processes that are entrained into a ‘giant component’ global broadcast
as a function of the probability of contact p for random and stars-of-stars-of-
stars topologies. Tuning topologies determines the threshold for ‘ignition’ to
global broadcast.

the approach of Wallace (2021a).
Although a more general argument can be made, representing embodied

consciousness an sich, for the sake of familiarity, we project down on to the sub-
system dominated by C, the internal system bandwidth, envisioning a number
of internal cognitive submodules as connected into a topologically identifiable
network having a variable average number of fixed-strength crosstalk linkages
between components. The mutual information measure of crosstalk can con-
tinuously change, and it becomes then possible to conduct a parameterized
renormalization in a now-standard manner (Wilson 1971, Wallace 2005).

The internal modular network linked by information exchange has a topology
depending on the magnitude of interaction. We define an interaction parameter,
a real number ω > 0, and examine structures characterized in terms of linkages
set to zero if crosstalk is less than ω, and renormalized to 1 if greater than
or equal to ω. Each ω defines, in turn, a network ‘giant component’ (Spenser
2010), linked by information exchange greater than or equal to it.

Now invert the argument: a given topology of interacting submodules mak-
ing up a giant component will, in turn, define some critical value ωC such that
network elements interacting by information exchange at a rate less than that
value will be excluded from that component, will be locked out and not ‘con-
sciously’ perceived.

ω is a tunable, syntactically dependent, detection limit depending on the
instantaneous topology of the giant component of linked cognitive submodules
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defining, by that linkage, a ‘global broadcast’.
For ‘slow’ systems (Wallace 2012b) – immune response, gene expression,

institutional process – as opposed to the 100 ms time constant of higher ani-
mal consciousness, there can be many such ‘global workspace’ spotlights act-
ing simultaneously. Such multiple global broadcasts, indexed by the set Ω =
{ω1, ω2, ...}, lessen the likelihood of inattentional blindness to critical signals,
both internal and external. The immune system, for example, engages simulta-
neously in pathogen and malignancy attack, neuroimmuno dialog, and routine
tissue maintenance (Cohen 2000).

Assuming it possible to scalarize the set Ω in something like the manner of
Z, built from Eq.(3), we work with a single, real-value ω, and can model the
dynamics of a multiple tunable workspace system.

Recall the definition of the iterated free energy F from Eq.(7), now focused
within and characterized by ω. The essential idea is to invoke a ‘length’ r on
the network of internal interacting information sources. r will be more fully
defined below. We follow the renormalization methodology of Wilson (1971)
as described in Wallace (2005), although other approaches are clearly possible.
That is, there is no unique renormalization symmetry.

The central idea is to invoke a ‘clumping’ transformation under an ‘external
field strength’ that can be, in the limit, set to zero. For clumps of size R, given
a field of strength J ,

F [ω(R), J(R)] = F(R)F [ω(1), J(1)]

χ[ω(R), J(R)] =
χ[ω(1), J(1)]

R
(33)

χ represents a correlation length across the linked information sources.
F(R) is a ‘biological’ renormalization relation that can take such forms as

Rδ, m log(R) + 1, exp[m(R − 1)/R], and so on, so long as F(1) = 1 and is
otherwise monotonic increasing. Physical theory is restricted to F(R) = R3.

Surprisingly, after some tedious algebra, the standard Wilson (1971) renor-
malization phase transition calculation drops right out for the extended rela-
tions, described first in Wallace (2005) and summarized in the Mathematical
Appendix.

There remains a problem. Just what is the metric r? In this, we follow
Wallace (2012b).

First, impose a topology on the system of interacting information sources
such that, near a particular ‘language’ A associated with some source uncer-
tainty measure H, there is an open set U of closely similar languages Â such
that the set A, Â ∈ U .

Since the information sources are sufficiently similar, for all pairs of languages
A, Â in U it is possible to
• Create an embedding alphabet which includes all symbols allowed to both.
• Define an information-theoretic distortion measure in the extended joint

alphabet between any high probability (i.e, properly grammatical and syntac-
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tical) paths in A and Â, written as d(Ax, Âx). The different languages do not
interact in this approximation.
• Define the metric on U as

r(A, Â) ≡ |
∫
A,Â

d(Ax, Âx)−
∫
A,A

d(Ax,Ax̂)| (34)

where Ax and Âx are paths in the languages A, Â respectively, d is the distortion
measure, and the second term is a ‘self-distance’ for the language A such that
r(A,A) = 0, r(A, Â) > 0, A 6= Â.

Some thought shows this version of r is sufficient, if somewhat counterintu-
itive. A more formal approach can be found in Glazebrook and Wallace (2009).

Extension of the Wilson technique to a fully-embodied consciousness model
seems straightforward. However, since the dynamics of the embedded condition
are so highly variable, there will be no unique solution, although there may well
be equivalence classes of solutions, defining yet more goupoids in the sense of
Tatcishi et al. (2013).

Indeed, groupoids may rear their heads at a more fundamental level: Wil-
son’s renormalization semigroup, in the cognitive circumstance of discrete equiv-
alence classes of developmental pathways, might well require generalization as a
renormalization semigroupoid, e.g., a disjoint union of different renormalization
semigroups across a nested or otherwise linked set of information sources and/or
iterated free energy constructs dual to cognitive modules. Something roughly
analogous has been postulated for ‘spin foam’ gravity models (Oeckl 2003).

A little algebra: the transitive decomposition

Following the arguments of Wallace (2018), we have, in effect, studied equiv-
alence classes of directed homotopy developmental paths – the {x1, ...xn, ...}
– associated with nonergodic cognitive systems defined in terms of single-path
source uncertainties. These require imposition of structure in terms of the met-
ric r of Eq.(34), leading to groupoid symmetry-breaking transitions driven by
changes in the temperature analog g(Z). There can be an intermediate case
under circumstances in which the standare ergodic decomposition of a station-
ary process is both reasonable and computable – no small constraint. Then
there is an obvious natural directed homotopy partition in terms of the tran-
sitive components of the path-equivalence class groupoid. It appears that this
decomposition is equivalent to, and maps on, the ergodic decomposition of the
overall stationary cognitive process. It then becomes possible to derine a con-
stant source uncertainty on each transitive subcomponent, fully indexed by the
embedding groupoid. This was done earkuer for the two-mode example.

That is, each ergodic/transitive groupoid component of the ergodic decom-
position recovers a constant value of the source uncertainty dual to cognition,
presumably given by standard ‘Shannon entropy’ expression. Since it is possible
to view the components themselves as constituting single paths in an appropri-
ate quotient space, this leads to the previous ‘nonergodic’ developments.
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As Wallace (2018) notes, the argument tends toward Mackey’s theory of
‘virtual groups’, i.e., ‘ergodic groupoids’ (Hahn 1978; Mackey 1963; Series 1977).

A complication emerges through imposition of a double symmetry involving
metric r-defined equivalence classes on this quotient space. That is, there are
different possible strategies for any two teams playing the same game. In sum,
however, groupoid symmetry-breaking in the iterated free energy construct of
Eq.(7) will still be driven by changes in g(Z) and/or ω.

6 Discussion and conclusions

As a remark above implies – that for information dynamics there is no microre-
versibility, and hence no ‘Onsager Reciprocal Relations’ – cognitive phenomena
are likely to be far different from physical processes, although undoubtedly con-
strained by them. The ‘prime groupoid phase transition’ is both ‘obvious’ and
unexpected. The ‘Kadanoff Picture’ of phase transition in cognition is simi-
larly plagued with ‘biological renormalizations’ that may, in fact, be tunable
(Wallace 2005). Underlying this is the matter of ‘fundamental symmetries’ and
‘symmetry-breaking’ in cognition. These ‘symmetries’ will, particularly for the
nonergodic cognitive phenomena likely to dominate real-world dynamics, involve
equivalence classes of dynamic paths, the long xj = {xj1, ..., xjn, ...} discussed
above. Equivalence class properties can be expressed in terms of groupoids, es-
sentially groups for which there is not necessarily a product defined between all
element pairs. The symmetry-breaking of phase transitions familiar from phys-
ical theory then becomes a matter of transitions between groupoid structures.

That is, symmetry-breaking in cognition should be considered as fundamen-
tal to the study of cognitive process – including consciousness – as it is to
physical theory. The symmetries are, however, much different than those fa-
miliar from physical theory. One may, perhaps in lifting the requirement that
the systems be stationary, be driven to even more general symmetry structures
than groupoids, for example, small categories and semigroupoids, in the context
of dynamics characterized in terms of formal algebraic power series. This work
remains to be done.

To reiterate, ‘except on a set of measure zero’ implies some primordial sym-
metry breaking.

There is support for this perspective in the literature. Recall the ‘information
theory chain rule’ from Eq.(5) (Cover and Thomas 2006). For two stationary,
ergodic information sources X1 and X2, the joint uncertainty must be less than
the sum of their independent uncertainties:

H(X1) +H(X2) ≥ H(X1, X2) (35)

Let G be any finite group and G1, G2 be subgroups of G. Take |G| to be
the order of the group, i.e., the number of elements. The intersection G1 ∩G2

is also a subgroup and a group inequality can be derived analogous to Eq.(35):
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log

(
|G|
|G1|

)
+ log

(
|G|
|G2|

)
≥ log

(
|G|

|G1 ∩G2|

)
(36)

Yeung (2008) assigns a probability via a pseudorandom variate related to a
group G as Pr[X = a] = 1/|G|, allowing construction of a group-characterized
information source. Yeung (2008) establishes a one-to-one correspondence be-
tween unconstrained information inequalities, extensions of Eq.(35), and finite
group inequalities. That is, unconstrained inequalities can be proved by tech-
niques in group theory, and many group-theoretic inequalities can be proven by
methods of information theory.

We suggest here, in a similar manner, that nonergodic information sources
and their dynamics are intimately associated with groupoid algebras. Less reg-
ular information processes may require even more general algebraic structures.

We have, then, outlined a mathematical treatment of embodied conscious-
ness – really, the only kind evolution can give us – that, while abducting (ul-
timately, nonlinear) nonequilibrium thermodynamics and Kadanoff theory, re-
mains true to the asymptotic limit theorems of information and control theories.
The underlying example for this is the abduction of classical mechanics into both
quantum theory and general relativity, albeit in markedly different directions.
The observation of Feynman (2000) and many others that information is a form
of free energy permits these abductions, in the context of new, iterative, Morse
Theory free energy and entropy analogs. Application of these methods to psy-
chopathologies can be found in Wallace (2016, 2017), and to failure of artificial
intelligence under stress in Wallace (2020a).

This work differs significantly from the earlier analyses by Wallace (2005,
2012), who studied similar dynamics, but focused on stationary ergodic source
uncertainties dual to cognitive processes. Here, an iterated free energy Morse
Function is defined through Eq.(7) for nonergodic systems, permitting greater
latitude in modeling dynamic behavior. This iterated ‘free energy’ approach
differs from Friston’s free energy formalism (e.g., Bogacz 2017) by avoiding a
fundamental contradiction, i.e., not invoking minimization of free energy mea-
sures for neural systems that actually require rates of metabolic free energy
supply an order of magnitude greater than for other kinds of tissue. The ar-
gument here that most parallels Friston’s regards efficiency of cognition, as in
figure 4, suggesting an evolutionary necessity for highly parallel address of dif-
ficult cognitive problems.

Further, the underlying perspective of this line of research differs from Inte-
grated Information Theory (IIT) by actually hewing closely to the asymptotic
limit theorems of both control and information theories, and by explicit recogni-
tion that consciousness, like immune function and insect wings, is an evolution-
ary adaptation specific to organisms, and not a general property to be assigned
across physical systems. While it may be possible to construct computing ma-
chines having any number of rapidly-tunable neural global workspace analogs,
there is no panpsychic aether.

Indeed, consciousness in higher animals appears as a necessarily stripped-
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down, greatly simplified, high-speed example of much slower, but far more gen-
eral, processes – like immune function and gene expression – that entertain mul-
tiple, simultaneous tunable spotlight ‘global workspaces’. All such have emerged
through evolutionary exaptations of the inevitable crosstalk afflicting informa-
tion processes through a kind of ‘second law’ leakage necessarily associated with
information as a form of free energy.

This perspective represents a fundamental reorientation in consciousness
studies, stripping the subject of various deep, culturally-driven, social con-
structs.

In sum, without identifying consciousness as a weird, new, form of mat-
ter, without mind/body dualism, without the ignis fatuus of the ‘hard prob-
lem’, ‘qualia’, and like conceits, the asymptotic limit theorems of information
and control theories permit construction of models recognizably similar to the
empirical pictures Bernard Baars and others have drawn of high level mental
phenomena. That being said, we are constrained by the warning of the mathe-
matical ecologist E.C. Pielou (1977), that the purpose of mathematical models
is new speculation, not new knowledge, which can only arise from observation
and experiment.

Most particularly, then, the probability models outlined here should be seen
as analogs to such ‘models’ as the Central Limit and associated asymptotic the-
orems that are the foundations of statistical tools including t-tests, regression
equations, and so on. Such tools, among other uses, provide important bench-
marks against which to compare experimental and observational results, and
new knowledge is as likely to come from their failures as from their successes.

Following Wallace (2017, Section 7.7), we speculate further that such tools
might well aid in the understanding and treatment of the many pathologies
afflicting cognitive process at and across the various scales and levels of organi-
zation that characterize the living state.

7 Mathematical Appendix

Groupoids

We following Brown (1992). Consider a directed line segment in one component,
written as the source on the left and the target on the right.

• −→ •

Two such arrows can be composed to give a product ab if and only if the
target of a is the same as the source of b

• a−→ • b−→ •

Brown puts it this way,

One imposes the geometrically obvious notions of associativity,
left and right identities, and inverses. Thus a groupoid is often
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thought of as a group with many identities, and the reason why this
is possible is that the product ab is not always defined.

We now know that this apparently anodyne relaxation of the
rules has profound consequences... [since] the algebraic structure
of product is here linked to a geometric structure, namely that of
arrows with source and target, which mathematicians call a directed
graph.

Cayron (2006) elaborates this:

A group defines a structure of actions without explicitly pre-
senting the objects on which these actions are applied. Indeed, the
actions of the group G applied to the identity element e implicitly
define the objects of the set G by ge = g; in other terms, in a group,
actions and objects are two isomorphic entities. A groupoid en-
larges the notion of group by explicitly introducing, in addition to
the actions, the objects on which the actions are applied. By this
approach, many identities may exist (they correspond to the actions
that leave an object invariant).

Stewart (2007) describes something of the underlying mechanics by which
symmetry changes in general may be expressed:

Spontaneous symmetry-breaking is a common mechanism for
pattern formation in many areas of science. It occurs in a sym-
metric dynamical system when a solution of the equations has a
smaller symmetry group than the equations themselves... This typ-
ically happens when a fully symmetric solution becomes unstable
and branches with less symmetry bifurcate.

It is of particular importance that equivalence class decompositions permit
construction of groupoids in a highly natural manner.

Weinstein (1996) and Golubitsky and Stewart (2006) provide more details
on groupoids and on the relation between groupoids and bifurcations.

An essential point is that, since there are no necessary products between
groupoid elements, ‘orbits’, in the usual sense, disjointly partition groupoids
into ‘transitive’ subcomponents.

The Data Rate Theorem

Real-world environments are inherently unstable. Organisms (and organiza-
tions), to survive, must exert a considerable measure of control over them. These
control efforts range from immediate responses to changing patterns of threat
and affordance, through niche construction, and, in higher animals, elaborate,
highly persistent, social and sociocultural structures. Such necessity of control
can, in some measure, be represented by a powerful asymptotic limit theorem
of probability theory different from, but as fundamental as, the Central Limit
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Figure 11: The reduced model of an inherently unstable system stabilized by a
control signal Ut.

Theorem. It is called the Data Rate Theorem, first derived as an extension of
the Bode Integral Theorem of signal theory.

Consider a reduced model of a control system as follows:
For the inherently unstable system of figure 11, assume an initial n-dimensional

vector of system parameters at time t, as xt. The system state at time t + 1
is then – near a presumed nonequilibrium steady state – determined by the
first-order relation

xt+1 = Axt + But +Wt (37)

In this approximation, A and B are taken as fixed n-dimensional square
matrices. ut is a vector of control information, and Wt is an n-dimensional
vector of Brownian white noise.

According to the DRT, if H is a rate of control information sufficient to
stabilize an inherently unstable control system, then it must be greater than a
minimum, H0,

H > H0 ≡ log[|det[Am]|] (38)

where det is the determinant of the subcomponent Am – with m ≤ n – of the
matrix A having eigenvalues ≥ 1. H0 is defined as the rate at which the unstable
system generates ‘topological information’ on its own.

If this inequality is violated, stability fails.
A somewhat different derivation of the DRT, via the ‘convexity’ inherent to

the Rate Distortion function, is also possible (e.g., Wallace 2020a, Section 14.3,
2020b, Section 5).
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Morse Theory

Morse theory examines relations between analytic behavior of a function – the
location and character of its critical points – and the underlying topology of the
manifold on which the function is defined. We are interested in a number of
such functions, for example a ‘free energy’ constructed from information source
uncertainties on a parameter space and ‘second order’ iterations involving pa-
rameter manifolds determining critical behavior. These can be reformulated
from a Morse theory perspective. Here we follow closely Pettini (2007).

The essential idea of Morse theory is to examine an n-dimensional manifold
M as decomposed into level sets of some function f : M → R where R is the
set of real numbers. The a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact, then the whole
manifold can be decomposed into such slices in a canonical fashion between two
limits, defined by the minimum and maximum of f on M . Let the part of M
below a be defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum
and maximum of f .

Morse functions are defined as a particular set of smooth functions f : M →
R as follows. Suppose a function f has a critical point xc, so that the deriva-
tive df(xc) = 0, with critical value f(xc). Then f is a Morse function if its
critical points are nondegenerate in the sense that the Hessian matrix of second
derivatives at xc, whose elements, in terms of local coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues, so that there are
no lines or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues of H at
xc.

A level set f−1(a) of f is called a critical level if a is a critical value of f ,
that is, if there is at least one critical point xc ∈ f−1(a).

Again following Pettini (2007), the essential results of Morse theory are:
1. If an interval [a, b] contains no critical values of f , then the topology of

f−1[a, v] does not change for any v ∈ (a, b]. Importantly, the result is valid even
if f is not a Morse function, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology of f−1[a, v]
changes in a manner determined by the properties of the matrix H at the critical
points.

3. If f : M → R is a Morse function, the set of all the critical points of f is
a discrete subset of M , i.e. critical points are isolated. This is Sard’s Theorem.
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4. If f : M → R is a Morse function, with M compact, then on a finite
interval [a, b] ⊂ R, there is only a finite number of critical points p of f such
that f(p) ∈ [a, b]. The set of critical values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse functions on M is an
open dense set in the set of real functions of M of differentiability class r for
0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that are the same
for all the manifolds that have the same topology as M , can be estimated and
sometimes computed exactly once all the critical points of f are known: Let
the Morse numbers µi(i = 1, ...,m) of a function f on M be the number of
critical points of f of index i, (the number of negative eigenvalues of H). The
Euler characteristic of the complicated manifold M can be expressed as the
alternating sum of the Morse numbers of any Morse function on M ,

χ =

m∑
i=0

(−1)iµi.

The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and faces in the polyhe-
dron.

7. Another important theorem states that, if the interval [a, b] contains a
critical value of f with a single critical point xc, then the topology of the set
Mb defined above differs from that of Ma in a way which is determined by
the index, i, of the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct product of an i-disk
and an (m− i)-disk.

Again, Pettini (2007) contains both mathematical details and further refer-
ences. See, for example, Matusmoto (1997).

Higher dimensional resource systems

We assumed that resource delivery is sufficiently characterized by a single scalar
parameter Z, mixing material resource/energy supply with internal and external
flows of information. Real world conditions will likely be far more complicated.
Invoking a perspective analogous to Principal Component Analysis, there may
be several independent pure or composite entities irreducibly driving system
dynamics. It may then be necessary to replace the scalar Z by an n-dimensional
vector Z having orthogonal components that together account for much of the
total variance – in a sense – of the rate of supply of essential resources. The
dynamic equations (9) (and/or Eq.(11)) must then be represented in vector
form:

F (Z) = − log (h(g(Z))) g(Z)
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S = −F + Z · ∇ZF

∂Z/∂t ≈ µ̂ · ∇ZS = f(Z)

−∇ZF +∇Z(Z · ∇ZF ) =

µ̂−1 · f(Z) ≡ f∗(Z)((
∂2F/∂zi∂zj

))
· Z = f∗(Z)((

∂2F/∂zi∂zj
))
|Znss · Znss = 0 (39)

F , g, h, and S are, again, scalar functions, but µ̂ is an n-dimensional square
matrix of diffusion coefficients. The matrix ((∂F/∂zi∂zj)) is the obvious n-
dimensional square matrix of second partial derivatives, and f(Z) is a vector
function. The last relation imposes a nonequilibrium steady state condition, i.e.
f∗(Znss) = 0.

Biological renormalizations

Here, we adapt the renormalization scheme of Wallace (2005), focused on a sta-
tionary, ergodic, information source H, to the generalized free energy associated
with nonergodic cognition.

Equation (33) states that the information source and the correlation length,
the degree of coherence on the underlying network, scale under renormalization
clustering in chunks of size R as

F [ω(R), J(R)] = F(R)F [ω(1), J(1)]

χ[ω(R), J(R)]R = χ[ω(1), J(1)]

with F (1) = 1.
Differentiating these two equations with respect to R, so that the right hand

sides are zero, and solving for dω(R)/dR and dJ(R)/dR gives, after some ma-
nipulation,

dωR/dR = u1d log(F)/dR+ u2/R

dJR/dR = v1JRd log(F)/dR+
v2

R
JR (40)

The ui, vi, i = 1, 2 are functions of ω(R), J(R), but not explicitly of R itself.
We expand these equations about the critical value ωR = ωC and about

JR = 0, obtaining

dωR/dR = (ωR − ωC)yd log(F)/dR+ (ωR − ωC)z/R

dJR/dR = wJRd log(F)/dR+ xJR/R (41)

The terms y = du1/dωR|ωR=ωC , z = du2/dωR|ωR=ωC , w = v1(ωC , 0), x =
v2(ωC , 0) are constants.

Solving the first of these equations gives

ωR = ωC + (ω − ωC)RzF(R)y (42)
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again remembering that ω1 = ω, J1 = J,F(1) = 1.
Wilson’s (1971) essential trick is to iterate on this relation, which is supposed

to converge rapidly near the critical point, assuming that for ωR near ωC , we
have

ωC/2 ≈ ωC + (ω − ωC)RzF(R)y (43)

We iterate in two steps, first solving this for F(R) in terms of known values,
and then solving for R, finding a value RC that we then substitute into the first
of equations (33) to obtain an expression for F [ω, 0] in terms of known functions
and parameter values.

The first step gives the general result

F(RC) ≈ [ωC/(ωC − ω)]1/y

21/yR
z/y
C

(44)

Solving this for RC and substituting into the first expression of equation (31)
gives, as a first iteration of a far more general procedure (Shirkov and Kovalev
2001), the result

F [ω, 0] ≈ F [ωC/2, 0]

F(RC)
=

F0

F(RC)

χ(ω, 0) ≈ χ(ωC/2, 0)RC = χ0RC (45)

giving the essential relationships.
Note that a power law of the form F(R) = Rm,m = 3, which is the direct

physical analog, may not be biologically reasonable, since it says that ‘language
richness’, in a general sense, can grow very rapidly as a function of increased
network size. Such rapid growth is simply not observed in cognitive process.

Taking the biologically realistic example of non-integral ‘fractal’ exponential
growth,

F(R) = Rδ (46)

where δ > 0 is a real number which may be quite small, equation we can be
solve for RC , obtaining

RC =
[ωC/(ωC − ω)][1/(δy+z)]

21/(δy+z)
(47)

for ω near ωC . Note that, for a given value of y, one might characterize the
relation α ≡ δy + z = constant as a ‘tunable universality class relation’ in the
sense of Albert and Barabasi (2002).

Substituting this value for RC back gives a complex expression for F , having
three parameters: δ, y, z.

A more biologically interesting choice for F(R) is a logarithmic curve that
‘tops out’, for example

F(R) = m log(R) + 1 (48)

Again F(1) = 1.
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Using a computer algebra program to solve for RC gives

RC = [
Q

W [0, Q exp(z/my)]
]y/z (49)

where
Q ≡ (z/my)2−1/y[ωC/(ωC − ω)]1/y

Again, W(n, x) is the Lambert W-function of order n.
An asymptotic relation for F(R) would be of particular biological interest,

implying that ‘language richness’ increases to a limiting value with population
growth. Taking

F(R) = exp[m(R− 1)/R] (50)

gives a system which begins at 1 when R = 1, and approaches the asymptotic
limit exp(m) as R→∞. Computer algebra finds

RC =
my/z

W [0, A]
(51)

where
A ≡ (my/z) exp(my/z)[21/y[ωC/(ωC − ω)]−1/y]y/z

These developments suggest the possibility of taking the theory significantly
beyond arguments by abduction from simple physical models.
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