
HAL Id: hal-03172656
https://hal.science/hal-03172656

Submitted on 17 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The 3D organization of chromatin colors in mammalian
nuclei

Leopold Carron, Jean-Baptiste Morlot, Annick Lesne, Julien Mozziconacci

To cite this version:
Leopold Carron, Jean-Baptiste Morlot, Annick Lesne, Julien Mozziconacci. The 3D organization
of chromatin colors in mammalian nuclei. Methods in Molecular Biology, 2022, 2301, pp. 317-336.
�10.1007/978-1-0716-1390-0_17�. �hal-03172656�

https://hal.science/hal-03172656
https://hal.archives-ouvertes.fr

The 3D organization of chromatin colors in mammalian nuclei

Leopold Carron1,2, Jean-Baptiste Morlot1, Annick Lesne1,3, Julien Mozziconacci1,4,5

(1) Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75252, Paris,

France

(2) Present-address: Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, F-

75252, Paris, France

(3) Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France

(4) Muséum National d'Histoire Naturelle, Structure et Instabilité des Génomes, UMR7196, 75231, Paris Cedex 5

(5) Institut Universitaire de France (IUF)

* Corresponding authors: lesne@lptmc.jussieu.fr, julien.mozziconacci@mnhn.fr

Running head : Visualizing genome in 3D with ShRec3D

Abstract:
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal
contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C
data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as
to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D
algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human
chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show
that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the
active and the quiescent chromatin compartments.

Keywords : 3D reconstruction; chromatin; contact network; epigenetic marks; HiC; multidimensional scaling; shortest-
path distance

1. Introduction
The field of genomics has dramatically evolved in the last decade with the development of a novel technique, chromosome
conformation capture. It relies on the chemical fixation of chromosomal contacts, digestion with a restriction enzyme,
subsequent re-ligation of the cross-linked fragments, and sequencing in order to identify genomic loci that were originally
at a close distance in the living cells [1]. Next-generation sequencing techniques brought this protocol to a quantitative
genome-wide level, termed Hi-C, which provides an in-vivo access to the 3D organization of the whole genome [2]. By
carefully choosing the restriction enzyme and increasing sequencing depth, an experimental resolution as fine as 1kb has
been claimed in mammals, including human [3,4]. The resulting data are basically processed and presented in the form
of a contact map, consisting in a square matrix indexed along the genome (discretized at the chosen resolution), whose
elements display the number of contacts between each pair of genomic loci. While being suitable for some analyses, such
as the determination of chromatin loops, topological domains and chromosome compartments [3,5], these contact maps
are lacking a direct interpretation in the 3D space.

To fill this gap, various approaches were proposed to reconstruct 3D structures from the experimentally determined
contacts, see [6] for a comparative review. Among these approaches, we have developed an algorithm, ShRec3D, allowing
a fast and extensive 3D reconstruction and visualization of consensus structures from Hi-C data [7]. ShRec3D has been
used so far in different biological contexts, including bacterial [8,9] and archeal chromosomes reconstruction [10],
visualization of yeast chromosomes organization during the cell cycle [11]and even direct representations of
chromosomes in a meta-genomic population [12]. While this approach has brought important insights that helped
interpreting the data, 3D visualization of chromosomes remains marginally used in the field, especially for large (e.g.
human) chromosomes. We posit that this limited use is probably due to the fact that the proposed algorithms are often
difficult to implement and adapt to each specific situation. For this reason, we will give below a detailed implementation
of ShRec3D algorithm in two widely used languages (MATLAB and Python), and provide a tutorial that will enable the

reader to reconstruct human chromosomes in the 3D space and decorate these structures with chromatin colors [13] which
reflect the local activity of the genome.

The general scheme of ShRec3D is to exploit distance geometry [14,15] and one of its implementations, known as
MultiDimensional Scaling (MDS), to obtain the 3D coordinates of the genome structure from the knowledge of all
pairwise distances between the genomic loci. However, the simple formula d(i,j)~1/c(i,j) used to translate the number
c(i,j) of contacts between the loci i and j into a distance appears to be inadequate, because the matrix with elements d(i,j)
is not a distance matrix (d does not satisfy the triangular inequality) and mainly, because d(i,j) is most often infinite, as
many elements c(i,j) have a zero value due to the sparsity of the contact matrix. The specificity of ShRec3D is to replace
each element d(i,j) by the length of the shortest path relating the loci i and j on the contact network, namely, the network
where the nodes are the genomic loci and each pair of loci i and j is connected by an edge of length d(i,j)[7]. The updated
matrix is now a bona fide distance matrix, on which MDS can be applied.

We have improved the original algorithm by considering various MDS procedures, e.g. not only classical (strain-based)
[16] but also Sammon’s [17], as presented in [18]. Another improvement, also presented in [18], has been to consider a
parametric relation d(i,j)~1/c(i,j)a between the contact number c(i,j) and the length of the edge connecting the loci i and
j, where a is a tunable exponent. Various strategies to choose this exponent have been proposed, leading to values ranging
from 0.25 to 1.4 (for a discussion see [6]). The exponent a can also be tuned to optimize the number of updated elements
in the distance matrix, typically updating all and only infinite elements (see Note 2). Based on this property, we also
devised an algorithm, Boost-HiC, to infer missing contacts using shortest-path distance and produce Hi-C contact maps
at a better resolution than what is a priori accessible given the raw data [19].

The challenge solved by ShRec3D is to produce an annotated 3D reconstruction for the whole genome at a sufficiently
fine resolution. As an archetypal annotation, we will consider genome-wide epigenetic profiles, known as chromatin
colors [13]. We present below the implementation of a 3D genome browser for chromatin colors for a whole chromosome
(human chromosome 2). We first comment the complete code used to reconstruct the 3D structure of a chromosome from
raw Hi-C data, then to superimpose epigenetic annotations on the structure. We then present a novel result obtained with
our methodology, namely the segregation in the 3D space of the active, quiescent and Polycomb-rich epigenetic marks,
in which the bivalent Polycomb-rich chromatin is found in between the active and quiescent chromatin.

2. Materials

The Hi-C data files (GM12878 human lymphoblastoid cell line, from [3]) can be downloaded using:

wget--show-
progress ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63525/suppl/GSE63525%5FGM12878%5Fcomb
ined%5Fintrachromosomal%5Fcontact%5Fmatrices%2Etar%2Egz

The epigenetic data file (chromatin colors for the GM12878 cell line, from [13]) can be downloaded using:

wget
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointMo
del/final/E116_15_coreMarks_stateno.bed.gz

The format for the Hi-C file is: chromosome position1 position2 number of contacts

The format for the chromatin-color file is: chromosome beginning end colorID

ColorID ranges from 1 to 15. Fig. 1 gives the correspondence between ID numbers and chromatin states.

The MATLAB version used is R2019a. The Python version is Python3 and the code requires libraries SciPy and NumPy.

The functions SCN and bin2d have been written by the authors and are detailed in the Methods section (§3.2 for the
MATLAB version and §3.4 for the Python version)

The function FastFloyd in MATLAB has been written by Dustin Arendt [20] and is detailed in the Methods section,
§3.2. Its Python implementation is detailed in the Methods section, §3.4.

The function sammon for implementing Sammon’s MDS ([17] is included in the Statistics and Machine Learning
Toolbox of MATLAB, while its Python version sammon, written by T.J. Pollard, can be downloaded at:

https://github.com/tompollard/sammon

The output file, containing annotated 3D coordinates, should be in PDB format to be visualized using a standard molecular
visualization software. The transformation of the raw output of the algorithm into a PDB file is not specific to genome
reconstruction. It is done in MATLAB using the function mat2pdb, available at:

https://www.mathworks.com/matlabcentral/fileexchange/42957-read-and-write-pdb-files-using-matlab
and in Python using the function writePDB, given in the file HiCtoolbox.py available at:

https://gitlab.com/LeopoldC/shrec3d/-/blob/master/HiCtoolbox.py

The reconstructed structures have been visualized using the VMD software [21]:
 https://www.ks.uiuc.edu/Research/vmd/

The parameter setting of VMD used in the figures can be downloade

https://gitlab.com/LeopoldC/shrec3d/-/blob/master/figure1.vmd

3. Methods

3.1 – Overview of the results

Before entering the details of the numerical implementation of our 3D reconstruction algorithm, we present a few
examples of standard and novel results obtained with this computational tool, considering human chromosome 2 and
chromatin colors in the lymphoblastoid cell line GM12878 (see Materials).

Fig.2 presents the 3D structure of chromosome 2 at two resolutions, 100 kb (Fig.2A,B) and 10kb (Fig.2C,D) using
Either classical MDS (‘strain’ option, Fig.2A,C) or Sammon’s MDS procedure (Fig.2B,D). While the latter yields more
compact structures, the overall structure and distribution in 3D space of the linear genome is conserved.

Fig. 3 displays the 3D structure of chromosome 2 annotated with the density of marks for each chromatin color (epigenetic
state) in the cell line GM12878. The different epigenetic states are markedly clustered in the 3D space and occupy distinct
regions. More specifically, on Fig. 3. we have superimposed the density of three of these marks (active, quiescent and
repressed Polycomb-rich) onto the 3D structure of chromosome 2. These three marks clearly segregate and are organized
in space in a simple way, delineating three domains the active domain (top), the inactive domain (bottom), and an
intermediary Polycomb-rich domain that can be identified with the bivalent genome discussed in [22].

Fig. 4 displays the 3D structure of chromosome 2 annotated with three marks: active promoter, weak repressed Polycomb
and quiescent. It clearly shows how the Polycomb domain is spatially organized between the active and inactive domains.

3.1 - 3D reconstruction in MATLAB

We now detail the MATLAB code for 3D genome reconstruction using ShRec3D. Henceforth MATLAB commands are
in bold. We first delete all variables from the memory and close all figures to start a new computation:

clear all;
close all;

We chose the resolution at which the genome reconstruction will be performed, i.e. we choose the size of the genomic
regions (bins) in which the genome is partitioned, here 100 kilobases (kb):
 R=100000;
We import a Hi-C data file, here the numbers of pairwise contacts within chromosome 2 in the human cell line GM12878
at the resolution 10kb, published in [3]

A=load('GM12878_combined/10kb_resolution_intrachromosomal/chr2/MAPQ
GE30/chr2_10kb.RAWobserved');

The list of contacts is symmetrized, since the number of contacts n(i,j) between two genomic sites i and j should satisfy
n(i,j)=n(j,i):

contacts=cat(1,[A(:,1),A(:,2),A(:,3)],[A(:,2),A(:,1),A(:,3)]);

The large size of the genome hampers the storage element-wise of the contact matrix in the computer memory. The contact
matrix is thus given as a list of its non-vanishing elements, each in the format [site i, site j, n(i,j)]. As a benchmark, given
that an integer is usually encoded with 32 bits and the genome contains 3 billion of base pairs (bps), a contact matrix at
the base-pair resolution would contain about 10^19 elements overall encoded with 3. 10^20 bits, i.e. more than 3. 10^10
Go, whereas the typical computer memory ranges between 10 and 100 Go. Even at the more realistic resolution of 10kb,
it would still contain about 10^11 elements and would require overall a memory larger than 300 Go. This memory issue
is solved in a straightforward way by exploiting the sparseness of contact matrices, and storing only the list of non-
vanishing elements, referred to as contacts above. We then have to build a contact matrix from this list, i.e. place back
the vanishing elements in a square array, in order to use algebraic tools, e.g. multiplying matrices or computing
eigenvectors. This is achieved by the sparse function (available both in MATLAB and Python):
 raw_map=sparse(contacts(:,1)+1,contacts(:,2)+1,contacts(:,3));
A specific two-parameter function bin2d producing an output M, has been devised to get a matrix at the desired
resolution. Its arguments are an input matrix Data and two integer parameters p and q. Its principle is to aggregate the
n lines and m columns of the matrix Data into blocks of p lines and q columns, so as to get a coarse-grained matrix. The
line i will thus belong to a block labeled by the least integer greater than or equal to i/p and the column j will then
belong to a block labeled by the least integer greater than or equal to j/q:
 function M = bin2d(Data,p,q)

[n,m]=size(Data);
[i,j,d] = find(Data);
M=sparse(ceil(i/p),ceil(j/q),d,ceil(n/p),ceil(m/q));

end
Using the function ceil ensures that the resulting integer is nonzero. When n is not a multiple of p (resp. m is not a
multiple of q), the blocks of the rightmost column will contain less than p lines (resp. the blocks of the last line will
contain less than q columns), however the effect of this discrepancy is negligible given the typical size of the matrix. The
sparse function automatically sums the values of the third argument (denoted d above) over all the lines sharing the
same values for the first two arguments. The function bin2d is here applied to get a square matrix with the same
resolution R for the lines and columns:
 binned_map=bin2d(raw_map,R,R);
The diagonal of the matrix is set to zero by subtracting the diagonal matrix with the same diagonal elements:

binned_map=binned_map-diag(diag(binned_map));
The contact matrix is then filtered, to eliminate bins with an anomalous number of contacts compared with the rest of the
genome. To do so, we compute the total number of contacts for each bin, draw the histogram of these contact numbers,
define a minimum value equal to the mean number minus 1.5 times the standard deviation (respectively a maximum value
equal to the mean number plus 1.5 times the standard deviation) and discard the bins whose contact number is either
below the minimum value or above the maximum value:

figure, hist(sum(binned_map),100);
mini= mean(sum(binned_map))-1.5*std(sum(binned_map))
maxi= mean(sum(binned_map))+1.5*std(sum(binned_map))
filtered_map=binned_map(sum(binned_map)<maxi &
sum(binned_map)>mini,sum(binned_map)<maxi & sum(binned_map)>mini);

The value 1.5 can be modified by the user. Any annotation profile to be superimposed on the 3D structure should be
filtered accordingly, in order to be defined on the same bins, see below. The contact matrix is finally normalized using
the Sequential Component Normalization (SCN) with L1 norm for matrices with positive elements [23]:

contact_map=SCN(binned_map);

SCN, defined as an auxiliary function, is a recursive procedure consisting in first dividing each element of the contact
map by the sum of the elements of the column it belongs to, then dividing each element by the sum of the elements of the
line it belongs to. Taking the transpose (DataFN à DataFN') automatically alternates the treatment of lines and the
treatment of columns. The latter line of command is iterated (in our implementation, it has been written 5 times in total,
which corresponds to 3 rounds of iteration) until stable values are obtained for all the elements. Lines (respectively
columns) with an infinite (inf) of undefined (nan) element are discarded. The outcome is then symmetrized (added to
its transpose and divided by 2) to restore the symmetry of a contact matrix:

function [DataFN] = SCN(DataF)
DataFN = spdiags(spfun(@(x)
1./x,sum(DataF,2)),0,size(DataF,1),size(DataF,1))*DataF;

DataFN = spdiags(spfun(@(x)
1./x,sum(DataFN',2)),0,size(DataFN',1),size(DataFN',1))*DataFN
';
…
DataFN = spdiags(spfun(@(x)
1./x,sum(DataFN',2)),0,size(DataFN',1),size(DataFN',1))*DataFN
';
DataFN(isnan(DataFN))=0;
DataFN(isinf(DataFN))=0;
DataFN=(DataFN+DataFN')/2;

end
Convergence of this SCN procedure has been proven in [24]. A comparative review of the numerous matrix balancing
methods prompted by the rise of Hi-C experiments can be found in the article by Cournac in this issue [25].
The obtained normalized contact map can be visualized as a heat map in log scale:

figure, imagesc(log10(contact_map));
The first step of ShRec3D reconstruction procedure is to choose the value of the exponent a (named alpha below) used
in the relationship between each contact frequency and the corresponding element of the raw matrix of distances
parametric relation d(i,j)~1/c(i,j)a . We choose here [18, 26, 27]:

alpha=0.227
As the line ends without a semicolon, the value chosen for a will be displayed. The raw matrix is then transformed into a
bona fide distance matrix dist_matrix by replacing each raw element by the length of the shortest path along the
contact network linking the associated pair of sites:

dist_matrix=FastFloyd(1./(contact_map.^alpha));
and setting to zero all the diagonal elements:

dist_matrix=dist_matrix-diag(diag(dist_matrix));
The shortest-path distance between each pair of sites is computed following the Floyd-Warshall algorithm, and using its
vectorized implementation by Dustin Arendt [20], introduced here as an auxiliary function FastFloyd.m:

function D = FastFloyd(D)
 n = size(D, 1);
 for k=1:n
 i2k = repmat(D(:,k), 1, n);
 k2j = repmat(D(k,:), n, 1);
 D = min(D, i2k+k2j);
 end

end
3D coordinates are obtained from the distance matrix using MultiDimensional Scaling, with a choice between alternative
MDS procedures, e.g. strain (classical MDS) or sammon [17]:

crit='sammon';
XYZ=mdscale(dist_matrix,3,'Criterion',crit);

As MDS reconstruction produces a 3D structure up to a global scale factor, the obtained coordinates are rescaled to get
an overall volume equal to 100

[pts, V]= convhull(XYZ);
scale=100/V^(1/3);
XYZ=XYZ*scale;

Finally, a PDB file is created from the set of coordinates:
data.X = XYZ(:,1);
data.Y = XYZ(:,2);
data.Z = XYZ(:,3);

Atoms (here, monomers at the chosen resolution) are labeled as CA to use the tube representation if the visualization
software is VMD (that is, the monomers are considered by VMD as the alpha carbon atoms of a protein backbone and
visualized accordingly):

data.atomName(1:length(XYZ)) = {'CA'};

Using the mat2pdb function detailed in Materials yields the desire file:
str=sprintf('_%1.2f.pdb',alpha)
filename=strcat(crit,str)
data.outfile = filename;
mat2pdb(data)

from which any molecular visualization program, e.g. VMD (see Materials), produces a 3D structure.

3.2 - 3D annotation in MATLAB

As an example of application, we now superimpose chromatin colors (15 different states for the human lymphoblastoid
GM12878 cell line [13]) onto the reconstructed 3D structure. The first step is to import the raw color annotation file:

B=importdata('E116_15_coreMarks_stateno.bed');
color=B.data(ismember(B.textdata,'chr2'),:);

The color annotation is then parsed at the desired resolution, by creating the vector of bin boundaries:
G=1:R:length(raw_map)*R;

and for each chromatin color, counting in each bin the number of base pairs covered with each color:
number=max(color(:,3));
color_vec=zeros(length(raw_map),number);

for i=1:length(color)
 color_vec(color(i,1)+1:color(i,2)+1,color(i,3))=1;
end

color_bins=bin2d(color_vec,R,1);
color_bins=color_bins./max(color_bins);

The coloring should be consistent with the previous filtering step
color2=color_bins(sum(Data)<maxi & sum(Data)>mini,:)

The annotation is then included in the step generating a PDB file. Once a color is chosen, e.g.:
 colorID=1;
the atoms (i.e., the monomers at the chosen resolution) are then labeled with colors using the Beta Factor field of the PDB
format:
 data.betaFactor=full(color2(:,colorID));
The last four lines in the creation of a PDB file are now written, using the function mat2pdp

str=sprintf('_%1.2f.pdb',alpha)
filename=strcat('3Dcolors_',crit,str)
data.outfile = filename;
mat2pdb(data)

3.3 - 3D reconstruction and epigenetic annotation in Python

We present here the Python analog of the above MATLAB code. Now the reconstruction of the 3D genome
structure and its annotation with chromatin colors will be done jointly. The core part of the code, Main.py, relies on a
set of functions to be saved as an auxiliary file HiCtoolbox.py, available at https://gitlab.com/LeopoldC/shrec3d/-
/blob/master/HiCtoolbox.py, and detailed below.

Main.py

import sys
import numpy as np
from scipy.spatial import ConvexHull
from scipy import sparse
import pandas as pd
from sklearn.manifold import MDS

import sammon
We import HiCtoolbox.py (see below):

import HiCtoolbox
We choose the resolution, i.e. the bin size, in base pairs:

R=100000

We choose the value of the exponent 𝛼 relating contact frequencies to raw distances:
alpha=0.227

We select the index of the epigenetic mark considered (here mark 1, of index 0):
selectedmark=0

We load the raw Hi-C and chromatin-color data files:
A=np.loadtxt('GM12878_combined/10kb_resolution_intrachromosomal/chr
2/MAPQGE30/chr2_10kb.RAWobserved')
A=np.int_(A)
A=np.concatenate((A,np.transpose(np.array([A[:,1],A[:,0],A[:,2]])))
, axis=0)
raw_map = sparse.coo_matrix((A[:,2], (A[:,0],A[:,1])))
binned_map = HiCtoolbox.bin2d(raw_map,R,R)
color=pd.read_csv(EpiGfilename,delimiter='\t',header=None,names=['c
hr','begin','end','value'])

We consider only chromosome 2:
color=color[color['chr']=='chr2'
number=color['value'].max()

We introduce the length LTEST of the chromosome:

LTEST=np.shape(A)[0]

We build the array at base-pair resolution

color_vec=np.zeros((LTEST,number+1))
i=0
while i<np.shape(color)[0]:
color_vec[color['begin'][i]:color['end'][i],color['value'][i]]
=1
i+=1

color_bins=HiCtoolbox.bin2d(color_vec,R,1)
color_bins=color_bins/np.amax(color_bins))

We filter empty HiC lines/columns, introducing a mininum value (mini) and a maximum value (maxi) and then
updating both the contact list and the color annotations with the genomic coordinates of the bins kept (binsaved) :

sumHicmat=np.sum(binned_map,0)
mini = np.mean(sumHicmat)-np.std(sumHicmat)*1.5
maxi = np.mean(sumHicmat)+np.std(sumHicmat)*1.5
binsaved=np.where(np.logical_and(mini < sumHicmat,sumHicmat < maxi))
filtered_map=binned_map[binsaved[1],:]
filtered_map=filtered_map[:,binsaved[1]]

We then filter the epigenetic annotation according to the bins conserved in the contact map (binsaved) after the filtering
procedure:

color2=color_bins[binsaved[1]]
color2=color2[:,selectedmark]
color2=np.float64(color2.todense())

We update the elements of the raw distance matrix (computed from the SCN-normalized contact frequencies) with
shortest-path distances, computed using the Floyd-Warshall algorithm:

dist_matrix =

HiCtoolbox.fastFloyd(1/(HiCtoolbox.SCN(filtered_map.copy()))**alpha
)

We set to zero the diagonal elements of the distance matrix:
dist_matrix=dist_matrix-np.diag(np.diag(dist_matrix))

and we symmetrize this distance matrix:
dist_matrix=(dist_matrix+np.transpose(dist_matrix))/2;

Classical MDS (computation option termed ‘strain’ in MATLAB) is then applied to get 3D coordinates:
embedding = MDS(n_components=3)
XYZ = embedding.fit_transform(dist_matrix)

Or: MDS computation using Sammon’s procedure (option termed ‘sammon’ in MATLAB), implemented in the function
sammon.py written by T.J. Pollard, see Materials.

[XYZ,E]=HiCtoolbox.sammon(dist_matrix,3)
Writing color-annotated 3D coordinates in PDB format

HiCtoolbox.writePDB('3Dcolors_'+str(alpha)+'.pdb',XYZ,color2)

HiCtoolbox.py

We here present the most specific among the auxiliary functions included in the toolbox HiuCtoolbox.py used in Main.py

import h5py
import sys
import numpy as np
from copy import deepcopy
import numpy.linalg as npl
from scipy.spatial import ConvexHull
from scipy import sparse

Binning tool bin2d for changing the resolution, denoting Data the input matrix and p,q the rescaling factors

def bin2d(Data,p,q):
n,m=np.shape(Data);
s=(int(np.ceil(n/p)),int(np.ceil(m/q)))
i,j,d = sparse.find(Data);
i=np.int_(np.ceil(i/p))
j=np.int_(np.ceil(j/q))
amax=np.amax(i,j)
M=sparse.coo_matrix(d,(i,j),shape=(amax,amax));
return M

Normalization tool SCN for HiC contact matrices. As in the MATLAB code, an iteration is performed, here a number of
time max_iter, and the resulting matrix is symmetrized at the end of the procedure.

def SCN(D, max_iter = 10):
for i in range(max_iter):
D /= np.maximum(1, D.sum(axis = 0))
D /= np.maximum(1, D.sum(axis = 1)[:, None])
return (D + D.T)/2

Shortest-path computation function fastFloyd using Floyd-Warshall algorithm

def fastFloyd(contact):

n = contact.shape[0]
shortest = contact
for k in range(n):
 i2k = np.tile(shortest[k,:], (n, 1))
 k2j = np.tile(shortest[:, k], (n, 1)).T
 shortest = np.minimum(shortest, i2k + k2j)
return shortest

4. Notes

Note 1: It often happens that the genome of the sample cells differs from the reference genome on which reads
obtained in the Hi-C experiments are aligned. For instance, the real genome may have experienced some
duplication or recombination events. The recombined locus will thus be misplaced on the reference genome. Such
a discrepancy between the actual sample genome and the reference genome is revealed in an obvious way on the
3D reconstructed structure, as the recombined locus will establish spurious long-distance contacts when located in
the wrong neighborhood along the genome. Since chromosome 1 presents such an event in GM128787 cells, we
chose to display results for chromosome 2.

Note 2: The choice of the parameter 𝛼 is a delicate issue, thoroughly studied and discussed in [18,19] and reviewed in
[6]. In brief, the value of a should be large enough so that all vanishing elements are replaced with a positive distance
value but not larger, else spurious modification of valid elements could occur (see Fig. 1G in [19]). A more operational
criterion for choosing a, based on the comparison with experimental data obtained with FISH (fluorescent in-situ
hybridization) has also been proposed in [18] and in [26] (see Fig. 3 therein), both leading to an optimal value of a=0.227.

Note 3: The main step of ShRec3D algorithm replaces vanishing elements in the distance matrix with positive shortest-
path distances computed using Floyd-Warshall procedure, as implemented in the FastFloyd function above. The resulting
distance matrix is no longer sparse, which limits its size since it has to be stored as a complete matrix in the computer
memory. Consequently, it is presently impossible to consider a resolution finer than 10kb for a single chromosome, and
100kb for the whole genome on a standard desktop.

	

References

1. Dekker,J et al. (2002) Capturing chromosome conformation. Science 295:1306–1311
2. Van Berkum NL, Lierberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES

(2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39:1869
3. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn JAL, Machol I,

Omer AD, Lander ES and Lieberman-Aiden E(2014) A 3D map of the human genome at kilobase resolution
reveals principles of chromatin looping. Cell 159:1665–1680

4. Bonev B, Cohen NM, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP,
Tanay A, Cavalli G (2017) Multiscale 3D genome rewiring during mouse neural development. Cell
171:557–572

5. Forcato M, Nicoletti C, Pal K, Livi CM, Ferrari F, Bicciato S (2017) Comparison of computational methods
for Hi-C data analysis. Nat Methods, 14: 679

6. Meluzzi D, Arya G (2019). Computational approaches for inferring 3D conformations of chromatin from
chromosome conformation capture data. Methods, doi: 10.1016/j.ymeth.2019.08.008

7. Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci, J (2014) 3D genome reconstruction from
chromosomal contacts. Nat Methods 11:1141–1143

8. Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche JB, Mozziconacci J, Murray H, Koszul R,
Nollmann M (2015) Condensin-and replication-mediated bacterial chromosome folding and origin
condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:588–602

9. Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R (2018)
Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell
172:771–783

10. Takemata N, Samson RY, Bell SD (2019) Physical and functional compartmentalization of archaeal
chromosomes. Cell 179: 165–179

11. Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R (2017)
Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J
36:2684-2697

12. Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R (2014) Metagenomic
chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in
microorganisms. Elife 3:e03318

13. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-
Moussavi A, ... & Kellis M (2015) Integrative analysis of 111 reference human epigenomes. Nature
518:317–330

14. Havel TF, Kuntz I, Crippen GM (1983) The theory and practice of distance geometry. Bull Math Biol
45:665–720

15. Sippl MJ, Scheraga HA (1985) Solution of the embedding problem and decomposition of symmetric
matrices. Proc Natl Acad Sci USA 82:2197–2201

16. Torgerson WS (1952) Multidimensional scaling: I. Theory and pratice. Psychometrika 17:401–419
17. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE T Comput 100:401–409
18. Morlot JB, Mozziconacci J, Lesne A (2016) Network concepts for analyzing 3D genome structure from

chromosomal contact maps. Eur Phys J Nonlinear Biomedical Physics 4:2
19. Carron L, Matthys V, Morlot JB, Lesne A, Mozziconacci J (2019) Boost-Hi-C: computational

enhancement of chromosomal contact map resolution. Bioinformatics 35:2724–2729
20. Arendt D (2009) Vectorized Floyd-Warshall, MATLAB Central File Exchange

(https://www.mathworks.com/matlabcentral/fileexchange/25776-vectorized-floyd-warshall)
21. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Molec Graphics 14: 33–

38
22. Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L (2019) The bivalent genome:

characterization, structure, and regulation. Trends Genet 36:118–131
23. Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J (2012) Normalization of a

chromosomal contact map. BMC Genomics 13:436
24. Knight PA, Ruiz D (2013) A fast algorithm for matrix balancing. IMA J Numer Anal 33:1029-1047
25. Cournac A, this issue
26. Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X (2016) Spatial organization of

chromatin domains and compartments in single chromosomes. Science 353:598–602
27. Rieber L, Mahony S (2017) miniMDS: 3D structural inference from high-resolution Hi-C

data. Bioinformatics 33: i261–i266

	

Figure captions

Figure 1: Chromatin colors. Adapted from [13]

	

Figure 2: 3D reconstruction of human chromosome 2 at a resolution of 100kb (a, b) or 10kb (c, d), and using
either strain-based (a, c) or Sammon’s (b, d) multidimensional scaling. The color, from green to white to red,
indicates the linear position along the genome. Regions with high active-promoter density are highlighted in dark
red. In each bin, chromatin color densities (Beta Factor field when using VMD, see Materials) have been
normalized by their maximum value over the genome. The threshold defining what is a ``high density'' is set to
0.1.

	

Figure 3: 3D structure of chromosome 2 annotated with a density of epigenetic marks, for each of the 15 epigenetic
states (currently termed chromatin colors,see Fig. 1) described in [13] for the lymphoblastoid cell line GM12878.

	

Figure 4: 3D structure of chromosome 2 annotated with the densities of three epigenetic marks: active (red), quiescent
(white) and repressed Polycomb-rich (dark grey) (linear annotations from [13], see also Fig. 3).

