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Abstract

Separating environmental effects from those of interspecific interactions on species distri-
butions has always been a central objective of community ecology. Despite years of effort in
analysing patterns of species co-occurrences and the developments of sophisticated tools, we
are still unable to address this major objective. A key reason is that the wealth of ecological
knowledge is not sufficiently harnessed in current statistical models, notably the knowledge on
interspecific interactions.

Here, we develop ELGRIN, a statistical model that simultaneously combines knowledge on
interspecific interactions (i.e., the metanetwork), environmental data and species occurrences
to tease apart their relative effects on species distributions. Instead of focusing on single effects
of pairwise species interactions, which have little sense in complex communities, ELGRIN
contrasts the overall effect of species interactions to that of the environment.

Using various simulated and empirical data, we demonstrate the suitability of ELGRIN to
address the objectives for various types of interspecific interactions like mutualism, competi-
tion and trophic interactions. We then apply the model on vertebrate trophic networks in the
European Alps to map the effect of biotic interactions on species distributions.

Data on ecological networks are everyday increasing and we believe the time is ripe to mo-
bilize these data to better understand biodiversity patterns. ELGRIN provides this opportunity
to unravel how interspecific interactions actually influence species distributions.
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Introduction
Ecologists have always strived to understand the drivers of biodiversity patterns with the particular
interest to tease apart the effects of environment and biotic interactions on species distributions and
communities (Ricklefs, 2008; Thuiller et al., 2015; Chase & Leibold, 2003; de Candolle, 1855).
Species distributions are influenced by the abiotic environment (e.g. climate or soil properties)
because of their own physiological constraints that allow them or not to sustain viable populations
in specific environmental configurations (Austin, 2002; Pulliam, 2000). However, the occurrence
of a species in a given site is also influenced by other species through all sort of interactions that
can be trophic (e.g. a predator needs preys), non-trophic (e.g. plant species need to be pollinated by
insects) or competitive (two species with the same requirements might exclude each other) (Guisan
et al., 2017; Gravel et al., 2019; Lortie et al., 2004; Soberón & Nakamura, 2009).

Teasing apart the effects of environmental variations and interspecific interactions on species
distributions and communities from observed co-occurrence patterns has always been a hot topic in
ecology since the earlier debate between Diamond (1975) and Connor & Simberloff (1979), to the
recent syntheses on the subject (Blanchet et al., 2020). More than anything, with a few exceptions,
and despite recent advances like joint species distribution models (Ovaskainen et al., 2017) or
null model developments (Peres-Neto et al., 2001; Chalmandrier et al., 2013), the conclusion has
been that it is almost impossible to retrieve and estimate interspecific interactions from observed
spatial patterns of species communities (Zurell et al., 2018; Blanchet et al., 2020). This conclusion
should thus preclude any attempt to disentangle the relative effects of environment and interspecific
interactions. A major difficulty of this long-standing issue is that interspecific interactions could
be of any type (i.e. positive, negative, asymmetric) and that observed patterns average out all these
interactions. Observed communities indeed reflect the overall outcome of interspecific interactions
that is difficult to dissect, especially when analysing pairwise species spatial associations as it is
commonly done (e.g., Tikhonov et al., 2017) . Yet, this overall outcome might be worth analysing
on its own, for instance to measure the overall strength of interspecific interactions in a given
community and between communities, how it depends on the co-existing species, and how it varies
in space.

Interestingly, so far there have been few attempts to integrate the wealth of existing knowl-
edge to address this fundamental ecological issue (Blanchet et al., 2020; Holt, 2020). Indeed, the
spatial analysis of biotic interactions is gaining an increased interest with novel technologies to
measure interactions in the field (e.g. camera-traps, gut-content), open databases (e.g. GLOBI,
Mangal) and the developments of new statistical tools to analyse them (Tylianakis & Morris, 2017;
Pellissier et al., 2018; Ohlmann et al., 2019; Botella et al., 2022). The combination of expert
knowledge, literature, available databases, and phylogenetic hypotheses has also given rise to large
metanetworks that generalise the regional species-pool of community ecology by incorporating the
potential interactions between species from different trophic levels along with their functional and
phylogenetic characteristics (Maiorano et al., 2020; Morales-Castilla et al., 2015). Despite a few
attempts (e.g., Staniczenko et al., 2017), information on interaction networks has been poorly inte-
grated to understand and model biodiversity patterns. We believe that the time is ripe to incorporate
network information into the process of modelling species distributions and communities. It im-
plies to integrate both biotic and abiotic information (and their spatial variations) as explanatory
factors in statistical models to weight their relative strength.

In this article, we propose a novel statistical model, called ELGRIN (in reference to Charles
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Elton and Joseph Grinnell) that can handle the effects of both environmental factors and known
interspecific interactions (aka a metanetwork) on species distributions. We rely on Markov ran-
dom fields (MRF, also called Gibbs distribution, e.g., Brémaud, 1999), a family of flexible mod-
els that can handle dependencies between variables using a graph. More specifically, ELGRIN
jointly models the presence and absence of all species in a given area in function of environmental
covariates and the topological structure of the known metanetwork (Figure 1 left). It separates
the interspecific interaction effects (Figure 1 top-right) from those of the environment (Figure 1
bottom-right) on species distributions. To our knowledge, ELGRIN is the first model whose out-
puts are the relative strengths of biotic factors needed on top of abiotic environmental variables to
shape the species distributions and their spatial variation (see Latitude/Longitude in Figure 1 top-
right). It thus provides a convenient way to integrate network ecology in joint species community
modelling.

In this article, we first present the overall modelling framework and then assess its perfor-
mances under different scenarios implying data simulated using three different dynamic models.
In other words, although ELGRIN considers only static observational data (metaweb and commu-
nity data), we evaluated the model using simulated data generated using different dynamic models
that involve various underlying processes, including intraspecific competition. We test the ability
of ELGRIN to decipher the relative importance of abiotic and interspecific interactions in these
difficult cases so as to better understand what kind of signal ELGRIN can or cannot retrieve from
the data. Finally, we apply the model on vertebrate trophic networks in the European Alps as an
empirical study.

Material and methods

Species data and potential interactions
We consider a set of sites or locations indexed by l ∈ {1, . . . , L}, where the occurrence (pres-
ence/absence) of N species and a set of environmental variables (vector Wl) are observed.

For the same set of N species, we assume that we know all the pairwise interactions between
them (e.g. who eats whom), an information summarised with a graph G? = (V ?, E?) over the set
of nodes V ? = {1, . . . , N} and edges E?. This graph, usually called a metanetwork that represents
a regional pool of both species and interactions, can be obtained, for instance, by aggregating local
networks at different locations or from expert knowledge and literature review (e.g., Cirtwill et al.,
2019; Maiorano et al., 2020). Note that various types of interactions can be considered here (e.g.,
trophic, mutualism, competition). However, while considering a mixture of interaction types is
technically possible, the interpretation of results would be difficult because in our framework, G?

records the presence of an interaction and not its type. An additional note is that our model, like
most species community models (e.g. Joint species distribution models, ordination techniques)
relying on occurrence data, makes some assumptions about the ecological processes structuring
species assemblages. In our current implementation of ELGRIN, we consider that only unimodal
responses of species to environmental gradients and interspecific interactions shape communities,
ignoring other processes such as dispersal limitation or mass effect for instance. Lastly, note also
that our model supposes that the graph associated to the metanework is undirected with no self-
loops (see model specifications below) and thus ignores intraspecific interactions. Hereafter, we
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refer to co-present (or co-absent) species, pairs of species that are connected in the metanetwork
and jointly present (or absent, respectively) at a given location.

The statistical model of ELGRIN
Model description The aim of ELGRIN model is to factorise the joint species presence dis-
tribution between a Grinnellian part, that consists in a regression on environmental covariables,
and an Eltonian part that quantifies association strengths between species distribution according to
the metanetwork. More formally, we consider a set of random variables {X l

i}i∈V ? taking values
in {0, 1} and that represent the presence/absence of species i ∈ V ? at location l ∈ {1, . . . , L}.
We rely on a Markov random field (see for instance Brémaud, 1999) to model the dependencies
between species occurrences at location l. This is a multivariate model that encodes statistical
dependencies between species distribution using a network. In our ELGRIN model, these depen-
dencies are encoded through the metanetwork G?. For each location l ∈ {1, . . . , L}, we thus
assume that these random variables are distributed according to a Gibbs distribution specifying the
joint associations between the species occurrence variables {X l

i}i∈V ? , as follows:

P({X l
i}i∈V ?) =

1

Z
exp

(∑
i∈V ?

[al + ai +W ᵀ
l bi + (W 2

l )ᵀci]X
l
i (1a)

+ βl,co−pres
∑

(i,j)∈E?

1{X l
j = X l

i = 1} (1b)

+ βl,co−abs
∑

(i,j)∈E?

1{X l
j = X l

i = 0}
)
, (1c)

where 1{A} is the indicator function of event A (either co-absence X l
j = X l

i = 0 or co-presence
X l
j = X l

i = 1), notation Uᵀ stands for the transpose of vector U and Z a normalising constant
discussed below. Some model parameters have an ecological interpretation (Table 1). The use
of Wl and W 2

l (the vector of coordinate-wise squared values of Wl) allows modelling a quadratic
species response to environmental gradient, following then a bell-shaped relationship as expected
under classical niche theory (Chase & Leibold, 2003).

Sub-equation (1a) is the Grinnellian part of ELGRIN, as it represents some prior probability of
species occurrences independently of their interactions. Parameters ai, bi, ci capture the response
of species i to environment, seen through a vector of environmental covariates Wl. The intercepts
ai and al are estimated up to a constant only (see Appendix S1: Section S.2.1) and may not be
interpreted, whereas the vectors bi, ci deal with the species environmental niche, like in a standard
species distribution model (Guisan et al., 2017).

Sub-equations (1b) and (1c) form the Eltonian part of ELGRIN. It considers only interactions
(i, j) ∈ E?, i.e. the edges of the metanetwork. The βl represent the overall influence of the in-
teractions (as encoded through G?) on all species presence/absence at location l. However, this
influence may be different for co-presence and co-absence, with parameters βl,co−pres and βl,co−abs
respectively (see Table 2). When a βl,co−pres is positive, it represents a positive driving force of co-
presence on species distributions. By contrast, a negative value indicates that species co-presences
are avoided. The same reasoning holds with βl,co−abs for co-absences. Since the interaction pa-
rameter βl,co−abs can also be influenced by co-absences between species that are both absent at
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Variables Ecological interpretation
G? Metanetwork of known interactions (undirected)
V ? Species (node set) of the metanetwork
E? Interactions (edge set) of the metanetwork
X l
i Presence/absence of species i at location l

Wl Environmental covariates at location l
Parameters
ai Species i intercept
al Location l intercept
bi, ci Environmental (abiotic) parameters of species i
βl,co−pres Co-presence strength (or avoidance when < 0) at location l
βl,co−abs Co-absence strength (or avoidance when < 0) at location l

Table 1: Definition of variables and parameters of the Markov random field model ELGRIN.

location l only because of unsuitable environmental conditions, we introduced a compatibility
matrix so that the effect of interactions is only estimated in the environmental conditions where
interacting species could co-occur (details are given in Appendix S1: Section S.2.2). Importantly,
this compatibility matrix is estimated during the inference procedure and is not a required input by
the user.

Note that we chose the parameters βl to be specific to location l ∈ {1, . . . , L} such that the
effect of species interactions can vary across space. Finally, Z is a normalising constant that cannot
be computed for combinatorial reasons, although the statistical inference procedure takes care of
it. Full details of the estimation procedure and parameter identifiability are available in Appendix
S1: Section S.3 and Appendix S1: Section S.2.1, respectively.

Lastly, it is important to note two specificities of the metanetwork G? in our modelling pro-
cedure: it cannot be directed nor contain self-loops. Indeed, Markov random fields specify con-
ditional dependencies between random variables {X l

i} in an undirected way, and self-loops have
no meaning in this framework. Our model assumes that these dependencies are given by the in-
teraction network without considering the direction of edges. Consequently, this statistical model
of interaction cannot be read in the light of causality. In case of trophic interactions, it consists in
assuming that presence/absence of a predator and its prey are intertwined, without specifying top-
down or bottom-up control. Moreover, the absence of self-loops prevents from taking into account
intraspecific effects. These effects are simply ignored by ELGRIN, as they are in any joint species
distribution model or ordination technique (see Appendix S1: Section S.6).

ELGRIN is implemented in C++ for efficiency and is available in the function elgrin of the
R package econetwork available on the code repository https://plmlab.math.cnrs.
fr/econetproject/econetwork and at CRAN (https://cran.r-project.org/).
We assessed the performance of the method in inferring parameters from data sampled and re-
sampled under the model (see Appendix S1: Section S.4).

Model interpretation In the hypothetical example where G? is an empty graph (no edges, none
of the species interact), the random variables {X l

i}i∈V ? are independent and each species is present
with probability eαi,l/(1 + eαi,l) ∈ (0, 1), where αi,l = al + ai + W ᵀ

l bi + (W 2
l )ᵀci. In other
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words, αi,l is the logit of the probability of presence of species i at location l in the absence of
interactions. Assuming that we have included all important environmental covariates, that there is
no other ecological processes involved, and no model mis-specifications, αi,l is analogous to the
fundamental niche parameters of the species (sensu Hutchinson, 1959). It gives the probability of
presence of species i at location l when only environmental filtering occurs.

In the case of species interactions, G? is a non empty graph and the presence/absence informa-
tion is smoothed across neighbouring nodes in G?. In Table 2, we detailed the ways both βl,co−pres
and βl,co−abs parameters capture how the metanetwork influences species co-occurrences in a given
location, notably the co-presence or co-absence of pairs of interacting species. This table describes
expected patterns of species distribution according to the combination of positive, negative and zero
values for the β parameters. More precisely, when species are known to interact positively (e.g.
G? encodes mutualism) and that these interactions, averaged over all species with suitable envi-
ronmental conditions at location l, influence their co-occurrences at that location, βl,co−pres and/or
βl,co−abs will be estimated as positive. On the other hand, in case of negative interactions (e.g.
G? encodes competition) that influence the co-occurrences at location l of species with favorable
environmental conditions, the parameters βl,co−pres and/or βl,co−abs will be negative, co-presence
configurations (or co-absence, respectively) tend to be avoided, meaning that only one of the two
species tends to be present. Given a location with fixed total number of interacting co-present
(resp. interacting co-absent) species, the larger the absolute value of βl,co−pres (resp. βl,co−abs), the
stronger the strength of the interactions.

Exploration on simulated data from complex dynamic processes
To test the ability of ELGRIN to infer the overall biotic and abiotic controls on species distribu-
tions, we used three theoretical models, different from the one underlying ELGRIN, to dynamically
simulate spatial community data with 50 species and 400 sites along a single environmental gra-
dient and combined them with multiple different interactions scenarios (competition, mutualism,
and no interaction). To do that, we chose species niche optima evenly distributed along a single
environmental gradient. The metanetworks were built so that interacting species have close niche
optima (otherwise they would never co-occur). In the mutualistic scenario, we also considered a
case where species that facilitate each other tend to have an abiotic niche that is also not too close
(otherwise they would compete). Along this single environmental gradient, niche optima and
associated metanetworks according the interaction scenarios, we used three theoretical dynamic
models (Lotka-Volterra, colonisation-extinction, and co-existence model aka VirtualCom) to sim-
ulate the resulting species distribution data. These models have different underlying assumptions
and processes, which allowed testing ELGRIN under a total of 9 different configurations.

Lotka-Volterra model The Lotka-Volterra model is one of the foundational models in commu-
nity ecology (Takeuchi, 1996). This model simulates communities under both intra- and interspe-
cific interactions, while ELGRIN is not able to handle intraspecific interactions (its metanetwork
does not allow for self-loops). Thus we parameterized the Lotka-Volterra simulation with intraspe-
cific interactions being negligible in regards to interspecific interactions. That way we generated
species community data that meets the type of data and ecological questions ELGRIN is designed
to tackle (for details, see Appendix S1: Section S.5.1). Nonetheless, we also explored the converse
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Figure 1: Schematic view of ELGRIN statistical model. Given (a) an interaction metanetwork
that summarises known interactions (edges) between species (nodes), (b) species occurrences data
and (c) environmental covariates for a set of sites, ELGRIN model estimates (d) the overall effect
of known biotic interactions on species distributions in each site using two association parameters,
and (e) the environmental response of each species along all sites using regression parameters on
environmental covariates.
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Table 2: Simplified view of the different behaviours of the model in function of the parameters
βl,co−pres and βl,co−abs. The graph represents the metanetwork containing all potential interactions
where species can be either present (gray node) or absent (white node) in a given location l leading
to different estimated βl,co−pres and βl,co−abs. When βl,co−pres � 0 or βl,co−abs � 0, interacting
species in the metanetwork tend to avoid each other: whenever one is absent, the other tend to be
present and reversely. This situation favors a checkerboard pattern on the metanetwork. Reversely,
whenever βl,co−pres � 0 (resp. βl,co−abs � 0), there are groups of interacting species that tend
to be all present (resp. all absent), inducing sets of gray (resp. white) neighbour nodes in the
metanetwork. Whenever βl,co−pres = 0 or βl,co−abs = 0, there are sets of interacting species whose
states are independent from one another and thus purely random (the proportions of gray and white
nodes are governed by the values of the parameters in the Grinnellian part of the model).
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case to fully understand the limits of ELGRIN (see Appendix S1: Section S.6).
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Figure 2: Distribution of co-presence (βl,co−pres) and co-absence (βl,co−abs) strengths inferred using
ELGRIN on simulated ecological communities using a Lotka-Volterra model with competition
(negative interactions), mutualism (positive interactions) or no interactions.

Colonisation-extinction model We used an updated version of the stochastic colonisation-extinction
model developed in Ohlmann et al. (2022) to simulate the species community dataset for the three
interaction scenarios (for details see Appendix S1: Section S.5.2). The model consists in a multi-
variate Markov chain that converges towards a stationary distribution from which we sampled the
species community dataset.

VirtualCom model We used an updated version of the model developed by Münkemüller &
Gallien (2015) to simulate communities whose composition is driven simultaneously by biotic
and abiotic environmental effects, for the three interaction scenarios (for details see Appendix S1:
Section S.5.3). In this model, each community has the same carrying capacity (i.e. the exact
number of individuals in each location).

Application: a case study
We analyse the newly available Tetra-EU 1.0 database, a species-level trophic network of Euro-
pean tetrapods (Maiorano et al., 2020) that combines all known potential interactions between
terrestrial mammals, birds, reptiles and amphibians occurring in Europe. This metanetwork is
based on data extracted from known interactions, scientific literature, including published arti-
cles, books, and grey literature (see Maiorano et al., 2020, for a complete description of the data
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Figure 3: Distribution of co-presence (βl,co−pres) and co-absence (βl,co−abs) strengths inferred using
ELGRIN on simulated ecological communities using a colonisation-extinction model with com-
petition (negative interactions), mutualism (positive interactions) or no interactions.
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Figure 4: Distribution of co-presence (βl,co−pres) and co-absence (βl,co−abs) strengths inferred using
ELGRIN on simulated ecological communities with VirtualCom model, with competition (nega-
tive interactions), mutualism (positive interactions) or no interactions.

and the reference list used to build the metanetwork). As usual with such data, this metanet-
work does not provide information on interaction plasticity or intraspecific interactions. We re-
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stricted our analyses on the European Alps that show sharp environmental gradients and vary-
ing trophic web distributions (O’Connor et al., 2020). We extracted the species distribution data
from Maiorano et al. (2013) at a 300 m resolution. We upscaled all species ranges maps to a
10x10 km equal-size area grid and cropped the distribution data to the European Alps. Species
were considered present on a given 10x10 km cell if they were present in at least one of the
300 x 300 m cells within it. This yielded species distributions maps for 257 breeding birds,
99 mammals, 36 reptiles, and 30 amphibians over 2138 locations. Environmental covariates
were extracted at the same resolution and were selected following previous work on those data
(Braga et al., 2019). For climate, we used mean annual temperature, temperature seasonality,
temperature annual range, total annual precipitation and coefficient of variation of precipitation
that were all extracted from the Worldclim v2 database (http://www.worldclim.org/
bioclim). Using GlobCover (GlobCover V2.2; http://due.esrin.esa.int/page_
globcover.php), we extracted the number of habitats present in a given pixel, habitat diver-
sity in a given pixel based on Simpson index and habitat evenness as a measure of habitat com-
plexity. Finally, we added an index of annual net primary productivity (Global Patterns in Net
Primary Productivity, v1 (1995), http://sedac.ciesin.columbia.edu/data/set/
hanpp-net-primary-productivity) and the human footprint index (http://sedac.
ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic).
Since these data were highly correlated, we used a PCA to retain the three leading vectors as envi-
ronmental covariates (Wl) in ELGRIN.

Results

Tests on simulated species community data
Let us first recall that we assessed the performance of the method in inferring parameters from data
sampled and re-sampled under ELGRIN model (see Appendix S1: Section S.4). We now turn to
more involved dynamical theoretical models.

For the three theoretical models (Lotka-Volterra, colonisation-extinction and VirtualCom), EL-
GRIN was correct in identifying the no interaction scenario, with estimated interaction strengths
close to 0 (Figures 2, 3 and 4). Similarly, ELGRIN was able to retrieve the negative effects of inter-
actions in the case of competition as simulated by the three theoretical models. The βl,co−pres and
βl,co−abs parameters were mostly negative (with much higher absolute values for βl,co−pres), captur-
ing the backbone of the competitive interactions. They indicated that co-presence and co-absence
were avoided (as presented in Table 2 top-left), leading to some level of competitive exclusion. In
the VirtualCom co-existence model, this phenomenon was clearly the by-product of the competi-
tive interactions and the carrying capacity in terms of number of individuals (that explicitly induced
exclusion). When positive interactions come into play (i.e. mutualism), the results should be con-
trasted between those obtained for the Lotka-Volterra model, where ELGRIN does not qualitatively
identify the processes at stake and the two other models (colonisation-extinction and VirtualCom)
where ELGRIN succeeds in identifying them. The Lotka-Volterra simulation with positive in-
teractions scenario produced species that are essentially distributed along their respective niches
(see Appendix S1: Figure S.11). As a consequence, this distribution can be simply fitted with the
Grinellian part of the model and ELGRIN estimates the βs close to zero (Figure 2). That means
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that the same dataset could have been produced by only abiotic environmental conditions and the
actual species distribution does not contain anymore a pattern that ELGRIN would identify as the
trace of the positive interspecific interactions. On the contrary, in the positive interactions scenario,
with both competition-colonisation and VirtualCom co-existence models, ELGRIN correctly iden-
tified the process at play. The parameters βl,co−pres and βl,co−abs were mostly positive. During the
simulation steps, the presence of one species was then favored by the presence of another species
it interacted with, leading to a co-presence phenomena captured by the positive βl,co−pres. Con-
versely, the inverse mechanism emerged for co-absence, implying that the βl,co−abs tended to be
positive as revealed by ELGRIN (Figures 3, 4). To quantitatively investigate the difference between
βl,co−pres and βl,co−abs distributions in the three simualations, we performed Kolmogorov-Smirnov
(KS) tests. For each simulation, we tested whether βl,co−pres and βl,co−abs distributions were sig-
nificantly different in the scenarios with interactions (either positive or negative) from the scenario
without interaction. In the three simulations, the tests correctly identify significant differences
between interactions and no interaction scenarios (see Appendix S1: Table 3).

Empirical case study
When fitted to the European vertebrate dataset, ELGRIN’s parameters βl,co−pres and βl,co−abs were
highly correlated (Pearson correlation of 0.84, see Appendix S1: Section S.7.1) suggesting that
trophic interactions impact both predator/prey co-presence and co-absence. In what follows, we
therefore mainly dealt with βl,co−pres.

We first observed a structured spatial pattern of the effects of interactions, with regions of neg-
ative or positive βl,co−pres (bluish or reddish colors respectively in Figure 5). The largest βl,co−pres
values were found mainly in the french Alps and in the Eastern zone.

In Figure 6, we present the values of different variables at each location, according to groups
of estimated βl,co−pres parameters, where the width of each boxplot is proportional to the number
of points in each class. Almost all the highest βl,co−pres (> 0.05) were revealed in locations below
1600 m of altitude (Figure 6a, p-value of the KS test inferior to 2.2e−16, details given in Appendix
S1: Section S.7.2). In these regions, species richness was generally high (Figure 6b, p-value infe-
rior to 2.2e−16). In the opposite, the higher up, the more likely βl,co−pres was negative (Figure 6a).
This was particularly true above 1600 m in the central Alps, where almost all the negative βl,co−pres
were estimated (bluish colors in Figure 5). Locations with negative βl,co−pres have a lower species
richness (Figure 6b). Interestingly, locations with low connectance have lower absolute βl,co−pres
values (Figure 6c, p-value inferior to 2.2e−16) indicating a lower effect of biotic interactions com-
pared to abiotic effects in these locations. Here, connectance is the density of the graph induced
by the metanetwork at location l, namely its nodes are species occurring at location l and edges are
those from the metanetwork between those present species.

Discussion
Deciphering the mechanisms driving spatial patterns of species distributions and communities is
likely one of the most active fields of ecological research since the early days of biogeography and
community ecology. Still, there was so far no comprehensive statistical approach able to make
the best of existing knowledge on interspecific interactions, species occurrence and environmental
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data to measure and quantify the dual effects of environment and biotic interactions on species
distributions. Our proposed model that relies on Markov random fields builds on the ability of
graphical models to encode and analyse species distribution dependencies using the known species
interactions. This formalism allows, within the same model, to account for both the effects of the
environment and the interspecific interactions, which reconciles the Grinnellian vision of species
niches (i.e. how species respond to the abiotic environment) with its Eltonian counterpart (i.e.
how species respond to the biotic environment). The mathematical foundations of ELGRIN are
strong and its framework is flexible allowing for useful extensions to handle interaction strength,
sampling effects and plasticity of interactions (see Appendix S1: Section S.1).

A key element of ELGRIN is its ability to measure the overall relative effects of interspecific
interactions on species distributions with respect to abiotic environmental conditions, which al-
lows to summarise all local pairwise interactions in a single measure (i.e. βl,co−abs or βl,co−pres).
This measure can then be mapped, related to spatial layers to understand how the overall rela-
tive effect of interspecific interactions vary in space and in function of the environment or the
ecosystem types. Importantly, this measure can also be carefully investigated at a given location
in function of the constituent species, trophic groups, specialists vs generalists, connectance and
so on. Interestingly, we can thus see our βl estimates as an extended and more meaningful version
of the famous checkerboard score or C-score (Stone & Roberts, 1990), which has been used to
quantify local interspecific interactions from co-occurrence pattern (e.g., Boulangeat et al., 2012).
The main advantage of ELGRIN over the C-score is that instead of trying to infer biotic interac-
tions only from co-occurrences (which we know to be notoriously difficult, nearly impossible),
it quantifies, in a conditional way, the effects of the known interspecific interactions on species
communities, while accounting for the environmental responses of the species. Our approach is
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Figure 6: Results of ELGRIN on the European tetrapods case study. Boxplots representing the val-
ues of different variables at each location, according to the estimated βl,co−pres values (x axis). (a)
altitude, (b) species richness, and (c) connectance (density of the graph induced by the metanet-
work at location l) For the sake of representation, βl,co−pres values above 0.15 in absolute value
were set to 0.15. Width of the boxplots is proportional to the number of points in each class.

thus not comparable with recent developments on joint species distribution models (JSDMs) that
relate species occurrences to environmental conditions, and provides a residual covariance matrix
that could be interpreted on the light of missing predictors, mis-specifications and biotic interac-
tions (Ovaskainen et al., 2017; Zurell et al., 2018). This matrix represents covariances between
model residuals (the left-over from the environmental effects) and actually provides little informa-
tion about biotic interactions (Zurell et al., 2018; Poggiato et al., 2021). ELGRIN does not infer
any residual covariance and directly accounts for the known interactions through the metanetwork.
In JSDMs, missing covariates will inevitably lead to spurious estimates of biotic interactions. In
ELGRIN, the parameter al is supposed to capture most of the unexplained information that is in-
dependent of the interspecific interactions. This parameter acts as a site random effect in mixed
models and is expected to filter out the effects of missing covariates, although some remaining
species-specific effects might still percolate into the βl estimates.

In the presentation of ELGRIN and in our case studies, we focused on a single interaction type
at a time (e.g. competition, mutualism or trophic interaction). When dealing with a single type
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of interaction, competition for instance, the modelling is explicit since we clearly understand the
effect that one species can have on another species. Although it is technically possible to man-
age a metanetwork composed of different types of interactions, the interpretation would become
problematic. Different interaction types can have opposite effects, such as competition (a species
excludes other species) and mutualism (a species facilitates other species) and, since ELGRIN cap-
tures an overall impact of these interactions on the distributions at each location, interpreting EL-
GRIN’s results can be misleading in that case. Additionally, it is worth noting that since ELGRIN
relies on a Markov random field, G? is undirected. In other words, when the original metanet-
work encodes asymmetric interactions (e.g. predator-prey), they are then converted in undirected
edges that only represent the presence of interactions (whatever their direction). It is thus critical
to keep that in mind when interpreting the results of ELGRIN, and when merging different types
of interactions together. The same issue happens when hoping to interpret the residual covariance
matrix of JSDM through the lens of biotic interactions, since the values of the covariance matrix
could reflect any type of interactions between species, that could be asymmetric or symmetric, or
both. Note that we explicitly used a bell-shaped relationship for modelling species response to
environmental gradients. While it would be possible to modify ELGRIN to incorporate any other
parametric relationship, the actual version of ELGRIN would lead to erroneous conclusions when-
ever used on data where this assumption is not satisfied.

More generally, it is important to underline that ELGRIN finds the most likely scenario under a
model associated to underlying assumptions. This model represents up to date the most reasonable
and simple model that integrates both interspecific interactions and abiotic factors in modelling the
species distribution. In that sense, it goes beyond (joint) species distribution models or ordination
models by including explicitly the effect of interspecific interactions. However, the most likely
scenario under this model is not necessarily the real one that lead to observed data. For instance,
ELGRIN was not able to identify the positive interspecific interactions present in the dynamics
of a Lotka-Volterra model (even when restricting to negligible intraspecific interactions). Despite
being a most widely studied model, the Lotka-Volterra model still raises important challenges.
Indeed, whether the system reaches a single globally stable equilibrium point is known only in
specific cases (Takeuchi, 1996). Since ELGRIN infers model interspecific interactions relative ef-
fects from the species distributions, existence of multiple equilibria in the Lotka-Voltera dynamics
(depending on the initial conditions that are unknown) could pose serious identifiability problems.
Even in presence of a unique and globally stable equilibrium point, several parameters or different
interaction types could lead to the same equilibrium and thus same observed species distributions.
This also raises tough identifiability issues. We hope that the recent developments around Lotka-
Volterra model will help to circumvent those issues (Biroli et al., 2018; Remien et al., 2021). We
could easily simulate species distributions, using models that include other ecological processes,
on which ELGRIN would fail in recovering the true underlying generation processes. Indeed we
present simulations scenarios beyond the assumptions of the model (i.e., a Lotka-Volterra model
with intraspecific interactions stronger than interspecific ones, see Appendix S1: Section S.6),
where ELGRIN again uncovered a completely different explanation of the data at hand. If the
data contain the signature of different ecological processes (including ones not considered by EL-
GRIN), ELGRIN will not be able to infer properly the relative effects of interspecific interactions
and abiotic factors. The question of knowing which ecological processes could indeed be recov-
ered from species distribution patterns remains thus debated (e.g. Blanchet et al., 2020). A last note

16



is that ELGRIN only deals with binary occurrence data rather than abundance or frequency data.
In our simulation design, both the Lotka-Volterra and the VirtualCom models produced abundance
data that we had to sample to obtain binary signals, loosing information during the process. On
the contrary, ELGRIN performs better on colonisation-extinction simulations, where the dynamics
directly generates binary data. Extending ELGRIN from the binary setup to the continuous one
could improve the inference by considering more information in the species distribution data but it
remains an important methodological challenge.

In terms of further perspectives, we might wonder whether this model could be extended for
prediction purposes. In principle, it is possible to draw presence/absence data from the model for
different values of the environment variables. These different values could allow for predictions
in space but also in time. However, something to keep in mind is that metanetwork will not
change in the model and will thus be considered as static and thus representative in space (or in
time). If the metanetwork has not been built with that prediction perspective in mind, this might
be an issue as we will miss interaction rewiring effects on species distributions. Instead, if the
metanetwork is truly a potential metanetwork that tries to incorporate these potential interactions
that have been observed yet (i.e. Maiorano et al., 2020), it might be interesting to investigate how
biotic interactions might further influence future species distributions in response to environmental
changes.
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Brémaud, P. (1999) Markov chains: Gibbs fields, Monte Carlo simulation, and Queues, volume 31.
Springer.

Chalmandrier, L., Münkemüller, T., Gallien, L., De Bello, F., Mazel, F., Lavergne, S. & Thuiller,
W. (2013) A family of null models to distinguish between environmental filtering and biotic
interactions in functional diversity patterns. Journal of Vegetation Science, 24, 853–864.

Chase, J.M. & Leibold, M.A. (2003) Ecological niches: linking classical and contemporary ap-
proaches. University of Chicago Press.
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Appendix S1 for manuscript ’Quantifying the overall effect of
biotic interactions on species distributions along environmental
gradients’, by M. Ohlmann, C. Matias, G. Poggiato, S. Dray, W.

Thuiller & V. Miele.

S.1 Model extensions

S.1.1 Interaction strength
Besides the binary case, it is also possible to handle interaction strengths. An interaction strength
can represent a frequency (e.g., the number of visits of a pollinator to a plant), an intensity (e.g.,
rate of predation, Berlow et al., 2004) or a preference (e.g. modulating trophic links with known
affinities of a predator to its preys).

We write A? = (A?ij)i,j∈V ? the adjacency matrix of the graph G?. Now, each edge (i, j) ∈ E?

is modulated through the weight A?ij of the interaction. In this case, sub-equations (1b) and (1c)
are replaced by

βl,co−pres
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 1} = βl,co−pres
∑

(i,j)∈E?

A?ijX
l
jX

l
i

and βl,co−abs
∑

(i,j)∈E?

A?ij1{X l
j = X l

i = 0} = βl,co−abs
∑

(i,j)∈E?

A?ij(1−X l
j)(1−X l

i),

respectively.

S.1.2 Sampling effects
The random variables X l

i that indicate the presence of species i at location l might not be exactly
observed due to sampling effects. Here, we propose to account for these effects by assuming that
each species i ∈ V ? is sampled with probability pi,l ∈ (0, 1) at location l ∈ {1, . . . , L}. We
therefore introduce a new set of random variables Y l

i , i ∈ V ?, l ∈ {1, . . . , L} such that each Y l
i

only depends on X l
i and is distributed as

P(Y l
i |X l

i) = p
Y l
i
i,l (1− pi,l)

1−Y l
iX l

i + (1−X l
i)(1− Y l

i )

= p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}.

Specifically, whenever X l
i = 0 (species i is absent from location l), species i cannot be observed at

location l and Y l
i = 0. Now, whenX l

i = 1 (species i is present at location l), it is observed (Y l
i = 1)

with sampling probability pi,l and unobserved (Y l
i = 0) with probability 1 − pi,l. The parameter

pi,l must be given by the user considering three possible cases: species dependent sampling (pi,l :=
pi; i ∈ V ?), location dependent sampling (pi,l := pl; 1 ≤ l ≤ L) or constant sampling (pi,l := p).
In this case, the X l

i become latent variables as we only observe the Y l
i ’s. The model turns out to be

a hidden Markov random field (HMRF).
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S.1.3 Plasticity of interactions
Our model is able to assume that interactions are not necessarily induced by the presence/absence
variables (we can assume that two species interact in a given location but not in another location).
In this case, we consider a sample of observed graphsG1, . . . , GL where eachGl = (V l, El) is such
that V l ⊂ V ?. These graphs represent local interactions that are observed at the different locations
l ∈ {1, . . . , L}. The main point here is that we assume that these interactions are sampled from
the pool of potential interactions encoded in the metanetwork G?. Let Al = (Ali,j)i,j∈V l denote the
adjacency matrix of the graph Gl. We assume that any two species that are observed and that can
potentially interact (i.e., are linked in the metanetwork G?) do effectively interact at location l with
a probability that depends only on these two species. Namely for any (i, j) ∈ E?, conditional on
the fact that two species i, j ∈ V ? were observed at location l (namely Y l

i Y
l
j = 1), we set

Ali,j|Y l
i Y

l
j = 1 ∼ B(εij),

and Ali,j ≡ 0 whenever (i, j) /∈ E? or Y l
i = 0 or Y l

j = 0. This additional parameter ε = {εi,j}i,j∈V ?

allows us to handle interaction plasticity directly in the model.

S.2 Mathematical details on the model

S.2.1 Identifying the parameters of the Gibbs distribution
We first address the issue of the identifiability of the parameters from the Gibbs distribution. In
what follows, we focus on the case of a binary metanetwork G?. However, our results remain valid
in the weighted case, where degrees are replaced by weighted degrees and the cardinality |E?|
(total number of edges in G?) becomes the total sum of the weights.

Let us focus on the model with no covariates (Wl = 0) and consider for each location l ∈
{1, . . . , L} the maps ψl = ({ai}i, al, βl,co−pres, βl,co−abs) 7→ Pψl

, where

Pψl
({X l

i}i∈V ?) =
1

Zψl

exp
(∑
i∈V ?

(ai + al)X
l
i + βl,co−pres

∑
(i,j)∈E?

X l
jX

l
i

+ βl,co−abs
∑

(i,j)∈E?

(1−X l
j)(1−X l

i)
)
.

For any ψ = ({ai}i,l, {al, βl,co−pres, βl,co−abs}l) we also define the global probability distribution
Pψ as follows

Pψ({X l
i}i∈V ?;1≤l≤L) =

L∏
l=1

Pψl
({X l

i}i∈V ?).

Proposition 1 (Identifying linear combinations of the parameter). In the model without covariate
(Wl = 0, for any l), the probability distribution Pψ uniquely defines the quantities

βl,co−pres + βl,co−abs, (S.2)
and ai + al + βl,co−pres degG?(i) or equivalently ai + al − βl,co−abs degG?(i), (S.3)
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for any i ∈ V ?, l ∈ {1, . . . , L}, where degG?(i) is the degree of species i in the metanetwork G?.
Moreover, if there exist 2 species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in G?, then the
probability distribution Pψ uniquely defines the additional quantities

βl,co−abs − βl′,co−abs or equivalently βl,co−pres − βl′,co−pres, (S.4)
and al − al′ , (S.5)

for any l, l′ ∈ {1, . . . , L}.

Proof. Let us denote αi,l = ai + al. As Pψl
is a marginal of Pψ, we start by fixing the location

l ∈ {1, . . . , L} and consider the probabilities of specific configurations at this location. We let X l
−i

denote the set {X l
j; j ∈ V ?, j 6= i}. From the knowledge of Pψ, we obtain for l ∈ {1, ..., L} and

i ∈ V ? the quantities

sl0 := logPψl
({0, ..., 0}) = − log(Zψl

) + |E?|βl,co−abs
sl1 := logPψl

({1, ..., 1}) = − log(Zψl
) +

∑
i

αi,l + |E?|βl,co−pres

si,l10 := logPψl
({X l

i = 1, X l
−i = 0}) = − log(Zψl

) + αi,l + βl,co−abs(|E?| − degG?(i))

si,l01 := logPψl
({X l

i = 0, X l
−i = 1}) = − log(Zψl

) +
∑
j 6=i

αj,l + βl,co−pres(|E?| − degG?(i)),

where |E?| is the cardinality of the set E?. It follows

rl1 := sl1 − sl0 =
∑
i

αi,l + |E?|(βl,co−pres − βl,co−abs)

ri,l2 := si,l10 − sl0 = αi,l − βl,co−abs degG?(i)

ri,l3 := si,l01 − sl0 =
∑
j 6=i

αj,l + (βl,co−pres − βl,co−abs)|E?| − βl,co−pres degG?(i).

From these equations, we uniquely obtain

ti,l1 :=rl1 − r
i,l
3 = αil + βl,co−pres degG?(i)

ti,l2 :=rl1 − r
i,l
2 − r

i,l
3 = (βl,co−abs + βl,co−pres) degG?(i).

As a consequence, as soon as there is at least one edge in the metanetwork G? (inducing at least
one species i with degG?(i) 6= 0) we can obtain the quantities βl,co−abs + βl,co−pres (recall that
degG?(i) is known) as well as αi,l + βl,co−pres degG?(i) uniquely from the distribution Pψ. Note
also that combining the knowledge of these two quantities, the second is equivalent to knowing
αi,l − βl,co−abs degG?(i).

Now, let us recall that αi,l = ai + al. For two different locations l 6= l′, we have access to

ti,l1 − t
i,l′

1 = al − al′ + (βl,co−pres − βl′,co−pres) degG?(i).

We now assume that there exist two species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in G?

and obtain (S.4) as follows

βl,co−pres − βl′,co−pres = (ti,l1 − t
i,l′

1 − t
j,l
1 + tj,l

′

1 )[degG?(i)− degG?(j)]−1.
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Combining this with (S.2), it is equivalent to the unique identification of βl,co−abs − βl′,co−abs.
Finally, going back to ti,l1 − t

i,l′

1 we uniquely obtain al − al′ .

Definition 1 (Equivalence class). For any parameter ψ = ({ai}i, {al, βl,co−pres, βl,co−abs}l), its
equivalence class [ψ] is defined as

[ψ] := {({ai + γ degG?(i)− δ}i, {al + δ, βl,co−pres − γ, βl,co−abs + γ}l); γ ∈ R, δ ∈ R}.

Corollary 1 (Parameter identifiability up to the equivalence class). In the model without covariate
(Wl = 0, for any l) and assuming that there exist 2 species 1 ≤ i, j ≤ N such that degG?(i) 6=
degG?(j) in G?, we have that whenever there are two parameter values ψ, ψ̃ such that Pψ = Pψ̃,
then ψ̃ ∈ [ψ]. In other words, the equality Pψ = Pψ̃ implies that there exist real values γ, δ ∈ R
such that for any i ∈ V ? and l ∈ {1, . . . , L}, we have

ãi = ai + γ degG?(i) + δ

ãl = al − δ
β̃l,co−pres = βl,co−pres − γ
β̃l,co−abs = βl,co−abs + γ.

Proof. Assume that Pψ = Pψ̃ and define for any location l ∈ {1, . . . , L} the quantity γl :=

βl,co−pres − β̃l,co−pres. We know from Proposition 1 that

βl,co−abs + βl,co−pres = β̃l,co−abs + β̃l,co−pres

ãi + ãl + β̃l,co−pres degG?(i) = ai + al + βl,co−pres degG?(i).

This induces that

γl = β̃l,co−abs − βl,co−abs
and ãi + ãl = ai + al + γl degG?(i).

Let us further prove that γl does not depend on l. From Proposition 1 and the additional assumption
that at least two species have different degrees in the metanetwork, we have for any locations
l, l′ ∈ {1, . . . , L},

βl,co−pres − βl′,co−pres = β̃l,co−pres − β̃l′,co−pres = βl,co−pres − βl′,co−pres − γl + γl′ ,

which implies that γl = γl′ for any pair of locations. Finally, let us define for any location and any
species

δl = al − ãl and δi = ai − ãi.

We have established that δl + δi = −γ degG?(i). This implies that δl is constant through locations
and equal to some δ. This concludes the proof.

Corollary 1 tells us that the model parameter is identifiable up to the equivalence class in
Definition 1. Note that it is possible to choose one specific representative parameter in this class.
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Proposition 2 (Choosing a representative). In the model without covariate (Wl = 0, for any l) and
assuming that there exist 2 species 1 ≤ i, j ≤ N such that degG?(i) 6= degG?(j) in G?, for any
parameter value ψ̃, it is possible to choose a unique representative ψ ∈ [ψ̃] such that the estimated
linear regression coefficients of the set of parameters {ai}i over the degrees {degG?(i)}i are equal
to 0, namely

(γ̂, δ̂) := Argmin
(γ,δ)∈R2

∑
i∈V ?

(ai − γ degG?(i)− δ)2

satisfies (γ̂, δ̂) = (0, 0).

Proof. Fix a parameter value ψ̃ and consider the linear regression of the set of parameters {ãi}i
over the degrees {degG?(i)}i, namely

(γ̃, δ̃) := Argmin
(γ,δ)∈R2

∑
i∈V ?

(ãi − γ degG?(i)− δ)2.

Then by setting the parameter ψ = ({ai}i,l, {al, βl,co−pres, βl,co−abs}l) as

ai := ãi − γ̃ degG?(i)− δ̃;
al := ãl + δ̃;

βl,co−pres := β̃l,co−pres + γ̃

βl,co−abs := β̃l,co−abs − γ̃

(for any i, l), we know from Definition 1 that ψ ∈ [ψ̃] and also by definition, the estimated values

(γ̂, δ̂) := Argmin
(γ,δ)∈R2

∑
i∈V ?

(ai − γ degG?(i)− δ)2

will now satisfy (γ̂, δ̂) = (0, 0).

Remark 1. The choice of the representative parameter given by Proposition 2 is such that the
response of species i to the environment does not depend on its degree in the metanetwork and
thus on its number of interactions. This is a natural choice to separate the Grinellian part from
the Eltonian one in our model. Note that this representative parameter is the one we rely on when
interpreting the model. Thus, when we comment the behaviour of the model with respect to different
values of its parameter, we always rely on this specific representative.

Note however that whatever the choice of the representative, the intercept values ai and al are
inferred up to an additive constant.

S.2.2 A compatibility matrix to robustify the model
In this section, we slightly modify the model to handle cases where either there are species with
tight environmental niches or where the metanetwork G? contains edges between species with
incompatible environmental niches (which would be a nonsense). Indeed, we aim at estimating
Eltonian effects only when species are in their Grinnelian niche.

We introduce a binary matrix C = (Cil)i∈V ?,1≤l≤L that encodes the possibility for species i to
be present at location l given its niche properties. The matrixC is called a compatibility matrix. For
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the model’s presentation, it is supposed to be fixed and known. In practice, it is either obtained from
expert knowledge, otherwise built from the realized niche of each species (our implementation in
the function elgrin will pre-estimate the compatibility matrix from realized niche before fitting
the model). In the latter case, for any species i, at each location l and for each covariate d, relying
on the observation set {xli}i,l, we set

ωid = inf
1≤l≤L

{Wld;x
l
i = 1}, (S.6)

Ωid = sup
1≤l≤L

{Wld;x
l
i = 1} (S.7)

and Cil = 1{∀1 ≤ d ≤ D,Wld ∈ [ωid; Ωid]}.

where location l is characterized by an environmental covariate vector Wl = (Wl1, . . . ,WlD).
Naturally, if X l

i = 1 then Cil = 1.
Relying on the compatibility matrix, at each location l we restrict our attention to species

compatible with the environment at this location. In particular, we now impose that X l
i = 0

whenever Cil = 0. Thus the probability distribution of the species in ELGRIN is modified as
follows

Pψl
({X l

i}i∈V ?) =

( ∏
i∈V ?;Cil=0

(1−X l
i)

)
× 1

Zψl

exp
{ ∑
i∈V ?;Cil=1

[
(al + ai +W ᵀ

l bi + (W 2
l )ᵀci)X

l
i

+ βl,co−pres
∑

j;(i,j)∈E?

X l
jX

l
i + βl,co−abs

∑
j;(i,j)∈E?

Cjl(1−X l
j)(1−X l

i)
]}
.

Note that if the compatibility matrix is full of 1 (i.e. all the species may occur at all locations), we
are back to our initial model. Otherwise, we now avoid mistaking co-absence of two interacting
species with the event of two independent absences due to incompatible niches.

From a modeling point of view, the modified version of the model helps in robustifying our re-
sults. This is the case for instance when considering interacting species with tight niches. Indeed,
at locations l where two interacting species i, j are absent due to incompatible environmental con-
ditions (i.e. Cil = Cjl = 0), we observe that X l

i = X l
j = 0. In that case in our original model, this

double absence would wrongly be interpreted as a co-absence and blur the inference of βl,co−abs.
Note also that whenever two species i, j are potentially interacting (i.e. (i, j) ∈ E?), we consider
that their respective niches should overlap (Cil = Cjl = 1 for at least one location l). If this
rule is not satisfied, it could happen that, without the additional factor CilCjl regulating the co-
absence term, an absence of species i would be interpreted as a co-absence due to its interaction
with species j.

Note that at locations l where the environment covariates Wl prevent from the occurrence of
a species i (i.e. Cil = 0), it is useless to try to fit the Grinellian part of the model, i.e. the non-
informative intercepts ai, al and the parameters bi, ci. So that when appropriate, we only consider
the estimated maps W 7→ W ᵀbi + (W 2)ᵀci on the environment values compatible with species i.

S.2.3 Hidden Markov random field and its interpretation
We discuss here the model in its full generality, including possible weights on the metanetwork,
sampling effects, plasticity of interactions and the robust version relying on a compatibility matrix.
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We thus have X := {Xl}1≤l≤L = {X l
i}i∈V ?,1≤l≤L (resp. Y := {Yl}1≤l≤L = {Y l

i }i∈V ?,1≤l≤L
and A := {Al}1≤l≤L = {Ali,j}i,j∈V l,1≤l≤L) denoting the set of true occurrence variables (resp.
observed occurrences and observed interactions). We assume that we observe (Y,A), while X are
latent random variables.

A Gibbs distribution specifies the joint associations between the species occurrence variables
{X l

i}i∈V ? , as follows

Pψl
({X l

i}i∈V ?) =

( ∏
i∈V ?;Cil=0

(1−X l
i)

)
× 1

Zψl

exp
{ ∑
i∈V ?;Cil=1

[
(al + ai +W ᵀ

l bi + (W 2
l )ᵀci)X

l
i

+ βl,co−pres
∑

j;(i,j)∈E?

X l
jX

l
i + βl,co−abs

∑
j;(i,j)∈E?

Cjl(1−X l
j)(1−X l

i)
]}
. (S.8)

First note that the normalizing constant Zψl
is given by

Zψl
=

∑
i∈V ?;Cil=1

∑
xi∈{0,1}

exp
( ∑
i∈V ?;Cil=1

[al + ai +W ᵀ
l bi + (W 2

l )ᵀci]xi

+ βl,co−pres
∑

j;(i,j)∈E?

A?ijxixj + βl,co−abs
∑

j;(i,j)∈E?

A?ijCjl(1− xi)(1− xj)
)
.

In general, this normalising constant Zψl
cannot be computed due to the large number of possible

configurations appearing in the sum. The statistical inference procedure needs to deal with that.
The model interpretation strongly builds on the Markov property, a fundamental characteristic

of Markov random fields. In the following we focus on the species compatible with one location
(Cil = 1); otherwise recall that its occurrence is set to zero with probability 1. Let us denote N ?

i

the set of species j ∈ V ? that are connected to i in the graph G? (namely {j ∈ V ?;A?ij 6= 0}) and
X l
N ?

i
, the set of corresponding random variables X l

j for j ∈ N ?
i . We also recall that X l

−i denotes
the set {X l

j; j ∈ V ?, j 6= i}. Then, under the Markov property we have

Pψl
(X l

i |X l
−i, Cil = 1) = Pψl

(X l
i |X l

N ?
i
, Cil = 1) ∝ exp

(
[al + ai +W ᵀ

l bi + (W 2
l )ᵀci]X

l
i

+ βl,co−pres
∑
j∈N ?

i

A?ijX
l
jX

l
i

+ βl,co−abs
∑
j∈N ?

i

A?ijCjl(1−X l
j)(1−X l

i)
)
,

(S.9)

where∝means proportional (equals up to a normalising constant). More specifically, it means that
the conditional occurrence probability of a species i is modulated by the occurrences of the species
interacting with i in G?. In other words, a species presence only depends on abiotic environment
and on the species it interacts with. Moreover, the presence/absence variables of any two species
are not statistically independent of each other if G? is connected (namely, if there exists a path
between any two species in G?). Meanwhile, if G? has more than one connected component (i.e.
disconnected compartments, Krause et al., 2003), then the presence/absence of species in different
components are independent. The Markov property is the cornerstone idea of our model. Indeed,

27



the conditional probabilities of each random variable is specified through (S.9) and is rooted on
the idea that the occurrence of a species i at location l depends both on a suitability term, spe-
cific to that species and the local environment, and on the presence/absence of other species with
whom it interacts (as encoded in the metanetwork). From this set of conditional probabilities, the
Hammersley-Clifford theorem (Besag, 1974) ensures that there exists a proper joint distribution on
the random variables {X l

i}i,l and that it is given by Equation (S.8).

Now, the observed species occurrence variables Y l
i , i ∈ V ?, l ∈ {1, . . . , L} are distributed such

that each Y l
i only depends on X l

i (the true occurrence variable) with

P(Y l
i |X l

i) = p
Y l
i
i,l (1− pi,l)

1−Y l
iX l

i + (1−X l
i)(1− Y l

i )

= p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}. (S.10)

In what follows, we choose to impose that the sampling parameters pi,l are set by the user. A
consequence of this is that the quantity (S.10) will play no role in the inference procedure. Indeed,
it is a constant quantity with respect to the parameter. Finally we set

Ali,j|Y l
i Y

l
j = 1 ∼ B(εij), (S.11)

and Ali,j ≡ 0 whenever (i, j) /∈ E? or Y l
i = 0 or Y l

j = 0.
Building on Equations (S.10) and (S.11), we first obtain the conditional distribution of all

observations (Y,A) given the latent variables X

Pφ(Y,A|X) =
L∏
l=1

Pφ(Al|Yl)P(Yl|Xl)

=
L∏
l=1

∏
i∈V ?

[
p
Xl

iY
l
i

i,l (1− pi,l)X
l
i(1−Y l

i )1{(1−X l
i)Y

l
i 6= 1}

]
×

∏
(i,j)∈E?

ε
Y l
i Y

l
jA

l
i,j

ij (1− εij)Y
l
i Y

l
j (1−Al

i,j).

Here, the parameter ε = {εij}i,j∈V ? drives the distribution of the observation process from the
latent one.

Finally, our model is obtained by combining this with Equation (S.8) for the distribution of
the latent variables X. Thus the global model is parameterised by θ = {θl}1≤l≤L where each
θl = (ψl, ε). This amounts to the following sets of parameters

({ai, bi, ci}i∈V ? , {al, βl,co−abs, βl,co−pres}1≤l≤L, {εij}i,j∈V ?)

so there are 3N + 3L + N(N − 1) parameters when the observed graphs Al are directed (and
3N + 3L+N(N − 1)/2 when the observed graphs Al are undirected) compared with N(N − 1)L
observations. However note that in the model inference (see next section), the parameters εij
are pre-estimated (see Equation (S.12)) and do not appear in the main inference algorithm (see
Algorithm 1). In what follows, we often use the notation

αi,l = ai + al +W ᵀ
l bi + (W 2

l )ᵀci.

A chain graph (Lauritzen, 1996) describing the dependencies among the random variables in
this model is given in Fig. S.7.
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

A12 A13 A14 A15 A23 A24 A25 A34 A35 A45

Figure S.7: Example of a metanetwork G? (relations among the random variables {Xi}i∈V ? with
V ? = {1, . . . , 5}, on the top row) and induced dependency chain graph of all the variables in the
model for one observed undirected graph A = (Aij)i<j with no self-loops.

S.3 Model inference
We present the inference procedure in the most general case, namely with weighted metanetwork,
sampling effects and plasticity of interactions. This means that our inference procedure takes place
in the context of a hidden Markov random field model.

S.3.1 Likelihood
The log-likelihood for observing independent interaction graphs G1, . . . , GL at the different loca-
tions (and thus species occurrences variables ; indeed it is equivalent to observe G1, . . . , GL or
(Y1, A1, . . . ,YL, AL)) in this model is given by

`n,L(θ) =
L∑
l=1

logPθl(G
l),

where
Pθl(G

l) =
∑

{xli}i∈V ?∈{0,1}N
Pθl(G

l, {X l
i = xli; i ∈ V ?}).

As usual in latent variables models, this sum over all possible configurations {xli}i∈V ? ∈ {0, 1}N
cannot be computed (unless N is really small). The inference procedure in latent variable models
generally relies on the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977). In the
context of hidden Markov random fields, many difficulties arise that prevent from using this simple
strategy.

The complete log-likelihood `cn,L(θ) contribution of all observations and all latent configura-
tions is given by

`cn,L(θ) := logPθ(X, Gl, . . . , GL) =
L∑
l=1

logPθl(X
l,Yl, Al)

=
L∑
l=1

logPψl
(Xl) +

L∑
l=1

∑
i∈V ?

logP(Y l
i |X l

i) +
L∑
l=1

∑
i,j∈V l

logPφ(Ali,j|Y l
i , Y

l
j ).
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This can be written as

`cn,L(θ) =
L∑
l=1

∑
i∈V ?

Cil log(1− αi,l) +
L∑
l=1

∑
i∈V ?

CilX
l
i log

(
αi,l

1− αi,l

)
+

L∑
l=1

∑
(i,j)∈E?

CilCjlA
?
ijX

l
jX

l
i

+
L∑
l=1

βl,co−abs
∑

(i,j)∈E?

A?ijCilCjl(1−X l
j)(1−X l

i)−
L∑
l=1

log(Zψl
)

+
∑
i∈V ?

L∑
l=1

X l
i

{
Y l
i log(pi,l) + (1− Y l

i ) log(1− pi,l)
}

+
∑
i,j∈V ?

L∑
l=1

Y l
i Y

l
j

{
Ali,j log εij + (1− Ali,j) log(1− εij)

}
+ cst.

Here, we restrict our attention to complete datasets (Xl, Gl) which are compatible, in the sense
that whenever X l

i = 0 we also have Y l
i = 0. Otherwise the probability above is 0 and its log is

−∞.

S.3.2 Estimating the frequency of interactions
First, it is important to note that a consequence of the dependence among the {X l

i}i∈V ? is that the
random variables Ali,j and Ali′j′ are dependent. However, this dependency is entirely carried by the
species observations Y l

i ’s (which themselves are dependent through the species latent presences
X l
i’s). In other words, we have Pφ(Al|Yl,Xl) = Pφ(Al|Yl). A consequence is that the parameters

ε that describe the graph distribution are directly estimated from the data. While the sampling
parameters and the random field ones (βl,co−abs, βl,co−pres and αi,l’s) require a sophisticate inference
procedure, the εij parameters are directly estimated by the frequencies

ε̂ij =

∑L
l=1 A

l
ij∑L

l=1 Y
l
i Y

l
j

. (S.12)

Here, the normalising term
∑L

l=1 Y
l
i Y

l
j is simply the number of simultaneous observations of

species i and j across the L different locations, while the numerator counts the number of ob-
served interactions between those species across locations.

S.3.3 Inference of the random field parameters with simulated field algo-
rithm

Now, we focus on the estimation of random field parameters βl,co−abs, βl,co−pres and αi,l’s. A clas-
sical EM algorithm would consist in (iteratively) optimising with respect to ψ = {ψl}1≤l≤L the
quantity

Q(ψ) =
L∑
l=1

E
(

logPψl
(Xl,Yl)|ψ(t)

l ,Y
l
)

=
L∑
l=1

E
[

logPψl
(Xl)

∣∣ψ(t)
l ,Y

l
]

+ cst, (S.13)
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computed with the current value of the parameter ψ(t) = {ψ(t)
l }1≤l≤L. (Recall that in our setup,

the observations Y are obtained from X through a random function with fixed and known param-
eters). The above quantity has many drawbacks: first it contains the partition functions Zψl

that
are unknown and cannot be computed. Second, the conditional distribution of Xl given Yl has an
intricate dependency structure and thus may not be computed (in fact it is also a Markov random
field).

We thus follow the simulated field algorithm proposed in Celeux et al. (2003). It is based
on two different approximations of probability distributions plus a simulation step, as follows.
First, the distribution Pψ(X) appearing in the complete likelihood is replaced by a mean-field
approximation, namely the product distribution

P1(X|ψ, x̃) =
L∏
l=1

∏
i∈V ?

Pψl
(X l

i |X l
N ?

i
= x̃lN ?

i
), (S.14)

for some well chosen fixed configuration x̃ = (x̃li)1≤l≤L,i∈V ? . Second, the conditional distribution
Pψ(X|Y) used for integrating the complete log-likelihood in (S.13) is also replaced by a mean-field
approximation, that is

P2(X|ψ, x̃,Y) =
L∏
l=1

∏
i∈V ?

Pψl
(X l

i |X l
N ?

i
= x̃lN ?

i
, Y l

i ). (S.15)

Note that both distributions (S.14) and (S.15) are probability distributions, contrarily to what hap-
pens when relying on pseudo-likelihoods. Third, the choice of the fixed configuration x̃ relies on
a sequential Gibbs sampling from the approximate distribution (S.15). With these three tools at
hand, the algorithm consists in iteratively optimising with respect to ψ = {ψl}1≤l≤L the quantity

E2
[

logP1(X|ψ, x̃)
∣∣ψ(t), x̃,Y

]
,

computed with the current value of the parameter ψ(t) and current simulated field x̃. Here, E2

denotes expectation under the probability distribution P2. This quantity should be compared to the
original criterion (S.13).

Let us now fully describe the procedure. For any current parameter value ψ(t) and fixed state
value x̃, we let

Q̃(ψ|ψ(t), x̃) =
L∑
l=1

∑
i∈V ?

∑
x∈{0,1}

Pψ(t)(X l
i = x|X l

N ?
i

= x̃lN ?
i
, Y l

i ) logPψ(X l
i = x|X l

N ?
i

= x̃lN ?
i
).

The algorithm consists in iterating the following two steps at time t,

• SE-step: sequentially sample a configuration x̃(t) as follows for 1 ≤ l ≤ L and 1 ≤ i ≤ n,
sample (X l

i)
(t) according to the conditional distribution

x 7→ Pψ(t−1)

(
X l
i = x

∣∣{X l
j = (x̃lj)

(t), j ∈ N ?
i , j < i}, {X l

j = (x̃lj)
(t−1), j ∈ N ?

i , j > i}, Y l
i

)
.
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Thus, ifCil = 0 we setX l
i = 0 and wheneverCil = 1, we sample the value 0 with probability

c exp
(
β

(t−1)
l,co−abs

∑
j∈N ?

i

A?ijCjl
[
1{(x̃lj)(t) = 0, j < i}+ 1{(x̃lj)(t−1) = 0, j > i}

])
1{Y l

i = 0}

(S.16)
and we sample the value 1 with probability

c exp
(
α

(t−1)
i,l + β

(t−1)
l,co−pres

∑
j∈N ?

i

A?ij
[
1{(x̃lj)(t) = 1, j < i}+ 1{(x̃lj)(t−1) = 1, j > i}

]
+Y l

i log(p
(t−1)
i,l ) + (1− Y l

i ) log(1− p(t−1)
i,l )

)
, (S.17)

where c is a normalising constant (set such that the 2 probabilities sum to 1).

• M-step: Optimize Q̃(ψ|ψ(t), x̃(t)) with respect to ψ = {αi,l, βl,co−abs, βl,co−pres}i,l.

We now express the quantity Q̃ in our model and derive update formulas in our model. First
we set

p̃i,l,t(0) = c exp
(
β

(t)
l,co−abs

∑
j∈N ?

i

A?ijCjl1{(x̃lj)(t) = 0}
)

1{Y l
i = 0}

p̃i,l,t(1) = c exp
(
α

(t)
i,l + β

(t)
l,co−pres

∑
j∈N ?

i

A?ij1{(x̃lj)(t) = 1}+ Y l
i log(p

(t)
i,l ) + (1− Y l

i ) log(1− p(t)
i,l )
)
,

with the normalising constant c such that p̃i,l,t(0) + p̃i,l,t(1) = 1. Then the vector (p̃i,l,t(0), p̃i,l,t(1))
is nothing else than the probability distribution P

ψ
(t)
l

(X l
i = ·|X l

N ?
i

= x̃lN ?
i
, Y l

i ). From this quantity,
we obtain

Q̃(ψ|ψ(t), x̃)

=
L∑
l=1

∑
i∈V ?

Cil

{
p̃i,l,t(0)

[
βl,co−abs

∑
j∈N ?

i

A?ijCjl(1− x̃lj)
]

+ p̃i,l,t(1)
[
αi,l + βl,co−pres

∑
j∈N ?

i

A?ijx̃
l
j

]
− log

[
exp

(
βl,co−abs

∑
j∈N ?

i

A?ijCjl(1− x̃lj)
)

+ exp
(
αi,l + βl,co−pres

∑
j∈N ?

i

A?ijx̃
l
j

)]}
.

(S.18)

Optimising this quantity with respect to ψ is done numerically. To this aim, we provide below the
derivatives of Q̃ wrt ψ.

Let us introduce the following quantities

w?i =
∑
j∈N ?

i

A?ijCjl,

w?i,l =
∑
j∈N ?

i

A?ijx̃
l
j
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which are the sum of weights of the neighbours of i in G? compatible with the location l and the
sum of weights of the neighbours of i in G? that are present at location l, respectively. Remember-
ing that Cjlx̃lj = x̃lj , we have that∑

j∈N ?
i

A?ijCjl(1− x̃lj) = w?i − w?i,l

is the sum of weights of the neighbours of i in G? that are absent at location l while compatible
with that location. We also use

deni,l(βl,co−abs, βl,co−pres, αi,l) = exp[βl,co−abs(w
?
i − w?i,l)] + exp(αi,l + βl,co−presw

?
i,l).

With these quantities at hand and relying on (S.18), we obtain

Q̃(ψ|ψ(t), x̃) =
L∑
l=1

∑
i∈V ?

Cil

{
p̃i,l,t(0)βl,co−abs(w

?
i − w?i,l) + p̃i,l,t(1)[αi,l + βl,co−presw

?
i,l]

− log deni,l(βl,co−abs, βl,co−pres, αi,l)
}
.

Let us recall that αi,l is a shorthand for the quantity ai+al+W ᵀ
l bi+(W 2

l )ᵀci, so that we finally
get, for each 1 ≤ l ≤ L and each 1 ≤ i ≤ n, the derivatives

∂Q̃

∂ai
=

L∑
l=1

Cil

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(S.19)

∂Q̃

∂al
=
∑
i∈V ?

Cil

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(S.20)

∂Q̃

∂bi
=

L∑
l=1

CilW
ᵀ
l

[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(S.21)

∂Q̃

∂ci
=

L∑
l=1

Cil(W
2
l )ᵀ
[
p̃i,l,t(1)−

exp(αi,l + βl,co−presw
?
i,l)

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(S.22)

∂Q̃

∂βl,co−abs
=
∑
i∈V ?

Cil

[
p̃i,l,t(0)(w?i − w?i,l)−

(w?i − w?i,l) exp[βl,co−abs(w
?
i − w?i,l)]

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
(S.23)

∂Q̃

∂βl,co−pres
=
∑
i∈V ?

Cil

[
p̃i,l,t(1)w?i,l −

w?i,l exp[αi,l + βl,co−presw
?
i,l]

deni,l(βl,co−abs, βl,co−pres, αi,l)

]
. (S.24)

The simulated field algorithm is described in Algorithm 1.

Remark 2. In the case with no sampling effects (namely pi,l = 1), the simulation step is skipped
(since X = Y), the quantities p̃i,l,t become p̃i,l,t(x) = 1{X l

i = x} and the criteria to optimize
reduces to the quantity

Q̃direct(ψ) =
L∑
l=1

∑
i∈V ?

∑
x∈{0,1}

logPψ(X l
i = x|X l

N ?
i
).
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Algorithm 1: Simulated field algorithm
Input: Observed presence/absence data Y, adjacency matrix of metanetwork A?.
Initialization: Choose initial values x̃(0), ψ(0).
Set t = 1.
while not converged do

Simulation step:
for 1 ≤ l ≤ L do

for 1 ≤ i ≤ n do
Sample (x̃li)

(t) from {0, 1} relying on the vector of probabilities (S.16) and (S.17).
end for

end for
Compute Q̃(ψ|ψ(t); x̃) from (S.18).
Maximization step:
Compute the value ψ̂ zeroing the derivatives (S.19)–(S.24).
Update parameter ψ(t) = ψ̂.
Increment t.

end while

This means that in this specific case, our method consists exactly in a pseudo-likelihood estimation,
which is known to be consistent as the number of observations increases (Besag, 1975). Therefore,
the estimation algorithm is more computationally affordable in this case since it consists in a
simple iteration of the M-step (i.e. the ’maximization step’ in Algorithm 1).

S.3.4 Additional details on the implementation
The ’maximization step’ in Algorithm 1 is performed using the vector Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm implemented in the GNU Scientific Library ( https://www.gnu.
org/software/gsl/). We observed that this algorithm was sensitive to the initial value of the
parameters. After analyzing synthetic datasets simulated from the model and estimating the model
with various initial values, we validated the following combination of initial parameters:

ai = al =
a0

2
bi = ci = 0

βl,co−abs = βl,co−pres = 0

with a0 = log( Ȳ
1−Ȳ ) and Ȳ =

∑
il Yil/(nL).

S.4 Simulation under ELGRIN model and inference
In order to test the statistical performance of ELGRIN model, we simulated under ELGRIN model
and tried to recover the sample parameters. Once the parameters inferred, we simulated new data
using ELGRIN again while relying on these inferred values. We then inferred the parameters of
this new dataset to test the stability of parameters inference under resampling. HTLM vignette
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Figure S.8: Comparison between the sample parameters and the inferred parameters using EL-
GRIN inference algorithm. Top: Cumulative distribution of the sample parameters (model 1,
black) and the inferred ones (model 2, green). Bottom: Scatter plot of pairs of parameters (sample
and inferred) and the diagonal axis.

is available at https://plmlab.math.cnrs.fr/econetproject/econetwork/-/
blob/master/vignettes/simul_under_elgrin.html.
We chose the same metaweb and environmental gradient as in the colonisation-extinction simu-
lation (see section S.5.2), with 50 species and used 400 sites. We draw ai and al uniformly in
[−0.25, 0.25], bi and bl uniformly in [−0.5, 0.5]. We chose a gradient of βl,co−abs and βl,co−pres
ranging from 0 to 1.
We represent the comparison of the original model and the inferred model in Figs. S.8 and S.9.
The parameters sampled with ELGRIN are reasonably recovered by the inference algorithm and
stable under another sampling and inference step.
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Figure S.9: Comparison between the re-sample parameters (used to sample under ELGRIN model)
and the inferred parameters using ELGRIN inference algorithm. Top: Cumulative distribution of
the re-sample parameters (model 1, black) and the inferred ones (model 2, green). Bottom: Scatter
plot of pairs of parameters (re-sample and inferred) and the diagonal axis.
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S.5 Simulations with three different theoretical models
We provide here models and details on the three simulations of the paper. HTLM vignettes for the
three simulations are available at https://plmlab.math.cnrs.fr/econetproject/
econetwork. For each model, we simulated three different scenarios: positive (i.e. mutualism),
negative (i.e. competition) or no interactions. The scenario with no interactions uses an empty
metanetwork to generate the data. However, inference with ELGRIN in this case relied on a
metanetwork with interactions (to be specified below).

In the following, when ELGRIN is fitted on a dataset, the inference procedure outputs estimated
parameters values. For any species i, its niche optima was estimated from these values, relying on
the optimum of the estimated function w 7→ âi + b̂iw + ĉiw

2 within the interval [ωi,Ωi] defined in
(S.6) (here dimension d = 1).

S.5.1 Lotka-Volterra model: details and simulation set-up
We sampled species communities from the equilibrium of a deterministic Lotka-Volterra model
(Takeuchi, 1996). We defined the environmental niche of each species as a Gaussian distribution
centered on a given optimum. The environmental niches optima were evenly taken on a grid
whereas the standard deviations were all equal to a given value σ for simplicity.

Building the network from niche values

We constructed the metanetwork G? used for generating the data in scenarios with interactions
(positive and negative) and later used for inference with ELGRIN in the three scenarios (i.e. in-
cluding when there are no interactions). Let µi and µj be the niche optima of two distinct species.
We sampled symmetric interaction between species i and j according to a Bernoulli law of param-
eter λm|µi − µj|−1, where m = maxi,j (|µi − µj|−1) and λ is a parameter modulating the overall
edge number. We obtained a metanetwork G? symmetric with no self-loops.

Modelling the dynamics

We assume, for species i, a per-capita growth rate ri(w) depending on the environment value w
and following a Gaussian function of mean µi. We then model Niw(t), the abundance of species
i at environment value w and time t, using a generalised Lotka-Volterra dynamical model with
intraspecific competition. In the negative interactions scenario, we used

1

Niw

dNiw

dt
= ri(w)−

∑
j

CijNjw, (S.25)

whereCij = A?ij+c1(i = j) withA? the adjacency matrix ofG? and c the intraspecific competition
coefficient. For the positive interaction scenario, we used

1

Niw

dNiw

dt
= ri(w) +

∑
j

MijNjw, (S.26)

where Mij = A?ij/M0 − c1(i = j) where M0 is a constant (M0 > 1) that reduces the strength
of positive interactions in order to get convergence towards a finite abundance value. In the no
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interactions scenario, we use Cij = Mij = 0 for all i, j in the above equations. Note though that
we used the simulated metanetwork G? for inference with ELGRIN in the three scenarios. From
the equilibrium point N?

w = (N?
iw)i (with N?

iw = limt→+∞Niw(t), limit that is assumed here to be
unique and independent of initial conditions), we sample presence or absence X l

i of each species i
at location l using a Bernoulli law of parameter min(1, N?

iwl
/5).

Parameter values

We performed simulations with N = 50 species and L = 400 locations. The environmental
niches optima were evenly taken on a grid between −2 and 2 whereas the environmental gradient
ranged from −3 to 3. We set the standard deviations of niche distributions to σ = 1 and we set
the intraspecific competition term to c = 1/10 for all species. The constant M0 is set to 50. We
ran the simulation of the Lotka-Volterra dynamics for 10, 000 time steps. Fig. S.10 shows growth
rates in function of the environment and metanetwork. We also represented the distribution of
species presence-absences and species richness under the three interaction scenarios in Fig. S.11
and Fig. S.12. Niche optima inferred from ELGRIN on this dataset are shown in Fig. S.13. Asso-
ciation parameters βl,co−abs and βl,co−pres are represented in the main text, Fig. 2.
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Figure S.10: Simulations under Lotka-Volterra and colonisation-extinction models. (a) Growth
rates in function of the environment for the 50 considered species. (b) Representation of the
metanetwork used for simulations in the two scenarios with interactions and for estimation with
ELGRIN in the three scenarios. Nodes are colored according to the value of niche optima along
the environmental gradient.
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Figure S.11: Presence-absence of species (y-axis) along the environmental gradient (x-axis) for
the Lotka-volterra simulations across the three interaction scenarios.

Results and discussion

We notice that species richness increases from the competition to the mutualistic scenarios, as pos-
itive interactions enhance the possibility of species to be present (vice-versa for competition). We
see that except for the positive interactions scenario, ELGRIN reasonably infers niche optima and
association parameters (βl,co−abs and βl,co−pres, as shown in Fig. 2 in the main text) on this commu-
nity data built from Lotka-Volterra model (see the discussion in the main text for further insights).
We however acknowledge a large variance on association parameters for the negative interaction
model and as already underlined in the main text, the inability of ELGRIN to identify the positive
interactions scenario. We remark that this positive interaction scenario of Lotka-Volterra model is
a particularly harsh test for ELGRIN. Indeed, positive interactions increase the effective growth
rate, leading to the risk of explosion of the system. For this reason, we were obliged to reduce
the overall interaction strength when simulating the data (parameter M0 in Equation (S.26)), thus
reducing their signal in resulting data. Moreover, positive interactions cause species to be present
everywhere along their fundamental niche (e.g. Fig. S.11), so that their distribution can be com-
pletely explained by the Grinellian part of the model. In other words, the data look exactly as if they

39



0

10

20

30

40

ric
hn

es
s

scenario

negative interactions

no interaction

positive interactions

Figure S.12: Distribution of species richness (observed number of present species) for the Lotka-
Volterra simulation under the three interaction scenarios.

were obtained from a Grinellian model, where only the environmental variables shape the species
distribution. Therefore, no signal is left for the Eltonian part, and the association parameters are
inferred to be close to zero.

S.5.2 Colonisation-extinction model: details and simulation set-up
We sampled species communities from the stationary distribution of a stochastic colonisation-
extinction model (see Ohlmann et al. 2022). We kept the same environmental gradient, niches
and metanetwork as in the Lotka-Volterra simulation. We also combined this model with the three
interaction scenarios: negative interactions (i.e. competition), positive interactions (i.e. mutualism)
or no interactions.

Modelling the dynamics

We note X t
i the binary random variable associated to presence of species i at discrete time t and w

the value of the environmental gradient. We model niche and interaction effects trough conditional
probabilities.
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Figure S.13: Estimated niche optima versus true niche optima for the Lotka-Volterra simulation
under the three interaction scenarios.

Colonisation-extinction model without interaction In this scenario, we assume that interaction
effects do not impact colonisation or extinction. Extinction probability pe is constant whereas
colonisation probability ci(w) for species i depends on the value of the environmental gradient w
only

P (X t+1
i = 1|{X t

j}j, w) = P (X t+1
i = 1|X t

i , w) ∝ ci(w)(1−X t
i ) + (1− pe)X t

i ,

where ci(w) is a Gaussian function with mean µi and variance η2 and∝means up to a normalizing
constant. We simulated this Markov chain and sampled from the stationary distribution to generate
a joint species distribution.

Colonisation-extinction model with positive and negative interactions In these scenarios,
we assume that both abiotic niche effects and interspecific interactions do impact colonisation-
extinction processes. Environmental gradient modulates colonisation probability whereas interac-
tions modulate both colonisation and extinction probabilities.

For the positive interactions scenario, we have:

P (X t+1
i = 1|{X t

j}j, w) = P (X t+1
i = 1|X t

i , X
t
N(i), w)

∝ ci(w) exp
(∑

k∈N(i)X
t
k

|N(i)|

)
(1−X t

i ) +
[
1− pe exp

(
−
∑

k∈N(i) X
t
k

|N(i)|

)]
X t
i ,

and for the negative interactions scenario

P (X t+1
i = 1|{X t

j}j, w) = P (X t+1
i = 1|X t

i , X
t
N(i), w)

∝ ci(w) exp
(
−
∑

k∈N(i) X
t
k

|N(i)|

)
(1−X t

i ) +
[
1− pe exp

(∑
k∈N(i) X

t
k

|N(i)|

)]
X t
i ,
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where N(i) is the set of neighbour species of species i in the metanetwork. Similarly as for the no
interaction scenario, we sampled the species co-occurrences in the stationary distributions of each
of these scenarios.

Parameter values

We performed simulations with N = 50 species and L = 400 locations. Extinction probability
was set to pe = 2% and colonisation probability ci(w) is Gaussian with mean µi and standard
deviation η = 1. We ran each simulation dynamics for 3, 000 time steps. We represented the
distribution of species presence-absences and species richness under the three interaction scenarios
in Fig. S.14 and Fig. S.15. Niche optima inferred from ELGRIN on this dataset are shown in
Fig. S.16. Association parameters βl,co−abs and βl,co−pres are represented in the main text, Fig. 3.
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Figure S.14: Presence-absence of species (y-axis) along the environmental gradient (x-axis) for
the colonisation-extinction simulations, across the three interaction scenarios.
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Figure S.15: Distribution of species richness (observed number of present species) for the
colonisation-extinction simulation under the three interaction scenarios.

Results and discussion

We notice that species richness increases from the competition to the mutualistic scenarios, as
positive interactions enhance the possibility of species to be present (vice-versa for competition,
Fig. S.15). For each scenario, the distribution of association parameters (βl,co−pres and βl,co−abs,
see Fig.3 in the main text) have a negative median for negative interactions, a median close to zero
for the case without interaction and a positive median for positive interactions. The sign of inferred
(static) association parameters is the same as the sign of dynamic interaction parameters.

Moreover, ELGRIN correctly infers niche optima in the three interaction scenarios (Fig S.16).
Consequently, on these simulations, ELGRIN separates environmental effects for biotic interac-
tions (see the discussion in the main text for further insights).

S.5.3 VirtualCom model: details and simulation set-up
We considered N species in the species pool and L communities to simulate (i.e. the number
of locations). We defined the environmental niche (or preference) of each species as a Gaussian
distribution centered on a given optimum. The environmental niches optima were regularly taken
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Figure S.16: Estimated niche optima versus true niche optima for the colonisation-extinction sim-
ulation under the three interaction scenarios.

on a grid between -2 and 2, whereas the standard deviations were all equal to a given value σ for
simplicity. Each community or location l has the same carrying capacity K (i.e. the exact number
of individuals in each location).

Building the interaction networks from niche values

Here we constructed two different metanetworks G? used to simulate data in the two interaction
scenarios. Let µi and µj be the niche optima of two species and σ the standard deviation of
their niche. We considered that the two considered species potentially interact in the mutualistic
metanetwork if σ < |µi − µj| < 2σ. Regarding competition, we considered that the two species
potentially compete if they share the same environmental niche, and thus if |µi− µj| < σ. Among
all potential species interactions, we randomly sampled 50% of them for both competition and
mutualism. Inference with ELGRIN in the scenarios with interactions relied on the respective
metanetworks used for simulation. In the no interaction scenario, ELGRIN inference relied on the
positive interactions metanetwork (corresponding to mutualism).

Modelling the dynamics

The community assembly process was randomly initialized with a set of individuals that were
randomly selected in the species pool until the carrying capacityK was reached. At each time step,
the probability of an individual from species i to replace a random individual of the community
l is Ril. This probability depends on how the environmental conditions at location l are suitable
for species i (environmental filter) and on the number of individuals present in community l that
interact with species i (competition or mutualism filter). More precisely, we consider the following
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equation defining the relative importance of environmental and biotic filters respectively:

Ril ∝ exp
[
γenv log(penvil ) + γinter log(pinteril )

]
,

where γenv and γinter are tuning parameters giving weights to abiotic and biotic components, and
penvil and pinteril are probabilities of species replacement with different filters. The probability penvil

accounts for the environmental filtering and is a rescaled density of the Gaussian niche of species
i at the environmental value of location l (the scaling ensures this value ranges in [0, 1]). When
the environment in community l is suitable to species i, the probability that this species enters this
community becomes high.

We then have a term dealing with species interactions. In the no interaction scenario, the
constant γil is set to 0. Otherwise, the interaction term is set as

pinteril =

{
K−1

∑
j;(i,j)∈E? Kjl for mutualism,

1−K−1
∑

j;(i,j)∈E? Kjl for competition,

where Kjl is the number of individuals of species j in community l, such that the total carrying
capacityK =

∑
jKjl. In case of mutualism, the larger number of individuals of species connected

with i in the metanetwork are present in location l, the higher is the probability of an individual
of species i to enter the community. For competition, the opposite effect is induced. The tuning
parameters γenv and γinter weight the relative importance of the different filters. This algorithm
updates the communities until an equilibrium is reached. To assess the equilibrium state, we cal-
culated the Shannon diversity for each location over time, and checked for convergence. Lastly,
we deduced species presence/absence by examining species composition in each location.

Parameter values

We performed simulations with N = 50 species and L = 400 locations, with a carrying capacity
of K = 40 individuals. The standard deviations of the Gaussian niche distributions were set
to σ = 1 for all species. We chose γenv = 1 and γmetanetwork = 10 in case of competition
and 5 in case of mutualism. Fig. S.17 shows growth rates in function of the environment and
the two metanetworks (for positive and negative interactions). We simulated 100 time steps such
that the algorithm convergence was achieved in practice. We repeated the whole procedure 10
times and verified that we obtained equivalent qualitative results. Simulations were implemented
with R version 3.6.2 and a modified version of the VirtualCom package. We represented the
distribution of species presence-absences and species richness under the three interaction scenarios
in Fig. S.18 and Fig. S.19. Niche optima inferred from ELGRIN on this dataset are shown in
Fig. S.20. Association parameters βl,co−abs and βl,co−pres are represented in the main text, Fig. 4.
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Figure S.17: Simulations under VirtualCom model. (a) Growth rates in function of the environ-
ment for the 50 considered species. Representation of the metanetworks used for simulations of
VirtualCom in the facilitation case (b) and in the competition case (c). Nodes are colored according
to the value of niche optima along the environmental gradient.
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Figure S.18: Presence-absence of species (y-axis) along the environmental gradient (x-axis) for
the VirtualCom simulations across the three interaction scenarios.
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Figure S.19: Distribution of species richness (observed number of present species) for the Virtual-
Com simulation under the three interaction scenarios.
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Figure S.20: Estimated niche optima versus true niche optima for the VirtualCom simulation under
the three interaction scenarios.

Results and discussion

We notice here that species richness is lower in the facilitation case than in the other cases. This
might seem counter intuitive, but comes from the constraint of VirtualCom of keeping fixed the
number of individual at each site. Therefore, positive interactions tend to produce communities
with a lower number of species, since the few species that facilitate each other and that can survive
at the given environmental conditions keep enhancing their probability of presence and cannot be
replaced by other species. Instead, the cases with negative interactions, or without interactions,
reduces the probability of competitive species, thus favoring all the other species to replace them,
leading to an overall higher richness. We see that ELGRIN reasonably infers the niche parameters
and association parameters (βl,co−pres and βl,co−abs, see Fig.4 in the main text) on this commu-
nity data built from VirtualCom model (see the discussion in the main text for further insights).
We however acknowledge a large variance on association parameters for the negative interactions
model, which could be due to the fact that the VirtualCom model does not express as a ELGRIN
one. In the no interactions scenario, we correctly infer that the association parameters under EL-
GRIN model are estimated around zero.

S.5.4 Kolmogorov-Smirnov tests on association parameters
To quantitatively investigate the difference between βl,co−pres and βl,co−abs distributions in the three
simulations, we performed Kolmogorov-Smirnov tests. For each simulation, we tested whether
βl,co−pres and βl,co−abs distributions were significantly greater (resp. lower) in the scenarios with
positive interactions (resp. negative) from the scenario without interactions. Namely, denoting
βpos (resp. βno int and βneg) the β values inferred under the positive interaction scenario (resp. no
interactions and negative interactions) and Fβpos (resp. Fβno int and Fβneg) the corresponding cdfs,
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Results of Kolmogorov-Smirnov tests
Simulation and
parameter

p-value of the test H0 : Fβpos = Fβno int

against H1 : Fβpos ≥ Fβno int

p-value of the test H0 : Fβneg = Fβno int

against H1 : Fβneg ≤ Fβno int

LV, βl,co−pres 0.0020 < 2.2e−16
LV, βl,co−abs 0.0040 < 2.2e−16
CE, βl,co−pres < 2.2e−16 < 2.2e−16
CE βl,co−abs < 2.2e−16 < 2.2e−16
VC, βl,co−pres 7.8e−16 < 2.2e−16
VC, βl,co−abs < 2.2e−16 < 2.2e−16

Table 3: Results of Kolmogorov-Smirnov tests on association parameters (βl,co−abs and βl,co−pres)
in the three simulations settings: Lotka-Volterra (LV), Colonisation-extinction (CE) and Virtu-
alCom (VC). The tests compare the distribution of association parameters between the positive
interactions and the no interaction scenario (second column) and also between the negative inter-
actions scenario and the no interaction scenario (third column).

we tested in the positive scenario the null hypothesis H0 : Fβpos = Fβno int against the alternative
H1 : Fβpos ≥ Fβno int (this corresponds to stochastic ordering). In the same way, for the negative
interaction scenario, we tested H0 : Fβneg = Fβno int against the alternative H1 : Fβneg ≤ Fβno int .
We recall the concept of stochastic ordering for 2 random variables U, V : we have that ‘U is
stochastically larger than V ‘, denoted U � V when the corresponding cdfs satisfy FU ≥ FV
which in practice corresponds to the fact that a random observation from U ‘tends to be larger‘
than one from V .

In the three simulations, the tests correctly identify significant differences between interactions
and no interaction scenarios (Table 3). For the Lotka-Volterra simulation, the p-values for the
comparison between the positive interaction scenario and the no-interaction scenario were slightly
greater than the p-values of the other tests, in accordance to the qualitative assessment of the
simulation results.

S.6 Simulation beyond model assumptions
We provide here a test of our model when species communities are simulated based on processes
that are not accounted for by ELGRIN. In particular, we take the example of Lotka-Volterra models
(see Section S.5.1) where intraspecific interactions are higher than interspecific ones. ELGRIN
does not account for these intraspecific interactions (i.e., it does not model self-loops), and we
might thus expect that it will struggle in correctly retrieving model parameters. An HTLM vignette
for this simulation is available at https://plmlab.math.cnrs.fr/econetproject/
econetwork.

S.6.1 Simulation set-up
We set-up simulations accordingly to Section S.5.1. We simulate three different scenarios: positive
(i.e. mutualism), negative (i.e. competition) or no interactions, using the same interaction network,
niche optima (Fig. S.10) and simulation parameters. However, we increase the intraspecific com-
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petition term (i.e., parameter c in Equation (S.25)), from 1/10 to 2, in order to make it stronger than
interspecific interactions. The distribution of species presence-absences and species richness un-
der the three interaction scenarios is represented in Fig. S.21 and Fig. S.22. Niche optima inferred
from ELGRIN on this dataset are shown in Fig. S.23. Inferred association parameters βl,co−abs and
βl,co−pres are represented in Fig. S.24.
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Figure S.21: Presence-absence of species (y-axis) along the environmental gradient (x-axis) for
the Lotka-Volterra simulations with intraspecific interactions larger than interspecific ones, across
the three interaction scenarios.
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Figure S.22: Distribution of species richness (observed number of present species) for the Lotka-
Volterra simulation with intraspecific interactions larger than interspecific ones, under the three
interaction scenarios.

52



−3

−2

−1

0

−2 −1 0 1 2
Niche optimum

E
st

im
at

ed
 n

ic
he

 o
pt

im
um

Lotka−Volterra with:

negative interactions

no interaction

positive interactions

Figure S.23: Estimated niche optima versus true niche optima for the Lotka-Volterra simulation
with intraspecific interactions larger than interspecific ones, under the three interaction scenarios.
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Figure S.24: Distribution of co-absence βl,co−abs and co-presence βl,co−pres strengths inferred using
ELGRIN on simulated ecological communities using a Lotka-Volterra model with intraspecific
interactions larger than interspecific ones, under the three interaction scenarios.
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Results and discussion

We notice that mean species richness increases from the competition to the mutualistic scenarios,
as positive interactions enhance the possibility of species to be present (vice-versa for competition).
However, the community matrices are very sparse and species richness is overall very low for the
three different scenarios (Fig. S.22). Overall, ELGRIN does not correctly infer model parame-
ters on this community data built from Lotka-Volterra model with large intraspecific interactions.
Niche optima are badly estimated (Fig S.23) and the inferred association parameters do not show
the expected patterns (βl,co−abs and βl,co−pres, as shown in Fig. S.24). We see that ELGRIN cannot
correctly disentangle between the three different simulated scenarios. Indeed, we might expect
βl,co−abs and βl,co−pres parameters to be negative in the negative interaction case, positive in the
positive interaction one, and around zero in the no-interaction case. This is generally not the case
here, where the inferred β parameters are generally close to zero and are lower for the positive
interactions scenario than for the negative one. The poor performance of ELGRIN when intraspe-
cific interactions are higher than interspecific ones is not surprising. As discussed in the main text
it is possible to simulate species distributions on which ELGRIN will fail in recovering the true
underlying generation process, because these datasets simply do not show anymore enough infor-
mation about the process that generated them, and could be the result of a completely different
scenario, in particular the one inferred by ELGRIN. As such, when using ELGRIN - or any other
statistical model - we must bear in mind its model assumptions, knowing that inference might be
blurred when other processes are at play.

S.7 Empirical case study

S.7.1 Relation between βl,co−pres and βl,co−abs
Fig. S.25 shows the correlation between the values βl,co−pres and βl,co−abs estimated through EL-
GRIN on the European tetrapods case study.
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Figure S.25: Results of ELGRIN on the European tetrapods case study. The parameters βl,co−pres
and βl,co−abs were highly correlated.
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S.7.2 Kolmogorov-Smirnov tests on the distributions
We performed the following tests on the βl,co−pres parameters estimated from the data:

• Denoting Fβhigh alt (resp. Fβlow alt) the cdf of the βl,co−pres values inferred at locations with
altitude above 1600m (resp. below 1600m), we tested the null hypothesis H0 : Fβhigh alt =
Fβlow alt against the alternative H1 : Fβhigh alt ≤ Fβlow alt . The resulting p-value is inferior to
2.2e−16.

• Denoting Fβhigh richness (resp. Fβlow richness) the cdf of the βl,co−pres values inferred at locations with
richness larger than 200, we tested the null hypothesis H0 : Fβhigh richness = Fβlow richness against
the alternative H1 : Fβhigh richness ≥ Fβlow richness . The resulting p-value is inferior to 2.2e−16.

• Denoting F|βhigh connect| (resp. F|βlow connect|) the cdf of the |βl,co−pres| values inferred at locations
with connectance larger than its median value (0.062), we tested the null hypothesis H0 :
F|βhigh connect| = F|βlow connect| against the alternative H1 : F|βhigh connect| ≥ F|βlow connect|. The resulting
p-value is inferior to 2.2e−16.
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