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Abstract. Supervoxel segmentation leads to major improvements in
video analysis since it generates simpler but meaningful primitives (i.e.,
supervoxels). Thanks to the flexibility of the Iterative Spanning For-
est (ISF) framework and recent strategies introduced by the Dynamic
Iterative Spanning Forest (DISF) for superpixel computation, we pro-
pose a new graph-based method for supervoxel generation by using iter-
ative spanning forest framework, so-called ISF2SVX, based on a pipeline
composed by four stages: (a) graph creation; (b) seed oversampling; (c)
IFT-based superpixel delineation; and (d) seed set reduction. Moreover,
experimental results show that ISF2SVX is capable of effectively de-
scribing the video’s color variation through its supervoxels, while being
competitive for the remaining metrics considered.

Keywords: Graph-based method · Supervoxel computation · Iterative
Spanning Forest.

1 Introduction

In image and video applications, it is often necessary to separate the objects
from its background for subsequent analysis. One approach generates groups of
connected elements (i.e., superpixels or supervoxels) which shares a common
property (e.g., color and texture). By generating numerous groups, the object
can be effectively defined by its comprising regions, being the major premise of
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superpixel and supervoxel segmentation algorithms. Such methods are applied
in many contexts such as: (i) object detection [13, 11]; (ii) cloud connectivity [20,
14, 22]; and (iii) long-range tracking [16].

For early video processing, one can interpret it as a three-dimensional spa-
tiotemporal volume and segment its objects. The graph-based supervoxel (GB) [9]
is a image segmentation method based on graphs, presenting good boundary ad-
herence but it is so computationally expensive. The hierarchical GB (GBH) [12]
considers the GB strategy for computing a hierarchical iterative method; while
the stream GBH (sGBH) [24] extends the latter for online video segmentation.
The authors in [17] proposed the method cp-HOScale that improves GBH by
computing the whole hierarchy without increasing the computational cost. Al-
though GBH overcomes GB speed performance drawback, it does not guarantee
the generation of the desired number of supervoxels. Analogous for GB and
GBH, MeanShift [15] and Segmentation by Weighted Aggregation (SWA) [7] op-
timize the normalized cuts criterion, in which SWA performs it hierarchically.
However, while MeanShift presents a fair delineation performance, SWA does
not guarantee to produce the exact number of supervoxels. Three properties
are desirable in video supervoxel segmentation: (i) spatiotemporal boundary ad-
herence; (ii) computational efficiency; and (iii) ability to control the number of
supervoxels generated. However, no supervoxel segmentation algorithm has all
these characteristics [21].

Recent advances in superpixel segmentation (e.g., deep learning strategies)
are strongly related to the image dimensionality and, thus, an extension for
video might not guarantee the same performance as the one reported. Thus,
the improvements in both categories are often self-contained, significantly lim-
iting their possible improvements. As an example, while GB [9] and GBH [12]
equivalents are considered state-of-the-art methods in video segmentation, in
superpixel segmentation, they were surpassed by a large set of newer and more
effective approaches [19, 2]. Finally, although the authors in [2] discuss how hi-
erarchical superpixel methods might propagate errors to coarser levels, one can
see that such a statement holds for hierarchical supervoxel segmentation, which
is often considered to be a desirable property [21].

Inspired by the Iterative Spanning Forest (ISF) [19], a recent superpixel seg-
mentation framework, in this work, we propose a supervoxel segmentation frame-
work for video segmentation, named ISF for Supervoxels (ISF2SVX). Similar to
ISF, our approach is composed of independent steps: (i) graph construction;
(ii) seed sampling; (iii) supervoxel generation; and (iv) seed recomputation. In
step (i), the video volume is converted to a directed graph representation which
will be used as input for determining the seeds in step (ii). Then, for several
iterations, ISF2SVX generates supervoxels through the Image Foresting Trans-
form (IFT) [8] using improved seed sets — in steps (iii) and (iv), respectively.
Figure 1 illustrates examples of results obtained by ISF2SVX by changing the
strategy for seed sampling (grid and random) for 10 and 500 supervoxels.

This paper is organized as follows. In Section 2, important concepts used in
this work such as graphs and IFT are clarified. In Section 3, the methodology
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(a) 10 supervoxels

(b) 500 supervoxels

Fig. 1. Examples of video segmentations for a video extracted of the GATech. The
original frames are illustrated in the first row. We illustrate examples of the proposed
method changing the seed sampling. We illustrate results for (a) 10 and (b) 500 su-
pervoxels, considering grid and random seed sampling (second and third rows). Each
resulting region is colored by its mean color.

for the proposed segmentation approach is explained. In Section 4, we describe
the experiments performed and compare the achieved results to other methods.
Finally, some concluding notes and suggestions for future work are presented in
Section 5.

2 Theoretical Background

In this section, we explain the necessary concepts and techniques related to our
proposal. We first introduce some graph notions to present the core delineation
algorithm of our proposal: Image Foresting Transform (IFT) [8] framework.

2.1 Graph

A video V can be represented as a pair V = (V, I) in which V ⊆ N3 denotes
the set of volume elements (i.e., voxels), and I maps every v ∈ V to a feature
vector I(v) ∈ Rm. One can see that, for m = 3, V is a colored video (e.g., RGB
or CIELAB colorspaces). It is possible to create a simple graph (i.e., no loops
and no parallel edges) G = (N , E , I), derived from V, in which N ⊆ V denotes
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the vertex set and E ⊂ N 2, the edge set. Two nodes vi, vj ∈ N are said to be
adjacent if (vi, vj) ∈ E . In this work, the elements in E are arcs (i.e., G is a
digraph). Consider πs t = 〈s = v1, v2, . . . , vn = t〉 to be a finite sequence of
adjacent nodes (i.e., a path) in which (vi, vi+1) ∈ E for 1 ≤ i < n. For simplicity,
we may omit the path origin voxel by writing πt. For n = 1, πt = 〈t〉 is said to
be trivial. We denote the extension of a path πs by an arc (s, t) ∈ E as πs · 〈s, t〉
with the two instances of s being merged into one.

2.2 IFT

The Image Foresting Transform (IFT) [8] is a framework for the development of
image processing operators based on connectivity and has been used to reduce
image processing tasks as optimum-path forest computations over the image
graph. As indicated by the authors [8], the IFT is independent of the input’s
dimensions and, therefore, the relation between pixels (or voxels) in such dimen-
sionality can effectively be represented by an adjacency relation between them.
In this work, we consider the IFT version restricted to a seed set S ⊂ N .

For a given arc (s, t) ∈ E , it is possible to assign a non-negative arc-cost
value w∗(s, t) ∈ R+ through an arc-cost function w∗. A common approach is
to compute the `2-norm between the nodes’ features — i.e., ‖I(s) − I(t)‖2 for
s, t ∈ N . Consider ΠG the set of all possible paths in G. Then, a connectivity
function f∗ maps every path in ΠG to a path-cost value f∗(πt) ∈ R+. One of the
most effective connectivity functions for object delineation is the fmax function:

fmax(〈t〉) =

{
0 if t ∈ S,
+∞ otherwise

fmax(πs · 〈s, t〉) = max{fmax(πs),w∗(s, t)}
(1)

A path π∗t is said to be optimum if, for any other path τt ∈ ΠG, f∗(π∗t ) ≤ f∗(τt).
Let C be a cost map in which assigns, to every path πt ∈ ΠG, its respective

path-cost value f∗(πt). The IFT algorithm minimizes C(t) = min∀πt∈ΠG
{f∗(πt)}

whenever f∗ satisfies certain conditions [5]. First, the IFT assigns path-costs to
all trivial paths accordingly and, then, it computes optimum paths in a non-
decreasing order, from the seeds to the remaining nodes in the graph. Therefore,
independently if f∗ suffices the desired properties in [5], the IFT always generates
a spanning forest and, consequently, each supervoxel is an unique tree. During
the segmentation process, a predecessor map P is generated and defined. Such
map assigns any node t ∈ N to its predecessor s in the optimum path π∗s · 〈s, t〉,
or to a distinctive marker nil 6∈ N — in such case, t is said to be a root of P.
In this work, every seed is a root of P. One may see that P is a representation
of an optimum-path forest, and it allows to recursively obtain the optimum-path
root R(t) of t and its root’s label L(R(t)).
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Fig. 2. Diagram of the proposed methodology for video supervoxel segmentation.

3 A strategy for supervoxel computation based on
Iterative Spanning Forest

In this section, we present our approach for supervoxel computation based on
Iterative Spanning Forest (ISF) [19] superpixel framework. Our proposal, so-
called ISF2SVX, adopts a four step methodology: (a) graph creation; (b) seed
sampling; (c) IFT-based supervoxel delineation; and (d) seed set recomputa-
tion. This pipeline is illustrated in Figure 2. Although our framework permits
conceiving uncountable distinct variants, in this work, we assess some of the lat-
est findings proposed by the ISF-based Dynamic and Iterative Spanning Forest
(DISF) [2] method, which has proven to be more effective than state-of-the-art
superpixel segmentation methods.

3.1 Video to Graph

Differently from 2D and 3D images, the presence of the same object in between
frames imposes a major challenge for generating temporally coherent supervox-
els. Therefore, it is recommended that the arcs and their respective arc-costs
should reflect such condition. In this work, we operate on a video V = (V, I)
whose graph G = (N , E , I) is modeled as a single volume of nodes, and the out-
going arcs (s, t) ∈ E of a node s, for any t ∈ N which s 6= t, are defined, for
instance, by an adjacency relation (e.g., 26-adjacency). Another possibility to
transform the video into a graph may consider motion information, like optical
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flow, in order to guide the edge creation, however this strategy is out-of-the-
scope of this work since our main aim here is to study the behaviour of a simple
adjacency relation.

3.2 Seed Sampling

For a given graph G, the second step generates the seed set S ⊂ N for the first
iteration of the IFT algorithm. In [2], the authors pointed out the drawbacks
of initially sampling a number N0 ∈ N of seeds approximate to the desired
number Nf ∈ N of superpixels (or supervoxels). The relevance of a seed —
which promotes effective delineation — is related to its location in a graph and,
therefore, a strategy of oversampling may overcome the latter by increasing the
probability of such seed being inserted in S.

Most methods adopt a grid sampling scheme [1] (hereinafter named GRID)
by selecting equally distanced seeds within the graph. Given a desired number
N0 ∈ N of seeds, and by computing an approximate supervoxel size s = N

N0
,

one can determine the stride d between seeds as n
√
s, where n denotes the data

dimensionality — i.e., n = 2 and n = 3, for 2D images, and for 3D images
and videos, respectively. Finally, for avoiding seeds in high contrast regions (i.e.,
probable object boundaries), the seeds are shifted to the lowest gradient position
defined in an 8- or 26- neighborhood, for n = 2 or n = 3, respectively.

Considering an oversampling GRID strategy, d decreases sharply and, there-
fore, the proximity between seeds favors extreme competition, which often leads
to better object delineation [2]. However, due to the excessive number of seeds,
one can presume that a random selection of N0 initial seeds can result in an even
distribution in the graph, without compromising the selection of relevant ones.
In this work, we propose such random oversampling strategy, named RND.

3.3 Supervoxel Generation

Once seeds are sampled, the supervoxels are generated using the IFT algorithm
considering a connectivity function f∗ and an arc-cost function w∗. In this work,
we consider the fmax connectivity function for computing the path-costs.

In [19], the authors recall an arc-cost function w1(p, q) = (α‖I(R(p)) −
I(q)‖2)β + ‖p − q‖2 in which α ∈ R+

∗ permits the user to control the regu-
larity of the superpixels, and to control their adherence to boundaries through a
factor β ∈ R+

∗ . However, superpixel and supervoxel regularity tends to prejudice
the object delineation performance [2].

In DISF, the arc-costs are computed dynamically considering mid-level su-
perpixel features, using a function first proposed in [3]. Let Tx ⊂ N be an
optimum-path growing tree rooted in a node x ∈ N , and let µ(Tx) be its
mean feature vector. Then, the arc-cost function w2 can be formally defined
as w2(p, q) = ‖µ(TR(p))− I(q)‖2. The function w2 has proven to be more effec-
tive than classic arc-cost functions for both superpixel segmentation [2] and for
interactive image segmentation [3].
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However, since the arc-costs are computed dynamically, w2 may generate
discrepant segmentations, especially in regions with distinct colors, but equal
gradient variation. Moreover, the order of arc evaluation during the IFT may
also affect the aforementioned results. Therefore, in this work, we address such
instability by computing a root-based arc-cost function w3 = ‖I(R(p))− I(q)‖2.
Although it is not a dynamic estimation, root-based functions often present top
delineation performance [19].

3.4 Seed Recomputation

In ISF2SVX, the fourth step aims to update the seed set S in order to improve the
supervoxel delineation for subsequent iterations. Such update can be performed
by including, shifting or removing the seeds in S, but respecting as much as
possible the desired final number of supervoxels Nf ∈ N in the last iteration.
Since, in this work, an oversampling strategy is presented, it is important to note
that N0 � Nf .

Since the presence of relevant seeds is expected — due to oversampling —,
in [2], the authors proposed a new methodology for seed recomputation: removing
irrelevant seeds based on a certain criterion. The motivation for that consists in
promoting the growth of relevant superpixels (or supervoxels), by removing the
irrelevant ones and maintaining the competition among the primers. At each
iteration i ∈ N, M(i) = max{N0 exp

−i, Nf} relevant seeds are maintained for
the subsequent iteration i+1, while the remaining ones are discarded. In DISF,
the stopping criterion is reaching the desired number of superpixels, which is
often less than 10 — a common value for many iterative methods.

The M(i) relevant seeds may be selected by a combination of their sizes and
contrast [2] in which the former indicates the supervoxel’s growth ability, and the
latter, whether the supervoxel is located in a homogeneous region (thus, probably
irrelevant). Let B be a tree adjacency relation, which defines the immediate
neighbors of any supervoxel. Then, with the use of a priority queue, a relevance
of a seed s can be measured by a function V(s) = |Ts|

|N | min∀(Ts,Tr)∈B{‖µ(Ts) −
µ(Tr)‖2}, which Tr is an adjacent supervoxel of Ts.

4 Experimental analysis

We evaluated all methods considering the Chen [4] and Segtrack [18] datasets,
both containing groundtruth annotations. Using the LIBSVX [23] library, we
selected five classic evaluation metrics: (a) 3D boundary recall (BR); (b) 3D
segmentation accuracy (SA); (c) 3D undersegmentation error (UE); (d) Ex-
plained variation (EV); and (e) Mean duration. BR measures the quality of
the spatiotemporal boundary delineation, while SA measures the fraction of
groundtruth segments which are correctly classified (i.e., higher is better for
both). UE calculates the fraction of object supervoxels overlapping background
voxels — and vice-versa — (i.e., lower is better). EV measures the method’s abil-
ity to describe the video’s color variations through its supervoxels (i.e., higher
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(a) Chen’s dataset
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Fig. 3. A comparison between our method ISF2SVX, and the methods cp-HOScale
GB, GBH, SWA, and MeanShift when applied to Chen and SegTrack datasets. The
comparison is based on the following metrics: (i) 3D undersegmentation error; (ii) 3D
segmentation accuracy; (iii) 3D boundary recall .

is better). Finally, the mean supervoxel duration measures if a supervoxel per-
petuates throughout the frames, indicating a temporal coherence to the object
which it compounds (i.e., higher is better).

In this work, we propose two ISF2SVX variants. One, named ISF2SVX-
GRID-DYN, oversamples using GRID and computes supervoxels considering
the arc-cost function w2. The other, ISF2SVX-RND-ROOT, oversamples us-
ing RND, and considers the w3 function. We compared our approaches with
different state-of-the-art methods: (i) GB [9]; (ii) GBH [12]; (iii) SWA [7]; (iv)
MeanShift [15]; and (v) cp-HOScale [17]. The number of supervoxels varied from
200 to 900 and, for the baselines, the recommended parameter settings were used.

4.1 Quantitative analysis

Considering the undersegmentation error, it is possible to observe in the plots in
Figure 3 that both of the ISF2SVX variations managed to be compatible or even
better than the compared works. Although for a smaller number of supervoxels,
the GBH method performs slightly better in both Chen and Segtrack dataset,
one can notice that after 700 supervoxels our methods are consistent with GBH.
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Fig. 4. A comparison between our method ISF2SVX, and the methods cp-HOScale
GB, GBH, SWA, and MeanShift when applied to Chen and SegTrack datasets. The
comparison is based on the explained variation.

This may indicate that the construction of the hierarchy is not so beneficial to
prevent supervoxel leaks, since region merging errors can occur and make the
leak even more evident.

When taking into account the segmentation accuracy (Figure 3), we notice
that ISF2SVX has produced well-defined segmentations as well as some of the
compared baseline methods. Although it is possible to detect an instability re-
lated to the segmentation accuracy in the Segtrack dataset, this instability is
given by a single video whose object of interest is significantly small and more
than one supervoxel composes it. Thus, the calculation of this metric and, con-
sequently, the average performance were affected due to the small dataset size.

Boundary recall results also indicate that ISF2SVX is superior to all methods.
We are able to observe that for Chen dataset our approaches can yield even better
metrics that its competitors compared to the Segtrack dataset (Figure 3). This
can be associated with the fact that path-based, and more specifically IFT-based,
methods are known to be effective solutions in object delineation [2, 19].

In Figure 4 is possible to observe that, since IFT minimizes the accumu-
lated cost of the path, the internal variation of supervoxels tends to be greatly
minimized. Thus, we can see better explained variation metric results for our
variations when compared to previous studies. In addition, as there are no reg-
ularity constraints, the competition between seeds becomes more intense and,
therefore, leads to a lower probability of incorporating dissimilar voxels. Fur-
thermore, as one can see in Figure 5, ISF2SVX, in both variants, outperforms
the other methods in terms of mean duration. It is worth to mention that this
metric tries to capture the temporal coherence of the supervoxels.

4.2 Qualitative analysis

In Figure 6, we compare the variant ISF2SVX-GRID-DYN with the baselines
in a single video. As one may see, our approach manages to generate large su-
pervoxels in non-significant regions (e.g., the grass), while effectively delineates
even small important regions (e.g., the player’s head). In contrast, for 100 super-
voxels, all baselines generates too many small and irrelevant supervoxels. For 20
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supervoxels, such quantity is severely reduced at the expense of degrading the
object delineation performance.

When comparing the mean execution time in such video — given an interval
of [200, 900] supervoxels —, ISF2SVX obtains a speed-up of 5.9 and 7.1 against
the second and third fastest baselines (i.e., GBH and cp-HOScale, respectively).
Although cp-HOScale manages to compute the whole hierarchy — thus is capa-
ble of obtaining many segmentations without requiring any recomputation —,
it is unlikely that, in an application, the user would need to manipulate all the
levels, and not a small subset of those (i.e., use a dense over a sparse hierarchy).
Finally, the speed-up of ISF2SVX over GB is 0.95, being slightly slower than GB.
However, due to recent findings [10, 6] and for a suitable definition of components
(e.g, GRID sampling and w3 arc-cost function), it is possible to further improve
the speed of ISF2SVX without prejudicing the object delineation performance.

5 Final Remarks and Future Studies

In this paper, we propose a new supervoxel segmentation framework, named It-
erative Spanning Forest for Supervoxels (ISF2SVX), which was inspired by the
Iterative Spanning Forest (ISF) superpixel segmentation framework. Our ap-
proach not only benefits from recent improvements in superpixel segmentation,
but also permits the development of effective video segmentation algorithms
through the definition of its components. Results show that ISF2SVX variants
outperforms state-of-the-art methods with a great margin in two datasets, espe-
cially in terms of delineation and color description (by its supervoxels).

For further works, we would like to study the behaviour of ISF2SVX consider-
ing more descriptive and discriminative arc-cost functions for video segmentation
since the ones presented here relies on the color gradient between an element and
its conquering tree (or root). Moreover, instead of early video segmentation (or
supervoxel generation), we will study strategies for streaming the video segmen-
tation method. Furthermore, strategies for seed oversampling location will be an
interesting direction since we may learn good positions to the set of seeds.
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Fig. 5. A comparison between our method ISF2SVX, and the methods cp-HOScale
GB, GBH, SWA, and MeanShift when applied to Chen and SegTrack datasets. The
comparison is based on the mean duration.
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(a) 20 supervoxels (b) 100 supervoxels

Fig. 6. Example extracted from Chen dataset. The first row are the original frames, the
following rows, from top to bottom are results with 20 and 100 supervoxels obtained
from GB, GBH, SWA, cp-HOScale, and ISF2SVX-GRID-DYN.
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