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Massively parallel computation of globally optimal
shortest paths with curvature penalization

Jean-Marie Mirebeau∗, Lionel Gayraud†, Remi Barrere†, Da Chen‡, François Desquilbet§

October 4, 2022

Abstract

We address the computation of paths globally minimizing an energy involving their curvature,
with given endpoints and tangents at these endpoints, according to models known as the Reeds-
Shepp car (reversible and forward variants), the Euler-Mumford elasticae, and the Dubins car.
For that purpose, we numerically solve degenerate variants of the eikonal equation, on a three
dimensional domain, in a massively parallel manner on a graphical processing unit. Due to the
high anisotropy and non-linearity of the addressed PDE, the discretization stencil is rather wide,
has numerous elements, and is costly to generate, which leads to subtle compromises between
computational cost, memory usage, and cache coherency. Accelerations by a factor 30 to 120 are
obtained w.r.t a sequential implementation. The efficiency and the robustness of the method is
illustrated in various contexts, ranging from motion planning to vessel segmentation and radar
configuration.

Keywords: Eikonal equation, Curvature penalization, GPU acceleration

1 Introduction
The eikonal Partial Differential Equation (PDE) characterizes the minimal travel time of an omni-
directional vehicle, from a fixed source point to an arbitrary target point, and allows to backtrack
the corresponding globally optimal shortest path. The numerical solution of the eikonal PDE
is at the foundation of numerous applications ranging from path planning to image processing or
seismic tomography [Set99]. Real vehicles however are usually not omni-directional, but are subject
to maneuverability constraints: cars cannot perform side motions, planes cannot stop, etc. In this
paper we focus on the Reeds-Shepp, Euler-Mumford and Dubins vehicle models, which account for
these constraints by increasing the cost of highly curved path sections, or even forbidding them.
The variants of the eikonal PDE corresponding to these models are non-holonomic (a degenerate
form of anisotropy) and are posed on the three dimensional state space R2×S1, which makes their
numerical solution challenging. A dedicated variant of the fast marching method is presented in
[Mir18, MP19], and together with earlier prototypes it has found applications in medical image
segmentation [CMC16, CMC17, DMMP18] as well as the configuration of surveillance systems
[MD17, DDBM19]. However, a weakness of the fast marching algorithm is its sequential nature:
the points of the discretized domain are accepted one by one in a specific order, namely by ascending
values of the front arrival times, which imposes the use of a single CPU thread managing a priority
queue.
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In this paper, we present a massively parallel solver of the non-holonomic eikonal PDEs asso-
ciated with the Reeds-Shepp, Euler-Mumford and Dubins models of curvature penalized shortest
paths. We use the same finite difference discretization as [Mir18, MP19], on a Cartesian dis-
cretization grid, but solve the resulting coupled system of equations using an iterative method
implemented on a massively parallel computational architecture, namely a Graphics Processing
Unit (GPU), following [WDB+08, JW08, FKW13, GHZ18]. Our numerical schemes involve finite
difference offsets which are often numerous (30 for Euler-Mumford), rather wide (up to 7 pixels),
and whose construction requires non-trivial techniques from lattice geometry [Mir18]. This is in
sharp contrast with the standard isotropic eikonal equation addressed by existing GPU solvers,
which only requires few and small finite difference offsets when it is discretized on Cartesian grids
[WDB+08, JW08], and depends on unrelated geometric data when the domain is an unstructured
mesh [FKW13, GHZ18]. Due to these differences, the compromises needed to achieve optimal ef-
ficiency - a delicate balance between the cost of computations and of memory accesses - strongly
differ between previous works and ours, and even between the different models considered in this
paper.

Our study provides the opportunity to inspect these compromises as the stencil of the finite
difference scheme grows in width, number of elements and complexity, from 2 offsets of width 1
pixel (isotropic model in 2D), to 30 offsets of width up to 7 pixels (elastica model). Alternative
finite difference discretizations may benefit from shorter stencils, but fail structural properties such
as causality, leading to different compromises whose investigation is an opportunity for future
research. Specifically, our observations regarding the models with wider finite difference stencils
are the following: (i) They work best, somewhat counter intuitively, with a more finely grained
parallelization, in our case obtained with smaller tiles and a smaller number of fixed point iterations
within them, see §2.1 and Table 1. (ii) Precomputing and storing the stencil weights and offsets
offers a significant speedup, up to 40% in our case, but the memory cost is prohibitive unless one can
take advantage of symmetries in the equation to share this data between grid points, see §2.2. (iii)
The scheme update operation involves a sort of the solution values fetched at the neighbors defined
by the stencil, whose cost becomes dominant in the wide stencil case unless implemented in a GPU
friendly manner, see §2.3. We expect our findings to transfer to other wide stencil finite difference
methods, a class of numerical schemes commonly used to address Hamilton-Jacobi-Bellman PDEs
arising in various applications, including deterministic (as here) and stochastic optimal control,
optimal transport and optics design via the Monge-Ampere equation [Obe08], etc. Eventually,
our GPU accelerated eikonal solver is 30× to 120× faster than the CPU fast marching method
from [Mir18], see Table 2. In the numerical experiments §3, which include applications to medical
image segmentation, boat routing and radar configuration, computations times on typical problem
instances are often reduced from 30 seconds to less than one, enabling convenient user interaction.

Outline. We describe §1.1 the curvature penalized path optimization problems addressed, and
§1.2 the eikonal equation formalism and the corresponding finite difference scheme. Our numerical
solver is presented § 2, distinguishing routines acting at the grid scale § 2.1, the tile scale § 2.2,
and the pixel scale § 2.3, see also Algorithms 1 to 3. Numerical experiments § 3 illustrate the
method’s efficiency in various applications, corresponding to the best case scenario § 3.1 or to
various difficulties such as obstacles §3.2, strongly inhomogeneous cost functions §3.3, asymmetric
perturbations of the curvature penalization §3.4, and optimization problems §3.5.

Remark 1.1 (Absence of conflict of interest, data availability, intellectual property). All authors
declare that they have no conflicts of interest. The numerical methods presented in this paper
are available as a public and open source library1, licensed under the Apache License 2.0, and
whose development is led by J.-M. Mirebeau. The specific inputs needed to reproduce the numerical
experiments are available on demand to the first author. In a preliminary and unpublished work,
accelerations of the same order were obtained with an earlier independent GPU implementation of
the HFM [MP19] method (limited to the Dubins model) developed by L. Gayraud with the support
of R. Barrere, and in informal collaboration with J.-M. Mirebeau. The two libraries are written in

1www.github.com/Mirebeau/AdaptiveGridDiscretizations
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different languages (Python/CUDA versus C++/OpenCL), do not share a single line of code, use
different implementation tricks, and offer distinct functionality.

Notations. We use square brackets to denote real intervals, such as ]a, b[, ]a, b], [a, b[ and [a, b] ⊂
R, whose bounds a and b are either contained or excluded following the usual convention. We denote
eθ := (cos θ, sin θ) for all θ ∈ R.

1.1 Curvature penalized path models
Throughout this paper we fix a bounded and closed domain Ω ⊂ R2, and a continuous and positive
cost function ρ : Ω×S1 →]0,∞[, where S1 := [0, 2π[ with periodic boundary conditions. The general
objective of this paper is to compute paths (x,θ) : [0, L]→ Ω×S1 in the position-orientation state
space, which globally minimize the energy

E(x,θ) :=
∫ L

0

ρ(x,θ) C(θ̇) dl, subject to ẋ = eθ, (1)

where we denoted eθ := (cos θ, sin θ) and θ̇ := dθ
dl and ẋ := dx

dl . An additional constraint to (1) is
that the initial and final configurations x(0), θ(0) and x(L), θ(L) are imposed, in other words the
endpoints of the physical path and the tangents at these endpoints. The path is parametrized by
Euclidean length in the physical space Ω, and the total length L is a free optimization parameter.
The constraint (1, right) requires that the path physical velocity ẋ(l) matches the direction defined
by the angular coordinate eθ(l) := (cosθ(l), sinθ(l)), for all l ∈ [0, L]. This constraint is said
non-holonomic because it binds together the first order derivatives of the path (ẋ(l), θ̇(l)) for each
l ∈ [0, L].

The choice of curvature penalty function C(κ), where κ := θ̇ is the derivative of the path
direction in (1), is limited to three possibilities in our approach, in contrast with the state dependent
penalty ρ which is essentially arbitrary. The considered curvature penalties are defined by the
following expressions, which correspond to the Reeds-Shepp, Euler-Mumford, and Dubins models
respectively: we define C(κ), for all κ ∈ R, as either√

1 + κ2, 1 + κ2, 1 +∞|κ|>1, (2)

where ∞cond stands for +∞ where cond holds, and 0 elsewhere. The Reeds-Shepp model penal-
izes curvature in a roughly linear manner; because this is a rather weak regularization, smooth
minimizers of (2) may not exist [BCR10], and a relaxed formulation allowing for singularities is
required, introducing either cusps or in-place rotations, and leading to two variants referred to as
the Reeds-Shepp reversible and the Reeds-Shepp forward models, see Remark 1.3. The quadratic
curvature penalty of the Euler-Mumford model corresponds to the energy of an elastic bar, hence
minimal paths follow the rest position of those objects. Finally the Dubins model forbids any path
section whose curvature exceeds that of the unit disk, by assigning to it the cost +∞. Minimal
paths for these models are qualitatively distinct, as illustrated on Figure 1. The curvature penalty
may also be scaled and shifted, so as to control its strength and symmetry, see Remark 1.2 and §3.4.

In the following, we fix a seed point (x∗, θ∗) ∈ Ω× S1 in the state space, and denote by u(x, θ)
the minimal cost of a path from this seed to an arbitrary target (x, θ) ∈ Ω× S1:

u(x, θ) := inf{E(x,θ);L ≥ 0, (x,θ) : [0, L]→ Ω× S1, ẋ = eθ,

x(0) = x∗, θ(0) = θ∗, x(L) = x, θ(L) = θ}. (3)

For the Reeds-Shepp models, the path cost is modified as in Remark 1.3. Once the map u : Ω×S1 →
R is numerically computed, as described in §1.2, a standard backtracking technique [Mir18] allows
to extract the path (x,θ) : [0, L]→ Ω× S1 globally minimizing (1), from the seed state (x∗, θ∗) to
any given target (x∗, θ∗) ∈ Ω× S1.

Remark 1.2 (Scaling and shifting the curvature penalty). The curvature penalty C(θ̇) appearing
in our path models (1) can be generalized into C(ξ(θ̇ − φ)). The parameter ξ > 0 dictates the
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Figure 1: Planar projections of minimal geodesics for the Reeds-Shepp, Reeds-Shepp forward, Elastica
and Dubins models (left to right). Seed point (0, 0) with horizontal tangent, regularly spaced tip point
with random tangent (but identical for all models).

Figure 2: Discretization stencils used for the Reeds-Shepp reversible, Reeds-Shepp forward, Euler-
Mumford, and Dubins models. They respectively involve Nneigh = 8, 5, 30 and 12 neighbors, a number
which strongly contributes to the numerical method’s cost. Note the sparseness and the anisotropy of
the stencils. Model parameters: θ = π/3, ξ = 0.2, ε = 0.1.
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intensity of curvature penalization, whereas φ ∈ R can introduce asymmetric penalty. Optionally,
ξ = ξ(x, θ) and φ = φ(x, θ) may depend on the current state (x, θ) ∈ Ω× S1.

Remark 1.3 (Well posed formulation of the Reeds-Shepp model). The minimization of the energy
(1) associated with the Reeds-Shepp cost C(κ) :=

√
1 + κ2 is not a well posed optimization problem in

general [BCR10, DBRS13], since minimizing sequences may develop non-differentiable singularities
in the limit, see Figure 1. To obtain a well posed problem, following [DMMP18], we reject the
convenient planar Euclidean arclength parametrization l ∈ [0, L] used in (1), in favor of an arbitrary
time parametrization t ∈ [0, 1], thus allowing for times where the spatial velocity vanishes ẋ(t) = 0
but the angular velocity does not θ̇(t) ̸= 0.

The classical Reeds-Shepp sub-Riemannian model asks for a Lipschitz path (x,θ) : [0, 1] →
Ω× S1, with prescribed initial and final configurations x(0), θ(0) and x(1), θ(1), and minimizing∫ 1

0

ρ(x,θ)

√
ẋ2 + θ̇

2
dt subject to ⟨ẋ, e⊥θ ⟩ = 0. (4)

The constraint (4, right) ensures that ẋ(t) = λ(t)eθ(t) for each t ∈ [0, 1], with a proportionality
constant λ(t) ∈ R. In the special case where λ(t) > 0 for all t ∈ [0, 1], one recovers (1) using a
reparametrization of the path by the planar Euclidean arclength.

The formulation (4) allows the proportionality constant λ(t) to be positive or negative, and for
this reason we refer to (4) as the Reeds-Shepp reversible model. A cusp is observed when λ changes
sign.

One may also introduce in (4) the additional constraint ⟨ẋ, eθ⟩ ≥ 0, thus ensuring that the
proportionality constant λ(t) ≥ 0 is non-negative, and leading to the Reeds-Shepp forward model
[DMMP18]. A rotation in-place is observed when λ vanishes over some time interval, which often
happens at the start and at the end of the path.

1.2 Non-holonomic eikonal equations, and their discretization
The minimal travel cost (3), from a given source point to an arbitrary target, is the value function
of a deterministic optimal control problem. As such, it obeys a first order static non-linear PDE,
a variant of the eikonal equation, of the generic form

Fu(x, θ) = ρ(x, θ) where Fu(x, θ) = F(x, θ, ∇xu(x, θ), ∂θu(x, θ)),

where ∇xu(x, θ) ∈ R2 and ∂θu(x, θ) ∈ R denote the partial derivatives of the unknown u : Ω×S1 →
R w.r.t. the physical position x and the angular coordinate θ. This PDE holds in Ω×S1\{(x∗, θ∗)},
while the constraint u(x∗, θ∗) = 0 is imposed at the seed point (x∗, θ∗), and outflow boundary con-
ditions are applied on ∂Ω. The detailed arguments and adequate concepts of optimal control,
Hamilton-Jacobi-Bellman equations, and discontinuous viscosity solutions, are non-trivial and un-
related to the object of this paper (which is GPU acceleration), hence we simply refer the interested
reader to [BCD08, Mir18]. For comparison, the standard isotropic eikonal equation [RT92, Set99]
on Rd, which corresponds to an omni-directional vehicle not subject to maneuverability constraints
or curvature penalization, is defined by the operator Fu = ∥∇u∥.

The considered variants of the eikonal PDE involve the following non-linear and anisotropic
operators Fu(x, θ), see [Mir18].√

⟨∇xu, eθ⟩2 + |∂θu|2,
√

max{0, ⟨∇xu, eθ⟩}2 + |∂θu|2, (5)
1

2
(⟨∇xu, eθ⟩+

√
⟨∇xu, eθ⟩2 + |∂θu|2), ⟨∇xu, eθ⟩+ |∂θu|. (6)

They respectively correspond to the Reeds-Shepp reversible (5, left), Reeds-Shepp forward (5,
right), Euler-Mumford (6, left) and Dubins (6, right) models.

We rely on a finite differences discretization Fu of the operator Fu, on the Cartesian grid

Xh := (Ω× S1) ∩ hZ3, (7)
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where the physical domain is usually rectangular Ω = [a, b]× [c, d] (or padded as such), and where
the grid scale h > 0 is such that 2π/h ∈ N so that the sampling of S1 := [0, 2π[ is compatible with
the periodic boundary conditions. By convention, the value function u is extended by +∞ outside
Ω, thus implementing the desired outflow boundary conditions on ∂Ω. For any discretization point
p = (x, θ) ∈ Xh, the finite differences operator Fu(p) is defined as the square root of the following
expression [MP19]

max
1≤k≤K

( ∑
1≤i≤I

αik max
{
0,

u(p)− u(p+ heik)

h

}2
+

∑
1≤j≤J

βjk max
σ=±1

{
0,

u(p)− u(p+ σhfjk)

h

}2
)
, (8)

where I, J,K are fixed integers, αik, βjk ≥ 0 are non-negative weights, and eik, fjk ∈ Z3 are finite
difference offsets, for all 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K. The weights and offsets may depend on
the current point p. Before turning to the variants (6) and (5), let us mention that the standard
discretization [RT92] of the isotropic eikonal equation (Fu = ∥∇u∥) fits within this framework,
with meta-parameters J = d (and I = 0, K = 1), choosing unit weights wj1 = 1, 1 ≤ j ≤ d, and
letting (fj1)

d
i=1 be the canonical basis of Rd. Riemannian eikonal PDEs can also be addressed in

this framework, with J = d(d + 1)/2 (and I = 0, K = 1) and using weights and offsets defined
by an appropriate decomposition of the inverse metric tensor, see [Mir19, MP19]. The anisotropy
of the Riemannian metric is not bounded a-priori, but strong anisotropy leads to large stencils :
specifically ∥fj1∥ ≤ C

√
∥M∥∥M−1∥ for all 1 ≤ j ≤ J in dimension d ≤ 3, where M denotes the

Riemannian metric tensor, see [Mir19, Proposition 1.1]. Excessively large stencils in turn lead to
longer execution time due to cache misses, slower convergence of the iterative method, and less
precise boundary conditions.

In the curvature penalized case, the weights and offsets in (8) implicitly depend on the base
point p = (x, θ), at least through the angular coordinate θ, in view of the continuous PDEs (5)
and (6). They may also depend on the physical position x if the strength or the symmetry of the
curvature penalty varies from point to point, see Remark 1.2. We refer to [Mir18, MP19] for details
on the construction of the weights and offsets, and simply report here the meta-parameters for the
Reeds-Shepp reversible (I = 0, J = 4, K = 1), Reeds-Shepp forward (I = 3, J = 1, K = 1),
Euler-Mumford (I = 30, J = 0, K = 1), and Dubins (I = 6, J = 0, K = 2) models, see Figure 2.
The construction also involves a relaxation parameter ε > 0 for the non-holonomic constraint (1,
right), which dictates the size of the stencils : specifically ∥eik∥, ∥fjk∥ ≤ C/ε for all i, j, k, see
[Mir18, Proposition 1.1]. Convergence is established in the limit where ε → 0 and h/ε → 0, see
[Mir18], yet in practice the fixed choice ε = 0.1 appears suitable for the considered applications.

A fundamental property of discretization schemes of the form (8) is that they can be solved in
a single pass over the domain, using a generalization of the fast-marching algorithm [Mir18, MP19,
Mir19], thanks to a property known as causality. This is highly desirable when implementing CPU
solver, but anecdotical for a GPU eikonal solver whose massive parallelism forbids taking advantage
of this property. See Appendix A for more discussion of the properties of these schemes and of
their relevance to GPU implementations. Nevertheless, those schemes are robust and well tested.
Alternative approaches offering different compromises and possibly more suited to GPUs will be
considered in future works.

2 Implementation
We describe the implementation of our massively parallel solver of generalized eikonal PDEs, as-
sumed to be discretized in the form (8). The bulk of the method is split in three procedures,
Algorithms 1 to 3, discussed in detail in the corresponding sections.

For simplicity, Algorithms 2 and 3 are written in the special case where the meta parameters of
the discretization (8) are J = 0 and K = 1, whereas I is arbitrary. The case of arbitrary J and K
is discussed in §2.3. The assignment of a value val to a scalar (resp. array) variable var is denoted
var ← val (resp. var ⇐ val).
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Algorithm 1 Parallel iterative solver (Python)
Variables:

u : Xh → [0,∞] (The problem unknown)
active,next : Bh → {0, 1}. (Blocks marked for current and next update)

Initialization:
u⇐∞; active,next ⇐ 0.
u[p∗]← 0; active[b∗]← 1. (Set seed point value, and mark its block for update)

While an active block remains:
For all active blocks b in parallel: (CUDA kernel lauch)

For all p ∈ Xb
h in parallel: (Block of threads)

BlockUpdate(u,next , b, p)
active ⇐ next ; next ⇐ 0.

Algorithm 2 BlockUpdate(u, next, b, p), where p ∈ Xb
h (CUDA)

Global variables: u : Xh → [0,∞], next : Bh → {0, 1}, ρ : Xh → R (the r.h.s).
Block shared variable: ub : X

b
h → [0,∞].

Thread variables: αi ≥ 0, ei ∈ Zd, ui ∈ R, for all 1 ≤ i ≤ I.

ub(p)← u(p); __syncthreads() (Load main memory values into shared array)
Load or compute the stencil weights (αi)

I
i=1 and offsets (ei)

I
i=1.

ui ← u(p+ hei), for all 1 ≤ i ≤ I such that p+ hei /∈ Xb
h. (Load the neighbor values)

For r from 1 to R:
ui ← ub(p+ hei), for all 1 ≤ i ≤ I such that p+ hei ∈ Xb

h. (Load shared values)
ub(p)← Λ(ρ(p), αi, ui, 1 ≤ i ≤ I) (Update ub(p), unless p is the seed point)
__syncthreads() (Sync shared values)

u(p)← ub(p) (Export shared array values to main memory)
If appropriate, next [b]← 1 and/or next [b′]← 1 for each neighbor block b′ of b. (Thread 0 only)

Algorithm 3 Local update operator Λ(ρ, αi, ui, 1 ≤ i ≤ I) (C++)
Variables a← 0, b← 0, c← −h2ρ2, λ←∞.
Sort the indices, so that ui1 ≤ · · · ≤ uiI .
For r from 1 to I:

If λ ≤ uir then break.
a← a+ αir ; b← b+ αiruir ; c← c+ αiru

2
ir

λ← (b+
√
b2 − ac)/a

return λ
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Figure 3: Left: Decomposition of the Cartesian grid Xh into tiles Xb
h, with block index b ∈ Bh.

Grayed blocks are tagged active. Center: Updating a block b ∈ Bh requires loading the unknown
values u : Xh → R, both within Xb

h and at some neighbor points. Right: The solution values within
a block are updated several times. (Here, after only two updates, the block values have not yet
stabilized).

2.1 Parallel iterative solver
Massively parallel architectures divide computational tasks into threads which, in the case of graph-
ics processing units, are grouped into blocks (indexed by b) following a common sequence of in-
structions, and able to take advantage of shared data, see Remark 2.1. Following [WDB+08, JW08,
GHZ18], the main loop of our iterative eikonal equation solver is designed to take advantage of this
computational architecture, see Algorithm 1. It is written in the Python programming language,
which is also used for the pre- and post-processing tasks, and launches Algorithm 2 as a CUDA
kernel via the cupy2 library.

The discretization domain Xh, which is a three dimensional Cartesian grid (7), is split into
rectangular tiles Xb

h, indexed by b ∈ Bh, see Figure (3, left). The update of a tile Xb
h is handled by

a block of threads, and the tile should therefore contain no less than 32 points in view of Remark 2.1.
The best shape of the tiles Xb

h was found to be 4× 4× 4 for the Reeds-Shepp models (forward and
reversible), and 4× 4× 2 for the Euler-Mumford and Dubins models, see §2.2 and Table 1. One of
the findings of our work is indeed that the schemes featuring wider stencils work best with smaller
tile sizes, see also the discussion in the second paragraph of §2.2. Some padding is introduced if
the dimensions of the tiles Xb

h do not divide those of the grid Xh.
A boolean table active : Bh → {0, 1} records all tiles tagged for update. Denote by Nh :=

#(Bh) the total number of tiles, and by Nb := #(Xb
h) the number of grid points in a tile, which

is independent of b ∈ Bh, so that #(Xh) = NhNb by construction. Let also Nact = #{b ∈
Bh; active[b]} be the number of active tiles in a typical iteration of Algorithm 1. Since we are
implementing a front propagation in a three dimensional domain, one generally expects that Nact ≈
N

2/3
h (in d-dimensions, Nact ≈ N

1−1/d
h ).

In each iteration of Algorithm 1, the active table is checked for emptiness, in which case the
program terminates. More importantly, the indices of all non-zero entries of the active table are
extracted, so as to update only the relevant blocks. The complexity O(Nh lnNh) of this operation
is in practice negligible w.r.t. the cost of the block updates themselves O

(
NactNbRK(I+J)

)
where

R is the number of inner loops in Algorithm 2 and I, J,K are the scheme parameters (8). A second
boolean table next : Bh → {0, 1}, is used to mark the blocks which are to be updated in the
subsequent iteration.

A single array u : Xh → [0,∞[ holds the solution values. Indeed, the block update operator
benefits from a monotony property, see Appendix A, which guarantees that the values of (un)n≥0

2A NumPy-compatible array library accelerated by CUDA. https://cupy.dev

8

https://cupy.dev


of the numerical solution decrease along the iterations of Algorithm 1, toward a limit u∞. As a
result, load/store data races in u between the threads are innocuous.

Remark 2.1 (SIMT architecture). A block of threads is under the hood handled by a GPU device
in a Single Instruction Multiple Threads (SIMT) manner : the same instructions are applied on
32 threads of a same block (also called a warp) simultaneously. For this reason, the number of
threads within a block should preferably be a multiple of the width of a warp. For the same reason,
thread divergence (threads within a warp going along different execution paths, due to conditional
branching statements, which is implemented in a sequential manner by “muting” the threads of the
inactive branch) should be avoided for best efficiency.

Our numerical solver reflects these properties through the choice of the tile size Xb
h, and in the

choice of an Eulerian discretization scheme on a Cartesian grid (8) whose solution by Algorithm 3
involves little branching and yields an even load between threads, as opposed to an unstructured
mesh where these properties are by design less ensured [FKW13].

2.2 Block update
The BlockUpdate procedure, presented in Algorithm 2, is the most complex part of our numerical
method. It is executed in parallel by a block of threads, each handling a given point p ∈ Xb

h of a
tile of the computational grid, where the tile index b ∈ Bh is fixed.

An array ub : X
b
h → [0,∞] shared between the threads of the block is initialized with the values

of the unknown u : X → [0,∞] at the same positions. Throughout the execution of the BlockUpdate
procedure, the values of ub are updated several times, and then finally they are exported back into
the main array u. If the number R of updates of ub is sufficiently large, then this procedure amounts
to solving a local eikonal equation on Xb

h, with u|Xh\Xb
h

treated as boundary conditions. A similar
approach is used in [WDB+08, JW08, GHZ18]. We empirically observe that stencil schemes using
a wide stencil work best with a small number R of iterations, and a small tile size, see Table 1.
Our interpretation is the following: using several iterations is meant to propagate the front through
the tile Xb

h and to stabilize the local solution ub within the tile [JW08], but this objective looses
relevance when the stencil is so wide that the scheme update at a point x ∈ Xb

h involves fewer
values of the local array ub in Xb

h than of the global array u in Xh \Xb
h, which is cached and frozen

throughout the iterations in Algorithm 2. In addition, each of the R iterations has a higher cost
when the stencil is wide and has numerous elements, see the description of Algorithm 3 in §2.3.

The finite difference scheme (8) used for curvature penalized fast marching is built using non-
trivial tools from lattice geometry [Mir18], whose numerical cost cannot be ignored. Empirical tests
show that precomputing the weights and offsets usually reduces overall computation time by 30%
to 50%. If the scheme structure only depends on the angular coordinate θ of the point, then the
precomputed stencils can be shared across all physical coordinates x and thus have a negligible
memory usage, so that these precomputations are a pure benefit. On the other hand, if the scheme
stencils depend on all coordinates (x, θ) of the current point, typically for a model whose curvature
penalty function depends on the current point as discussed in Remark 1.2 and § 3.4, then the
storage cost of the weights and offsets significantly exceeds the amount of problem data. (Stencils
are defined by N = K(I+J) scalars and offsets per grid point, see (8), where typically 4 ≤ N ≤ 30.
In comparison, the problem data u, ρ and optionally ξ, φ consists of 2 to 4 scalars per grid point,
see Remark 1.2.) Stencil recomputation is preferred in these cases, in order to avoid crippling the
ability of the numerical method to address large scale problems on memory limited GPUs.

The values of the unknown u : Xh → R needed for the evaluation of the scheme (8) and lying
outside Xb

h are loaded once and for all at the beginning of the BlockUpdate procedure Algorithm 2,
and treated as fixed boundary conditions so as to minimize memory bandwidth usage. Contrary to
what could be expected, such boundary values are an overwhelming majority in comparison with
the values located within the tile Xb

h. For instance the three dimensional isotropic eikonal equation,
using standard tiles of 64 = 4 × 4 × 4 points, involves 96 = 6 × 4 × 4 boundary values. Boundary
values are even more numerous with the curvature penalization schemes, which involve many wide
finite difference offsets, as illustrated on Figure (3, center).
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Each thread of a block, associated to a discretization point p ∈ Xb
h where b ∈ Bh is the block

index, goes through R iterations of a loop where the local unknown value ub(p) is updated via
Algorithm 3, see §2.3. The threads are synchronized at each iteration of this loop, to ensure that
the front propagates through the tile Xb

h. Since the values of ub : X
b
h → [0,∞] are decreasing along

the iterations, by monotony of the scheme see Appendix A, no additional protection of ub against
data races between the threads of the block is required. The number R of iterations is discussed in
§2.3.

Last but not least, the block b and its immediate neighbors b′ need to be tagged for update in
the next iteration of the eikonal solver Algorithm 1, if appropriate, via the boolean array next :
Bh → {0, 1}. This step is not fully described in Algorithm 2, and in particular the neighbors of a
tile and the appropriate condition for marking them are not specified. Indeed, a variety of strategies
can be plugged in here, and our numerical solver is not tied to any of them. Good results were
obtained using Adaptive Gauss Siedel Iteration (AGSI) [BR06, GHZ18] and with the Fast Iterative
Method (FIM) [JW08], while other variants were not tested [WDB+08].

Remark 2.2 (Walls and thin obstacles). Our finite differences scheme involves rather wide stencils,
see Figure 2, raising the following issue: the update of a point p may involve neighbor values
u(p + hei) across a thin obstacle. In order to avoid propagating the front through the obstacles, if
any are present, an additional walls array is introduced in Algorithm 2, as well as and intersection
test between the segment [p, p + hei] and the obstacles. For computational efficiency, the array
walls : Xh → {0, · · · , 255} is not boolean, but walls[p] instead encodes the Manhattan distance in
pixels (capped at 255) from the current point p to the nearest obstacle. If ∥ei∥1 < walls[p], then
[p, p+ hei] does not meet the obstacles, and the intersection test can be bypassed.

2.3 Local update
This section is devoted to the local update operator presented in Algorithm 3. From the mathemat-
ical standpoint, one defines Λu(p) as the solution to the equation Fu(p) = ρ(p) w.r.t. the variable
u(p), regarding all neighbor values as constants, see [Mir19, Appendix A]. This process of solving a
discretized PDE at a single point p, and w.r.t. the corresponding unknown u(p), is often referred to
as a Gauss-Siedel update. We prove in this subsection that Algorithm 3 does compute the correct
update value Λu(p), and comment on its numerical complexity and efficient implementation. These
results generalize and abstract the update step of the standard fast marching method for isotropic
eikonal equations [Set96], whose discretization is a special case of (8) as mentioned in §1.2.

For simplicity, and consistently with the presentation of Algorithm 3, we first assume a numerical
scheme of the following form : denoting a+ := max{0, a},

(Fu(p))2 := h−2
I∑

i=1

αi

(
u(p)− u(p+ hei)

)2
+
, (9)

in other words J = 0 and K = 1 in (8). Lemma 2.3 shows that the equation Fu(p) = ρ(p)
admits a unique solution w.r.t. the variable u(p), where p is a fixed discretization point, and
Proposition 2.4 validates Algorithm 3 for computing this root. They should be applied with the
parameters ui := u(p+ hei) for all 1 ≤ i ≤ I, and ρ := ρ(p).

Lemma 2.3. Consider values u1, · · · , uI ∈ R, weights α1, · · · , αI > 0, and let hρ > 0. Then there
exists a unique solution λ∗ ∈ R to the equation f(λ) = 0, where

f(λ) :=
∑

1≤i≤I

αi(λ− ui)
2
+ − h2ρ2. (10)

Proof. Assume w.l.o.g. that u1 ≤ · · · ≤ uI . Observing that f(λ) = −h2ρ2 < 0 for all λ ∈]−∞, u1],
and that f(λ) ≥ α1(λ − u1)

2 − h2ρ2 → ∞ as λ → ∞, we see that f admits a root λ∗ ∈ [u1,∞[
by the intermediate value theorem. This root is unique since f is increasing on [u1,∞[, which
concludes the proof.
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Figure 4: Left : illustration of Proposition 2.4, with I = 3 and u1 < u2 < u3. The function f is
piecewise quadratic : f = P1 on [u1, u2], f = P2 on [u2, u3], and f = P3 on [u3,∞[, see (11). In
this case, the unique root of f is also the largest root of P2, which belongs to the interval [u2, u3].
Right : illustration of Proposition 2.5, with K = 3. The function f is the maximum (a.k.a. the upper
enveloppe) of the non-decreasing functions f1, f2, f3, whose unique root is λ(1), λ(2), λ(3) respectively.
The unique root of f is thus λ∗ = min{λ(k); 1 ≤ k ≤ 3} (here λ∗ = λ(2)).

Proposition 2.4. With the notations of Lemma 2.3. Introduce a permutation i1, · · · , iI of {1, · · · , I}
such that ui1 ≤ · · · ≤ uiI , and define for all 1 ≤ r ≤ I

ar :=
∑

1≤s≤r

αis , br :=
∑

1≤s≤r

αisuis , cr :=
∑

1≤s≤r

αisu
2
is − h2ρ2,

Then f admits the piecewise quadratic expression

f(λ) = Pr(λ) := arλ
2 − 2brλ+ cr, for all λ ∈ Jr := [uir , uir+1

], (11)

with the convention JI := [uiI ,∞[. Denoting r∗ := max{r; 1 ≤ r ≤ I, f(uir ) < 0}, one has

• b2r − arcr > 0 for all 1 ≤ r ≤ r∗, so that λr := (br +
√

b2r − arcr)/ar is well defined.

• λr∗ ∈ Jr∗ is the unique root of f , whereas λr > uir+1
for all r < r∗.

Proof. The proof is illustrated on Figure (4, left). Assume w.l.o.g. that u1 ≤ · · · ≤ uI , so that
ir = r for all 1 ≤ r ≤ I. The piecewise quadratic expression (11) on Jr := [ur, ur+1], is obtained
by inserting (λ− ui)+ = λ− ui if i ≤ r, and (λ− ui)+ = 0 if i > r, in the defining expression (10).

Recalling that f is increasing on [u1,∞[, we obtain that f(u1) ≤ · · · ≤ f(ur∗) < 0. The
polynomial Pr thus takes a negative value Pr(ur) = f(ur) < 0, for any r ≤ r∗, and has a positive
dominant coefficient ar ≥ α1 > 0. It follows that Pr admits two distinct real roots, for any r ≤ r∗,
the largest being λr. When r < r∗ one has Pr(ur+1) < 0, and thus λr > ur+1 as announced. On
the other hand Pr(ur∗) = f(ur∗) < 0 and Pr(ur∗+1) = f(ur∗+1) ≥ 0 (or Pr(λ) → ∞ as λ → ∞ in
the case r∗ = I), so that Pr admits a root in the interval Jr∗ by the intermediate value theorem.
Since Pr∗ = f is increasing on the interval Jr∗ , this is the largest root of Pr∗ . We have found a root
λr∗ ∈ Jr∗ of f , and it is unique by Lemma 2.3, which concludes the proof.

The complexity of Algorithm 3 is s(I) + O(I), where the first term accounts for the sorting
step, and the second term for the floating point operations. In standard isotropic fast-marching,
the number of terms is the space dimension I ∈ {2, 3} and the sorting step has a negligible cost;
however wide stencil schemes behave differently, especially the Euler-Mumford model for which
I = 30. In the latter case, a naive bubble sort involving s(I) = O(I2/2) compare and swap
operations becomes prohibitive, whereas some other methods with optimal asymptotic complexity
s(I) = O(I ln I) performed poorly to the GPU due to their complex control flow, see Remark 2.1.
Best results were obtained by applying a network sort [Knu98] (an efficient branchless sorting
method) independently to the 15 first and the 15 last values, followed by a merge operation,
cutting the overall computation time by more than half. In the general case, discussed below, the
complexity becomes Ks(I + J) +KO(I + J).
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Proposition 2.5 below shows how to characterize and compute the Gauss-Siedel update λ∗ =
Λu(p) when the numerical scheme has the general form (8), with arbitrary parameters I, J,K. It
is obtained as the unique root of f : R→ R defined by

f(λ) := max
1≤k≤K

fk(λ), where fk(λ) :=
∑

1≤i≤I

αik(λ− uik)
2
+ +

∑
1≤j≤J

βjk(λ− u′
jk)

2
+ − ρ2h2, (12)

and where uik := u(p+ heik) and u′
jk := min{u(p− hfjk), u(p+ hfjk)}. Note that the weights αik

and βjk are non-negative by design for all i, j, k, yet for simplicity we assume that they are positive
up to dropping the corresponding terms in the sums.

Proposition 2.5. The function fk defined by (12), where 1 ≤ k ≤ K, admits a unique root denoted
λ(k). It can be characterized and computed by applying Lemma 2.3, Proposition 2.4, and Algorithm 3
to the I + J weights (α1k, · · · , αIk, β1k, · · · , βJk) and values (u1k, · · · , uIk, u

′
1k, · · · , u′

Jk).
The function f defined by (12) admits a unique root, which is λ∗ = min{λ(k); 1 ≤ k ≤ K}.

Proof. The function fk has a structure similar to (10), up to gathering the two sums featuring I
and J terms respectively into a single sum with I + J terms, which establishes the first point.

The proof of the second point is illustrated on Figure (4, right). Since fk is non-decreasing and
admits the unique root λ(k), one has fk < 0 on ]−∞, λ(k)[, fk(λ(k)) = 0, and fk > 0 on ]λ(k),∞[.
It immediately follows that f < 0 on ]−∞, λ∗[, f(λ∗) = 0, and f > 0 on ]λ∗,∞[, which concludes
the proof.

3 Numerical experiments
We illustrate our numerical solver of curvature penalized shortest paths in variety of contexts rang-
ing from motion planning with obstacles or drift, to image segmentation, and to the configuration of
radar systems. Some of the test cases are new, whereas others are closely related to previous works
[CMC16, CMC17, DDBM19, DMMP18, MD17, Mir18] and are meant to illustrate the benefits of
the GPU solver over an earlier CPU implementation in common use cases. Test data is synthetic
except for the medical image segmentation problem §3.3.

We report in Table 2 the running times of the GPU eikonal solver presented in this paper, and of
the CPU solver introduced in [Mir18], as well as the GPU/CPU speedup which varies significantly
depending on the experiment. Indeed, the running time of the GPU eikonal solver, which is an
iterative method, depends on the presence and layout of obstacles or slow regions in the test case
as noted in [WDB+08]. This in contrast with the fast-marching-like method [Mir18] implemented
on the CPU, which is guaranteed to update each discretization point at most Nneigh = K(I + 2J)
times where I, J,K are the scheme parameters (8) (for this reason, slightly abusively, fast-marching
is referred to as a single pass method), and whose complexity O(NneighN lnN) is independent of
the specific test case, where N is the total number of discretization points. The logarithmic factor
in the fast-marching complexity comes from the overhead of managing a priority queue of the trial
discretization points, sorted by the solution values, which is implemented using a binary heap. This
complexity can be slightly improved to O(NneighN +N lnN) using the more advanced Fibonacci
heap data structure [FT87], but with little practical benefit in our experience [Mir14b]. Indeed, the
sequential nature of the fast marching method is the main obstacle to improving its computation
time.

The numerical experiments presented in the following sections are designed to illustrate the
following features of the eikonal solver introduced in this paper:

1. Geodesics in an empty domain. Illustrates the qualitative properties of the different path
models, and the GPU/CPU speedup in the ideal case.

2. Fastest exit from a building. Illustrates the implementation of walls and thin obstacles, which
is non-trivial with wide stencils as described in Remark 2.2.

3. Retinal vessel segmentation. Illustrates a realistic application to image processing, based on
the choice of a carefully designed cost function.
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4. Boat routing. Illustrates a curvature penalty whose strength and asymmetry properties vary
over the PDE domain, as described in Remark 1.2.

5. Radar configuration. Illustrates the automatic differentiation of the eikonal PDE solution u
w.r.t. the cost function ρ, for the optimization of a complex objective.

Remark 3.1 (Computation time and hardware characteristics). Program runtime is dependent on
the hardware characteristics of each machine. The reported CPU and GPU times were obtained on
the Blade® Shadow cloud computing service, using the provided Nvidia® GTX 1080 graphics card
for the GPU eikonal solver, and an Intel® Xeon E5-2678 v3 for the CPU eikonal solver (a single
thread was used, with turbo frequency 3.1Ghz).

3.1 Geodesics in an empty domain
We compute minimal geodesics for the Reeds-Shepp, Reeds-Shepp forward, Euler-Mumford elastica
and Dubins model, in the domain [−1, 1]2 × S1 without obstacles. The front is propagated from
the seed point (x∗, θ∗) placed at the origin x∗ = (0, 0) and imposing a horizontal initial tangent
θ∗ = 0. Geodesics are backtracked from several tips (x∗, θ∗) where x∗ is placed at 16 regularly
spaced points in the domain, whereas θ∗ is chosen randomly (but consistently across all models).

This experiment is meant to illustrate the qualitative differences between minimal geodesic
paths associated with the four curvature penalized path models, see Figure 1. The Reeds-Shepp
car can move both forward and backward, and reverse gear along its path, as evidenced by the cusps
along several trajectories. The Reeds-Shepp forward variant cannot move backward, but has the
ability to rotate in place (with a cost), and such behavior can often be observed at the endpoints
of the trajectories [DMMP18]. The Elastica model produces pleasing smooth curves, which have a
physical interpretation as the rest positions of elastic bars. Trajectories of the Dubins model have
a bounded radius of curvature, and can be shown to be concatenations of straight segments and of
arcs of circles, provided the cost function is constant as here.

The generalized eikonal PDE (5) or (6) is discretized on a 300×300×96 Cartesian grid, following
(8), thus producing a coupled system of equations featuring 8.6 million unknowns3. Computation
time for the GPU eikonal solver ranges from 0.28s (Reeds-Shepp forward) to 1.54s (Euler-Mumford
elastica), reflecting the complexity of the discretization stencil, see Figure 2. A substantial speedup
ranging from 60× to 120× is obtained over the CPU implementation; let us nevertheless acknowl-
edge that, as noticed in [WDB+08], the absence of obstacles and of a position dependent speed
function is usually the best case scenario for an iterative eikonal solver such as our GPU implemen-
tation.

3.2 Fastest exit from a building
We compute minimal paths within a museum map, for the four curvature penalized models under
consideration in this paper, as illustrated on Figure 5. Due to the use of rather wide stencils, often
7 pixels long see Figure 2, some intersection tests are needed to avoid propagating the front through
the walls, which are one pixel thick only. A careful implementation, as described in Remark 2.2,
allows to bypass most of these intersection tests and limits their impact on computation time.
In contrast with [JW08], we do not consider “slightly permeable walls”, since they would not be
correctly handled with our wide stencils, and since as far as we know they have little relevance in
applications. A closely related experiment is presented in [DMMP18] for the Reeds-Shepp models,
using a CPU eikonal solver.

The front propagation starts from two seed points located at the exit doors, and a tip is placed
in each room for geodesic backtracking, with an arbitrary orientation. The extracted paths are
smooth (Euler-Mumford case) or have a bounded curvature radius (Dubins case), but minimize
a functional (1) which is unrelated with safety and thus may not be directly suitable for motion

3For this particularly simple problem (with a constant cost function, without walls), results visually quite similar can
be obtained at a fraction of the cost using a smaller discretization grid, eg. of size 100× 100× 64.
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Figure 5: Planar projections of minimal geodesics for the Elastica and Dubins model (left to right).
Two seed points at the exits, with horizontal tangents. Geodesics are backtracked from one tip point
in each room, with a given but arbitrary tangent.

planning. Indeed, in many places they are tangent to the obstacles, walls, and doorposts, without
any visibility behind, which is a hazardous way to move.

The PDE is discretized on a Cartesian grid of size 705×447×60, where the first two factors are
the museum map dimensions, and the third factor is the number of angular orientations, for a total
of 19 million unknowns. Computation time on the GPU ranges from 0.59s (Reeds-Shepp forward)
to 3.2s (Euler-Mumford elastica), a reduction by approximately 50× over the CPU eikonal solver.

3.3 Tubular structure segmentation
A popular approach for segmenting tubular structures in medical images, such as blood vessels on
the retinal background as illustrated on Figure 6, is to devise a geometric model whose minimal
paths (between suitable endpoints) are the centerlines of the desired structures. For that purpose
a key ingredient, not discussed here, is the careful design of a cost function ρ : R2 × S1 →]0,∞]
which is small along the vessels of interest in their tangent direction, and large elsewhere [PKP09].
Curvature penalization, and in particular the Reeds-Shepp forward and Euler-Mumford elastica
models [CMC16, CMC17, DMMP18], helps avoid a classical artifact where the minimal paths do
not follow a single vessel but jump form one to another at crossings.

The test cases have size 512 × 512 × 60, 387 × 449 × 60 and 398 × 598 × 60 respectively, and
the computation time of the GPU eikonal solver ranges from 1s (Reeds-Shepp forward) to 3s
(Euler-Mumford elastica) on the GPU. This is compatible with user interaction, in contrast with
CPU the run time which is 30× to 80× longer, see Table 2. Note that by construction, the front
propagation is fast along the blood vessels, and slower in the rest of the domain. This specificity
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Figure 6: Segmentation of tubular structure centerlines using the Reeds-Shepp forward and Euler-
Mumford elastica models, following [CMC17]. Left : Blood vessels in Magnetic Resonance Angiography
(MRA) data. Center and right : Blood vessels on an image of the retina.

plays against iterative methods, which are most efficient when velocity is uniform [JW08], yet
the speedup achieved by the GPU solver remains very substantial. Computation time could in
principle be further reduced, both on the CPU and the GPU, by using advanced stopping criteria
and restriction methods [CCV13] to avoid solving the eikonal PDE on the whole domain.

3.4 Boat routing with a trailer
The Dubins-Zermelo-Markov model [BT13] describes a vehicle subject to a drift, and whose speed
and turning radius as measured before the drift is applied are bounded. This problem was introduced
to us in the context of maritime seismic prospection, where boats drag long trails of acoustic sensors,
and are subject to water currents. Optimal Dubins-Zermelo-Markov trajectories, with drift defined
by the water flow, may help avoid entangling and damaging these trails, and reduce the prospection
times. In this synthetic experiment we use the drift velocity V (x) = 0.6 sin(πx0) sin(πx1)x/∥x∥ at
each point x = (x0, x1) ∈ [−1, 1]2. Our vehicle has unit speed, and turning radius ξ = 0.3. Our
numerical results are illustrated on Figure 7.

From the mathematical standpoint, the Dubins-Zermelo-Markov model can be rephrased in the
form of the original Dubins model, but with a curvature penalty which is scaled, shifted (asymmet-
ric), and depends on the current point, as described in Remark 1.2. This does not raise particular
issues for discretization, except that the weights and offsets of the numerical scheme (8) depend on
the full position (x, θ) ∈ R2 × S1, rather than the orientation θ ∈ S1 alone.

The boat routing problem is discretized on a grid of size 151 × 151 × 96. Computation time
on the GPU is 0.34s if stencils are pre-computed and stored, and 0.52s if they are recomputed on
the fly when needed. The second approach (recomputation) uses significantly less GPU memory,
which is usually a scarce ressource, hence we regard it as default despite the longer runtime, see
the discussion §2.2; it is nevertheless 59× faster than the CPU implementation.

3.5 Optimization of a radar configuration
We consider the optimization of a radar system, so as to maximize the probability of detection of
an intruder vehicle. The intruder has full knowledge of the radar configuration, and does its best
to avoid detection, but is subject to maneuverability constraints as does a fast plane. Following
[MD17, DDBM19] the intruder is modeled as a Dubins vehicle, traveling at unit speed with a
turning radius of 0.2, whose trajectory starts and ends at a given point x∗ ∈ Ω and which must
visit a target keypoint x∗ ∈ Ω in between4. The problem takes the generic form

sup
ξ∈Ξ

inf
γ∈Γ
E(ξ; γ), (13)

4This is achieved by concatenating a trajectory (x∗, θ0) ∈ Ω× S1 to (x∗, φ), with a reversed trajectory from (x∗, θ1)
to (x∗, φ+ π), where θ0, θ1, φ ∈ S1 are arbitrary, see [MD17].
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Figure 7: Illustration of the Dubins-Zermelo-Markov problem. Left : drift velocity (water current).
Center : shortest paths for this model, from the seed (0, 0) to some arbitrary targets, with horizontal
tangents imposed at the endpoints. Right : the same shortest paths, to which the drift associated with
the vector field is added. In this referential, the radius of curvature does not exceed the prescribed
bound ξ.

where Ξ is the set of radar configurations, and Γ is the set of admissible trajectories. A trajectory
γ escapes detection from a radar configured as ξ with probability exp(−E(ξ; γ)). Following (1), a
trajectory is represented as a pair γ = (x,θ) : [0, L]→ Ω× S1, and its cost is defined as

E(ξ; γ) =
∫ L

0

ρ(x,θ; ξ) C(θ̇) dl

where C denotes the Dubins cost (2, right), and ρ(x, θ; ξ) is an instantaneous probability of detection
depending on the radar configuration ξ, and on the intruder position x and orientation θ. We refer
to [DDBM19] for a discussion of the detection probability model, and settle for a synthetic and
simplified yet already non-trivial construction. The detection probability is the sum of three terms
ρ(x, θ; ξ) =

∑3
i=1 ρ̃(x, θ; yi, ri, vi), corresponding to as many radars, each of the following form

illustrated on Figure (8, top left)

ρ̃(x, θ; y, r, v) :=
1

1 + 2∥x− y∥2
σ
(∥x− y∥

r

)
σ
( ⟨e(θ), x− y⟩

v∥x− y∥

)
. (14)

where y is the radar position, σ(s) = 1−((1+cos(2πs))/2)4 is a function vanishing periodically, r is
the ambiguous distance period, and v is the ambiguous radial velocity period. Optimal trajectories
for escaping detection by one or several of these radars are shown on Figure (8, top right and
bottom left). The ambiguous periods r and v are related to the pulse repetition interval and
frequency used by the radar, and their product is bounded below. In this experiment, we choose to
optimize the position of the first radar x1 within the disk D1 centered at (−0.4, 0.4) and of radius
0.3, and the position of the second radar x2 within the segment S2 of endpoints (−0.2, 0.8) and
(0.5, 0.8), whereas the third radar is fixed at X3 = (0.6, 0.3). We also optimize the blind distances
r1, r2, r3 ∈]0,∞[, and we define the bling velocities as vi = 0.2/ri for 1 ≤ i ≤ 3, reflecting the fact
that the product rivi is constrained by the physics of the radar system. Summarizing, the collection
of radar configuration parameters ξ, and their domain Ξ, are defined for this experiment as :

ξ = (x1, x2, x3, r1, r2, r3), Ξ := D1 × S2 × {X3}×]0,∞[3.

The trajectory of the intruder has a curvature radius bounded below by 0.2 (Dubins model), stays
within the rectangular domain [−1, 1] × [0, 1], starts and ends at (−0.9, 0.5), and visits the target
point (0.8, 0.5), which completes the description of the test case.

Minimization over the parameter γ ∈ Γ in (13) is solved numerically using the eikonal solver
presented in this paper, thus defining a function E(ξ) := inf{E(ξ; γ); γ ∈ Γ} depending on the radar
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Figure 8: (Top left) Instantaneous detection probability of a vehicle by a radar, depending on the
radial distance r and radial velocity v of the vehicle, in addition to the radar parameters, see (14).
Note the blind distance and blind velocity periods. (Top right) Trajectory minimizing the probability
of detection between two points in the presence of a single radar. It approximates a concatenation
of circles, at a multiple of the blind radial distance, and spirals, corresponding to a multiple of the
blind radial velocity. (Bottom left) Configuration of three radars locally optimized, see text, to detect
trajectories from the left seed point to the right tip and back. Best adverse trajectories. (Bottom
right) Objective value, E(ξ) see text, along the iterations of gradient ascent.

configuration alone ξ ∈ Ξ. We differentiate E(ξ) in an automatic manner as described in [MD17],
and optimize this quantity by gradient ascent, with a projection of the updated parameters ξ onto
the admissible domain Ξ at each gradient step. Using these tools, a local maximum of E(ξ) is
reached in a dozen iterations approximately, see Figure (8, bottom right). Computation time is
dominated by the cost of solving a generalized eikonal equation in each iteration, which takes 0.26s
on the GPU and 9.6s on the CPU (Dubins model on a 200× 100× 96 grid). Since the optimization
landscape is highly non-convex, obtaining the global maximum w.r.t. ξ would require a non-local
optimization method in complement or replacement of local gradient ascent, thus requiring many
more iterations and benefitting even more from GPU acceleration.

4 Conclusion and perspectives
Geodesics and minimal paths are ubiquitous in mathematics, and their efficient numerical com-
putation has countless applications. In this paper, we present a numerical method for computing
paths which globally minimize a variety of energies featuring their curvature, by solving a gener-
alized anisotropic eikonal PDE, and which takes advantage of the massive parallelism offered by
GPU hardware for computational efficiency. In comparison with previous CPU implementations, a
computation time speed up by 30× to 120× is achieved, which enables convenient user interaction
in the context of image processing and segmentation, and reasonable run-times for applications
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such as radar configuration which solve these problems within an inner optimization loop.
Future work will be devoted to additional applications, to efficient implementations of wide

stencil schemes associated with other classes of Hamilton-Jacobi-Bellman PDEs, and to the study
of numerical schemes based on different compromises in favor of e.g. allowing grid refinement or
using shorter finite different offsets.
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A Monotony and causality
We briefly present in this appendix the concepts of monotony and causality, which are two key
properties for the analysis of discretization schemes of eikonal equations, and we discuss their
relevance to a GPU implementation. We refer the interested reader to [MP19, §2.1 and §A] for
additional discussion, and for the proofs of the results presented below.
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A (finite differences) scheme on a finite set X is a mapping F : RX → RX defined as

Fu(p) = F(p, u(p), [u(p)− u(q)]q∈X\{p}),

for each u ∈ X, where F is continuous. The scheme is said discrete degenerate elliptic (DDE) if F
is non-decreasing w.r.t. the second and third variables. It is said causal if F only depends on the
positive part [max{0, u(p) − u(q)}]q∈X\{p} of the third variable. The schemes considered in this
paper (8) obey these two properties.

Given such a scheme, one is often able to prove that the univariate non-linear equation

F(p, λ, [λ− u(q)]q∈X\{p}) = 0 (15)

admits a unique root λ ∈ R, thus defining the Gauss-Siedel update operator Λu(p) := λ, see
Lemma 2.3 for the class of schemes considered in this paper. This operator is monotonous, in the
sense that Λu ≤ Λv if u ≤ v on X, provided the original scheme F is DDE. It is causal, in the sense
that Λu(p) may depend on u(q) only if Λu(p) > u(q), provided the original scheme F is in addition
causal in the previously defined sense. See [MP19, Proposition A.4] for a complete statement and
proof.

A solution Fu = 0 to a finite difference scheme defines a fixed point Λu = u of the corresponding
Gauss-Siedel update operator, and conversely. Alternatively, semi-Lagrangian discretizations of the
eikonal equation directly define an operator Λ whose fixed point must be computed, and which
is obtained via a variational principle [BR06] rather than from a finite difference scheme as in
(15). In that case, monotony holds by construction, whereas the causality property can be derived
from a geometrical acuteness property of the discretization stencils [Tsi95, SV03, Mir14a, Mir14b,
DCC+21].

The fixed point of a monotonous operator Λ can be obtained using a variety of iterative methods
such as [RT92, BR06], or [FKW13, GHZ18, JW08, WDB+08] on the GPU. For concreteness, global
iteration is the simplest approach (but usually not the most efficient): let formally u0 := +∞, and
define un+1 := Λun for all n ≥ 0. Then using monotony and an immediate induction argument
one obtains that un+1 ≤ un for all n ≥ 0; under mild additional assumptions, one finds that
un converges decreasingly to a fixed point of Λ, as desired, see e.g. [DCC+21, Proposition D.3].
Monotony is of key significance for the GPU implementation, since it ensures stability along the
iterations, and also allows to use a single array for reading and writing the solution values (data
races are indeed innocuous, since the latest computed value is always the smallest and the closest
to the fixed point).

The fixed point of an operator Λ which is both monotonous and causal can be computed in
a single pass over the domain using the extremely efficient fast marching method (FMM), see
[Set96] or [MP19, Proposition A.2]. The FMM however has little parallelization potential (notably,
the parallel implementation [Tsi95] does not scale well due to the excessive overhead of message
passing), hence it is less relevant to GPU eikonal solvers which instead rely on iterative methods
as discussed above.
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B Tables

Model Nfd Best tile Best R

Isotropic (d=2) 2 24× 24 48
Isotropic (d=3) 3 4× 4× 4 8

Reeds-Shepp (both) 4 4× 4× 4 6

Model Nfd Best tile Best R

Dubins 12 4× 4× 4 2
− − 4× 4× 2 1

Euler-Mumford 30 4× 4× 2 1

Table 1: Number Nfd = K(I + J) of finite differences terms in (8) for a variety of path models.
Tile shape and number of iterations R in Algorithm 2, producing the smallest running time, found
experimentally. Two sets of parameters are reported for Dubins model, since the corresponding running
times results are close which and one is fastest depends on the test case. Simple models, whose stencil
involves few and short finite differences, work best with large tile sizes and numerous iterations allowing
the front to propagate within the tile, whereas complex models involving many wide finite differences
and a costly update operator benefit from small tiles and few iterations.

Exp. model GPU(s) CPU(s) accel
Empty RS rev 0.28 34.3 120×

RS fwd 0.25 15.7 62×
EM 1.53 117 76×

Dubins 0.44 46.5 105×
Building RS rev 1.37 50.5 37×

RS fwd 0.59 29 49×
EM 3.21 174 54×

Dubins 1.02 55.4 54×

Exp. model GPU(s) CPU(s) ratio
Boat Dubins 0.52 30.2 59×
MRI RS fwd 0.93 30.8 33×

EM 3.32 275.9 83×
Retina1 RS fwd 0.66 21.1 32×

EM 2.22 171.3 77×
Retina2 RS fwd 0.98 32.8 33×

EM 3.21 256.1 80×
Radar Dubins 0.26 9.57 37×

Table 2: Running time of the CPU and GPU eikonal solver, for the experiments presented §3.
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