Toward the optimization of the ballast gluing process for track lateral resistance enhancement
Félix Laboup, Mathieu Renouf, Jean-François Ferellec, Michel Wone

▶ To cite this version:
Félix Laboup, Mathieu Renouf, Jean-François Ferellec, Michel Wone. Toward the optimization of the ballast gluing process for track lateral resistance enhancement. 12th World Congress on Railway Research, Oct 2019, Tokyo, Japan. hal-03170766

HAL Id: hal-03170766
https://hal.archives-ouvertes.fr/hal-03170766
Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Toward the optimization of the ballast gluing process for track resistance lateral enhancement

Félix LABOUP1,2, Mathieu RENOUF1, Jean-François FERELLEC2, Michel WONE2

1 LMGC, UM, CNRS, Montpellier, France, 2 SNCF Réseau, Saint-Denis, France

Main conclusions:
- Number of glued grains decrease with depth
- Volume of glued contact independent of its position

Ballast functions
- Normal load transmission
- Vibration damping

Main risks
- Ballast light
- Ballast displacement

Consequences
- Loss of track properties with ballast displacement
- A costly maintenance

Microscopic scale (grain)
- Characterization of glued contact in traction
- Grain surfaces conserved
- Controlled contact typology (point/face, edge/face
- and face/face contacts)
- Minimum of 15 repetitions

Interaction law A Maugis-Dugdale model
- Tensile strength depends on adhesive surface contact
- Contact topology influences tensile strength
- Displacement at maximum tensile strength independent of glued surface

Mesoscopic scale (REV)
- Glue repartition? Glue bound volume?

Gluing experiment:
- Box dimension: 40x60x60 cm
- Ballast density: 1543 kg.m$^{-3}$
- Glue quantity: 1,25 L.m$^{-2}$

Main conclusions:
- Number of glued grains decrease with depth
- Volume of glued contact independent of its position

Macroscopic scale (Railway section)
- Lateral resistance tests

Main conclusions:
- Numerical model requires adjustments
- Similar tendencies

Support by ANRT Project 2017/1101

Experimental Part

Numerical Part

Gluing Configurations

Gluing Configurations

Gluing experiment:
- Box dimension: 40x60x60 cm
- Ballast density: 1543 kg.m$^{-3}$
- Glue quantity: 1,25 L.m$^{-2}$

Main conclusions:
- Numerical model requires adjustments
- Similar tendencies