Verifying Strategic Abilities in Multi-agent Systems via First-order Entailment
Francesco Belardinelli, Vadim Malvone

To cite this version:
Francesco Belardinelli, Vadim Malvone. Verifying Strategic Abilities in Multi-agent Systems via First-order Entailment. 24th European Conference on Artificial Intelligence (ECAI 2020), Aug 2020, Santiago de Compostela, Spain. hal-03170192

HAL Id: hal-03170192
https://hal.archives-ouvertes.fr/hal-03170192
Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Verifying Strategic Abilities in Multi-agent Systems via First-order Entailment

Francesco Belardinelli 1 and Vadim Malvone 2

Abstract. The verification of strategic abilities of autonomous agents is a key subject of investigation in the applications of formal methods to the design and certification of multi-agents systems. In this contribution we propose a novel approach to this verification problem. Inspired by recent advances, we introduce a translation from Alternating-time Temporal Logic (ATL) to First-order Logic (FOL). We show that our translation is sound on a fragment of ATL, that we call ATL-live, as it is suitable to express liveness properties in MAS. Further, we show how the universal model checking problem for ATL-live can be reduced to semantic entailment in FOL. Finally, we prove that ATL-live is maximal in the sense that if any other ATL connective is added, non-FOL reasoning techniques would be required. These results are meant to be a first step towards the application of FOL reasoners to model check strategic abilities expressed in ATL.

1 Introduction

The verification of strategic abilities of autonomous agents is a key subject of investigation in the applications of formal methods to the design and certification of multi-agents systems (MAS) [20, 38]. In recent years logic-based languages to model temporal [30, 9], epistemic [13, 28], and strategic [2, 29] capabilities of agents have been introduced and their theoretical properties analysed, particularly in relation with their satisfaction and model checking problems [6, 31]. Results in this area have led to the development of model checking tools [1, 14, 22, 26] that have been successfully applied to MAS verification in domains as diverse as voting protocols [4, 21], robot swarms [24], and AUVs [12]. However, the complexity of multi-agent scenarios means that the verification task is often computationally costly, viz. undecidable [11]; hence the need for decidability results and for more efficient model checking tools and techniques.

Reasoners for First-order Logic (FOL), including SMT solvers, have become the core backend engine of a range of powerful technologies and a thriving research area with many practical applications [10]. In the context of temporal logics, [36, 35] present the theoretical foundations for reducing the model checking problem for a fragment of computational-tree logic (CTL), over finite and infinite Kripke structures expressed in FOL, to checking semantic entailment in FOL. In [37] the same authors demonstrate that it is practical to verify temporal properties of infinite-state systems expressed in the same fragment of CTL by using an SMT solver, without iteration, abstraction, or human intervention. Moreover, they show that, by using their method, the verification of a leader election protocol with an unbounded number of processes may in some cases terminate faster than when considering a finite number of processes.

Inspired by these works, in this contribution we propose a novel approach to the verification problem for Alternating-time Temporal Logic (ATL), one of the most well-studied logic-based languages for representing strategic abilities of individuals and coalitions [2, 32]. Specifically, in Sec. 2 after introducing preliminary notions on ATL and FOL, we present a fragment of ATL, that we call ATL-live following [36, 35], as it is suitable to express liveness properties in MAS. In Sec. 3 we present a translation into FOL for concurrent game structures (CGSs), the semantics of choice for ATL. Then, in Sec. 4 we show how the universal model checking problem for ATL-live can be reduced to semantic entailment in FOL. These results are meant to be a first step towards the application of FOL reasoners to model check strategic abilities expressed in ATL. The interesting experimental results discussed in [37] might hint at significant savings in execution time, thus allowing for the verification of more complex multi-agent scenarios. Finally, in Section 5 we prove that ATL-live is maximal in the sense that if any other ATL connective is added, non-FOL reasoning techniques would be required.

Related work. FOL reasoners and SAT/SMT solvers are increasingly applied to the verification of temporal properties of reactive systems [10] (e.g., [3] put forward an SMT-based decision procedure for general modal logic). More specifically, in [25] the authors introduce an explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. This approach is then extended in the same reference to reason about assertional LTL formulas, where Boolean atoms are replaced with assertions about program variables (e.g., $k \leq 5$), and the underlying SAT solver is replaced by an SMT solver. Further, [15] describes a declarative and deductive symbolic model checker modulo theories (MCMT) for safety properties of infinite state systems. The key component of MCMT is a backward reachability procedure that symbolically computes pre-images of the set of unsafe states and checks for safety and fix-points by solving SMT problems. This framework was extended in [7] to handle complex data-aware business processes with the ability of operating over case and persistent data. Moreover, in [33] a first-order extension of LTL is considered, and a prototype tool based on SMT-based model checking is presented. However, none of the contributions above tackles expressive logic-based languages for reasoning about strategies, such as the logic ATL here considered.

In the context of logics for strategic reasoning, [27] develops a predicate abstraction technique for the verification of multi-agent systems against specifications expressed in an epistemic extension of ATL. In particular, an infinite-state multi-agent program is reduced to a finite model by predicate abstraction, where predicates are gener-
ated automatically via SMT calls. In a related field, [16] puts forward an SMT-based approach to verifying purely epistemic properties of programs.

To conclude, to the best of our knowledge, this is the first contribution that tackles the model checking problem for ATL via first-order reasoning.

2 Background

In this section we introduce standard terminology and notation on First-order Logic (Sec. 2.1) and Alternating-time Temporal Logic (Sec. 2.2). We also introduce ATL-live, a fragment of ATL expressive enough to represent reachability goals.

2.1 First order logic

Formulas in First-order Logic (FOL) are built from individual variables and function and relation symbols, by using logical connectives [19]. The set of logical connectives and their meaning in FOL is fixed. The following is a standard set of logical connectives for FOL: the Boolean connectives negation ¬ and implication →, the universal quantifier ∀, and equality =. On the other hand, the set of function and relation symbols, as well as their semantics, depends on the context. Since for different applications different sets of function and relation symbols are used, we consider the following:

Definition 1 (Base) A base for FOL is a pair \(B = (\mathcal{F}, \mathcal{R}) \) such that \(\mathcal{F} \) is a set of function symbols and \(\mathcal{R} \) is a set of relation symbols.

Every function and relation symbol has a corresponding arity. Constants are function symbols with arity 0. A (function or relation) symbol \(X \) with arity \(m \), for \(m \geq 0 \), is denoted by \(X^m \).

We now recall the syntax of first-order logic (including equality). In the rest of the paper we fix a set \(\text{Var} \) of (individual) variables.

Definition 2 (FO-formulas) Given a base \(B \), the formulas \(\varphi \) in the first-order language \(\mathcal{L}_B \) are defined by the following BNF:

\[
\begin{align*}
t &::= x \mid f(t_1, \ldots, t_m) \\
\varphi &::= P(t_1, \ldots, t_m) \mid t = t' \mid \neg \varphi \mid \varphi \land \varphi \mid \forall x \varphi
\end{align*}
\]

where \(x \in \text{Var}, f / m \in \mathcal{F}, P / m \in \mathcal{R}, t_1, \ldots, t_m \) is an \(m \)-tuple of terms, and \(t, t' \) are terms.

The constants \(\top \) and \(\bot \), disjunction \(\lor \), conjunction \(\land \), implication \(\rightarrow \), and the existential quantifier \(\exists \) can be introduced as standard.

The semantics of FOL formulas is defined by using interpretations. An interpretation fixes the meaning of a base by assigning values to variables, function and relation symbols.

Definition 3 (Interpretation) Given a base \(B = (\mathcal{F}, \mathcal{R}) \), an interpretation is a pair \(I = (D, \mathcal{I}) \), where \(D \) is a non-empty set, the domain of \(I \), and \(\mathcal{I} \) is a mapping that assigns:

1. to every function symbol \(f / m \) in \(\mathcal{F} \) of arity \(m \geq 0 \), a total \(m \)-ary function \(f^I \) from \(D^m \) to \(D \);
2. to every relation symbol \(R / m \) in \(\mathcal{R} \), a subset \(R^I \subseteq D^m \).

By Def. 3, the case of 0-ary symbols is dealt with as follows:

- every 0-ary \(c \in \mathcal{F} \) is assigned an element \(c^I \in D \);
- every 0-ary \(p \in \mathcal{R} \) is assigned either true or false.

To fix the meaning of individual variables, we introduce the notion of assignment as a function \(\sigma \) from variables in \(\text{Var} \) to elements in \(D \).

Definition 4 (Satisfaction of FOL formulas) Given a base \(B = (\mathcal{F}, \mathcal{R}) \), an interpretation \(I = (D, \mathcal{I}) \), and an FO-formula \(\varphi \in \mathcal{L}_B \), we inductively define whether \(I \) satisfies \(\varphi \) under assignment \(\sigma \), or \((I, \sigma) \models \varphi \), as follows:

\[
\begin{align*}
& (I, \sigma) \models R(t_1, \ldots, t_m) \iff (t_1^I, \ldots, t_m^I) \in R^I \\
& (I, \sigma) \models t_1 = t_2 \iff t_1^I = t_2^I \\
& (I, \sigma) \models \neg \varphi \iff (I, \sigma) \not\models \varphi \\
& (I, \sigma) \models \varphi \land \varphi' \iff (I, \sigma) \models \varphi \land (I, \sigma) \models \varphi' \\
& (I, \sigma) \models \forall x \varphi \iff \text{for all } u \in D, (I, \sigma^u) \models \varphi
\end{align*}
\]

We say that a formula \(\varphi \) is true in \(I \), or \(I \models \varphi \), iff \((I, \sigma) \models \varphi \) for all assignments \(\sigma \), or equivalently, \(I \) is a model of \(\varphi \).

We now present the standard notion of semantic entailment in FOL, which plays a key role in the rest of the paper.

Definition 5 (Entailment) Let \(\Gamma \) be a set of FOL formulas and \(\varphi \) an FOL formula. \(\Gamma \) entails \(\varphi \), or \(\Gamma \models \varphi \), iff every interpretation that satisfies all the formulas in \(\Gamma \) also satisfies \(\varphi \):

\[\Gamma \models \varphi \text{ iff for every } I, \text{ if } I \models \psi \text{ for every } \psi \in \Gamma, \text{ then } I \models \varphi \]

Semantic entailment checking for FOL is recursively enumerable [8]. This means that semantic entailment checking for FOL is not computable in general, but there is procedure that given \(\Gamma \) and \(\varphi \) produces a proof in the case where \(\Gamma \models \varphi \). However, many first-order theories of interest, such as the real and rational numbers, and the monadic and guarded fragments, have been proved decidable [17, 18].

2.2 Alternating-time Temporal Logic and ATL-live

In this section we recall syntax and semantics of Alternating-time Temporal Logic ATL and present the ATL-live fragment.

To fix the notation, we assume that \(Ag \) is the set of agents and \(AP \) the set of atomic propositions. We denote the length of a tuple \(u \) as \(|u| \) and its i-th element as \(u_i \). For \(i \leq |u| \), let \(u_{\geq i} \) be the suffix \(u_i, \ldots, u_{|u|} \) of \(u \) starting at \(u_i \) and \(u_{\leq i} \) its prefix \(u_1, \ldots, u_i \).

Syntax. To reason about the strategic abilities of agents, we use the Alternating-time Temporal Logic ATL [2].

Definition 6 (ATL) Formulas in ATL are defined as follows, where \(q \in AP \) and \(A \subseteq Ag \):

\[\varphi \ ::= q \mid \neg \varphi \mid \varphi \land \varphi \mid \langle A \rangle X \varphi \mid \langle A \rangle ! \varphi \]

As customary, a formula \(\langle A \rangle \varphi \) is read as “the agents in coalition \(A \) have a strategy to achieve \(\varphi \)”. The meaning of linear-time operators next \(X \) and until \(U \) is standard [23]. Operators \([A] \), release \(R \), finally \(F \), and globally \(G \) can be introduced as usual. For instance, \(\langle A \rangle F \varphi \equiv \langle A \rangle TU \varphi \) and \([A]G \varphi \equiv \neg ([A]F \neg \varphi) \).
Introduced in [35], we introduce a novel fragment of ATL that we call ATL-live, as it contains the ATL connectives that are normally used to express liveness properties. In particular, ATL-live can be model checked directly using an FOL reasoner. Formally, ATL-live is defined as follows.

Definition 7 (ATL-live) Temporal (φ) and propositional (ϕ) formulas in ATL-live are defined as follows, where $q \in AP$ and $A \subseteq Ag$:

\[
\varphi ::= \phi \land \varphi \mid \neg \varphi \mid [\mathcal{A}] \varphi \mid [A] X \varphi \mid [A] X \varphi U \varphi \mid [\mathcal{A}] \varphi U \varphi \\
\phi ::= q \mid \neg \phi \mid \phi \land \phi
\]

Formulas in ATL-live are all and only the temporal formulas.

ATL-live disallows a temporal connective to be in the scope of negation \neg, which can only be applied to propositional formulas. E.g., the ATL formula $\neg([\mathcal{A}]p U q)$ is not allowed, but $\langle [\mathcal{A}] \rangle \langle \neg p \rangle U q$ is. Equivalently, ATL-live can be seen as the fragment of the Alternating Modal μ-calculus restricted to the μ operator (where negation is only applied to atoms).

Semantics. To interpret formulas in ATL and ATL-live we make use of game-like structures.

Definition 8 (CGS) A concurrent game structure (CGS) is a tuple $\mathcal{G} = \langle Ag, S, s_0, \{Act_a\}_{a \in Ag}, \tau, L \rangle$ such that

- Ag is a set of agents;
- S is a non-empty set of states and $s_0 \in S$ is the initial state;
- for every agent $a \in Ag$, Act_a is a non-empty set of actions, and $ACT = \prod_{a \in Ag} Act_a$ is the joint set of actions;
- $\tau: S \times ACT \rightarrow S$ is the transition function;
- $L: S \rightarrow 2^AP$ is the labelling function.

A path is a (finite or infinite) sequence $\pi \in S^* \cup S^\omega$ such that for every $j \geq 1$, $\pi_{j+1} = \tau(\pi_j, \delta_j)$ for some joint action $\delta_j \in ACT$. We distinguish between finite paths, or histories, and infinite paths, or computations.

When giving a semantics to ATL formulas we assume that agents are endowed with strategies.

Definition 9 (Perfect Recall Strategy) A strategy with perfect recall for agent $a \in Ag$ is a function $f_a: S^* \rightarrow Act_a$.

By Def. 9 any strategy for agent a has to return actions that are enabled for a. Then, given a joint strategy $F_A = \{ f_a \mid a \in A \}$, comprising of one strategy for each agent in coalition A, a path p is F_A-compatible iff for every $j \geq 1$, $p_{j+1} = \tau(p_j, \delta_j)$ for some joint action δ_j such that for every $a \in A$, $\alpha_a = f_a(p_{<j})$. Let $out(s, F_A)$ be the set of all such F_A-compatible paths from s.

We can now assign a meaning to ATL (including ATL-live) formulas on CGS.

Definition 10 (Satisfaction) The satisfaction relation $|=_{\mathcal{G}}$ for a CGS \mathcal{G}, state $s \in S$, path $p \in S^\omega$, atom $q \in AP$, and ATL formula ϕ is defined as follows:

\[
\begin{align*}
(G, s) &| q \iff q \in L(s) \\
(G, s) &| \neg \varphi \iff (G, s) \not|= \varphi \\
(G, s) &| \varphi \land \varphi' \iff (G, s) = | \varphi \text{ and } (G, s) = | \varphi' \\
(G, s) &| [\mathcal{A}]X \varphi \iff \text{for some } F_A, \text{for all } p \in out(s, F_A),
\end{align*}
\]

Definition 11 (Model Checking) Given a CGS \mathcal{G} and a formula ϕ, the model checking problem amounts to determine whether $\mathcal{G} |= \phi$.

**Definition 12 (Substructure) A CGS $\mathcal{G}^1 = \langle Ag^1, S^1, s_0^1, \{Act_a^1\}_{a \in Ag^1}, \tau^1, L^1 \rangle$ is a substructure of $\mathcal{G}^2 = \langle Ag^2, S^2, s_0^2, \{Act_a^2\}_{a \in Ag^2}, \tau^2, L^2 \rangle$, denoted by $\mathcal{G}^1 \subseteq \mathcal{G}^2$, iff $Ag^1 = Ag^2$, $S^1 \subseteq S^2$, $s_0^1 = s_0^2$, $\{Act_a^1\}_{a \in Ag^1} = \{Act_a^2\}_{a \in Ag^2}$, $\tau^1 = \tau^2$, $L^1 \subseteq L^2$.

By Def. 10 and 12, we immediately obtain the following result.

Proposition 1 Suppose $\mathcal{G}^1 \subseteq \mathcal{G}^2$ and φ is an ATL formula over L^1, we have that if $\mathcal{G}^1 \models \varphi$ then $\mathcal{G}^2 \models \varphi$.

To conclude this section we present a toy example that illustrates the formal machinery introduced thus far.

Example 1 The CGS \mathcal{G} depicted in Fig. 1 describes the Train Gate Controller scenario [2]. A train t is outside a gate and it can choose to either stay outside the gate (move i), in s_1, or request (move r) to enter the gate and proceed to s_1. At s_1, the controller c can choose to either grant (move g) the train permission to enter the gate, or deny (move d) the trains request, or delay (move i) the handling of the request. At s_3, the train can choose to either enter the gate (move e) or abandon (move a) its permission to enter the gate. At s_2, the controller can choose to either keep the gate closed (move k) or reopen (move o) the gate to new requests.

More formally, the CGS \mathcal{G} is comprised of the agents in $Ag = \{t, c\}$, atoms in $AP = \{out, req, grant, in\}$, states in $S = \{s_1, s_2, s_3, s_4\}$ with initial state s_1, actions in $Ac_t = \{r, e, a, i\}$ and $Ac_c = \{g, d, k, o\}$. Transitions are given as in Fig. 1.

As an example of specifications in ATL, consider the formula $\varphi = \langle t \rangle F i n$. This formula can be read as: the train t has a strategy such

\[
(G, p_0) \models \varphi
\]

for some strategy F_A, for all paths $p \in out(s, F_A)$, for some $k \geq 1$, $(G, p_k) \models \varphi$, and for all $j, 1 \leq j < k$ implies $(G, p_j) \models \varphi$.

A formula φ is true in a CGS \mathcal{G}, or $\mathcal{G} \models \varphi$, iff $\mathcal{G}, s_0 \models \varphi$. Further, the set of states of a CGS \mathcal{G} that satisfies an ATL formula φ is denoted by $[\varphi] = \{ s \in S \mid (G, s) \models \varphi \}$. We omit \mathcal{G} when clear from the context.

We now state the model checking problem within the present setting.
that sooner or later it enters the gate. Notice that \(\varphi \) is false in \(G \) because, without the grant of controller, \(t \) can not be certain to reach state \(s_2 \). Another example of specification can be \(\varphi = \langle[G]\langle t, c \rangle \rangle \langle t, c \rangle \rangle \langle t, \text{Fin} \rangle \), that is whenever the train is out of the gate, the train and the controller can cooperate so that the train will enter the gate.

3 Translating CGS into FOL Theories

In this section we introduce a translation from concurrent game structure to FOL theories, starting with the underlying base.

Definition 13 Given sets \(A_g \) of agents and \(A_P \) of atoms, the base \(B = (F, R) \) is such that

- \(F \) is empty;
- \(R = \{Ag_B/1, S_B/1, S_{AB}/1, T_B/\{\langle Ag \rangle + 2\}\} \cup \{Q_B/1 | q \in A_P\} \cup \{Act_{ab}/1 | a \in Ag\} \)

We omit subscript \(B \) whenever it is clear from the context.

We use the same notation for elements in CGS and \(B \) the distinction will be clear from the context.

First-order formulas over the base in Def. 13 can be used to represent the various components of a CGS: the state space, the initial states, the set of actions for each agent, the transition function, and the labelling function. Then, suitable interpretations satisfying the FOL formulas on \(B \) represent a CGS. Observe that the relation symbols themselves do not represent a CGS, but an interpretation satisfying suitable FOL formulas determines the content of these relation symbols, and therefore represents a CGS. Then, the set of all the satisfying interpretations forms a class of CGSs. We call a set of formulas that represent a class of CGSs a declarative model [34].

Definition 14 (Declarative model) A declarative model is a pair \(D = (B, \Gamma) \), where \(B \) is a base according to Def. 13, and \(\Gamma \) is a set of FOL formulas over \(B \) that includes well-formedness constraints on CGS (e.g., “the set of states is not empty”).

More precisely, \(\Gamma \) includes the following formulas:

1. \(\exists x S_0(x) \)
2. \(\forall x (S_0(x) \rightarrow S(x)) \)
3. \(\forall x, x' (S_0(x) \land S_0(x') \rightarrow x = x') \)
4. \(\forall a \in Ag \exists x \text{Act}_a(x) \)
5. \(\forall x \forall y_1, \ldots, y_{\text{Act}_a}(x) \land \text{Act}_1(y_1) \land \ldots \land \text{Act}_a(y_{\text{Act}_a}(x)) \rightarrow \exists x'(S(x') \land T(x, y_1, \ldots, y_{\text{Act}_a}(x)')) \)
6. \(\forall x \forall y_1, \ldots, y_{\text{Act}_a}(x) \land S(x') \land \text{Act}_a(y_1) \land \ldots \land \text{Act}_a(y_{\text{Act}_a}(x)) \land S(x'') \land T(x, y_1, \ldots, y_{\text{Act}_a}(x)) \rightarrow x' = x'' \)

By Def. 14 we immediately obtain the following result.

Lemma 2 Every interpretation \(\mathcal{I} \) of a declarative model \(D = (B, \Gamma) \) is a CGS \(\mathcal{G}_D = \langle A_g, S, \text{Act}_a, S_{0g}, \{\text{Act}_a\} \rangle \) of \(D \) where

- \(A_g = \{u \in D_2 | u \in Ag_D\} \);
- \(S = \{u \in D_2 | u \in S_D\} \);
- \(S_{0g} = \{u \in D_2 | u \in S_{0g}\} \);
- for every \(a \in Ag \), \(\text{Act}_a \) is \(\{u \in D_2 | u \in \text{Act}_a\} \);
- for \(s, s' \in S_a, \alpha \in ACT_T, s' = \tau_{s}(s, \alpha) \) iff \(s \in S_{BT} \), \(s' \in S_{BT} \);
- for every \(a \in Ag_D, \alpha \in \text{Act}_a, x \) and \((s, \alpha, s') \in T_{D_2} \);
- for \(q \in A_P, s \in S, q \in L_2(s) \) iff \(s \in Q_D \).

In particular, since interpretation \(\mathcal{I} \) satisfies \(\Gamma \), the CGS \(\mathcal{G}_D \) is well-defined, i.e., it satisfies Def. 8.

The Class of CGSs \(\mathcal{G}_D \) represented by some interpretation \(\mathcal{I} \) of a declarative model \(D = (B, \Gamma) \) is denoted by

\[
\mathcal{G}_D = \{ \mathcal{G}_D | \text{ for all } \psi \in \Gamma, \mathcal{I} \models \psi \}
\]

Inclusion of the well-formedness formulas in \(\Gamma \) insures that every member of \(\mathcal{G}_D \) is a valid CGS. There are many reasons for a set of FOL formulates to have more than one satisfying interpretation: the use of uninterpreted functions (relations) can result in more than one satisfying interpretation. Moreover, under-constraining a model makes it possible to have non-isomorphic CGSs that are satisfying interpretations.

By Def. 14 two model checking problems can be studied.

Definition 15 (Universal and Existential Model Checking Problem)

The universal (resp. existential) model checking problem for a declarative model \(D \) and an ATL formula \(\varphi \), denoted by \(D \models \varphi \) (resp. \(D \models \varphi \)), is defined as checking whether all (resp. some) CGSs in \(\mathcal{G}_D \) satisfy \(\varphi \):

\[
D \models \varphi \iff \text{for all } \mathcal{G} \in \mathcal{G}_D, \mathcal{G} \models \varphi
\]

\[
D \models \exists \varphi \iff \text{for some } \mathcal{G} \in \mathcal{G}_D, \mathcal{G} \models \varphi
\]

Example 2 An example of declarative model \(D = (B, \Gamma) \) can have:

- Base \(B = (F, R) \):
 - \(F \) is empty;
 - \(R = \{Ag/1, S/1, S_{0}/1, Act_{1}/1, Act_{2}/1, T/4, Out/1, Req/1, Grant/1, In/1\} \);
- Constraints \(\Gamma \) includes formulas (1)-(6) in Def. 14 as well as:
 - \(Ag(t) \land Ag(c) \)
 - \(S(s_t) \land S(s_1) \land S(s_2) \land S(s_3) \)
 - \(S_0(s_1) \)
 - \(Act_t(r) \land Act_t(c) \land Act_t(a) \land Act_t(i) \)
 - \(Act_t(a) \land Act_t(d) \land Act_t(k) \land Act_t(a) \land Act_t(i) \)
 - \(T(s_1, i, i, s_1) \land T(s_1, i, s_1) \land T(s_1, i, d, s_1) \land T(s_1, i, s_1) \land T(s_3, a, i, s_1) \land T(s_3, e, i, s_2) \land T(s_2, i, o, s_1) \land T(s_2, i, k, s_2) \)
 - \(Out(s_1) \land Req(s_1) \land Grant(s_2) \land In(s_3) \)

Given \(B \) and \(\Gamma \) as defined above, we have the declarative model \(D = (B, \Gamma) \) in which one of its interpretations is the CGS \(\mathcal{G}_D \) described in Example 1.

4 Model Checking ATL-live

In this section we tackle universal model checking for ATL-live formulas. We also show how this approach can be applied to existential model checking by analysing the relation between these two problems.

To model check a declarative model \(D = (F, R, \Gamma) \) and an ATL-live formula \(\varphi \), we make use of functions theory and axiom to create an enriched version of \(D \). More in detail, for each subformula \(\psi \) of \(\varphi \), we add a new (characteristic) predicate \(P_\psi \) to \(R \), and to \(\Gamma \) the set of constraints related to \(\psi \), as follows.
Definition 16 (Theory) Given a declarative model D and an ATL-live formula ϕ, $\text{theory}(D, \phi)$ is inductively defined as follows.

Case ϕ of D

$$q \models D$$
$$\exists \psi \Rightarrow (q, \mathcal{R} \cup \{P_s \mid 1\}) \cup \text{ axiom}(\phi)$$
where $(\mathcal{F}, \mathcal{R}, \Gamma) = \text{theory}(D, \psi)$

The function theory is recursive in the structure of ϕ. For each operator in theory, the constraints that are added to model D by theory are defined by the (non-recursive) function axiom. For every subformula ϕ' of ϕ, axiom introduces one or two FOL formulas for each new predicate $P_{s'}$, which are then added to D. Observe that the complexity of theory is linear in the size of ϕ.

Example 3 Given the declarative model of Example 2, $D = (\mathcal{F}, \mathcal{R}, \Gamma)$ and formula $\varphi = (\forall t) \text{Fin}$ as analysed in Example 1, we construct a new declarative model $D' = (\mathcal{F}, \mathcal{R}', \Gamma')$, where $\mathcal{R}' = \mathcal{R} \cup \{P_{s'} \mid 1\}$ and $\Gamma' = \text{union of } \Gamma$ with the following constraints:

1. $\forall s(\mathcal{S}(s) \land P_{\alpha}(s)) \Rightarrow P_{\beta}(s)$
2. $\forall s(\mathcal{S}(s) \land \exists s', \alpha, \exists \mathcal{T}(\mathcal{S}(s') \land \mathcal{Act}_{\alpha}(\alpha_1) \land \mathcal{Act}_{\alpha}(\alpha_2) \land (T(s, \alpha_1, \alpha_2, s') \land P_{\beta}(s')) \Rightarrow P_{\beta}(s))$.

Intuitively, (1) states that every state that satisfies in, also satisfies $(\forall t) \text{Fin}$. While, (2) states that if from state s there exists an action for t such that for all the actions of c the resulting state s' satisfies $(\forall t) \text{Fin}$, then s also satisfies $(\exists t) \text{Fin}$.

Recall that a declarative model is basically a set of constraints that captures CGSs and its models define a class of CGSs, as shown in Lemma 2. Given a declarative model D, every $G \in C(K(D))$ can be seen both as a CGS and as an interpretation of D. As a consequence, both $\varphi_1 | G$ and P_{β} are sets of states: the extension of $\varphi_1 | G$ is determined by the semantics of ATL and considering G as a CGS, whereas the extension of P_{β} is determined by the semantics of FOL and considering G as a model of D. Hereafter, we explore the properties of the declarative model generated by the function theory.

First, we analyse the relationship between the class $C(K(D))$ of CGSs defined by the declarative model D and $\text{theory}(D, \phi)$. The declarative model $\text{theory}(D, \phi)$ contains a labelling predicate P_{β} and some constraints for every subformula ϕ' of ϕ. As a result, every CGS in $C(K(D, \phi))$ can be converted into a CGS in $C(K(D)$ by simply dropping the extra labelling predicates, as stated in the following lemma, whose proof is immediate.

Lemma 3 Let D be a declarative model and ϕ an ATL-live formula, for every $G \in C(K(D, \phi))$ there exists a G' in $C(K(D)$ that is a substructure of G, i.e., $G' \subseteq G$.

Next we investigate the relationship between the set $[\varphi]$ of states that satisfy an ATL-live formula φ and the set of states defined by the labelling predicate P_{β}. If ϕ is a propositional formula, as defined in Def. 7, then for every G in $C(K(\text{theory}(D, \phi)))$, the sets $[\varphi]_G$ and P_{β} are equal. This is due to the fact that the constraints that are defined in Def. 17 for these connectives are necessary and sufficient to characterize the set of states that satisfy ϕ.

Lemma 4 Let D be a declarative model and ϕ a propositional formula as per Def. 7. Then, for all $G \in C(K(\text{theory}(D, \phi)))$, $[\varphi]_G = P_{\beta}$.

Proof. The proof is by induction on the structure of ϕ. In the following cases, we assume that $G \in C(K(\text{theory}(D, \phi)))$.

Base case: suppose $\phi = q$, for $q \in \text{AP}$. By Def. 10 and 17, for every state $s, s \in [\varphi]_G$ iff $q \in L(s)$, iff $s \in P_{\beta}$. Therefore, $[\varphi]_G = P_{\beta}$.

Induction step: according to the structure of ϕ, two cases are distinguished, with $[\varphi_1]_G = P_{\beta_1}$ and $[\varphi_2]_G = P_{\beta_2}$ as induction hypotheses:

1. Suppose $\phi = \neg \varphi_1$. By Def. 10, for every state $s, s \in [\neg \varphi_1]_G$ iff $s \notin [\varphi_1]_G$. By induction hypothesis, $s \notin [\varphi_1]_G$ iff $s \notin P_{\beta_1}$ and by Def. 17, $s \notin P_{\beta}$ iff $s \in P_{\beta}$. Therefore, $[\neg \varphi_1]_G = P_{\beta}$.

2. Suppose $\phi = \varphi_1 \land \varphi_2$. By Def. 10, for every state $s, s \in [\varphi_1 \land \varphi_2]_G$ iff $s \in [\varphi_1]_G$ and $s \in [\varphi_2]_G$. By induction hypothesis, $s \in [\varphi_1]_G$ and $s \in [\varphi_2]_G$ iff $s \in P_{\beta_1}$ and $s \in P_{\beta_2}$, and by Def. 17, $s \notin P_{\beta}$ and $s \notin P_{\beta}$ iff $s \in P_{\beta_1 \land \beta_2}$. Therefore, $[\varphi_1 \land \varphi_2]_G = P_{\beta_1 \land \beta_2}$.

A result similar to Lemma 4 can be proved for general ATL-live formulas. A key difference, however, is that now the set $[\varphi]_G$ is a subset of P_{β} rather than being equal. This is because the constraints that are added to D by theory do not completely characterize $[\varphi]_G$: they are necessary but not sufficient. As a result, the set P_{β} includes $[\varphi]_G$ and possibly some other states.

Lemma 5 Let D be a declarative model and ϕ an ATL-live formula. Then, for all $G \in C(K(\text{theory}(D, \phi)))$, $[\varphi]_G \subseteq P_{\beta}$.

Proof. The proof is by induction on the structure of ϕ. In the following cases, we assume that $G \in C(K(\text{theory}(D, \phi)))$.

Base case: suppose that ϕ is a propositional formula ϕ. By Lemma 4 we have $[\varphi]_G = P_{\beta}$. In particular, $[\varphi]_G \subseteq P_{\beta}$.

Induction step: according to the structure of ϕ, six cases are distinguished, with $[\varphi_1]_G \subseteq P_{\beta_1}$ and $[\varphi_2]_G \subseteq P_{\beta_2}$ as induction hypotheses:
1. Suppose $\varphi = \varphi_1 \lor \varphi_2$. By Def. 10, for every s, $s \in [\varphi_1 \lor \varphi_2]$ if and only if $s \in [\varphi_1]$, $s \in [\varphi_2]$ or $s \in [\varphi_1] [\varphi_2] [\varphi_1 \lor \varphi_2]$. By the induction hypotheses, if $s \in [\varphi_1]$ (resp. $s \in [\varphi_2]$) then $s \in [\varphi_1]$, and by Def. 17, $s \in [\varphi_1 \lor \varphi_2]$ if $s \in [\varphi_1] [\varphi_2]$. Therefore, $[\varphi_1 \lor \varphi_2] \subseteq [\varphi_1] [\varphi_2] [\varphi_1 \lor \varphi_2]$.

2. The case for $\varphi = \varphi_1 \land \varphi_2$ is similar to (1).

3. Suppose $\varphi = \langle \Gamma \rangle X \varphi'$. By the semantics of ATL, for every s, $s \in [\langle \Gamma \rangle X \varphi']$ if for some actions $\alpha_1, \ldots, \alpha_n$, for all actions $\alpha_{n+1}, \ldots, \alpha_{|\Gamma|}$, we have $s \in [\langle \Gamma \rangle X \varphi']$ if and only if $s \in [\langle \Gamma \rangle X \varphi']$.

4. Suppose $\varphi = \langle \Gamma \rangle \varphi_1 U \varphi_2$. By the semantics of ATL, $s \in [\langle \Gamma \rangle \varphi_1 U \varphi_2]$ if for some strategy F_1, for all outcomes $p \in [s]$, there exists $j \geq 1$ such that $s_j \in [\varphi_2]$, and for all $i < j, s_i \in [\varphi_1]$. We prove by induction on j, the number of steps required to get to a state that satisfies φ_2, to prove that $s \in [\langle \Gamma \rangle \varphi_1 U \varphi_2]$. We assume that $s \in [\langle \Gamma \rangle \varphi_1 U \varphi_2]$.

5. The case for $\varphi = \langle \Gamma \rangle U \varphi_2$ is similar to (3).

6. The case for $\varphi = [\Gamma] \varphi$ is similar to (4).

As a result, Lemma 5 extends Lemma 4 to the whole ATL-live, but we only have inclusion and not equality between the interpretations of formula φ and relation symbol P_φ.

The next lemma relates every CEGS in $\text{CK}(D)$ to a CEGS in $\text{CK}(\text{theory}(D, \varphi))$.

Lemma 6 Let D be a declarative model and φ an ATL-live formula. For every $G \in \text{CK}(D)$ there exists $G' \in \text{CK}(\text{theory}(D, \varphi))$ such that $s_0 = s_{\varphi}$ and $P_{G'} = [\varphi']$.

Proof. Suppose $G \in \text{CK}(D)$. Let G' be an interpretation with the same domain as G. For each symbol in the base of D, G' has the same value as G, and for every subformula φ' of φ, G' assigns $[\varphi']$ to symbol P_φ, thus $P_{G'} = [\varphi']$. According to the semantics of ATL, the constraints that are added to D for each subformula φ' of φ by function theory, are satisfied by sets $[\varphi']_G$. Thus, G' is a model of $\text{CK}(\text{theory}(D, \varphi))$, i.e., $G' \in \text{CK}(\text{theory}(D, \varphi))$.

In the next theorem we present our main contribution by combining the results we have proved so far: universal model checking of ATL-live formulas can be reduced to checking semantic entailment in FOL.

Theorem 7 Let D be a declarative model and φ a ATL-live formula. Then,

$$D \models \varphi \iff \text{theory}(D, \varphi) \models \forall s(S_0(s) \rightarrow P_\varphi(s))$$

Proof. We prove that (i) if $D \models \varphi$ then $\text{theory}(D, \varphi) \models \forall s(S_0(s) \rightarrow P_\varphi(s))$, and (ii) if $D \not\models \varphi$ then $\text{theory}(D, \varphi) \not\models \forall s(S_0(s) \rightarrow P_\varphi(s))$.

(i) Assume $D \models \varphi$. We show that every model of $\text{theory}(D, \varphi)$ also satisfies $\forall s(S_0(s) \rightarrow P_\varphi(s))$, that is, for all $G \in \text{CK}(\text{theory}(D, \varphi))$, $s_0 \in P_{G'}$. By Lemma 3, for every $G \in \text{CK}(\text{theory}(D, \varphi))$, there exists $G' \in \text{CK}(D)$ that is a substructure of G. Since $G' \in \text{CK}(D)$ and $\forall \varphi$, we have that $G' \models \varphi$. Since G' is a substructure of G, $G' \models \varphi$ implies $G \models \varphi$, and by the semantics of ATL, $G \models \varphi$ implies $s_0 \in [\varphi']$. Then, by Lemma 5, $s_0 \in [\varphi']$ implies $s_0 \in P_{G'}$. As a result, for every $G' \in \text{CK}(\text{theory}(D, \varphi))$, $s_0 \in P_{G'}$ as required.

(ii) Assume $D \not\models \varphi$. We show that there exists a model of $\text{theory}(D, \varphi)$ that does not satisfy $\forall s(S_0(s) \rightarrow P_\varphi(s))$, that is, there exists $G \in \text{CK}(\text{theory}(D, \varphi))$ such that $s_0 \not\in P_{G'}$. Since $D \not\models \varphi$, there exists a CEGS $G \in \text{CK}(D)$ that does not satisfy φ, that is, $s_0 \not\in [\varphi']$. Since $G \in \text{CK}(D)$, by Lemma 6, there exists a CEGS $G' \in \text{CK}(\text{theory}(D, \varphi))$ such that $s_0 = s_{\varphi}$ and $[\varphi'] = P_{G'}$. Since $s_0 \not\in P_{G'}$, we have that $s_0 \not\in [\varphi']$. Thus, we obtain that for $G' \in \text{CK}(\text{theory}(D, \varphi))$, $s_0 \not\in P_{G'}$ as required.

By Theorem 7 we can reduce a universal model checking instance $D \models \varphi$ to verify the entailment between $\text{theory}(D, \varphi)$ and $\forall s(S_0(s) \rightarrow P_\varphi(s))$. In principle, the latter check can be performed automatically by an SMT solver.

We conclude this section by elaborating on the existential model checking problem in Def. 15. To solve this latter problem using FOL reasoning, we remark that a CEGS G satisfies an ATL formula $\neg \varphi$ if G does not satisfy φ. Note that the coimplication holds because we consider CEGS with a single initial state. More formally, we state next result, which follows immediately by the semantics of ATL.

Lemma 8 Let G be a CEGS and φ an ATL formula. Then,

$$G \models \neg \varphi \iff \neg G \models \varphi$$

By Lemma 8, we can prove the following corollary:

Corollary 9 Let D be a declarative model and φ an ATL-live formula. Then,

$$D \models \exists s \varphi \iff \neg D \models \forall s \neg \varphi$$

By Corollary 9 the existential model checking of a negated ATL-live formula can be reduced to universal model checking.

5 Maximality of ATL-live

In Theorem 7 we showed that model checking ATL-live can be reduced to semantic entailment in FOL. However, the logical connectives $\langle A \rangle G$, $[A] G$, and \neg over temporal connectives are not included in ATL-live. We show that model checking these three connectives is not reducible to FOL entailment, by reducing the complement of the halting problem on an empty tape for a deterministic
Turing machines to universal model checking of formulas of type \(\langle \text{Ag}\rangle \neg G\varphi\) and \([\text{Ag}] \neg G\varphi\). The complement of the halting problem is not recursively enumerable, but FOL entailment is. Therefore, universal model checking of \(\langle \text{Ag}\rangle \neg G\varphi\) and \([\text{Ag}] \neg G\varphi\) cannot be reduced to checking entailment in FOL. We call this result the *maximality of ATL*-live. We start by introducing deterministic Turing machines.

Definition 18 (DTM) A deterministic Turing machines is a tape \(M = (V, \Sigma, \delta)\), where \(V = \{v_1, \ldots, v_n\}\) is a finite set of states, \(\Sigma = \{B, 0\}\) is the tape alphabet, and \(\delta\) is the transition function from \(V \times \Sigma\) to \(V \times \Sigma \times \{L, R\}\).

A DTM \(M = (V, \Sigma, \delta)\) is assumed to start in state \(v_0\). We consider \(M\) to have halted if it reaches state \(v_0\). The tape is one way infinite. In the initial state, the read/write head is on the left-most square of the tape, and every square on the tape is blank \((B)\).

The intuition behind reducing the complement of the halting problem on an empty tape for a DTM to universal model checking of \(\langle \text{Ag}\rangle G\neg \varphi\) and \([\text{Ag}] G\neg \varphi\) is that the set of all the configurations of a DTM can be seen as the state space for a CGS and the transition relation of this CGS can be derived from the transition function of the DTM. Since the underlying DTM is deterministic, this CGS has only one computation path, and therefore, satisfying \(\langle \text{Ag}\rangle G\neg \varphi\) and \([\text{Ag}] G\neg \varphi\) is equivalent.

Lemma 10 Let \(M = (V, \Sigma, \delta)\) be a DTM. The complement of the halting problem on an empty tape for \(M\) is reducible to universal model checking of a formula \(\langle \text{Ag}\rangle G\neg \varphi\).

Proof. To prove this result, we define a declarative model \(D_M\) based on \(M\) such that \(D_M\) universally satisfies formula \(\langle \text{Ag}\rangle G\neg \varphi\) iff \(M\) does not halt on an empty tape. To encode \(M\) as a declarative model \(D_M = (B, \Gamma)\), we use the base \(B = \langle \mathcal{F}, \mathcal{R} \rangle\) such that:

- \(\mathcal{F} = \{0, \text{inc}/1, \text{dec}/1, V/1, H/1\}\);
- \(\mathcal{R} = \{B/2, S_0/1, T/\text{Ag} \ 2, \text{halt}/1\}\).

The constant 0 represents the corresponding number. The function symbols \text{inc}/1 and \text{dec}/1 are used to model increment and decrement on natural numbers. We can refer to a natural number \(n\) by applying \(n\) times \text{inc} to 0. In this lemma and the following, natural numbers are shorthands of their representations using base \(B\). Natural numbers are used to represent configurations of \(M\): the position of the head, the current state of \(M\), and to point to different squares on the tape. The expression \(V(t) = i\) intuitively represents that the state of \(M\) at step \(t\) is \(v_i\), and \(H(t) = i\) represents that the head of \(M\) at step \(t\) is on the \(i\)-th square. The binary relation symbol \(B(t, i)\) holds if at step \(t\) the \(i\)-th square is blank. The relation symbols \(S_0\) and \(T\) are used to model the initial state and transition function, while \(\text{halt}\) is a relation symbol to represent the halting state.

In the declarative model \(D_M = (B, \Gamma)\), the constraints in \(\Gamma\) consist of 5 parts:

1. Formulas to encode the intended semantics of 0, \text{inc}, and \text{dec}:
 - \(\forall i (\text{inc}(i) \neq 0)\)
 - \(\forall i, i' (\text{inc}(i) = \text{inc}(i') \rightarrow i = i')\)
 - \(\forall i (i \neq 0 \rightarrow (\exists i' (\text{inc}(i') = i)))\)
 - \(\text{dec}(0) = 0\)

5 For simplicity, we make use of function symbols in the reduction. However, notice that these are just shorthands, as they can be expressed by using relation symbols and identity, thus conforming to Def. 13.

- \(\forall i (\text{dec} (\text{inc}(i)) = i)\)
- \(\forall i (i \neq 0 \rightarrow \text{inc} (\text{dec}(i)) = i)\).
2. A formula stating that at each step of computation at most one position of the tape can be changed: \(\forall t, i (H(t) \neq i \rightarrow (B(t, i) \leftrightarrow B(\text{inc}(t), i)))\).
3. Formulas to encode the initial configuration of \(M\):
 - \(V(0) = 0\): at step 0, \(M\) is at state \(v_0\);
 - \(H(0) = 0\): at step 0, the tape head of \(M\) is at position 0;
 - \(\forall i (B(0, i))\): at step 0, every position of the tape is blank.
4. Formulas to encode the transition function \(\delta\): for every pair in \(V \times \Sigma\) we have a formula that mimics the computation of \(M\).
5. Formulas for the initial state, transition function, and halting state of the corresponding CGS. We use natural numbers as the state space of the CGS. The configuration of \(M\) at state \(t\) is represented by \(V(t), H(t),\) and \(B(t, \cdot)\):
 - The initial state: \(\forall t (S_0(t) \rightarrow t = 0)\);
 - The transition function: \(\forall t, t', x_1, \ldots, x_{|\text{Ag}|} (T(t, x_1, \ldots, x_{|\text{Ag}|}, t') \leftrightarrow \text{inc}(t))\);
 - The halting states: \(\forall t (\text{halt}(t) \leftrightarrow V(t) = n)\).

We now claim that the following holds:

\[D_M \models \forall \langle \text{Ag}\rangle G\neg \text{halt} \iff M \text{ does not halt on an empty tape}. \]

\(\iff\) \(D_M \models \forall \langle \text{Ag}\rangle G\neg \text{halt}\) implies that every CGS \(G \in C\mathcal{K}(D_M)\) satisfies \(\langle \text{Ag}\rangle G\neg \text{halt}\). The standard interpretation of natural numbers, which satisfies \(D_M\), corresponds to the computation of \(M\). Since \(\langle \text{Ag}\rangle G\neg \text{halt}\) means that there exists a path along which \(M\) is never true, and the DTM \(M\) is deterministic with only one path, we can conclude that \(M\) does not halt on an empty tape.

\(\Rightarrow\) By induction on the number of steps, we can prove that if at step \(t, M\) is at state \(v_i\), every CGS \(G \in C\mathcal{K}(D_M)\) satisfies \(V(t) = i\). Assuming \(M\) does not halt on an empty tape, we can conclude that every CGS \(G \in C\mathcal{K}(D_M)\) has an infinite path \(0, 1, 2, \ldots\), where none of them is the halting state \(v_n\). Therefore, every \(G \in C\mathcal{K}(D_M)\) satisfies \(\langle \text{Ag}\rangle G\neg \text{halt}\), that is, \(D_M \models \forall \langle \text{Ag}\rangle G\neg \text{halt}\).

Next result can be proved by using the same construction and reduction as for Lemma 10.

Lemma 11 Let \(M = (V, \Sigma, \delta)\) be a DTM. The complement of the halting problem on an empty tape for \(M\) is reducible to universal model checking of a formula \([\text{Ag}] G\).

We conclude this section by stating our maximality result.

Theorem 12 (Maximality of ATL-live) The temporal part of ATL-live cannot be extended with \([\text{Ag}] G\), \([\text{Ag}] \neg G\), or \(\neg\) over temporal objectives, for universal model checking in FOL.

6 Conclusions

In this paper we presented ATL-live, a fragment of ATL for which the model checking problem is reducible to semantic entailment in FOL. ATL-live comprises two parts: propositional and temporal. The propositional part contains all Boolean connectives, whereas the temporal part includes all strategic operators that are normally used to express liveness properties. Our model checking technique accepts as input a set of formulas, called a declarative model, where every satisfying interpretation is a CGS. As a result, a declarative model...
represents in general a class of CGSs. In this setting, we studied two decision problems: universal and existential model checking. In uni-
versal (resp. existential) model checking we want to check whether all (resp. some) CGSs in the relevant class satisfy a given ATL for-
mula. We showed how our encoding of ATL-live in FOL can be used to solve universal model checking and how existential model check-
ing can be reduced to the latter in some cases. Finally, we proved that ATL-live is maximal in the sense that if any other ATL connective is added, non-FOL reasoning techniques would be required.

As future work, we plan to study the use of SMT solvers and de-
cidable fragments of FOL for model checking ATL-live formulas. After this step, we envisage to extend our framework in two differ-
ent and interesting directions: to infinite models (such as data-aware systems [5]) and formulas with arithmetic operators.

ACKNOWLEDGEMENTS

F. Belardinelli acknowledges the support of ANR JCJC Project SVeDaS (ANR-16-CE40-0021).

REFERENCES

shop on Logic of Programs, volume 151 of LNCS, pp. 52–71. Springer-

[10] L. De Moura and N. Bjørner, ‘Satisfiability modulo theories: intro-

[16] N. Gorogiannis, F. Raimondi, and I. Bourouin, ‘A novel symbolic ap-
proach to verifying epistemic properties of programs’, International Joint Conferences on Artificial Intelligence, (2017).

[19] M. R. A. Huth and M. D. Ryan, Logic in Computer Science: Mod-
ing and Reasoning (2nd edition), Cambridge Univer-

[21] W. Jamroga, M. Knopik, and D. Kurpiewski, ‘Model checking the
SELENE e-voting protocol using multi-agent logics’, in Electronic Vot-
ing - Third International Joint Conference, E-Vote-ID 2018, Bre-

[24] P. Kouvaros and A. Lomuscio, ‘Parameterised verification for multi-

[28] J. J. Ch., Meyer and W. van der Hoek, Epistemic Logic for AI and Com-

[31] Ph. Schnoebelen, ‘The complexity of temporal logic model check-

[35] A. Vakili and N. A. Day, ‘Reducing CTL-live model checking to first-

[36] A. Vakili and N. A. Day, ‘Reducing CTL-live model checking to se-
matic entailment in first-order logic (version 1)’, Cheriton School of Comp.
