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LAX-WENDROFF CONSISTENCY OF FINITE VOLUME SCHEMES

FOR SYSTEMS OF NON LINEAR CONSERVATION LAWS:

EXTENSION TO STAGGERED SCHEMES

T. Gallouët1, R. Herbin2 and J.-C. Latché3

Abstract. We prove in this paper the Lax-Wendroff consistency of a general finite volume con-
vection operator acting on discrete functions which are possibly not piecewise-constant over the
cells of the mesh and over the time steps. It yields an extension of the Lax-Wendroff theorem
for general colocated or non-colocated schemes. This result is obtained for general polygonal or
polyhedral meshes, under assumptions which, for usual practical cases, essentially boil down to a
flux-consistency constraint; this latter is, up to our knowledge, novel and compares the discrete flux
at a face to the mean value over the adjacent cell of the continuous flux function applied to the
discrete unknown function. We first briefly show how this result copes with multipoint colocated
schemes on general meshes. We then apply it to prove the consistency of a finite volume discreti-
sation of a convection operator featuring a (convected) scalar variable and a (convecting) velocity
field, with a staggered approximation, i.e. with a cell-centred approximation of the scalar variable
and a face-centred approximation of the velocity.
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1. Introduction

The well-known Lax-Wendroff theorem [11] states that, on uniform 1D grids, if the approximate solutions
of a flux-consistent and conservative cell-centred finite volume (FV) scheme for a system of conservation
laws converge a.e. and boundedly as the mesh and time steps tend to zero, then the limit is a weak solution
of the conservation law; we call this property “Lax-Wendroff consistency” (or LW-consistency for short);
it is also stated in a different form [12, Section 12.10], with a BV bound assumption on the scheme. The
Lax-Wendroff theorem is an “if-theorem”, which fails to solve the convergence issue for FV schemes since
compactness is lacking. Nevertheless, it introduces two crucial tools for the analysis of FV schemes, namely
the conservativity and consistency of the numerical fluxes; note that this analysis cannot be handled by
the famous Lax-Richtmyer theorem, even in the linear case and even if the exact solution is assumed to be
regular, as soon as the mesh is non uniform, see e.g. [4] for more on this subject. Moreover, the Lax-Wendroff
theorem remains a useful tool to check whether a particular scheme gives a reasonable approximation when
no estimates on the approximate solutions are available to yield some compactness, such as in the case of
general hyperbolic systems. The Lax-Wendroff theorem was generalised to non uniform 1D or Cartesian
meshes in [3, Theorem 21.2]. In a recent work [1], the Lax-Wendroff theorem is extended to obtain some
error estimates for higher order schemes on uniform 1D meshes. The case of general (and, in particular,
unstructured) discretisations has been also been tackled over the past decades: [10], [6, Section 4.2.2] [2], [5].
In [2], a quasi-uniformity assumption is required on the mesh, but the flux is only required to be continuous,
while in [5], there is no uniformity assumption on the mesh but the flux is supposed to be locally Lipschitz
continuous or at least locally “Lipschitz-diagonal” continuous, see Section 3 below and [5, Remark 5.2]. In
all the above cited works, the scheme is supposed to be colocated, in the sense that the discrete unknowns
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are associated to the cells of the mesh, so these results may not be used directly to cope with staggered
approximations, for instance.

The aim of this paper is to address more general approximations, including those of co-located or staggered
type; indeed, we prove the LW-consistency of a generic finite volume convection operator acting on discrete
functions that are possibly not piecewise-constant over the cells of the mesh and over the time steps; the
result is otained under sufficient conditions which, in usual cases, turn to essentially boil down to a new flux
consistency requirement; this LW-consistency result is stated in Theorem 2.1 below. The flux consistency
constraint, formulated by Assertion (11), demands a control on the difference between the discrete flux at
a face (or edge) and the mean value over the adjacent cell of the continuous flux function applied to the
discrete unknown function. Theorem 2.1 is valid for general polygonal or polyhedral meshes without any
supplementary assumptions on the mesh; as a by product of this work, we thus also obtain a consistency
result for colocated schemes (i.e. schemes using only piecewise-constant per cell unknowns) with possibly
relaxed assumptions for the mesh compared to [5]. However, let us note that the proof that the assumption
(11) is satisfied is usually based on the control of the difference between the numerical solution and its space
or time translates, see [5, Section 4] and that these latter results may require some regularity assumptions
on the mesh, see also Remark 2.2.

This paper is organized as follows. We state and prove the general consistency result in Section 2. We
then apply it in Section 3 to the colocated case and then, in Section 4, to a staggered discretisation; precisely
speaking, we show the consistency of a finite volume discretisation of a nonlinear convection operator for a
scalar variable ρ of the form ∂tβ(ρ) + div(g(ρ)u), where β and g are regular functions and u is a velocity
field, and where we use a cell-centred approximation for ρ and a face-centred approximation of u.

2. The general LW-consistency result

The aim is to prove the LW-consistency of finite volume approximations of nonlinear convective terms
which appear in most models of fluid flow. The general context is the following. Given a numerical scheme
which yields some approximate solutions to the system of conservative partial differential equations, we
assume that these approximate solutions converge to some functions strongly in L1, and we wish to show
that the limit is indeed a solution to the system, at least in a weak sense. In order to do so, the usual idea is
to mutiply the numerical scheme by an interpolate of a smooth function, sum over the cells of the mesh and
over the time steps and show that passing to the limit, we get a weak formulation of the system of partial
differential equations. The theorem that we prove below is a mean to prove that one may indeed pass to the
limit in the terms that involve nonlinear convection operators. Let us begin with an example. Consider the
barotropic Euler equations, which read:

∂tρ̄+ div(ρ̄ū) = 0, (1a)

∂t(ρ̄ū) + div(ρ̄ū⊗ ū) +∇p̄ = 0, (1b)

where ρ̄ is the density, ū the velocity and p̄ the pressure, which, for barotropic flows, is a function of ρ̄ only:
p̄ = p(ρ̄). Here and in the remainder of the paper, we use overlined letters when referring to the solution
of the continuous problem, while non overlined letters will be used for discrete unknowns. This system of
equations is supplemented by an initial condition and suitable boundary conditions if Ω is bounded. An
entropy weak solution of the system satisfies the equations (1) and also satisfies (in a weak sense, which
includes the initial condition) the following entropy condition:

∂tĒ + div((Ē + p̄)ū) ≤ 0, with Ē =
1

2
ρ̄|ū|2 +H(ρ̄) and H(s) = s

∫
p(s)

s2
ds. (2)

The weak consistency of staggered finite volume schemes for this system of equations discretised on multi-
dimensional Cartesian or unstructured meshes has been the object of several recent papers, see e.g. [8, 9].
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The system (1)-(2) may be written as

C̄1(ρ̄, ū) = 0, (3a)

C̄2(ρ̄, ū) +∇p̄ = 0, (3b)

C̄3(Ē, ū) + div(p̄ū) ≤ 0, (3c)

with C̄1(ρ̄, ū) = ∂tρ̄ + div(ρ̄ū), C̄2(ρ̄, ū) = ∂t(ρ̄ū) + div(ρ̄ū ⊗ ū), and C̄3(Ē, ū) = ∂tĒ + div(Ēū). In the
above cited works, the system is discretised with an explicit or implicit in time scheme, and the convection
operators C1 and C2 by a first or second order finite volume scheme. In fact, the system of the barotropic
equations can be discretised by different schemes: explicit or implicit, colocated meshes or staggered meshes,
using a Riemann solver or using an equation-by- equation procedure. In all cases, the consistency study
will have to deal with each of the discrete non linear convection operator Ci associated to C̄i. The present
work aims at simplifying the proofs of consistency by giving a general result for any nonlinear convection
term, discretised on a colocated or staggered mesh, thereby extending our previous result of [5] to staggered
meshes. Theorem 2.1 below is an efficient tool to this purpose; it may be used for any of the terms in (3),
and is specifically useful to tackle the terms featuring discrete variables with different space approximations,
as the operators Ci of these equations in case of staggered discretizations. We emphasize that both implicit
or explicit schemes may be addressed, since the proof deals separately with the discrete time operator and
the discrete space divergence operator.

Let us then turn to the general setting; we suppose that:

Ω ⊂ R
d, d = 1, 2, 3, T ∈ (0,+∞), p ∈ N

∗, β ∈ C0(Rp,R), f ∈ C0(Rp,Rd). (4)

We consider the conservative convection operator C̄(Ū) acting on a vector Ū ∈ Rp of functions, real-valued,
and defined (in the distributional sense), for Ū ∈ L∞(Ω× (0, T ),Rp), by:

C̄(Ū) : Ω× (0, T ) → R,

(x, t) 7→ ∂t(β(Ū))(x, t) + div(f(Ū))(x, t). (5)

Note that, here and throughout the paper, we use β(Ū) (resp. f(Ū)) to denote the function β ◦ Ū obtained
by composition of β and Ū (resp. f and Ū), so, for instance, β(Ū)(x, t) stands for β(Ū(x, t)). In the above
example of the barotropic Euler equations (1), we have, for i = 1, 2, C̄i(Ū) = ∂t(βi(Ū)) + div(f i(Ū)), with
Ū = (ρ̄, ū), β1(Ū) = ρ̄, f1(Ū ) = ρ̄ū, β2(Ū) = ρ̄ū, and f2(Ū) = ρ̄ū ⊗ ū (in fact, to match precisely the
formalism of Equation (4), these last two functions have to be considered as d functions, one for each velocity
component, associated to d convection operators, which has no consequence for the matter at hand).

Let us denote by P a mesh of the domain Ω, consisting of a set of disjoint open polyhedral or polygonal
subsets of Ω, called cells, whose union of closures is Ω̄. To avoid cumbersome notations, we assume that
any pair of adjacent cells shares a whole face (in 3D) or edge (in 2D), and not only a part of it; however
this assumption is not necessary for the result of Theorem 2.1 to hold. Throughout the paper and when
the space dimension is not specified, we use ”face” to define the interface between two cells; for a face ζ,
|ζ| stands for its (d − 1)-dimensional measure in 2D and 3D, and we set |ζ| = 1 by convention in one space
dimension. The notation |P | stands for the d-dimensional measure of a cell P . We denote by δ(P) the space
step, defined by

δ(P) = max
P∈P

diam(P ).

Let F denote the set of faces of the mesh, and Fint denote the set of faces that are not located on the boundary
∂Ω; for a given cell P ∈ P, let F(P ) be the set of faces of P . Let t0 = 0 < t1 < . . . < tN = T be a partition of
(0, T ), denoted by T; for such a partition T, we define the time step by δt = max {tn+1 − tn, n ∈ J0, N − 1K},
where J0, N − 1K denotes the set of integers n such that 0 ≤ n ≤ N − 1.

The unknown is supposed to be represented by a function U ∈ L∞(Ω × (0, T ),Rp). For a colocated FV
scheme, it is the piecewise constant function defined by U(x, t) = Un

K for x ∈ K and t ∈]tn, tn+1[. For a FV
staggered scheme for a system of equations, each component of U is piecewise constant on each associated
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P

Q

ζ = P |Q

nP,ζ

Figure 1. An example of a two-dimensional mesh and associated notations: P and Q are
two generic cells, P,Q ∈ P with P the set of cells, ζ = P |Q is the face separating P and Q,
ζ ∈ F, with F the set of faces and nP,ζ is the normal to ζ pointing outward P .

mesh. But U could also be a piecewise affine function, for instance if say, a DG scheme is used. We emphasize
that for non colocated schemes, some unknowns are not piecewise-constant over the cells of the mesh and
over the time steps. For instance, when using staggered discretisations in fluid flow simulations, if P is a
primal cell, the velocity is possibly discontinuous along surfaces or lines included in P (see the example
developed in Section 4). The discrete convection operator that we consider here takes the following form:

C(U) : Ω× (0, T ) → R,

(x, t) 7→ C(U)nP , for x ∈ P, P ∈ P, and t ∈ (tn, tn+1), n ∈ J0, N − 1K,

with

C(U)nP = (ðtβ)
n
P +

1

|P |

∑

ζ∈F(P )

|ζ| F n
ζ · nP,ζ ,

where
{
βn
P , P ∈ P, n ∈ J0, NK

}
is a family of real numbers,

(ðtβ)
n
P =

βn+1
P − βn

P

tn+1 − tn
, n ∈ J0, N − 1K, (6)

{
F n

ζ , ζ ∈ F, n ∈ J0, N − 1K
}
is a family of real vectors of Rd and nP,ζ stands for the normal vector to ζ

pointing outward P . Note that this form of the flux implies that the scheme is conservative. Of course, the
real numbers

{
βn
P , P ∈ P, n ∈ J0, NK

}
and

{
F n

ζ , ζ ∈ F, n ∈ J0, N − 1K
}
are related to the unknown U ; it is

the object of Theorem 2.1 below to state precisely the assumptions that must be satisfied by these quantities
to ensure the consistency of the discrete convection operator.

Theorem 2.1 (LW-consistency for a multi-dimensional conservative convection operator). Under the as-

sumptions (4), let (P(m),T(m))m∈N be a sequence of possibly non uniform space-time discretisations, with

δ(P(m)) and δt(m) tending to zero as m → +∞, and let (U (m))m∈N be the associated sequence of discrete
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functions. We suppose that the sequence (U (m))m∈N is bounded and converges to a limit:

∃ Cu ∈ R
∗
+ s.t. ‖U (m)‖∞ ≤ Cu, ∀m ∈ N, (7)

∃ Ū ∈ L∞(Ω× (0, T ),Rp) s.t. ‖U (m) − Ū‖L1(Ω×(0,T ),Rp) → 0 as m → +∞. (8)

We also assume that the family {(β(m))nP , P ∈ P(m), n ∈ J0, N (m)K, m ∈ N} is bounded. In addition, let

U0 ∈ L∞(Ω,Rp) and let us suppose that, as m → +∞,

∑

P∈P
(m)
int

∫

P

(
(β(m))0P − β(U0)(x)

)
ϕ(x) dx → 0, for any ϕ ∈ C∞

c (Ω), (9)

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))nP − β(U (m))(x, t)

)
ϕ(x, t) dx dt → 0, for any ϕ ∈ C∞

c

(
Ω× [0, T )

)
, (10)

N(m)−1∑

n=0

∑

P∈P
(m)
int

diam(P )

|P |

∑

ζ∈F(P )

|ζ|

∫ tn+1

tn

∫

P

∣∣∣
(
(F (m))nζ − f(Um)(x, t)

)
· nP,ζ

∣∣∣ dx dt → 0, (11)

where P
(m)
int denotes the set of cells of P(m) that have no face on the boundary ∂Ω. Then, for any ϕ ∈

C∞
c (Ω× [0, T )),

∫ T

0

∫

Ω

C
(m)(U (m)) I(m)(ϕ)(x, t) dx dt → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx

−

∫ T

0

∫

Ω

(
β(Ū)(x, t) ∂tϕ(x, t) + f(Ū)(x, t) ·∇ϕ(x, t)

)
dx dt as m → +∞, (12)

where I(m)(ϕ) is an interpolate of ϕ defined a.e. by

I
(m)(ϕ)(x, t) = ϕn

P for x ∈ P and t ∈ (tn, tn+1),

with ϕn
P =

1

|P |

∫

P

ϕ(x, tn) dx, for P ∈ P and n ∈ J0, N − 1K. (13)

Before we give the proof of Theorem 2.1, let us first briefly comment on its assumptions.

Remark 2.2 (Flux consistency). The required flux consistency is stated by Assertion (11), which requires

the flux (F (m))nζ through a face ζ of a cell P to be close to the mean value over P of the actual flux
function f applied to the unknown. For a scheme involving only cell unknowns, for instance, the quantity

(F (m))nζ is generally a function of the unknowns in the cell P and in the neighbouring cells, and checking the

assumption (11) amounts to bound the difference between the unknowns and their translates. Note that,
while Theorem 2.1 holds for very general meshes, as we have already mentioned in the introduction, some
regularity assumptions on the sequence of meshes may be required at this step.
To clarify this point, let us consider a simple one-dimensional problem for the scalar unknown u, with
β(u) = f(u) = u, leading to the linear convection operator C(u) = ∂tu+∂xu, which we discretise with the first-
order explicit-in-time upwind scheme. Let us suppose that the discrete functions are defined by u(x, t) = un

P

for x ∈ P and t ∈ (tn, tn+1). Then, for x ∈ P and t ∈ (tn, tn+1), |((F
(m))nζ−f(Um)(x, t))·nP,ζ | = |(u(m))nP−−

(u(m))nP | where P
− is the left cell to P when ζ is its left face, and |((F (m))nζ −f(Um)(x, t))·nP,ζ | = 0 otherwise

(disregarding the boundary cells, according to the formulation of the theorem). Checking Assumption (11)
thus consists in proving that the term R(m) defined by

R(m) =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P ) |un
P − un

P− |

5



tends to zero as m tends to +∞. This is implied by the convergence in L1(Ω × (0, T )) of the sequence of
discrete solutions provided that the ratio |P |/|P−| is bounded independently of m for the sequence of meshes
under consideration [5, Section 4]. More elaborate example of application, using colocated then staggered
meshes, are provided below, in Sections 3 and 4 respectively.

Remark 2.3 (Disregarding boundary cells in Assumption (11)). Since the support of the test function ϕ
is compact in Ω × [0, T ), for δ(P(m)) small enough, ϕ vanishes in the boundary cells. Consequently, it is

clear from the proof of the theorem below (see the expression (15) of the term X
(m)
2 ) that boundary cells

may be excluded in the sum in Assertion (11). This is the reason why only the cells in P
(m)
int are considered

in Assumption (11). For numerical fluxes involving wider stencils (for instance in the case of higher order
schemes), one could in fact reduce the set of involved cells furthermore.

Remark 2.4 (Regularity of β and f). The proof of Theorem 2.1 holds if β and f are only continuous functions,
which is the assumption made in the present section; however, to prove Assertions (10) and (11), a locally
Lipschitz-diagonal continuity (see Definition 3.1 below) is often required, as in sections 3 and 4.

Remark 2.5 (Stronger convergence assumptions on {(β(m))m∈N}). In most situations, stronger convergence
properties hold for (β(m))m∈N, in the sense that the LW–convergence assumptions (9) and (10) are implied
by the following strong convergence asssumptions:

∑

P∈P
(m)
int

∫

P

|(β(m))0P − β(U0(x))| dx → 0 as m → +∞,

Nm−1∑

n=0

∑

P∈P
(m)
int

∫ tn+1

tn

∫

P

|(β(m))nP − β(U (m)(x, t))| dx dt → 0 as m → +∞.

This is the case, for instance, for the convection operators considered in Sections 3 and 4 below. However,
there are cases where the convergence of β(m) is only weak, see for instance the reconstructed kinetic energy
for the full compressible Euler equations in [8].

Remark 2.6 (On the interpolate of the test function). Note that in the definition (13) of I(m)(ϕ) in (12), the
quantities ϕn

P , n ∈ J0, NK, may be also defined as

ϕn
P =

1

|P |

∫

P

ϕ(x, tn+1) dx,

with minor changes in the arguments of the present section, essentially a slightly different assumption (10),
which reads:

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))n−1

P − β(U (m))(x, t)
)
ϕ(x, t) dx dt → 0, for any ϕ ∈ C∞

c

(
Ω× [0, T )

)
.

For instance, for a scalar problem, if the discrete function is defined as u(x, t) = un−1
P for x ∈ P and

t ∈ [tn−1, tn) (choice often used in explicit schemes) and βn−1
P is defined in the scheme as β(un−1

P ), this

assumption is trivially satisfied, since (β(m))n−1
P = β(U (m))(x, t) in P×(tn−1, tn), while checking the original

assumption (10) needs to bound the time translates of the discrete solution. This is however an easy task,
under a very mild regularity assumption for the time discretisation (see Section 4 below). The opposite
situation occurs (i.e. this is Assumption (10) which is now trivially satisfied) if the discrete function is
defined as u(x, t) = un

P for x ∈ P and t ∈ [tn−1, tn), which is often done for implicit schemes.
6



Proof of Theorem 2.1. Theorem 2.1 is the consequence of the two following lemmas, which prove respectively
the convergence of the time derivative part and the space derivative part. Let us decompose

∫ T

0

∫

Ω

C
(m)(U (m)) I(m)(ϕ)(x, t) dx dt = X

(m)
1 +X

(m)
2 , with

X
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

|P |(ðtβ
(m))nP ϕn

P , (14)

X
(m)
2 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ ϕn
P . (15)

Then, by Lemma 2.7 below,

X
(m)
1 → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx−

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt as m → +∞,

and by Lemma 2.8 below,

X
(m)
2 → −

∫ T

0

∫

Ω

f(Ū)(x, t) ·∇ϕ(x, t) dx dt as m → +∞,

which concludes the proof. �

Lemma 2.7 (LW-consistency, time derivative). Let the sequence (X
(m)
1 )m∈N be defined by (14). Then, under

the assumptions and notations of Theorem 2.1,

X
(m)
1 → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx−

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt as m → +∞.

Proof. By the definition (6) of ðnt β
(m)
P (x, t) and thanks to a discrete integration by parts, we get that

X
(m)
1 = −

∑

P∈P(m)

|P | (β(m))0P ϕ0
P −

N(m)∑

n=1

(tn − tn−1)
∑

P∈P(m)

|P | (β(m))nP
ϕn
P − ϕn−1

P

tn − tn−1
.

Let us write the first term of the right-hand side as

−
∑

P∈P(m)

|P | (β(m))0P ϕ0
P = −

∑

P∈P(m)

∫

P

(β(m))0P
(
ϕ0
P − ϕ(x, 0)

)
dx−

∑

P∈P(m)

∫

P

(β(m))0P ϕ(x, 0) dx.

On the one hand, the piecewise-constant function equal to ϕ0
P on each cell P ∈ P(m) converges to ϕ(x, 0) in

L∞(Ω) as m tends to +∞, and (β(m))0 is supposed to be bounded; the first integral at the right-hand side
thus tends to zero. Hence, invoking Assumption (9) for the second integral,

−
∑

P∈P(m)

|P | (β(m))0P ϕ0
P → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx as m → +∞.

Let the piecewise constant function ð
(m)
t ϕ : Ω× (0, T ) → Rd be defined by

ð
(m)
t ϕ(x, t) =

ϕn+1
P − ϕn

P

tn+1 − tn
for (x, t) ∈ P × (tn, tn+1).
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The function ð
(m)
t ϕ converges uniformly to ∂tϕ in L∞(Ω × (0, T )). The second term of X

(m)
1 may be

decomposed as

−

N(m)∑

n=1

(tn − tn−1)
∑

P∈P(m)

|P | (β(m))nP
ϕn
P − ϕn−1

P

tn − tn−1
= Y

(m)
1 + Y

(m)
2

with

Y
(m)
1 = −

N(m)∑

n=1

∑

P∈P(m)

∫ tn

tn−1

∫

P

(β(m))nP
(
ð
(m)
t ϕ(x, t)− ∂tϕ(x, t)

)
dx dt,

Y
(m)
2 = −

N(m)∑

n=1

∑

P∈P(m)

∫ tn

tn−1

∫

P

(β(m))nP ∂tϕ(x, t) dx dt.

Since the family {(β(m))nP , P ∈ P(m), n ∈ J0, N (m)K, m ∈ N} is assumed to be bounded, the uniform

convergence of ð
(m)
t ϕ to ∂tϕ yields that the sequence (Y

(m)
1 )m∈N tends to zero. Invoking the assumption

(10), the continuity of β and the convergence of (U (m))m∈N to Ū , we get that

lim
m→+∞

X
(m)
1 = lim

m→+∞
Y

(m)
2 = −

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt.

�

Lemma 2.8 (LW-consistency, space derivative). Let the sequence (X
(m)
2 )m∈N be defined by (15). Then,

under the assumptions and notations of Theorem 2.1,

X
(m)
2 → −

∫ T

0

∫

Ω

f(Ū)(x, t) ·∇ϕ(x, t) dx dt as m → +∞.

Proof. Since ϕ is compactly supported and since δ(P(m)) → 0 as m → 0, there exists M ∈ N such that

for m ≥ M , ϕn
P = 0 for all x ∈ P(m) \ P

(m)
int . Moreover, since for a face ζ separating P and P ′, one has

nP,ζ = −nP ′,ζ , we get that

X
(m)
2 =

N(m)−1∑

n=0

(tn − tn−1)
∑

P∈P
(m)
int

∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ ϕn
P =

N(m)−1∑

n=0

(tn − tn−1)
∑

Pint∈P(m)

An
P

with

An
P =

∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ (ϕn
P − ϕn

ζ ),

where ϕn
ζ denotes the mean value of ϕ(x, tn) over ζ. For any x ∈ P , t ∈ [tn, tn+1), we decompose An

P as

An
P = Bn

P (x, t) + Rn
P (x, t) with

Bn(x, t) =
∑

ζ∈F(P )

|ζ| f(U (m))(x, t) · nP,ζ (ϕn
P − ϕn

ζ ),

Rn
P (x, t) =

∑

ζ∈F(P )

|ζ|
(
(F (m))nζ − f (U (m))(x, t)

)
· nP,ζ (ϕn

P − ϕn
ζ ).

(16)
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Since
∑

ζ∈F(P )

|ζ| nP,ζ = 0, we have

Bn
P (x, t) = −

∑

ζ∈F(P )

|ζ| f (U (m))(x, t) · nP,ζ ϕn
ζ = −|P | f (U (m))(x, t) · (∇ϕ)nP ,

with (∇ϕ)nP =
1

|P |

∑

ζ∈F(P )

|ζ| ϕn
ζ nP,ζ =

1

|P |

∫

P

∇ϕ(x, tn) dx. (17)

Note that the piecewise constant function ∇
(m)ϕ : Ω× (0, T ) → Rd defined by

∇
(m)ϕ(x, t) = (∇ϕ)nP for (x, t) ∈ P × (tn, tn+1)

converges uniformly to ∇ϕ in L∞(Ω× (0, T ))d.
Owing to (16), we have

An
P =

1

(tn+1 − tn) |P |

(∫ tn+1

tn

∫

P

Bn
P (x, t) dx dt+

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt

)
,

and, thanks to (17),

X
(m)
2 =

N(m)−1∑

n=0

∑

P∈P
(m)
int

1

|P |

(∫ tn+1

tn

∫

P

Bn
P (x, t) dx dt+

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt

)

= −

∫ T

0

∫

Ω

f(U (m))(x, t) ·∇(m)ϕ(x, t) dx dt+

N(m)−1∑

n=0

∑

P∈P
(m)
int

1

|P |

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt. (18)

Then, thanks to the boundedness and convergence assumptions on U (m) and to the uniform convergence of

∇
(m)ϕ to ∇ϕ, the first term tends to −

∫ T

0

∫

Ω

f (Ū)(x, t) ·∇ϕ(x, t) dx dt as m → +∞. Since |ϕn
ζ − ϕn

P | ≤

Cϕ diam(P ), with Cϕ depending only on ϕ, we get, for any x ∈ P and t ∈ (tn, tn+1),

|Rn
P (x, t)| ≤ Cϕ

∑

ζ∈F(P )

|ζ|
∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ diam(P ).

The second term of the right-hand side of Relation (18) thus tends to 0 asm → +∞ thanks to the assumption
(11), which concludes the proof. �

3. Application to a colocated scheme

In this section, we apply Theorem 2.1 to a first specific case, namely the case of a convection operator for
a single scalar unknown ū, with a piecewise-constant discretisation of the unknown. We are going to prove
a general consistency result for multipoint schemes, assuming minimal regularity of the mesh.

The considered convection operator reads:

C̄(ū) : Ω× (0, T ) → R,

(x, t) 7→ ∂t(β(ū))(x, t) + div(f(ū))(x, t), (19)

where Ω ⊂ Rd, d = 1, 2, 3, T ∈ (0,+∞), β ∈ C0(R,R), f ∈ C0(R,Rd). The functions β and f are supposed
to be locally-Lipschitz. The discrete unknowns are (un

P )P∈P, n∈J0,N−1K and the discrete convection operator
9



reads:

C(u) : Ω× (0, T ) → R,

(x, t) 7→
β(un+1

P )− β(un
P )

tn+1 − tn
+

1

|P |

∑

ζ∈F(P )

|ζ| F n
ζ · nP,ζ , (20)

for x ∈ P, P ∈ P, and t ∈ (tn, tn+1), n ∈ J0, N − 1K.

For a face ζ of the mesh, we denote by Sζ a set of cells, and suppose that the flux F n
ζ reads

F n
ζ = F ζ,n

(
(un

L)L∈Sζ

)
.

The set Sζ is often referred to as the stencil of the scheme. We denote by (a)L∈Sζ
the family of real numbers

whose cardinal is the same as Sζ and whose elements are all equal to a. The flux is supposed to satisfy the
usual consistency assumption:

for a ∈ R, ∀ζ ∈ F, F ζ,n

(
(a)L∈Sζ

)
= f(a). (21)

In addition, we suppose the following local ”Lip-diag“ (for Lipschitz-diagonal) property of the flux:

Definition 3.1 (Local Lipschitz-diagonal continuity). The numerical flux function F ζ,n is said to be locally
Lipschitz-diagonal continuous, or Lip-diag, if for any bounded interval I ⊂ R, there exists CI ∈ R+ depending
only on I such that, for any n ∈ J0, N − 1K, for any face ζ ∈ F, for any family (uL)L∈Sζ

⊂ I, and for any P
adjacent cell to ζ,

∣∣F ζ,n

(
(un

L)L∈Sζ

)
− f (un

P )
∣∣ ≤ CI

∑

L∈Sζ

|un
L − un

P |. (22)

Note that this condition is weaker than the local Lipschitz-continuity of the numerical flux function F ζ,n.
For P ∈ P, we denote by N1(P ) the set of the neighbours of P , i.e. the cells of P sharing a face with P ; for
ℓ > 1, we define Nℓ(P ) as the set of the cells sharing a face with a cell of Nℓ−1(P ). We assume that there
exists ℓ̄ ∈ N such that

∀ζ ∈ F, for any cell P adjacent to ζ, Sζ ⊂ Nℓ̄(P ). (23)

The integer ℓ̄ characterizes the compactness of the stencil of the scheme. The initial value for the scalar
unknowm u is defined by

u0
P =

1

|P |

∫

P

u0(x) dx, ∀P ∈ P, (24)

where u0 is a given function of L1(Ω). Finally, we define the discrete function associated to the unknowns
as:

u(x, t) = un
P for x ∈ P, P ∈ P, t ∈ [tn, tn+1), n ∈ J0, N − 1K.

The consistency result for the discrete convection operator is given in the next lemma; it uses the following
regularity parameters of the mesh:

θ1(P) = max
P∈P

diam(P )d

|P |
, θ2(P) = max

{ |P |

|Q|
, P and Q adjacent cells of P

}
.

We also measure the regularity of the time discretisation by the parameter θ3(T) defined by

θ3(T) = max
1≤n≤N−1

{ tn+1 − tn
tn − tn−1

,
tn − tn−1

tn+1 − tn

}
.

10



Lemma 3.2 (Consistency, colocated scheme). Consider a sequence of space and time discretisations (P(m))m∈N

and (T(m))m∈N , with δ(P(m)) and δt(m) tending to zero; let (u(m))m∈N be an associated sequence of discrete

functions, and let C(m)(u(m)) be the associated sequence of discrete convection operators defined by (20). We

assume that for each m ∈ N, (21)-(24) hold with, in (23), ℓ̄ independent of m. We also suppose that

∃ θ ∈ R such that max{θ1(P
(m)), θ2(P

(m)), θ3(T
(m)), m ∈ N} ≤ θ, (25)

and that the number of faces of each cell of the meshes P(m) is bounded independently of m. Finally, we

suppose that the sequence (u(m))m∈N is bounded in L∞(Ω × (0, T )), and that, when m tends to +∞, it

converges in L1(Ω× (0, T )) to ū ∈ L∞(Ω× (0, T )). Then, for any function ϕ ∈ C∞
c (Ω× [0, T )),

∫ T

0

∫

Ω

C
(m)(U (m))(x, t) I(m)(ϕ) dx dt → −

∫

Ω

β(u0)(x) ϕ(x, 0) dx

−

∫ T

0

∫

Ω

(
β(ū)(x, t) ∂tϕ(x, t) +

(
f(ū)

)
(x, t) ·∇ϕ(x, t)

)
dx dt as m → +∞.

Proof. Let mu ∈ R and Mu ∈ R be two real numbers such that

mu ≤ (u(m))nP ≤ Mu, ∀P ∈ P
(m), n ∈ J0, N (m)K, ∀m ∈ N,

and let Cβ be the Lipschitz modulus of β over the interval [mu,Mu]. We check the assumptions of Theorem
2.1. The consistency of the initialization with the initial condition (Assumption (9)) follows from its definition
(24); indeed, for any ϕ ∈ C∞

c (Ω),

∣∣∣
∑

P∈P(m)

∫

P

(
(β(m))0P − β(u0)(x)

)
ϕ(x) dx

∣∣∣ ≤ Cβ ‖ϕ‖L∞(Ω)

∑

P∈P(m)

∫

P

|u0(x)− u0
P | dx,

and thus tends to zero for any function u0 ∈ L1(Ω). Since (β(m))nP = β((u(m))nP ), the left-hand side of
Assertion (10) reads, with ϕ ∈ C∞

c (Ω× [0, T )):

R
(m)
t =

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))nP − β(u(m))(x, t)

)
ϕ(x, t) dx dt

=
N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
β
(
(u(m))nP

)
− β

(
(u(m))n−1

P

))
ϕ(x, t) dx dt.

We thus have

|R
(m)
t | ≤ Cβ ‖ϕ‖L∞(Ω×[0,T ))

N(m)∑

n=1

(tn − tn−1)
∑

P∈P
(m)
int

|P | |(u(m))nP − (u(m))n−1
P |,

and thus R
(m)
t tends to zero thanks to the assumed regularity of the sequence of time discretisations, invoking

the bound of the time-translates of a converging sequence of functions of L1(Ω × (0, T )) stated by Lemma

A.1 in Appendix. We now check Assumption (11). For n ∈ J0, N (m)K, P ∈ P
(m)
int and ζ ∈ F(P ), let

Rn
P,ζ =

1

|P |

∫ tn+1

tn

∫

P

∣∣∣
(
(F (m))nζ − f(u(m))(x, t)

)
· nP,ζ

∣∣∣ dx dt

and let

R(m) =

N(m)−1∑

n=0

∑

P∈P
(m)
int

diam(P )
∑

ζ∈F

|ζ| Rn
P,ζ .
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By definition of the discrete flux and the discrete functions, we get:

Rn
P,ζ =

1

|P |

∫ tn+1

tn

∫

P

∣∣∣
(
F ζ,n

((
(u(m))nL

)
L∈Sζ

)
− f

(
(u(m))nP

))
· nP,ζ

∣∣∣ dx dt.

Thanks to Assumption (22), we thus have

Rn
P,ζ ≤ (tn+1 − tn) C[mu,Mu]

∑

L∈Sζ

|un
L − un

P |.

The remainder term R(m) is thus a collection of differences between the values taken by the unknown in two
different cells. In order to apply Lemma A.3 of the appendix, we need to evaluate, for P ∈ P(m), the sum ωP

of the weights multiplying the jumps where (u(m))nP appears. We first notice that, thanks to the assumed

regularity of the mesh, for Q ∈ P(m) and ζ a face of Q, diam(Q) |ζ| ≤ diam(Q)d ≤ θ |Q|. For P to appear in
a difference associated to a face of a cell Q, we need, by assumption, that P ∈ Nℓ̄(Q); this in turn requires
that Q ∈ Nℓ̄(P ). The sum ωP thus satisfies:

ωP ≤ θ
∑

L∈Nℓ̄(P )

|L|,

and, invoking once again the regularity constraints on the mesh:

ωP ≤ θℓ̄+1 card(Nℓ̄(P )) |P |.

The proof is thus complete thanks to Lemma A.3, since we have supposed that the number of faces of the
cells is uniformly bounded, and then so is card(Nℓ̄(P )). �

4. An example of application for staggered discretisations

The interest of Theorem 2.1 lies in the fact that it may deal with terms combining several variables,
associated to different meshes and time discretisations. A typical exemple of a such a case is the balance
equation for the entropy in barotropic compressible flows (2), where the entropy E is a nonlinear function of
the density ρ and the velocity u which, in staggered discretisation, are approximated on different meshes, and
may also be evaluated at different time levels. Hence, Theorem 2.1 is a suitable tool to prove the consistency
of this equation. In this section, we focus on a similar but simpler problem, namely a staggered discretisation
of a convection operator combining the time derivative of the function of a single scalar variable and a space
divergence term, with a flux obtained as the product of another function of this scalar variable with the
velocity.

We suppose that Ω is an open bounded polygonal set of R2, and consider the following convection operator:

C(Ū) : Ω× (0, T ) → R,

(x, t) 7→ ∂t(β(q̄))(x, t) + div
(
g(q̄) v̄

)
(x, t), (26)

with Ū = (q̄, v̄) : Ω × (0, T ) → R × R2, f (Ū) = f(q̄, v̄) = g(q̄) v̄, where β : R → R and g : R → R are
locally Lipschitz-continuous real functions. Note that, for instance, the convection term of Equation (1a)
may be written as (26) with Ū = (ρ̄, ū), β(s) = s and g(s) = s.

In order to discretise this convection operator, we consider two types of staggered arrangements. In both
arrangements, the scalar unknowns are located at the centre of the cells. However, these arrangements
differ in the use of the vector unknowns. The first discretisation uses the whole velocity vector unknown
on each edge of the mesh; this corresponds to the Rannacher-Turek (RT) discrete unknowns in the finite
element setting [13]. The second discretisation uses only the normal component of the velocity on each edge;
this latter arrangement of the discrete unknowns is very often referred to as the Marker-and-Cell (MAC)
scheme [7]. Hence we will refer to the first arrangement as the RT case, and the second as the MAC case.
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Such discretisations are called staggered and are widely used in computational fluid dynamics; an example
of the implementation of a staggered discretisation for the solution of the barotropic and full Euler equations
may be found e.g. in [8, 9].

We suppose that the mesh is composed either of general quadrangles (RT case), or of rectangles (MAC
case). We recall that F stands for the set of edges of the mesh, and the internal edge separating the cells P
and Q is denoted by ζ = P |Q. This mesh will be referred to in the following as the primal mesh.

We also introduce now one or two dual meshes, depending on the case.

- RT case - In this case, the (unique) dual mesh consists in a new partition of Ω indexed by the
elements of F, i.e. Ω = ∪ζ∈FDζ . For an internal edge ζ = P |Q, the set Dζ is supposed to be a subset
of P ∪Q and we define DP,ζ = Dζ ∩P , so that Dζ = DP,ζ ∪DQ,ζ (see Figure 2); for an external edge
ζ of a cell P , Dζ is a subset of P , and Dζ = DP,ζ . The cells (Dζ)ζ∈F are referred to as the dual or
diamond cells, and DP,ζ as half dual cells or half diamond cells. For a rectangular cell P , we define
DP,ζ as the simplex having the mass centre of P as vertex and the edge ζ as basis; this definition
is extended to general primal meshes by supposing that |DP,ζ| is still equal to |P |/4 and that the
sub-cells connectivities (i.e. the way the half-dual cells share a common edge) is left unchanged. Note
that the actual geometry of the dual cells does not need to be specified (and a dual cell may not be a
polytope, a dual edge being possibly curved).

P

Q

P

Q

ζ = P |Q
D
Q,ζ

D
P,ζ

Figure 2. Primal and dual meshes and associated notations for the quadrangular mesh
and Rannacher-Turek like unknowns.

- MAC case - In this case, two dual meshes are considered, each of them consisting in a partition of Ω
indexed by the vertical and horizontal elements of F, i.e. Ω = ∪ζ∈F(i)Dζ , i = 1, 2, where F(1) (resp.

F(2)) denotes the set of vertical (resp. horizontal) edges. The cells (Dζ)ζ∈F are still referred to as
the dual cells. They are no longer diamond shaped; indeed, a half dual cell DP,ζ is now half of the
rectangle P with side ζ (see Figure 3). As in the former case, for an internal edge ζ = P |Q, the dual
cell Dζ is the subset of P ∪Q defined as Dζ = DP,ζ ∪DQ,ζ ; for an external edge ζ of a cell P , Dζ is
a subset of P , and Dζ = DP,ζ .

The scalar unknown q is associated to the primal cells:

q(x, t) = qnP for x ∈ P, P ∈ P, t ∈ [tn, tn+1), n ∈ J0, N − 1K.

The unknowns corresponding to the vector-valued unknown v are located at the centre of the edges in the
RT case; in the MAC case, the unknowns associated to the i-th component of v are located at the centre of
the edges of the i-th dual mesh. Hence the associated approximate vector function reads:
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M

N P

Q

ζ = M|Q

ζ′ = N|P

κ = M|N κ′ = P|Q

Dζ

D′
ζ

M

N P

Q

ζ′

ζ

Dκ Dκ′

M

N P

Q

κ κ′

Figure 3. Primal and dual meshes and associated notations for the MAC case. - Left: the
primal cells; the edges ζ and ζ′ belong to F(1) and the edges κ and κ′ to F(2) - Center: the
dual cells associated to F(1) - Right: the dual cells associated to F(2).

- RT case – the whole vector unknown is associated to each dual cell :

v(x, t) = vn
ζ for x ∈ Dζ , ζ ∈ F, t ∈ [tn, tn+1), n ∈ J0, N − 1K.

- MAC case – The i-th component of the vector unknown is associated to the cells of the i-th dual
mesh, so that v(x, t) = (v1(x, t), v2(x, t))

t where, for i = 1, 2,

vi(x, t) = vnζ , for x ∈ Dζ, ζ ∈ F(i) and t ∈ [tn, tn+1), n ∈ J0, N − 1K.

Let e(i) denote the i-th unit vector of the canonical basis of R2; with the notations of the previous section,
the considered discrete convection operator reads:

CP(q,v)
n
P = (ðtβ)

n
P +

1

|P |

∑

ζ∈F(P )

|ζ| F n
ζ · nP,ζ , with βn

P = β(qnP ) and F n
ζ = f (qnζ ,v

n
ζ ) = g(qnζ ) v

n
ζ

where vn
ζ is

{
the vector of discrete unknowns in the RT case,

defined as vnζ e(i) for ζ ∈ F(i), i = 1 or 2, in the MAC case,

and, for ζ = P |Q, qnζ stands for a convex combination of qnP and qnQ. For instance the upwind choice would be
qnζ = qnP if vnζ ≥ 0 and qnζ = qnQ otherwise. Note that for the LW-consistency result, any convex combination
works, but this is not so for the stability of the scheme, for which some unpwinding is required.

The initial value for the scalar unknown q is defined by

q0P =
1

|P |

∫

P

q0(x) dx. (27)

The consistency result for the discrete convection operator is given in the next lemma; it uses the same
regularity parameters of the mesh as in the colocated case, which we recall:

θ1(P) = max
P∈P

diam(P )2

|P |
, θ2(P) = max

{ |P |

|Q|
, P and Q adjacent cells of P

}
.

Note that in the MAC case (in fact, for a Cartesian grid), the regularity parameter θ1(P) controls the ratio
between the two dimensions (i.e. the height and the width) of a cell. For a rectangular computational
domain, we thus observe that the ratio |ζ|/|ζ′|, for (ζ, ζ′) ∈ (F(i))2, i = 1, 2, is bounded by θ1(P)

2, which is
a quasi-uniformity property of the mesh. This also implies that θ2(P) ≤ θ1(P)

2, and so the second regularity
parameter is useless. It may easily be checked that similar relations holds for a general MAC scheme, i.e. a

14



union of matching Cartesian grids, with powers of θ1(P) possibly higher than 2. Hence, the regularity of a
MAC mesh (or of a Cartesian grid) may be equivalently measured by

θ(P) = max
{ h̄(1)

h(2)
,
h̄(2)

h(1)

}
,

with, for i = 1, 2, h̄(i) = max{|ζ|, ζ ∈ F(i)} and h(i) = min{|ζ|, ζ ∈ F(i)}.

We also measure the regularity of the time discretisation by the parameter θ3(T) defined by

θ3(T) = max
1≤n≤N−1

{ tn+1 − tn
tn − tn−1

,
tn − tn−1

tn+1 − tn

}
.

Lemma 4.1 (Consistency, staggered scheme). Let a sequence of discretisations (P(m))m∈N and (T(m))m∈N be

given, with δ(P(m)) and δt(m) tending to zero, and let (q(m),v(m))m∈N be the associated sequence of discrete

functions. We suppose that

∃ θ ∈ R such that max{θ1(P
(m)), θ2(P

(m)), θ3(T
(m)), m ∈ N} ≤ θ. (28)

We suppose that the sequences (q(m))m∈N and (v(m))m∈N are bounded in L∞(Ω×(0, T )) and L∞(Ω×(0, T ))2

respectively, and that, when m tends to +∞, they converge in Lp(Ω×(0, T )) and Lp(Ω×(0, T ))2, 1 ≤ p < +∞,

to q̄ ∈ L∞(Ω× (0, T )) and v̄ ∈ L∞(Ω× (0, T ))2 respectively. Then, for any function ϕ ∈ C∞
c (Ω× [0, T )),

∫ T

0

∫

Ω

C
(m)(U (m))(x, t) I(m)(ϕ) dx dt → −

∫

Ω

β(q0)(x) ϕ(x, 0) dx

−

∫ T

0

∫

Ω

(
β(q̄)(x, t) ∂tϕ(x, t) +

(
g(q̄) v̄)

)
(x, t) ·∇ϕ(x, t)

)
dx dt as m → +∞.

Proof. In this proof, we denote by Cβ and Cg the Lipschitz modulus of β and g respectively on the interval
[mq,Mq], where mq ∈ R and Mq ∈ R are such that

mq ≤ (q(m))nP ≤ Mq, ∀P ∈ P
(m), n ∈ J0, N (m)K, ∀m ∈ N.

The proof of this lemma relies on Theorem 2.1. The consistency of the initialization with the initial
condition (Assumption (9)) follows from its definition (27); indeed, for any ϕ ∈ C∞

c (Ω),

∣∣∣
∑

P∈P(m)

∫

P

(
(β(m))0P − β(q0)(x)

)
ϕ(x) dx

∣∣∣ ≤ Cβ ‖ϕ‖L∞(Ω)

∑

P∈P(m)

∫

P

|q0(x)− q0P |,

and thus tends to zero for any function q0 ∈ L1(Ω). Since (β(m))nP = β((q(m))nP ), the left-hand side of
Assertion (10) reads, with ϕ ∈ C∞

c (Ω× [0, T )):

R
(m)
t =

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))nP − β(U (m))(x, t)

)
ϕ(x, t) dx dt

=
N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
β
(
(q(m))nP

)
− β

(
(q(m))n−1

P

))
ϕ(x, t) dx dt.

We thus have

|R
(m)
t | ≤ Cβ ‖ϕ‖L∞(Ω×[0,T ))

N(m)∑

n=1

(tn − tn−1)
∑

P∈P
(m)
int

|(q(m))nP − (q(m))n−1
P |,
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and thus R
(m)
t tends to zero thanks to the assumed regularity of the sequence of time discretisations, invoking

the bound of the time-translates of a converging sequence of functions of L1(Ω × (0, T )) stated by Lemma
A.1 in Appendix.

We now check Assumption (11). For n ∈ J0, N (m)K, P ∈ P
(m)
int and ζ ∈ F(P ), let

Rn
P,ζ =

1

|P |

∫ tn+1

tn

∫

P

∣∣∣
(
(F (m))nζ − f (q(m),v(m))(x, t)

)
· nP,ζ

∣∣∣ dx dt

and let

R(m) =

N(m)−1∑

n=0

∑

P∈P
(m)
int

diam(P )
∑

ζ∈F

|ζ| Rn
P,ζ .

We now express Rn
P,ζ , for the RT and MAC discretisations successively.

- RT case – In the case of general quadrangular meshes with the whole vector unknowns located on the
edges, we have

(F (m))nζ = g(qnζ )v
n
ζ and f(q(m),v(m))(x, t) = g(qnP ) v

n
ζ′ for x ∈ DP,ζ′ , ζ′ ∈ F(P ).

We thus get, denoting by |a| the Euclidean norm of any vector a ∈ R2,

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ ≤
∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ′

∣∣ for x ∈ DP,ζ′ , ζ′ ∈ F(P ).

Let Q be the primal cell such that ζ = P |Q. Since qnζ is a convex combination of qnP and qnQ, we thus

get, for x ∈ P , and t ∈ [tntn+1),

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ ≤ C
(
|qnP − qnQ|+

∑

ζ′∈F(P )

|vn
ζ − vn

ζ′ |
)
,

where C only depends on ‖q(m)‖L∞(Ω×(0,T )), ‖v(m)‖L∞(Ω×(0,T ))2 and Cg. Integrating over P ×
(tn, tn+1), we obtain

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qnP − qnQ|+

∑

ζ′∈F(P )

|vn
ζ − vn

ζ′ |
)
.

- MAC case – In this case, the velocity components are piecewise constant on different grids. Let i be
the index such that ζ ∈ F(i), and let ζ′ be the other edge of P normal to e(i), i.e. the opposite of ζ in
P . We have

(F (m))nζ · nP,ζ = g(qnζ ) v
n
ζ δζ and f (q(m),v(m))(x, t) =

{
g(qnP ) v

n
ζ δζ if x ∈ DP,ζ ,

g(qnP ) v
n
ζ′ δζ if x ∈ DP,ζ′ ,

with δζ = nP,ζ · e
(i). We thus get

∣∣∣
(
(F (m))nζ − f (U (m))(x, t)

)
· nP,ζ

∣∣∣ =
{∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ

∣∣ if x ∈ DP,ζ ,
∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ′

∣∣ if x ∈ DP,ζ′ ,

and hence, for x ∈ P , and t ∈ [tntn+1), denoting by Q the primal cell such that ζ = P |Q,

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ ≤ C
(
|qnP − qnQ|+ |vnζ − vnζ′ |

)
,
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ζ

ζ′

η
=
ζ|
ζ
′

ζ

ζ′′

ζ ′

η
=
ζ|
ζ
′′

η ′
=
ζ ′|ζ ′′

Figure 4. Left: the primal edges ζ and ζ′ are adjacent. Right: the primal edges ζ and ζ′ are opposite.

where C only depends on ‖q(m)‖L∞(Ω×(0,T )), ‖v
(m)‖L∞(Ω×(0,T ))2 and Cg. Therefore, integrating over

P × (tn, tn+1), we finally get

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qnP − qnQ|+ |vn

ζ − vn
ζ′ |

)
.

Note that, in these computations, we have not addressed the case where ζ is an external edge, taking benefit
of the fact that, in the expression of R(m), the sum is retricted to the internal cells.

From the definition of R(m), we thus get that, for both cases, it satisfies the following inequality:

R(m) ≤ C
(
R

(m)
1 +R

(m)
2

)
,

with

R
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

ζ∈F(P ),
ζ=P |Q

|ζ| |qnP − qnQ|,

and

R
(m)
2 =





N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

{ζ,ζ′}⊂F(P )2

(|ζ| + |ζ′|) |vn
ζ − vn

ζ′ | in the RT case,

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

i=1,2,

{ζ,ζ′}⊂F
(i)(P )2

(|ζ|+ |ζ′|) |vnζ − vnζ′ | in the MAC case.

There only remains to prove that R
(m)
1 and R

(m)
2 tend to zero as m tends to +∞. Reordering the summation

in R
(m)
1 , we get that

R
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

ζ∈F
(m)
int ,

ζ=P |Q

ωζ |qnP − qnQ|, with ωζ =
(
diam(P ) + diam(Q)

)
|ζ|.

Lemma A.1 states that R
(m)
1 tends to zero if the weight ωζ is controlled by both |P | and |Q|; since we have

ωζ ≤ 2
(
max(diam(P ), diam(Q))

)2
, this is easily obtained using Assumption (28).

As to the term R
(m)
2 , let us start with the RT case. We have:

∑

{ζ,ζ′}⊂F(P )2

(|ζ| + |ζ′|) |vn
ζ − vn

ζ′ | ≤ 2 diam(P )
∑

{ζ,ζ′}⊂F(P )2

|vn
ζ − vn

ζ′ |,
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We distinguish two cases for the subsets {ζ, ζ′}) ⊂ F(P )2 that appear in the summation: either the dual
cells Dζ and D′

ζ share a common (dual) edge η = ζ|ζ′ ∈ F∗, where F∗ denotes the set of edges of the dual
mesh, or they are opposite edges in the quadrilateral cell P ; in this latter case, we may write that

|vn
ζ − vn

ζ′ | ≤ |vn
ζ − vn

ζ′′ |+ |vn
ζ′′ − vn

ζ′ |,

where ζ′′ ∈ F(P ) is such that the dual cell Dζ′′ shares a common (dual) edge η (resp. η′) ∈ F∗ with Dζ

(resp. Dζ′) as shown in Figure 4. There is one jump between two adjacent faces that appears directly in the
summation over {ζ, ζ′}) ⊂ F(P )2, and at most two coming from the decompositions of the jumps needed for
pairs of opposite edges, so that altogether,

∑

(ζ,ζ′)∈F(P )2

(|ζ|+ |ζ′|) |vn
ζ − vn

ζ′ | ≤ 6 diam(P )
∑

η=ζ|ζ′∈F∗(P )

|vn
ζ − vn

ζ′ |,

with F∗(P ) the edges of the dual mesh included in P . We thus get

R
(m)
2 ≤ 6

N(m)−1∑

n=0

(tn+1 − tn)
∑

η=ζ|ζ′∈F∗

diam(Pη)
2 |vn

ζ − vn
ζ′ |,

where Pη stands for the primal cell in which η is included. The right-hand side of this inequality is thus a
collection of jumps across the dual edges, with, for an edge η, a weight given by

ωη = 6 diam(Pη)
2.

Thanks to Lemma A.1, R
(m)
2 tends to zero when m tends to +∞ if ωη is controlled by both |Dζ | and |Dζ′ |;

this is indeed the case thanks to Assumption (28), since |Dζ | ≥ |Pη|/4 and |Dζ′ | ≥ |Pη|/4.

Let us now turn to the MAC case, which is in fact simpler; indeed, the differences of velocities appearing

in the expression of R
(m)
2 are all jumps across dual edges, and we may thus recast R

(m)
2 as

R
(m)
2 =

N(m)−1∑

n=0

(tn+1 − tn)

2∑

i=1

∑

η=ζ|ζ′∈F(i,∗)

diam(Pη) (|ζ| + |ζ′|) |vnζ − vnζ′ |,

where, once again, Pη is the primal cell in which lies η (note that this sum only involves a subset of the dual

edges, which corresponds of the dual edges included in primal cell), and F(1,∗) (resp. F(2,∗)) denotes the set
of vertical (respectively horizontal) dual edges. We thus again have a collection of jumps across the dual
edges, with, for an edge η included in a primal cell Pη and separating the dual cells Dζ and Dζ′ , a weight
given by

ωη = diam(Pη)
(
|ζ|+ |ζ′|

)
.

Thus, again thanks to Lemma A.1, R
(m)
2 tends to zero when m tends to +∞ since, remarking that |Dζ | ≥

|Pη|/2, |Dζ′ | ≥ |Pη|/2 and ωη ≤ 2diam(Pη)
2, so the weight ωη is controlled by both |Dζ | and |Dζ′ | thanks

to Assumption (28). �

Remark 4.2 (On the required regularity of the time discretisation). The assumption θ3(T
(m)) ≤ θ, for

m ∈ N, may be avoided thanks to a different choice of the interpolation of the test function (see Remark
2.6). However, this assumption is very mild (in fact, we do not have in mind any scheme where the ratio
between two consecutive time-steps is likely to blow up when refining the discretisation).

Appendix A. Convergence of discrete functions in L
1

We recall a result proven in [5, Lemma 4.3]. To facilitate its use in the proof of Lemma 4.1, it is rephrased
here under more general forms than in [5] (see Remark A.2 below for the differences).
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Let M be a conforming mesh of the domain Ω of Rd, d = 1, 2, 3, in polygonal or polyhedral subsets,
and T = (ti)i∈J0,NK be a time discretisation of the interval (0, T ), i.e. a sequence of real numbers such that
0 = t0 < · · · < tn < . . . tN = T . We denote by δtT the time step, defined by δtT = max{tn+1 − tn, n ∈
J0, N − 1K}. For u ∈ L1(Ω× (0, T )), K ∈ M and n such that n ∈ J0, N − 1K, let un

K be the mean value of u
over K × (tn, tn+1). We denote by Eint the set of internal faces of the mesh and the face σ ∈ Eint separating
the cells K and L is denoted by σ = K|L. We define the following quantity:

TM,T u =

N−1∑

n=0

(tn+1 − tn)
∑

σ∈Eint

σ=K|L

ωσ |un
K − un

L|+

N−2∑

n=0

δn+1/2

∑

K∈M

|K| |un+1
K − un

K |, (29)

where (ωσ)σ∈Eint and (δn+1/2)n∈J0,N−2K are two sets of non-negative weights. We introduce the two following
parameters:

θM = max
K∈M

max
σ∈Eint(K)

ωσ

|K|
, θT = max

n∈J0,N−2K

{ δn+1/2

tn+1 − tn
,

δn+1/2

tn+2 − tn+1

}
, (30)

with Eint(K) the set of internal faces of K. We denote by δ(M) the space step characterizing M, i.e.

δ(M) = maxK∈M diam(K). Then the following convergence result holds.

Lemma A.1. Let θ > 0 and (M(m))m∈N be a sequence of meshes and for each m ∈ N, θM(m) be defined by

(30). We assume that θM(m) ≤ θ for all m ∈ N and limm→+∞ δ(M(m)) = 0. We suppose that the number

of faces of a cell K ∈ M
(m) is bounded independently from m ∈ N. For m ∈ N, we suppose given a time

discretisation T(m), and suppose that δtT(m) also tends to zero when m tends to +∞, and that θT(m) ≤ θ for

all m ∈ N. Let u ∈ L1(Ω× (0, T )) and (up)p∈N be a sequence of functions of L1(Ω× (0, T )) such that up → u
in L1(Ω× (0, T )) as p → +∞.

Then TM(m),T(m) up defined by (29) tends to zero when m tends to +∞ uniformly with respect to p ∈ N.

Remark A.2. The difference between Lemma A.1 and the formulation of the same convergence result in [5]
lies in the definition of the weight of the jumps, which is more general in Lemma A.1. Indeed, the weight of
the jumps through the faces featured in the definition of TM,T u are defined in [5, Lemma 4.3] as a function
of the volume of some dual cells associated to the faces, but a careful examination of the proof itself shows
that the introduction of a dual mesh is in fact useless. Therefore, the proof of Lemma [5, Lemma 4.3] readily
extends to prove Lemma A.1.

This generalization is in most cases sufficient. However, we may go one step further, still with minor
modifications of the proof of [5], as follows. Let Sx be a set of cardinal 2 - subsets of M, and St be a set of

cardinal 2 - subsets of J0, N − 1K. Let T̃M,T u be defined by

T̃M,T u =

N−1∑

n=0

(tn+1 − tn)
∑

{K,L}∈Sx

ωK,L |un
L − un

K |+
∑

{p,q}∈St

δp,q
∑

K∈M

|K| |up
K − uq

K |, (31)

where (ωK,L){K,L}∈Sx
and (δp,q){p,q}∈St

are two sets of non-negative weights. We introduce the two following
parameters:

θM = max
K∈M

1

|K|

∑

L∈M

{K,L}∈Sx

ωK,L, θT = max
n∈J0,N−1K

1

tn+1 − tn

∑

p∈J0,N−1K
{n,p}∈St

δn,p.
(32)

For {K,L} ∈ Sx and {p, q} ∈ St, let

d({K,L}) = max
(x,y)∈K×L

|y − x|, d({p, q}) =

{
tq+1 − tp if q > p,

tp+1 − tq otherwise
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and let
d(M) = max

{K,L}∈Sx

d({K,L}), d(T) = max
{p,q}∈St

d({p, q}).

Then the following convergence result holds.

Lemma A.3. Let (M(m))m∈N and (T(m))m∈N be a given sequence of meshes and time discretisations. Let

us suppose there exists θ > 0 such that θM(m) ≤ θ and θT(m) ≤ θ for all m ∈ N, with θM(m) and θT(m)

given by Equation (32). Let us assume that d(M(m)) and d(T(m)) tend to zero when m tends to +∞. Let

u ∈ L1(Ω×(0, T )) and (up)p∈N be a sequence of functions of L1(Ω×(0, T )) such that up → u in L1(Ω×(0, T ))
as p → +∞.

Then T̃M(m),T(m) up defined by (31) tends to zero when m tends to +∞ uniformly with respect to p ∈ N.
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