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1  | INTRODUC TION

To deal with flood risk, a resistance-based strategy has been often ad-
opted. It consists of building flood control structures, such as levees, 
channels and dams, in order to control flood threats (Morrison et al., 
2017). Although these standard approaches help to reduce the risk 
of flooding, they do not provide any fully effective guarantee against 
these feared events. Flood defence infrastructures and regular con-
trols may fail to provide adequate protection against flash or huge flood 
events, which can result in property damage and even human casualties 
(Park, 2013, Ogie et al., 2020). Alongside these defence approaches, 
adaptive methods seek to adjust to changes and deal with flood uncer-
tainty (Pahl-Wostl, 2007, Pant et al., 2018). Societies have to manage 
and live with flood risk. Real-time forecasts, warning and well-function-
ing emergency plans help in saving both lives and livelihoods.

Within the framework of the implementation of flood crisis man-
agement plans in mountainous sectors, it turns out to be essential 
more than anywhere to measure the vulnerability of the stakes 
(human and material) to a rapid rise in water levels observed up-
stream of the areas to be protected (Fuchs et al., 2019), (Klein, 2019), 
and (Terzi, 2019). The assessment of this vulnerability, and thus of 
the solutions to be implemented to reduce it, requires the answer to 
various questions: How much time do we have to react? Are flood 
trends predictable? Will we have time to travel to intervene? What 
is the possible duration of the flood, its probability of occurrence (in 
the area under observation)?

Anticipation of the phenomenon is therefore crucial. It must be 
based on information extracted upstream relating to the flows ob-
served on the main river but also on the river's inflows, which also 
contribute to the river's swelling. Calculation of the risk inherent in 
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this phenomenon requires, on the one hand, knowledge of the un-
certainties linked to the model input data (random uncertainties on 
rainfall, epistemic uncertainties on flows, measurement uncertain-
ties on flows or water heights...) and, on the other hand, knowledge 
of how they propagate to the outlet. Analytical models based on hy-
drological calculations and physical behavioural models are mostly 
deterministic and have difficulty in establishing the confidence in-
tervals necessary for rational decision-making. This is especially the 
case for flow records that are established under the assumption of 
uniform flow when the energy profile is parallel to the water line and 
the riverbed bottom.

In some cases, however, the energy slope of a channel control 
may be variable, usually due to a variable downstream boundary 
condition ("variable turbulence"), or sometimes due to transient flow 
conditions ("variable flow") (Mansanarez et al., 2017, Ferguson et al., 
2019, Bhola et al., 2019).

In this context, the use of frequentist approaches may be an al-
ternative. These methods are independent of the complexity of the 
system under study, but require databases that are sufficiently repre-
sentative to provide a trustworthy result. If this condition is met, the 
use of models based on Bayesian approaches makes sense (Garrote 
et al., 2007, Yassine, Pérès, Roux, Cassan, & Frysou, 2018, Yassine, 
Roux, et al., 2018). With the aim of assessing the flow discharge at 
a given location, they can take into account individual gauge uncer-
tainties in the form of probabilistic distributions. More importantly, 
they allow the decomposition of uncertainty components related 
to the model of the gauging curve ("structural error"), parame-
ter estimation ("parametric error") and potentially systematic and 
non-systematic errors in the water level series ("propagation error") 
(Boutkhamouine, Roux, & Pérès, 2017, Boutkhamouine, Roux, Pérès, 
& Vervoort, 2018, Jiang et al., , 2019, Fan,  2019; Leandro,  2019, 
Dittes, Špačková, & Straub, 2019).

The objective of this paper is to establish such a model. The 
rest of the paper is divided into 3 parts. Through a brief state of 
the art of the domain under study confronting the need for opera-
tional tools in the field of flood assessment and existing modelling 
techniques, the scientific issue of the work is outlined. In a second 
step, the Bayesian network tool adopted for the proposed mod-
elling is described from the point of view of its operating mode 
and capabilities. The construction principles of the model are 
then discussed and deployed on a case study described before-
hand. A last part is devoted to the analysis of the results obtained, 
the presentation of possible modes of validation of these results 
and a discussion on the different alternatives of model using. A 
final conclusion summarizes the objectives, the approach and the 
achieved results.

2  | CONTE X T AND ISSUE

The main attractions of hydraulic models, which simulate flood 
phenomena, are to numerically simulate and predict the spatial and 
temporal evolution of a river's hydraulic characteristics during a 

flood, such as water levels, flow velocities and submergence dura-
tions (Molinari,  2019). Hydraulic models are most often determin-
istic and remain a simplified representation of a physical process to 
which they are related. However, confidence in the results obtained 
is limited by the level of uncertainty arising from the structure of the 
model itself (the natural system is too complex to be modelled using 
simplified equations) as well as from model parameterization or forc-
ing (spatio-temporal precipitation, initial conditions). Quantifying 
these uncertainties, in terms of probability distribution and de-
gree of certitude, is of primary importance for risk assessment and 
decision-making, (Biondi, Versace, & Sirangelo, 2010, Annis, 2020, 
Tscheikner-Gratl et al., , 2019). Taking into account of these uncer-
tainties would allow the establishment of models for purpose of risk 
assessment and context-oriented decision-making related to dam-
age prevention and crisis management. Several authors have em-
phasized the importance of qualifying and quantifying the effect 
of uncertainties on hydraulic model outputs in order to support the 
decision-making process (Sieg, 2019). Uncertainty in hydraulic mod-
elling can arise from a variety of sources:

• Topographic data. Topographic and hydrological errors are con-
sidered to be the major sources of uncertainty in flood hazard
modelling (Casas, 2006);

• Upstream and downstream model boundary conditions, initial
conditions (Stephens & Bledsoe, 2020);

• Roughness coefficients (Lim & Anders Brandt, 2019);
• Model calibration–validation data (Ahmadisharaf, 2019);
• Uncertainties related to the structure of the model (Liu &

Merwade, 2019)

The level of confidence in the results associated with a decision 
will be all the better as it is established in knowledge of the proba-
bility distributions associated with the different variables involved in 
the decision to be made. In recent years, uncertainty quantification 
and reduction have been subject of many scientific breakthroughs. 
(Matott, Babendreie, & Purucker, 2009, Han & Coulibaly, 2017, 
Coulibaly & Evora, 2007, Ronalds & Zhang, 2019). In the field of flood 
estimation, however, most of the approaches rely, directly or indi-
rectly, on Monte Carlo simulations.

The Monte Carlo method is a well-known technique based on 
the use of random numbers to simulate deterministic systems with 
stochastic parameters or inputs. It consists of running the model a 
large number of times using random sampling from the input param-
eter distributions until sufficient output values have been obtained. 
If hydrological model is complex or the number of uncertain param-
eters is high, producing forecasts incorporating uncertainties—that 
is forecasts in the form of probability distributions—becomes time 
consuming and computationally expensive.

Yet, the dynamic management of flood-type events requires tools 
capable of reacting quickly to the input of new information in order to 
contextualize decision-making with regard to the state of the descrip-
tive variables of the analysed situation. In particular, in small catch-
ment characterized by fast response time, and where flash flood are 



often destructive, there is a need for real-time flood forecasts (Ruin, 
Creutin, Anquetin, & Lutoff, 2008, Roux, 2011; Si, 2019).

In this context of dynamic decision-making, the use of Bayesian 
networks (BNs) may be a relevant solution (Liu, Pérès, & Tchangani 
2016). Since their introduction (Pearl,  1985), Bayesian networks 
have become indeed a highly popular tool in artificial intelligence 
to handle uncertainties. In the field of flood prediction, Bayesian 
networks have many advantages: They allow both quantitative and 
qualitative factors to be taken into account, which most models do 
not; they enable causal links between variables to be visualized: risk 
aggregation is achieved by the very construction of the networks, 
which avoids the estimation of correlations; they facilitate reduction 
factors to be detected through inference; and they can be used for 
diagnostic purposes to search for causes in the presence of a result 
obtained (upward propagation) or for prognostic purposes to iden-
tify the consequences of introducing new information (downward 
propagation) (Uusitalo, 2007).

In this study, we focus on a runoff–runoff model. The aim of the 
model is to estimate the discharge at a gauging station based on dis-
charge measurements of proxies gauging stations. In other words, we 
seek to establish the probabilistic relationship between the water flow 
from an outlet and the discharge from the upstream stations located on 
the main river or on its tributaries. To do so, we rely on the use of infer-
ence techniques supported by Bayesian networks applied to the case of 
a catchment area located in the Pyrenees chain in the south of France. 
Thereafter some theoretical elements will be introduced to explain the 
principles of modelling and calculation inherent to Bayesian networks. 
The model will then be instantiated to the selected case study.

3  | MODEL BUILDING

3.1 | Bayesian Networks

A Bayesian network is a mathematical model that graphically repre-
sents conditional probabilistic dependencies between variables. A 
Bayesian network B={G,P} is a combination of both graph and prob-
ability theories. It is defined as follows: G={X, E}, a directed acyclic 
graph, without circuits, consisting of nodes and arcs linking these 
nodes (Liu et al., 2016).

The nodes are associated with a set of random variables, 
X=

{

X1 ⋅ ⋅ ⋅Xn
}

, explaining the studied phenomenon. The directed arcs 
E, represent the set of causal relationships between the variables. 
Each node, Xi, in the graph is associated with a conditional probability, 
P=

{

P
(

Xi∕Pa
(

Xi
))}

 expressing the effect of the variables, Pa(Xi) called 
parents of Xi that cause Xi inG. P are also called local probabilities, and 
they express the “dependencies strengths” between the nodes.

In practice, P are defined in conditional probability tables (CPTs). 
The way G is shaped, that is a directed acyclic graph, simplifies the 
computation of both joint and marginal probabilities of the nodes, X:

As shown in Equation 1, the computation of P (X1 …, Xn) comes 
down to a product of local probabilities terms directly accessible 
from CPTs associated with the network. This operation is called in-
ference. Using the same technique, one can also compute marginal 
probabilities associated with a node, or a set of nodes, after having 
introduced some observations on one or various nodes in the graph.

This combination between the theory of graphs and probability 
is one of the powerful aspects of Bayesian networks providing an ef-
ficient way to perform inference. Algorithms dealing with inference 
in BNs are explained in details in (Lauritzen & Speigelhalter, 1988, 
Jensen, 1996, Liu, Tchangani, & Pérès, 2016).

The construction of a Bayesian network mainly involves the fol-
lowing steps:

• Structure learning: determine the factor variables (nodes) related
to the study object, and then determine the dependent or inde-
pendent relationships between the nodes so as to construct a di-
rected acyclic network structure.

•	 Parameter learning: based on a given Bayesian network structure, 
learn the conditional probability table (CPT) associated to each
node.

There are two approaches to specify the structure of the causal 
graph. The first approach consists in learning the causality directly 
from data, if they exist. However, resulting causalities may not be 
consistent with reality due to a lack of representative data. The sec-
ond approach uses expert's opinion to specify the structure. The BN 
structure is directly inspired from the hydrographic network of the 
studied basin. Concerning the conditional probability tables,��� s, 
they are learned from historical discharge data described hereunder.

3.2 | Case description

3.2.1 | Study area

Salat river basin, located in southern France, is an upstream tributary 
of the Garonne river (Figure  1). It takes it sources from the north 
slope of Mont Rouch. After a 75km stretch, particularly through the 
regional natural park of the Pyrenees Ariégeoises, it flows into the 
Garonne river at Roquefort-sur-Garonne (basin's outlet). Its main 
tributaries are Garbet and Arac on the right bank and Lez on the 
left one. Salat river basin has an area of nearly 1570km2. The slope 
is important with an altitude which varies from 2,900 m in the up-
stream zone (Mont Rouch) to 300 m in the downstream part (lati-
tude: 43°09' 52'' N, 00° 58'26''E).

The basin is marked by a strong nival regime due to the melting 
snow in the spring (Boutkhamouine et al., 2018). It is also subject to 
an oceanic influence causing heavy rain and storms during April to 
June. A record snowfall followed by a rapid thaw may cause flash 
flooding especially when combined with heavy rains. Recently, such 
case occurred on 17th June 2013 in the region causing victims and 
extensive property damages amounting to tens of millions of euros.

(1)P
(

X1,…,Xn
)

=

n
∏

i=1

P
(

Xi∕Pa
(

Xi
))

and P
(

Xi=xi
)

=
∑

Xj (j≠i)

P
(

Xi=xi∕Xj
)



3.2.2 | Data

Currently, the Salat basin is controlled by the means of many hydro-
metric stations measuring the streamflow on different main tributar-
ies of the basin. The historical measurements are available on the 
French national hydrometric database (HYDRO, http://hydro.eaufr​
ance.fr) provided by SCHAPI (Service Central d'Hydrométéorologie 
et d'Appui à la Prevision des INondations/Central Service for 
Hydrometeorology and Flood Prediction Support). In this study, the 
historical measurements of four stations, Roquefort, Castelbliaque, 
Cazavet and Saint-Lizier, are used to test the presented Bayesian 
networks methodology. These stations are located at the down-
stream of the Salat basin (see Figure 1). The historical measurements 
downloaded for this study are hourly discharge series from April 
2005 to January 2017 in the four stations (Figure 2).

From Figure  2b, one can clearly see a delay between the dis-
charge at the station Roquefort (basin's outlet) and discharges at 
the upstream stations (Saint-Lizier, Cazavet and Castelbiague). Such 
time delays correspond to the flow transfer duration between the 

upstream stations and the outlet of the basin. Flow transfer time, 
called also lag time, corresponds to the time needed by the flow to 
move from any location within the river basin to another, particularly, 
from one upstream hydrological station to another one downstream. 
This should be estimated and incorporated in the data before train-
ing the Bayesian Network CPTs.

3.2.3 | Estimation of lag time between the upstream 
stations and Roquefort using observed data

Estimating the time of flow transfer between two hydrological sta-
tions is a high complex task. In fact, it depends on many parameters 
such as the river slope, the river bottom roughness, the length of the 
flow path and the flow depth. (Green & Nelson, 2002, McCuen, 2009). 
Hereunder, we estimate the flow time transfer between each up-
stream station and Roquefort using a simple statistical method ap-
plied to the observed data of Figure 2. This method is similar to the 
one described in (Seyam & Othman, 2014). Given a flood specific 
discharge, q, at the station Roquefort, the idea is to look through the 

F I G U R E  1   Map of the Salat river 
basin [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://hydro.eaufrance.fr
http://hydro.eaufrance.fr
www.wileyonlinelibrary.com


data and extract all Roquefort discharge peaks above this threshold. 
Then, for each peak identify all discharge peaks of upstream stations 
causing this peak. In this study, we have chosen for threshold a flood 
specific discharge q=0.1m3∕s∕Km2 which corresponds approxima-
tively to a flood discharge Q=0.1∗1570∼150m3∕s at Roquefort 
station. Figure 3 shows the estimated cumulative distribution func-
tions of lag times for each upstream station and Roquefort.T10, T50 
and T90 denote, respectively, the 10th, 50th and 90th percentiles of 
the distribution.

3.2.4 | Data pre-processing

As mentioned previously, the parameters of BN model are learned 
from historical discharge data. Nevertheless, before starting any 
learning process, the data have to be prepared. The performances of 

the learning process depend on the quality of data used for learning 
but also on the format as well as on the features included such as 
time delay here. A twofold procedure has been used to prepare the 
learning data (Figure 4).

1. Formatting the data: All hourly discharge data for the 4 stations
are stored in a text file, column by column (each column cor-
responds to a station). Each line within the text file denotes a
case (discharge value at different stations). In order to take in
consideration, the time transfer between the upstream stations
(Castelbiague, Cazavet and Saint-Lizier) and Roquefort, we have
chosen to displace the columns associated with upstreaming
stations, compared to Roquefort one, using the corresponding
T50 of calculated time transfer (Figure  3), which are approx-
imately 3  hr for Castelbiague, 2  hr for Cazavet and finally
3  hr for Saint-Lizier.

F I G U R E  2   Historical discharges 
measured in the upstream hydrological 
stations of Salat. (a) Plot of hourly 
streamflow in different stations from April 
2005 to January 2017. (b) Random zoom 
on a particular period, from 10th June 
to 14th June 2008 [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  3   Flow time transfer 
calculated for each upstream station 
from the data presented in Figure 2 using 
a specific discharge q=0.1m3∕s∕km2 at 
Roquefort station [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


2.	 Sampling: At the end of first step, 103,772 cases were stored. The 
first 93,772 cases, from April 2005 to 6th December 2015, are re-
served for learning the BN CPTs, and the remaining 10,000 cases, 
from 7th December 2015 to January 2017, are dedicated to the
model validation. It should be noted that the choice of learning
and validation period is completely arbitrary and the two periods
are totally independent.

3.3 | Model structure and parameter learning

3.3.1 | Model structure

As previously said, the BN structure used in this study is created 
from the hydrographic network of Salat basin displayed in Figure 1. 
Given the geographical position of the studied hydrological stations, 
the discharge at Roquefort station can be predicted using the flows 
at three upstream stations, namely Castelbiague, Cazavet and Saint-
Lizier (Figure 5). These three3 stations are thus considered parents 
of Roquefort. It should be noted that this assumption neglects other 
possible water intakes like groundwater contributions and potential 
runoffs on the immediate surfaces between the three upstream sta-
tions and basin's outlet.

3.3.2 | Discretization and parameter learning

The model was built using the software package Netica Java 
(Norsys, 2015). It is shown in Figure 6. The associated development 
code, under Eclipse IDE, is showed in Appendix A.

The building of Bayesian network requires to follow the follow-
ing steps:

1. Create an empty BN.
2.	 Add nodes to the network.
3.	 Set the causal structure of the network: set the arcs between the 

nodes.
4.	 Discretize the nodes.
5.	 Learn BN CPT s from data using a parameter learning algorithm.
6.	 Save the BN into a file.

Even if the variables (discharges) in the model are continuous, 
they have to be discretized. Indeed, Netica as most of the soft-
ware-based Bayesian network does not support the introduction 
of continuous variables. The discretization principles are simple. It 
consists of scanning the historical hourly discharge data, presented 
above, in order to identify all minimum and maximum values of all 
observed discharges at each hydrological station (node), and di-
vide the continuous nodes into a number of intervals. Ideally, only 
a few intervals should be associated with each node. This makes it 
possible on the one hand to reduce the size of the BN in order to 
optimize its temporal inference calculation but also, on the other 
hand, to lower the prediction uncertainty of the model. Here, we 
seeked to estimate the water discharge at “Roquefort” using the 
discharges at the hydrological upstream stations (Figure 5). Hourly 
hydrograph for each station can be split into two parts: Lower val-
ues of discharge, which are very numerous, require shorter inter-
vals to gain enough precision, and for the remaining ranges, which 
corresponds to the flood discharges, the discretization intervals 
are further apart.

After determining the topological structure of Bayesian network 
and the discretization associated with each node, the parameter 
learning of the network can be performed using the data of hourly 
discharge for the four stations described above. The Counting–
Learning algorithm available on Netica was used to learn parameters, 
prior and conditional probabilities, of all the nodes in the model. The 
counting algorithm uses a traditional one-pass method to determine 
the probabilities, which essentially amounts to counting the num-
ber of times a node takes on a certain value given each configura-
tion of the parents (Russell & Norvig, 2010). The learning process 
was performed using the training dataset containing 93,772 cases 
(see data pre-processing section above). Once the parameter values 
were learned, the model could be compiled and was ready for use 
(Figure 6).

F I G U R E  4   Incorporating time delays 
between upstream stations and the outlet 
of Salat basin (Roquefort) [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Structure of the Bayesian network inspired from the 
hydrographic network presented in Figure 1 [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


4  | RESULTS AND DISCUSSION

4.1 | Sensitivity analysis

After compiling the model, a sensitivity analysis was performed 
using the variance reduction method (Marcot, 2012; Marcot, 2012). 
The variance reduction estimates the impact of a change in the state 
of a node on the state of a target one. Its ranges from 0% to 100%, 
and higher value indicates a higher influence. Here, the target node 
is Roquefort (i.e. the discharge at the Roquefort station). Figure 7 
summarizes sensitivity analysis results of Roquefort node using the 
variance reduction method.

As expected, Saint-Lizier has a higher influence on the 
Roquefort station. This is obviously logical given the hydrographic 
network presented in Figure 1. Saint-Lizier station is located at the 
main Salat's river supplying the outlet (Roquefort). The effects of 
other stations are relatively low given their locations on secondary 
tributaries.

4.2 | Model validation

As we explained previously, we have estimated the BN CPTs using 
90% of data. The remaining 10%—10,000 cases—of the discharge 
observations at the 4 stations, from 07/12/2015 to 31/01/2017, 
were withheld to test the model and evaluate its prediction accu-
racy. In terms of platform, the Netica-J, the Java version of Netica 
(Norsys, 2015; Norsys, 2015) was used to evaluate the prediction 
accuracy of a model. The steps followed to test the model are listed 
in the frame below. The associated development code, under Eclipse 
IDE, is given in Appendix B.

1. Read a BN version from the model database.
2.	 Get the nodes of the BN.
3.	 Test the BN performances: perform sensitivity analysis.
4.	 Use the model to perform inference.

For each time step:

F I G U R E  6   A Bayesian network modelling the discharge at the Roquefort as function of the information coming from the upstream 
stations. (a) Compiled model based on a priori knowledge. (b) Model state when the model is inferring the observation flows of the 
3 upstream stations. Grey boxes indicate that observations were entered in corresponding nodes; the model uses the available new 
information to update the state of unobserved node (here Roquefort node) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7   Sensitivity of Roquefort 
station to findings at upstream nodes 
using variance reduction method 
implemented in Netica [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


I	 Read values of known nodes from the validation data file and set 
them as observations in the model (evidences).

	II	 Compile the model with these observations to get the posterior 
probabilities of unknown nodes.

	III	 Save the predicted posterior probabilities into a result file to be 
compared with actual observation for each time step.

5. Close the BN model.

During the testing process, the values of Roquefort node were 
considered as unknown. The evaluation was conducted by intro-
ducing the cases into the validation data file one by one (i.e. line 
by line). For each case, Netica-J read in the values of nodes, ex-
cepted the value for Roquefort. Next, the model was compiled and 
a probability distribution of Roquefort node was generated by in-
ferring these values in the case study. The prediction at Roquefort 
node was then compared with the observation value supplied in 
the data file. Several different measures of prediction accuracy 
were tested.

One way to estimate the model accuracy prediction is to use the 
confusion matrix, which compares predicted to observation out-
comes (Table 1). For example, in this table, for the all 610 cases in 
which the observations discharge at Roquefort station are included 
in the interval [60, 80]m3∕s, the model predicted well 430 cases (i.e. 
predicated values included in [60, 80]m3∕s), 172 cases in [40, 60]m3∕s

, 6 cases in [80, 100] and 2 cases in [100, 133.3]m3∕s.
The overall model accuracy rate can be estimated as the number 

of cases where the model correctly predicted the actual discharge 
value (observation discharges) over all tested cases (here 10,000 
cases). From Table  1, an accuracy rate of 85.10% was calculated. 
Instead of using the most likely state as a prediction for each case 
(confusion matrix), one can use the actual belief levels of each state 
to assess the model's prediction accuracy. Some standard scoring 
rules evaluating the model accuracy like logarithmic loss, spherical 
payoff or quadratic loss do not merely take the most likely state as 
a prediction but rather considers the actual posterior probabilities 
(belief levels) of each state to determine how well the predictions 
agree with the observations in the validation dataset. These scores 
are well explained in (Morgan 1990, Stehman,  1997). Spherical 
payoff, perhaps the most useful index, varies between 0 and 1, (1 
indicating the best possible model performance). Logarithmic loss 
score ranges between 0 and ∞, (smaller values suggest better per-
formance). Regarding the quadratic loss, it varies from 0 to 2, (0 
indicating the best performance). In the case under study, the cal-
culated values of spherical payoff, logarithmic loss and quadratic 
loss were 0.8796, 0.3736 and 0.2154, respectively. These values 
can be interpreted as an indication of the model's strong predictive 
capability.

To find out more about the prediction capacity of the model 
to reproduce different discharge regimes at Roquefort station, the 
uncertainty interval was assessed, using quantiles Q20 and Q80 (i.e. 
Roquefort node states associated to probability of non-exceedance 
0.2 and 0.8, respectively) and the predicted mean discharge, Qmean, TA
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from the predicted probability distribution of each tested case. Qmean

, (also called expected discharge value), is calculated as follows:

where qi designs a possible state of the node “Roquefort,” pi stands 
for the corresponding predicted probability (i.e. the posterior proba-
bility of Roquefort node associated with the state qi after inferring the 
observations of upstream stations through the model), and n denotes 
the number of states of Roquefort node. In Figure  8, the predicted 
uncertainty interval, Q80−Q20 are plotted, calculated from the 10 000 
tested cases, together with predicted Q

����
 and observed discharges at 

Roquefort station.
Figures  8 and 9 highlight the consistent performance of the 

model. BN-estimated discharges properly follow the observations 
both in low and high flows. Over the entire testing period—10,000 
cases—69,97% of observed discharge points are counted inside the 
predicted uncertainty interval Q80−Q20.

A comparison between predicted Q
����

 and observed discharges 
is done using the classic Nash–Sutcliffe (NS) efficiency criteria (Nash 
& Sutcliffe, 1970). NS ranges between 1.0 (perfect fit) and −∞. An NS 
lower than zero indicates that the mean value of the observed values 
would be better predictor than the model. Here, the entire validation 
period was considered and gave rise to a NS=0.8037, which proves 
once again the model good performances.

However, it is worth pointing out that some lower performances 
of the model can be observed when estimating high discharges 
(Figures  8b and 9). The model tends actually to overestimate the 
flow exceeding approximatively 250 m3∕s. Such high uncertainty 
can be the result of low number of cases observed within the data-
set and used to train the model CPTs. Indeed, the learning dataset 
contains only 1,25% of cases where discharge at Roquefort exceeds 
250 m3∕s ( see Figure 7).

Despite its high predictive performance, as shown in this case 
study, and the above-mentioned advantages, the accuracy of BNs 
can be severely impaired by the discretization mode associated 
with each node in terms of number of classes and range of their re-
spective intervals (Nojavan, Qian, & Stow, 2017). This vulnerability 
explains why the model fails sometimes to properly reproduce the 
observed discharges for low and medium values (Figure 8.c).

4.3 | Filling missing discharge data using BN model

The reconstruction of missing streamflow data has always been 
a challenging task in hydrology. Several approaches dealing with 
gaps in discharge measurement records are reported in literature. 
Among others, we find regression methods (Tencaliec, Favre, Prieur, 
& Mathevet, 2015) and artificial neural networks (Coulibaly & 
Evora, 2007)(Coulibaly & Evora, 2007). Bayesian networks approach 
may join these existing methods with the further advantage of being 

(2)Qmean=

n
∑

1

pi ⋅qi

F I G U R E  8   (a) Observed (blue dots), Qmean (red lines) predicted mean hydrographs for the validation dataset at the Roquefort station and 
predicted uncertainty interval estimated (Q80−Q20, black range). (b) Zoom on the cases 1,480 to 1,580. (c) Zoom on the cases 9,540 to 9,720 
[Colour figure can be viewed at wileyonlinelibrary.com]
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simple to use, not requiring a great amount of data and suitable for 
prediction in real time, as they are easily updated and there are no 
assumptions to check for.

As mentioned earlier, BNs offer the capacity to propagate in-
formation in any direction if a new information is introduced. 
Consequently, this interesting feature of the tool makes it possible 
to reconstruct by rearward propagation any missing information 
associated with an upstream node if the flow values are known 
downstream. By using the model described in this paper, one can 
therefore estimate the discharge data at one of the upstream sta-
tions, for example Saint-Lizier, by inferring, through the model, ob-
served data on other stations. By using the same validation dataset, 
and the methodology described in section 3.2, “Saint-Lizier” node 
was treated as unknown during the simulation period (i.e. the values 
of the node are not observed).

The observations of other proxy stations (i.e. Roquefort, 
Cazavet and Castelbiague) can then be used, through the model 
to retrieve the discharge streamflow at Saint-Lizier gauge station. 
The results of simulation are plotted in Figure 10, simulated quan-
tiles, Q25 and Q75, and median streamflow discharges are plotted 
against observed discharges at Saint-Lizier during the validation 
period.

Figure 10 shows that the BN model successfully replicates the 
data, for low and medium discharge values, more specifically for 
those below 50 m3/s. One can also note that, for so many higher val-
ues of discharge at Saint-Lizier (observed red "+" values) above 100 

m3/s, the BN model detects only 3 values (predicted red "+" values).
This proves poor performances of the BN model for higher flow at 
this station. As mentioned earlier, this can be explained by the learn-
ing process which is not based on a sufficiently comprehensive data-
set. Actually, the conditional probability table of Roquefort station 
is not well trained as the model did not learn enough experiences 
corresponding to high streamflow at Saint-Lizier station (only 4.62% 
of cases related to streamflow at Saint-Lizier exceed 100 m3/s).

4.4 | Caveats

We used a complete dataset, with no discharge missing data in four 
stations, to train the model CPTs. However, incomplete data or miss-
ing data are a common situation in the flood forecasting. Bayesian 
network can deal with this by using adequate learning algorithms 
such as Expectation–Maximization algorithm (Lauritzen 1995) or 
Gradient Decent algorithm (Russell, Binder, Koller, & Kanazawa, 
1995, Castillo, Gutiérrez, & Hadi, 1996). All these algorithms are im-
plemented in most of Bayesian network packages and tools includ-
ing Netica.

It should also be kept in mind that a pre-treatment of learning 
data is needed. The time transfer between a node and its parents 
has to be incorporated, as a delay, in the learning data file. In addi-
tion, if the model is used for a different region or the data used for 
CPTs training are different, node features such as range, minimum 

F I G U R E  9   Observed discharges at 
Roquefort compared to BN-estimated 
discharges during the validation 
period. Correlation coefficients 
R20=0.87,R80=0.90 and Rmean =0.93 
have been calculated, respectively, 
between observed discharges/Q20, 
observed discharges/Q80 and observed 
discharges/Qmean [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  1 0   Observed discharges 
at Saint-Lizier compared to BN-
reconstructed discharges data during 
the validation period. On each box, 
the central mark indicates the median, 
and the bottom and top edges of the 
box indicate, respectively, the 25th 
and 75th percentiles. The outliers are 
plotted individually using the red "+" 
symbol [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


and maximum values have to be adjusted to new conditions before 
starting the learning process.

A major challenge in the BN approach is the need for discretiza-
tion of distributions of continuous variables for most of the available 
softwares dealing with Bayesian Networks like Netica. Continuous 
values need to be discretized, which can lead to loss of informa-
tion. In the future, we plan to use continuous Bayesian networks, 
more precisely Linear-Gaussian models (Cowell, Dawid, Lauritzen, 
& Spiegelhalter, 1999, Lauritzen, 1995), to perform river flood pre-
diction. A Linear-Gaussian model is a BN where all the nodes are 
Gaussian, and each node's mean is linear in the values of its parents. 
They have fewer parameters then the discrete BNs and provide an 
efficient inference specially for complex graphs.

5  | CONCLUSION

In this paper, we have been describing the application of a Bayesian 
network to predict flood risk uncertainty interval on hydrometric sta-
tion based on its statistical relationships to proxy stations. The po-
tential of Bayesian networks approach was also tested to generate 
missing data of hourly discharges record. The procedure turned out 
to be simple, easy to implement, requiring a low modelling effort and 
very fast to evaluate uncertainty intervals for risk assessment and 
decision-making. The model showed good performances estimating 
the river flow at the outlet of a river basin based on the river flows 
upstream. The model also performed relatively well estimating the 
missing discharge data, especially for low flow values, at one station 
through the basin by channelling back the river flow data downstream 
and in the stations nearby. On this basis, it appears that Bayesian net-
works are a suitable tool for estimating the flood risk uncertainty and 
reconstructing discharge measurement records, an essential and less-
explored domain for the application of probabilistic direct graphical 
models.
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APPENDIX A
The following code is used to create the BN for simulating the dis-
charge at “Roquefort” station using Netica Java-API. This version of 
Netica APIs offers a clean and an object-oriented way to develop 
and work with BN.

/Import Netica java libraries needed for BN developmentimport 
norsys.netica.*;/Start the public class for the model creation.public 
class Model_development { /public static void main(String[] args)throws-
NeticaException {/ Set the work file pathString PathBN="D:/These/…/
BN/";/ Create the environment for the networkEnviron env  =  new 
Environ("NULL");/ Create an empty BNNet BN  =  new Net(env);/Node 
creationNode Castelblaque  =  new Node("Castelblaque",0, BN);Node 
Saint_Lizier  =  new Node("Saint_Lizier",0, BN);Node Cazavet  =  new 
Node("Cazavet",0, BN);Node Roquefort  =  new Node("Roquefort",0, 
BN);/Set manually the BN structure/ Set parents of "Roquefort 
node"Roquefort.addLink(Castelblaque);Roquefort.addLink(Saint_
Lizier);Roquefort.addLink(Cazavet);/Node Discretization/ The class of 
discretization functionDiscrtFunction Dist  =  new DiscrtFunction();/ 
Castelbiague nodeCastelblaque.setLevels(Dist.ConcatArray(Dist.
Values(0.0, 2.0, 4), Dist.Values(3.0, 20.0, 4),Dist.Values(30.0, 100.0, 
2)));/ Saint_lizier nodeSaint_Lizier.setLevels(Dist.ConcatArray(Dist.
Values(0.0, 50.0, 5), Dist.Values(50.01, 200.0, 3),Dist.Values(200.01, 
500.0, 3)));/ Cazavet nodeCazavet.setLevels(Dist.ConcatArray(Dist.
Values(0.0, 1.0, 4), Dist.Values(1.5, 10.0, 4),Dist.Values(15.0, 60.0, 2)));/ 
Roquefort nodeRoquefort.setLevels(Dist.ConcatArray(Dist.Values(0.0, 
80.0, 5), Dist.Values(100.0, 200.0, 4),Dist.Values(250.0, 1,000.0, 
2)));/ Learning CPTs from datadouble d  =  1;NodeList nodes  =  BN.
getNodes();Streamer caseFile  =  new Streamer (PathBN+ "LerData.
txt");Caseset cases = new Caseset();cases.addCases(caseFile, 1.0, null);/ 
Specify the learning methodLearner learner  =  new Learner(Learner.
COUNTING_LEARNING); learner.setMaxTolerance(1e-4); learner.
learnCPTs(nodes, cases, d);learner.finalize();cases.finalize();/ Compile the 
modelBN.compile();/ Save the model into a model database.Streamer 
modelstream = new Streamer(PathBN+ "BN_SALAT4Stations.dne");BN.
write(modelstream);BN.finalize;/ Close BNEnv.finalize;/ Close working 
environment.}}

APPENDIX B
After creating and learned BN, it can be used to calculate the pos-
terior probabilities of a target node, here Roquefort, using observa-
tions on others nodes.

/ Netica java librariesimport norsys.netica.*;/ Model validation pub-
lic classpublic class Model_validation {public static void main(String[] 

args)throws NeticaException, IOException {/ Create new environ-
mentEnviron env = new Environ("NULL");/ Model work file pathString 
PathBN="D:/These/…/BN/";/ Read the BN from the model data-
baseNet BN  =  new Net(new Streamer (PathBN+"BN_SALAT4Stations.
dne"));/ Read the nodes of the BNNode Castelbiague  =  BN.
getNode("Castelebiaque");Node Saint_Lizier  =  BN.getNode("Saint_
Lizier");Node Cazavet = BN.getNode("Cazavet");Node Roquefort = BN.
getNode("Roquefort");/ BN compileBN.compile();/Sensitivity analy-
sis/ Target nodeNode queryNode  =  BN.getNode("Roquefort ");/ 
Varying nodesNodeList varyingNodes  =  Roquefort.getParents();/
To measure mutual information using variance reduction method-
Sensitivity realVarSens  =  new Sensitivity( queryNode,varyingNodes
,Sensitivity.VARIANCE_OF_REAL_SENSV);/ for example the mutual 
information between « Roquefort» and one of its parents can be es-
timateddouble realVar  =  realVarSens.getVarianceOfReal(Castelbia
gue);System.out.println("The variance of real between Castelbiague 
and Roquefort is "+ realVar);realVarSens.finalize();/ Use the model to 
perform inference/Read the validation data for observed nodes for 
the validation periodData data = new Data();double [] Qcavt = data.
ReadData(PathBN+" Cazavet.txt");double [] Qctlque  =  data.
ReadData(PathBN+"Castelblaque.txt");double [] QSaintL  =  data.
ReadData(PathBN+"Saint_Lizier.txt");int n  =  Qcavt.length;/ data 
length// Create a file writer to save results of “Roquefort” posterior 
probabilitiesFileWriter fw  =  new FileWriter(PathBN+"RoquefortFindi
ngs");PrintWriter pw = new PrintWriter(fw);/Get and save the possible 
values (discretization) of Roquefortdouble [] RoqLevels  =  Roquefort.
getLevels();for (int j  =  0;j  <  Roquefort.getNumStates();j++) {pw.pri
nt((RoqLevels[j]+RoqLevels[j  +  1])/2 +";");}pw.print("\n");/ Inferring 
observations through the model to estimate the posterior probali-
ties of “Roquefort node” for each time step.float [] probs =  new float 
[Roquefort.getNumStates()];System.out.println("Roquefort number 
of states: "+Roquefort.getNumStates());double prob; int j,m; Double 
maxprob;for (int i  =  0;i  <  n;i++) {/ Clear previous observations of 
upstream stations.Cazavet.finding().clear();Castelblaque.finding().
clear();Saint_Lizier.finding().clear();/Set observations of observed 
nodesCazavet.finding().enterReal(Qcavt[i]);Castelblaque.finding().
enterReal(Qctlque[i]);Saint_Lizier.finding().enterReal(QSaintL[i]);/
Interfere the observations through the modelBN.compile();/ Show 
time stepSystem.out.println("pas:"+i);/ Get posterior probabilities of 
“Roquefort node for each time stepj  =  0; m  =  0;maxprob  =  0.00;do 
{prob  =  Roquefort.getBelief("#"+String.valueOf(j));pw.print(prob +";"); 
j++;} while ( j  <  Roquefort.getNumStates());probs=(float []) Roquefort.
getBeliefs();pw.print("\n");}pw.close();BN.finalize();}}
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