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bstract

racture process in quasi-brittle materials is governed by the strain localization phenomenon which involves
e formation of localized damage zones and cohesive cracks. In this work, we present numerical tools to
odel strain localization from the onset of localized damage to the formation and propagation of multiple
tersecting cracks. Two main ingredients are used for this purpose: (i) a microplane model, to describe
e initial anisotropic damage phase; (ii) the strong discontinuity method, to introduce cracks as strong

iscontinuities in the damaged continuum using the Embedded Finite Element Method (E-FEM). Here, we
rmulate the microplane microdamage model in a thermodynamic framework using simple constitutive laws

n each microplane. In order to describe multiple intersecting cracks, we extend the standard E-FEM to
ccommodate two strong discontinuities. The coupling between microplane microdamage model with the
rong discontinuity model is achieved using a transition method based on the energy equivalence between
oth models. Exploiting the anisotropic description provided by the microplane model, transition criteria are
rmulated based on the quantities defined on each microplane. The proposed methodologies are illustrated
sing several elementary test cases that involve both simple and complex stress-strain states.

eywords: multiple cracks, microplane model, embedded finite element method, damage-to-fracture
ansition
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VP Boundary Value Problem
ST Constant Strain Triangle
OF Degree of Freedom
-FEM Embedded Finite Element

Method
OS Kinematically Optimal Symmet-

ric
KON Statically and Kinematically Op-

timal Nonsymmetric
SOS Statically Optimal Symmetric
X-FEM eXtended Finite Element Method
Domain notations
(Bhe )+, (Bhe )− Sub-domains of a finite element

crossed by a discontinuity
B Domain of the material
B+, B− Sub-domains of the body crossed

by a discontinuity
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e Finite element of the discretized

body
di=1,2 Discontinuity surfaces of the first

and the second crack
i=1,2 Set of finite elements crossed by

the first and the second disconti-
nuity
Domain of microplane system

α A microplane in the disk mi-
croplane system

tB Boundary on which the traction
is applied

uB Boundary on which the displace-
ment is applied

elem Number of finite elements in a dis-
cretized body

ectors and matrices
Gradient matrix
Discretized displacement vector

∗ Discretized virtual displacement
vector
Discretized enhanced displace-
ment vector

∗
i=1,2 Discretized virtual enhanced dis-

placement vectors associated with
first and second crack

∗
i=1,2 Virtual enhanced shape functions

matrices associated with first and
second crack

i=1,2 Enhanced shape functions matri-
ces associated with first and sec-
ond crack

Γd Matrix formed using the Heavi-
side function

a Elementary shape functions ma-
trix

ci=1,2 Shape functions matrix for the en-
hanced displacement fields asso-
ciated with the first and second
crack

i=1,2 Projection matrices at the first
and the second discontinuity

ext Column vector of external forces
int Column vector of internal forces
nt Column vector of internal forces

associated with the traction con-
tinuity condition
Global stiffness matrix after static
condensation

int Internal force vector after static
condensation

pace notations
2 Set of square-integrable functions

Admissible space of the enhanced
strain field

⊥S Admissible space of enhanced

strain field orthogonal to the
stress field

S Admissible space of the stress
field

U Admissible set of the displace-
ment field

U0 Admissible space of the applied
displacement field

Ω1 Set of microplanes in loading
Ω2 Set of microplanes in unloading
H1 First-order Sobolev spaces
H1

0 Homogeneous first-order Sobolev
spaces

R(xi=1,2) Orthonormal basis
Functions and operators
A Assembly operator
· Contraction operator
: Double contraction operator
δΓd Dirac delta function
∇s Symmetric part of the gradient
HΓd Heaviside function
〈(•)〉+ Positive part of (•)
Lα Tangential projection operator of

a microplane
Mα Normal projection operator of a

microplane
F Constitutive relationship between

stress and strain
div Divergence operator
meas(•) Measure of (•)
max(•) Maximum value of (•)
HJuKni=1,2

Heaviside functions associated
with the first and second crack

hi=1,2 Discrete constitutive laws for the
first and second crack

q Softening function of the mi-
croplane microdamage model

Scalar variables
(σI)tr Maximum principal stress at

transition
α Angle of the normal to a mi-

croplane in the disk microplane
system

β Parameter of the microplane mi-
crodamage model

βcr Model parameter of the traction–
separation law

JuKn Normal component of the dis-
placement jump at a crack surface

JuKs Tangential component of the dis-
placement jump at a crack surface

ωα Microdamage variable
ε̃α Equivalent strain on a microplane
εα∗l Virtual tangential component of

strain on a microplane in the disk
microplane system

εα∗m Virtual normal component of
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εαl

εαm

γ

γ

γ

γ

φ̂
φ̂
φ̂

φ̂

κ
κ

λ(

(

(φ

Ju

Ju

µ
ν
ω

ω

φ
φ

φ

strain on a microplane in the disk
microplane system
Tangential component of strain
on a microplane in the disk mi-
croplane system
Normal component of strain on a
microplane in the disk microplane
system

asy
ε Asymptotic value of the rotation

of the maximum principal strain
axis with respect to the vertical
direction

asy
σ Asymptotic value of the rotation

of the maximum principal stress
axis with respect to the vertical
direction

ε Rotation of the maximum princi-
pal strain axis with respect to the
vertical direction

σ Rotation of the maximum princi-
pal stress axis with respect to the
vertical direction

S Available energy for the crack
V Dissipated volumetric energy
α
V Dissipated volumetric energy on a

microplane
Si=1,2 Available energy for first and sec-

ond crack
α History variable on a microplane
cr History variable associated to the

traction–separation law
Lame’s constant

ε
α+
l

)
Positive tangential strain compo-
nent on a microplane

ε
α+
m

)
Positive normal strain component
on a microplane

α
V )tr Volumetric energy dissipation

on a microplane at transition
pseudo-time

Kni=1,2 Normal components of the dis-
placement jump at the first and
the second crack surface

Ksi=1,2 Tangential components of the dis-
placement jump at the first and
the second crack surface
Lame’s constant
Poisson’s ratio

α Microdamage variable on a mi-
croplane

α
tr Microdamage variable on a mi-

croplane at transition pseudo-
time

S Energy dissipation at the crack
V Energy dissipation of a unit vol-

ume
α
V Volumetric energy dissipation on

a microplane
ψ Free energy of a unit volume
ψα0 Elastic part of free energy on a

microplane
ψS Helmholtz free energy at a crack

surface
ρ Density of the material
σαl Tangential component of strain

on a microplane in the disk mi-
croplane system

σαm Normal component of stress on a
microplane in the disk microplane
system

ε̃π0 Threshold equivalent strain on a
microplane

B Regularized parameter of mi-
croplane microdamage model

dcr Damage-like internal variable of
the traction–separation law

E Young’s modulus
El Elastic stiffness component in

tangential direction of a mi-
croplane

Em Elastic stiffness component in
normal direction of a microplane

ft Uniaxial tensile strength of the
material

fcr Yield surface of the traction–
separation law

Fi=1,2 Component of force in orthonor-
mal basis

flag Boolean variable to store informa-
tion of crack activation

flagi=1,2 Boolean variables to store infor-
mation of activation of first and
second crack

Gf Fracture energy of the material
gf Energy dissipation density of a

unit volume
gπf Energy dissipation density of a

microplane
lc Characterisitc length
N Number of pseudo-time steps
Nα Number of microplanes of a nu-

merical integration scheme
t Pseudo-time instant
tn Normal component of traction at

the crack surface
ttr Pseudo-time step at transition
ui=1,2 Component of displacement in or-

thonormal basis
Wα Weight corresponding to numeri-

cal integration on a microplane
Y α Conjugate variable associated

with the internal variable on a
microplane
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ensor variables
Hooke’s elastic stiffness tensor
Strain tensor

∗ Virtual strain field
Second-order identity tensor
Stiffness tensor of the traction–
separation law

sū Continuous part of the strain field
Stress tensor fulfilling the consti-
tutive law equations
Statically admissible stress tensor

∗ Virtual stress field
ector variables

Continuous part of the displace-
ment field

u Displacement field
u∗ Virtual displacement field
u0 Applied displacement
JuK Displacement jump field
lα Tangent to a microplane in the

disk microplane system
mα Normal to a microplane in the

disk microplane system
ni=1,2 Normal to the first and the second

crack
x Position of a point in the domain

of the material
p Normal of the boundary
t Traction at the discontinuity
t0 Applied traction

. Introduction

he fracture process in quasi-brittle materials is a complex physical phenomenon [1]. It starts with the
itiation of distributed microcracking. Then, strain localization is observed with the development of micro-

racking in the fracture process zone. Energy dissipation takes place in this zone while the material in the
rrounding releases elastic energy previously stored. Finally, the microcracks coalesce to form macrocracks.

everal efficient numerical methods are dedicated to crack initiation and propagation modeling in solids.
owever, simulation of the formation of multiple crack patterns, crack interactions, and crack closure effects
uring cyclic loading is still a challenging issue. This paper exposes an innovative approach to model the
omplex phenomenon of formation of multiple cracks in quasi-brittle materials subjected to complex loading.

o achieve this objective, it is essential to consider anisotropic non-linear behavior. In the literature, several
chniques have been proposed for modeling anisotropic microcracking processes. For instance, we can

ite numerical approaches based on elasto-plasticity such as [2, 3], smeared crack models (fixed crack [4],
tating crack [5] and multiple fixed cracks [6] formulations), isotropic [7, 8] and anisotropic [9, 10] continuum

amage models, microplane models [11, 12, 13, 14]. Among these works, microplane models can describe
e anisotropic nature of cracking in concrete by describing the material degradation in several directions.

microplane models [15, 16], the unit volume is represented by a spherical microplane system. The
amework consists in the projection of strains, termed as kinematic constraint, on the elementary planes
elonging to the microplane system to obtain its components in the normal and the tangential directions. The
orresponding stress components are obtained by postulating constitutive laws on each microplane. Then
e principle of virtual work is used to obtain the continuum stress tensor from its microplane counterparts

s a spherical integral [12]. For the analysis of planar members, [17] proposes a simplification of this original
amework by considering a disk microplane system to represent the unit volume. For two-dimensional
D) problems, this formulation provides simple modeling and is less time consuming from a computational

iewpoint than the spherical microplane system. Nevertheless, the extraction of fine information about
racking from continuum strain-softening models involves appropriate post-processing techniques [18, 19].

o avoid the use of additional tools to extract information related to the cracking process (location, crack
pening, and crack spacing) and to describe more precisely the displacement discontinuity occurring at
ilure, numerical methods have been developed to describe cracking explicitely by assuming a discontinuous
inematics. The discontinuous kinematics models aim to capture the failure in quasi-brittle materials by
corporating the strain (weak) and/or displacement (strong) discontinuities inside the continuum [20, 21].

the context of the Finite Elements Method (FEM), these discontinuities are modeled by introducing
dditional Degrees Of Freedom (DOFs) pertaining to the localization modes. These additional DOFs are
terpolated using enhanced shape functions. The most popular numerical methods are the Embedded

4
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EM (E-FEM) [22, 20] and the eXtended FEM (X-FEM) [23, 24]. For the E-FEM, the additional DOFs
re embedded [25, 26] inside the localized finite elements, and the global DOFs of the discretized finite
lement model remain unchanged. For the X-FEM [23, 27], the additional DOFs are supported by the
odes of the localized finite elements, leading to an increase in the global DOFs number. Thus, E-FEM
an be implemented in existing finite element codes in a less intrusive manner than X-FEM. While the
iscontinuous kinematics models provide an explicit description of cracking, the techniques mentioned above
iled to describe multiple cracks. For this purpose, specific mesh-based approaches can be found out from
e literature such as lattice models [28, 29, 30, 31]. Although these techniques can be used to estimate

ne cracking properties, they are also known to be mesh-sensitive (for coarse meshes), and implementing
ecific dissipative local mechanisms is not straightforward. For these reasons, the choice not to focus on
ese techniques has been made in this study.
the literature, several models that performs a damage-to-fracture transition either in linear elastic fracture

echanics [32] or in cohesive crack framework [33, 34] are proposed. These models describe the entire strain
calization process from localized damage to the initiation and propagation of cracks. In general, the

oupling between implicit and explicit cracking descriptions can be established either in a thermodynamics
amework [35] or using the strong discontinuity kinematics [36, 26]. In the first approach, the damage-to-
acture transition is achieved by assuming that the total mechanical energy of the body is the same for any
odeling strategy [35]. This is known as energy equivalence approach. In the second approach, the so-called
rong discontinuity analysis [37, 38] is performed to introduce a crack in the media. In the present work,
e follow this first approach.

this article, we first present the general framework of the microplane models and expose a specific mi-
roplane microdamage model within a thermodynamic framework. Second, we present the strong disconti-
uity framework which is numerically implemented using E-FEM. An extension of the standard E-FEM also
roposed to account for multiple intersecting cracks within the same finite element. Finally, the microplane
odel and E-FEM are coupled within a transition framework using the energy equivalence approach.

. Microplane microdamage model

ccording to microplane models, anisotropic damage is described by sampling the material behavior in
veral possible directions. In the simplified microplane representation that is considered in this work,
icroplanes are located on the circumference of the unit disk1 Ω (Fig. 1). Here, the disk microplane system
nder the plane strain assumptions is used to represent the unit volume. Hence, the stress and strain
omponents in the direction of x3 (Fig. 1) are assumed to be independent of the microplane system. The
odel is derived in the plane (x1, x2). In particular, we define a scalar isotropic damage constitutive law

n each microplane and derive the constitutive model of the unit volume. Different steps involved in the
rmulation are presented here.

.1. Projection of strain tensor

et us consider a microplane Ωα whose normal vector (denoted by mα) makes an angle α with reference
xis x1 (Fig. 1). The tangent vector to Ωα is denoted by lα (lα ·mα = 0). According to the kinematic
onstraint, the normal (εαm) and the tangential (εαl ) strain components at Ωα are obtained as the projection
f the strain tensor (ε):

εαm = mα · ε ·mα = Mα : ε and εαl = lα · ε ·mα = Lα : ε (1)

here, symbol ”·” denotes the simple contraction between tensors and the second-order tensors Mα =
α ⊗mα and Lα = (lα ⊗mα + mα ⊗ lα) /2 are the projection operators. In these definitions, symbol ”⊗”

enotes the dyadic product between vectors.

1The planar surfaces with outward normal parallel to x3 (Fig. 1) are not included in the system.
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Figure 1: Representation of unit volume using the disk microplane system

.2. Thermodynamic framework

this work, damage is considered as the only dissipative mechanism on a given microplane. Furthermore,
e adopt a microplane microdamage model employing a single microdamage variable [39, 40]. From a
umerical viewpoint, such a choice leads to a more computationally efficient formulation as it is discussed
ter on.

ree energy. Following [41], an integral relationship between the free energy potential at the unit volume
) on each microplane (ψα) using the microdamage scalar variable (ωα ∈ [0, 1[) is written as:

ρψ = 1
π

∫

Ω

ρψα dS, ρψα = (1− ωα) ρψα0 ρψα0 = 1
2

[
Em (εαm)2 + El (εαl )2

]
(2)

here ρψα0 is the stored elastic energy on each microplane. Here, Em and El are the elastic constants for each
icroplane in normal and tangential directions, respectively. The expressions of Em and El are obtained in
rms of macroscopic Young’s modulus (E) and Poisson’s ratio (ν) (see Appendix B).

tate variables. The normal (σαm) and tangential (σαl ) stresses on Ωα are obtained as the first partial
erivatives of ψα with respect to the normal and tangential strain, respectively:

σαm = ρ
∂ψα

∂εαm
= (1− ωα)Emεαm and σαl = ρ

∂ψα

∂εαl
= (1− ωα)Elεαl (3)

urthermore, the microplane energy release rate (Y α) is obtained as a conjugate of ωα as:

Y α = −ρ∂ψ
α

∂ωα
= 1

2

[
Em (εαm)2 + El (εαl )2

]
(4)

microplane models, σ can be obtained either by imposing equivalence of the virtual works computed us-
g macroscopic quantities and their microplane counterparts [11] or, within a thermodynamic framework,

sing constitutive laws written at the microplane level [41, 14]. However, in the absence of deviatoric/volu-
etric split, both approaches lead to the same expression of the stress tensor [41]. Hence, by following the
ermodynamic approach and using Eqs. (2) and (3), we obtain:

σ = ρ
∂ψ

∂ε
= 1
π

∫

Ω

∂ (ρψα)
∂ε

dS = 1
π

∫

Ω

ρ

(
∂ψα

∂εαm

∂εαm
∂ε

+ ∂ψα

∂εαl

∂εαl
∂ε

)
dS = 1

π

∫

Ω
(σαmMα + σαl Lα) dS (5)
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ate of energy dissipation. The Clausius-Duhem-Trusdell inequality for a unit volume is written as, φ̇V =
: ε̇− ρψ̇ ≥ 0, where, φ̇V is the rate of energy dissipation for a unit volume:

φ̇V = 1
π

∫

Ω

φ̇αV dS φ̇αV = −Y αω̇α ≥ 0 (6)

here, φ̇αV is the rate of energy dissipation on each microplane.

low rules. The evolution of ωα is defined as:

ωα = 1− q(κα)
κα

with q(κα) = ε̃π0 exp(−B(κα−ε̃π0 )) (7)

here, B is a material parameter controlling the softening branch and κα is an internal (history) variable.
ere, κα is defined as the historical maxima of an equivalent strain measure (ε̃α) on each microplane as:

κα = max
t

(ε̃π0 , ε̃α(t)) (8)

here ε̃π0 is a threshold expressed in terms of equivalent strain which has to be overcome to activate micro-
amage, and t is the current pseudo-time. Note that in the following, superscript π will always be used to
enote microplane quantities independent of the chosen Ωα.

the formulation proposed in this work, ε̃α is defined as:

ε̃α =
√(

ε
α+
m

)2 + β
(
ε
α+
l

)2 =
√

(Mα : 〈ε〉+)2 + β (Lα : 〈ε〉+)2 (9)

here 〈ε〉+ is defined as the positive part of the continuum strain tensor. Here, β ≥ 0 is a parameter
ccounting for the contribution of the tangential strain to the growth of microdamage.2 Since cracking in
uasi-brittle materials is mainly controlled by extensions [7] (either direct or indirect), such a choice seems
onsistent from a physical viewpoint.

ield function. The yield function (denoted by fα) is expressed in terms of ε̃α. The Kuhn-Tucker loading-
nloading conditions are written for each microplane as:

fα = fα(ε̃α) = ε̃α − κα and ω̇α ≥ 0, fα ≤ 0, ω̇αfα = 0 (10)

ensity of energy dissipation. In literature [43], the fracture energy per unit volume is calculated by con-
dering a uniaxial loading path under a one-dimensional (1D) assumption. However, to obtain the density
f energy dissipation of a unit volume under 2D plane strain assumption, we consider that gf is dissipated
y the unit volume at the end of a multi-directional loading process. Owing to the representation of the
nit volume using microplane system, the energy which is dissipated at the end of the fracture process (gf )
expressed by using the expended power on each microplane (gαf ) as:

gf =
∞∫

0

σ : ε̇ dt = 1
π

∫

Ω

gαf dS with gαf ≡
∞∫

0

(σαmε̇αm + σαl ε̇
α
l ) dt (11)

here ε̇αm = Mα : ε̇ and ε̇αl = Lα : ε̇. Here, we use the property that microplanes do not interact with each
ther as we interchange the integration over the time domain and over the microplane system.

2In the proposed microplane microdamage model, the coupling between different components of strain is necessary because
e use a single microdamage variable to drive the dissipation in both the normal and tangential directions. This would not
ave been necessary if one had used more than one microdamage variable [13, 42].
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ue to the assumption of equal parameters of elasticity and damage evolution, for each microplane, gαf is
e same on all the microplanes (i.e., gαf = gπf ). Finally, by performing the analytical integration of Eq. (11),
e end up with the following relationship between the density of energy dissipation on each microplane and
e one related to the unit volume:

gπf = gf
2 (12)

.3. Energetic regularization

he use of softening constitutive law in the context of the FEM does not provide objective results when
escribing a localization phenomenon like cracking. Consequently, a characteristic length (lc) is required

obtain mesh independent solutions. In the literature, microplane models are regularized using crack
and [44], nonlocal [45] or gradient enhanced [46] approaches, among others. These formulation restore
esh independence of the results with respect to the spatial discretization. Depending on the technique,
ey impose additional computational costs due to the need for computing averaged quantities that drive the

amage evolution (e.g., in nonlocal models) or to solve an additional equation (e.g., in gradient formulations).
n alternative approach commonly used in structural mechanics [47, 48] in order to reduce mesh sensitivity,
ith a moderate computational cost, is based upon the so-called energetic regularization technique [49,
3]. According to this approach, a length lc (proportional to the mesh size and depending on the type of
nite element [50, 47]) is introduced into the constitutive equations using a direct relationship between the
olumetric (gf ) and the surface (Gf – considered as a material parameter) energy densities as, gf = Gf/lc.
ow, using Eq. (12) we obtain the relation between volumetric energy density on each microplane and the
rface energy density as, gπf = Gf/2lc.
sing this relation, we derive a regularized damage evolution model (Appendix Appendix A). In the later
ctions, we also exploit this relation to calculate the residual energy at each stage of the loading cycle on

ach microplane.

.4. Integration of microplane quantities

this work, given the symmetry of the domain, and because σαm and σαl are periodic with period π, the
tegration in Eq. (5) is restricted to the contour of a unit semi-circle. The half microplane system is then
iscretized as the set of Nα microplanes of normal mα, such that one microplane is always orthogonal to x1
.e., α = 0◦). As a consequence, the inclination of the i-th microplane with respect to the horizontal axis is
− 1)180◦/Nα. Alternatively, if both microplanes whose normal corresponds to α = 0◦ and α = 180◦, the
clination of the i-th microplane with respect to the horizontal axis can be obtained as (i−1)180◦/(Nα − 1).
he stress tensor σ is finally obtained by using a numerical integration composite midpoint rule:

σ = 2
π

Nα∑

1
(σαmMα + σαl Lα)Wα (13)

here, Wα = π/Nα is the weight associated to each microplane.

. Strong discontinuity framework and embedded finite element method (E-FEM)

ere, we describe the modeling of media crossed by cracks using the strong discontinuity approach in the
-FEM framework. The problem of a quasi-brittle medium developing multiple intersecting discontinuities

quasi-static case is treated within the E-FEM in [51]. In this paper, the discontinuous part of the
isplacement is obtained as the sum of displacement jumps at the multiple discontinuities. Besides, the
cal equilibrium is fulfilled by satisfying the traction continuity conditions on each discontinuity surface.
e present here the kinematics and the Boundary Value Problem (BVP) in case of two intersecting strong

iscontinuities which is then solved by extending the standard E-FEM.

8
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.1. Kinematics and boundary value problem

et us consider a body B crossed by a single discontinuity Γd1 whose normal is denoted by n1. Now, let us
ssume that during the loading history, a second crack Γd2 with normal n2 is localized (Fig. 2). Here, Γd1

nd Γd2 divide the domain into two pairs of sub-domains each, denoted by, B+
1 , B−1 and B+

2 , B−2 . Let ∂B
e the boundary of B and let us denote p its outer normal vector. Here, the main underlying assumption
that the state of the body with two discontinuities is obtained as the superposition of the states with

ach discontinuity. Interaction between discontinuities is then modeled through coupled traction continuity
onditions.

he kinematic response at any material point x ∈ B is characterized by an infinitesimal displacement field,
which consists of a continuous part ū and discontinuous parts JuK1 and JuK2 associated with Γd1 and Γd2

spectively as:
u = ū +HΓd1

JuK1 +HΓd2
JuK2 (14)

here, HΓd1
(x) and HΓd2

(x) are the Heaviside functions at Γd1 and Γd2 respectively. HΓd1
(x) and HΓd2

(x)
re equal to 1 on B+

1 , B+
2 and 0 on B−1 , B−2 , respectively.

nder the small perturbations assumption, the infinitesimal strain tensor ε compatible with the displacement
eld is then defined as:

ε = ∇sū +HΓd1
∇sJuK1 +HΓd2

∇sJuK2︸ ︷︷ ︸
regular part

+
(
δΓd1

JuK1 ⊗ n1
)s +

(
δΓd2

JuK2 ⊗ n2
)s

︸ ︷︷ ︸
singular part

(15)

here, δΓd = δΓd(x) is the Dirac’s delta distribution appearing from the gradient of the Heaviside function,
nd (•)s denotes the symmetric part of tensor (•). As it can be seen from Eq. (15), the strain field has a
gular part which is bounded and a singular part which is unbounded.

ue to the singularity introduced by the Dirac functions in the strain field, it is not straightforward to
efine constitutive relationships. This comes from the fact that σ has to be bounded to satisfy the equi-
brium even though ε is unbounded. In the one crack case, one approach consists in deriving the discrete
onstitutive equations at the discontinuity level using the continuum constitutive law [36, 26, 37] which is

9
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rmed as Continuum Strong Discontinuity Approach (CSDA). This is achieved by regularizing the Dirac’s
elta function using a collocation function defined on a band of finite width centered on Γd. In another
pproach, this problem can be solved by treating the crack as a discrete surface in the continuum [52, 53].
his is termed as Discrete Strong Discontinuity Approach (DSDA), which is followed in this work. The
rack initiates when an assumed criterion is reached and the discrete constitutive law at the discontinuity is
efined independently from the continuum constitutive law. From now on, the implicit dependence on (x, t)
omitted when no confusion is possible.

ugmented BVP. In a continuum mechanics context, the Boundary Value Problem (BVP) to be solved
onsists in finding the displacement field u which satisfies the equilibrium equations, compatibility conditions
nd constitutive relationship along with the given displacement and traction boundary conditions. However,

the presence of a strong discontinuity, the enhanced kinematics and the traction continuity conditions
cross the cracks need to be taken into account. Due to the principle of superposition invoked previously,
e individual traction continuity conditions related to the discontinuities are coupled to obtain the local

quilibrium of the superposed states. Hence, an augmented BVP is obtained as follows:




divσ = 0 on B
ε = ∇su on B
σ = F(ε) on B
u = u0 on ∂uB
σ · p = t0 on ∂tB
σ · n1 = t1 on Γd1

σ · n2 = t2 on Γd2

t1 = h1(JuK1) on Γd1

t2 = h2(JuK2) on Γd2

(16a)
(16b)
(16c)
(16d)
(16e)
(16f)
(16g)
(16h)
(16i)

here, div(•) denotes the divergence operator, F denotes a constitutive relation between σ and ε, (t1, t2)
re the traction vectors on the discontinuities surface, (h1, h2) are the discrete constitutive laws, and (t0,u0)
re applied traction and displacement respectively. Finally, ∂tB ⊂ ∂B and ∂uB ⊂ ∂B are the parts of the
oundary such that ∂tB ∪ ∂uB = B and ∂tB ∩ ∂uB = ∅.

.2. Embedded finite element method

he Hu-Washizu variational principle [54] is considered to derive the weak formulation. Since the displace-
ent jumps are embedded inside a finite element, the enhanced assumed strains of both cracks are treated
cally.

.2.1. Enhanced assumed strain method

ariational form of the augmented BVP. In the Enhanced Assumed Strain (EAS) method, the enhanced
inematics of the continuum is taken into account by representing the discontinuous parts of the strain field
s enhanced strains (ε̃) as follows:

ε = ∇su + ε̃1 + ε̃2 (17)

et us denote (u∗, ε∗, σ̃∗) the virtual variations corresponding to (u, ε, σ̃). The three-fields variational

10
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d2

roblem to be solved consist in finding (u, ε, σ̃) ∈ (U,E,S) such that ∀ (u∗, ε∗, σ̃∗) ∈ (U0,E,S),
∫

B
∇s(u∗) : σ(ε) dV −

∫

∂tB
u∗ · t0 dS = 0

∫

B
σ̃∗ : [∇su− ε] dV = 0

∫

B
ε∗ : [−σ̃ + σ(ε)] dV = 0

(18)

(19)

(20)

here σ(ε) is the stress in the continuum defined by the constitutive law Eq. (16c). The admissibility set U
nd spaces U0, E and S are defined as U =

{
u|u ∈ H1 (B) ,u = u0 on ∂uB

}
, U0 =

{
u|u ∈ H1

0 (B) ,u = 0 on ∂uB
}

=
{
ε|ε ∈ L2 (B)

}
and S =

{
σ̃|σ̃ ∈ L2 (B)

}
, where H1 (B) and H1

0 (B) are homogeneous first-order Sobolev
aces on B respectively. L2 (B) denotes the set of square-integrable functions on B. Let us note that σ and
are both stress fields. However, σ is assumed to fulfill the constitutive law equations whereas σ̃ fulfills

atic admissibility condition.

inite element approximation. Now, let us consider the finite element discretization Bh ⊂ B, composed by
elem non-overlapping finite elements Bhe such that Bh = ∪neleme=1 Bhe . In general, the inter element continuity
not ensured on the stress and strain fields which allows to introduce the required enhancements locally
a finite element. Hence, the corresponding discretized displacement field consists of the nodal DOFs (d)

nd the elemental enhanced displacement fields (e1, e2).
et Eh1 and Eh2 denote the set of finite elements that are crossed by the Γd1 and Γd2 respectively. In case of
ultiple intersecting cracks, E1 ∩ E2 is not an empty set. Here, we use Constant Strain Triangular (CST)

lements, in which two intersecting cracks are initiated at the single Gauss integration point at the centroid
f the element. Let us consider that Γd1 and Γd2 divide the finite elements Bh1

e ∈ Eh1 and Bh2
e ∈ Eh2 into

b-domains (Bh1
e )+, (Bh1

e )− and (Bh2
e )+, (Bh2

e )− respectively such that n1 and n2 are inward (Bh1
e )− and

h2
e )− respectively (Fig. 3).

he finite element approximation of u is constructed as:

u = Nad + Nc1e1 + Nc2e2 (21)

here, Na denotes the elementary shape functions matrix, Nc1 = HΓd1
−∑

a∈(Bh1
e )+ Na and Nc2 = HΓd2

−
a∈(Bh2

e )+ Na are the shape functions matrices for the enhanced displacement fields [25, 21]. Here, HΓd1

nd HΓd2
stand for the matrices formed using the Heaviside function. For the sake of clarity, we remove the

bscript a for the nodal DOFs and interpolation functions.
he approximation of the variational field u∗ is the same approximation of u (Eq. (21)). The approximations
f the strain and its virtual field can be constructed in different ways depending on the type of discontinuity

11
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nd the chosen method for fulfillment of traction continuity condition as described in [55, 56]. In the for-
ulation termed as Statically Optimal Symmetric (SOS), the traction continuity condition is satisfied while
e kinematics of strong discontinuity is not well represented. In contrast to this, Kinematically Optimal

ymmetric (KOS) formulation represents kinematics of strong discontinuity correctly but equilibrium across
e cracks is not ensured in complex deformation modes.
ere, we follow Statically and Kinematically Optimal Nonsymmetric (SKON) formulation which takes into
ccount both the kinematics of strong discontinuity and the traction continuity in a well manner. In this
rmulation, the strain interpolation is performed using the gradient matrices of Nc1 , Nc2 for ε. Another
atrix constructed from the functions that satisfies the zero mean over the finite element is chosen for the

irtual strain field. Thus, the finite element approximations of ε, ε∗ are obtained as:

ε = Bd + G1e1 + G2e2 and ε∗ = Bd∗ + G∗1e∗1 + G∗2e∗2 (22)

here, B is the standard strain-displacement matrix (i.e., the gradient matrix of N) and G1, G2 and G∗1
∗
2 are the interpolation matrices of the enhanced strains and their virtual counterparts given by:

G1 = P1δΓd2
−

∑

a∈(Bh2
e )+

Ba and G2 = P2δΓd1
−

∑

a∈(Bh1
e )+

Ba

G∗1 =
(
δΓd1

− meas(Γd)
meas(Bh1

e )

)
P1 and G∗2 =

(
δΓd2

− meas(Γd)
meas(Bh2

e )

)
P2

(23)

(24)

ith the projection matrices defined at the discontinuity surface as:

P1 =



n11 0
0 n12

n12 n11


 and P2 =



n21 0
0 n22

n22 n21


 (25)

here, [n11 , n12 ], [n21 , n22 ] are the components of n1 and n2 respectively in the orthonormal basis R(x1,x2),
nd meas(•) representing the measure of (•). In this manner, both the kinematics of strong discontinuity
nd the traction continuity are represented in a well manner.
s we use CST elements, the traction is constant across the element. We then substitute Eqs. (23) and (24)
Eqs. (18) to (20) and use the zero mean property of G∗ 3 to obtain the following final global and local

quilibrium equations (using the assembly operator A):




nelem

A
e=1

∫

Be
B>σ(Bd + G1e1 + G2e2) dV = Fext

t1(e1)− 1
meas(Bh1

e )

∫

Bh1
e

P>1 σ(Bd + G1e1 + G2e2) dV = 0 ∀ Bh1
e ∈ E1

t2(e2)− 1
meas(Bh2

e )

∫

Bh2
e

P>2 σ(Bd + G1e1 + G2e2) dV = 0 ∀ Bh2
e ∈ E2

(26a)

(26b)

(26c)

here, Fext =
∫
∂tBN>t0 dS is the standard external force vector.

.3. Numerical resolution
this section the numerical resolution of the governing equilibrium equations is presented. Eqs. (26a)
(26c) are solved in a incremental iterative manner using modified Newton method. Similar to the standard

-FEM [52, 53], static condensation procedure can be applied (Eqs. (26a) to (26c)). Then, the so called
perator split method is used for solving the global and local equilibrium equations in a staggered manner.

3For a given function z(x) defined on B, the property
∫
B δΓdz(x) dV =

∫
Γd
zΓd dS holds true. Here, zΓd is the value of the

nction on the discontinuity.
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.3.1. Incremental iterative scheme

he pseudo-time domain is discretized according to a sequence of N pseudo-time instants {tn}Nn=1 such that
+1 = tn + ∆t, with ∆t standing for a pseudo-time step. The evolution of the external loading is then

pplied incrementally (∆Fn+1
ext ) with respect to the discretized pseudo-time tn+1 as, Fn+1

ext = Fnext + ∆Fn+1
ext .

ere, we apply a displacement-controlled loading and the boundary conditions are enforced using a double
agrange multiplier technique [57, 58]. Then, the unknown increments ∆sn+1 = (∆dn+1,∆en+1

1 ,∆en+1
2 )

re obtained by solving the discrete system of Eqs. (26a) to (26c), for the given ∆Fn+1
ext , and the solution

t tn+1 is updated as, sn+1 = sn + ∆sn+1, where sn = (dn, en1 , en2 ) is the solution at time tn. The
qs. (26a) to (26c) being non-linear, the increments of the solution fields are obtained using an iterative
rocedure. In this work, we adopt a modified Newton method for each pseudo-time step. The solution
crements at iteration i+1 at time increment tn+1 are obtained as, ∆sn+1,i+1 = ∆sn+1,i+δsn+1,i+1. Here,

sn+1,i+1 = (δdn+1,i+1, δen+1,i+1
1 , δen+1,i+1

1 ) is the solution increment between iterations i and i+1 whereas
sn+1,i = (∆dn+1,i,∆en+1,i

1 ,∆en+1,i
2 ) is the solution variation at iteration i.4

order to obtain
(
δdi+1, δei+1

1 , δei+1
2
)
, we define the residuals of the global and local equilibrium equations

t iteration i+ 1 as follows:




R(di+1, ei+1
1 , ei+1

2 ) = Fext −
nelem

A
e=1

∫

Be
B>σ(di+1, ei+1

1 , ei+1
2 ) dV

r1(di+1, ei+1
1 , ei+1

2 ) = t1(ei+1
1 )− 1

meas(Bh1
e )

∫

Bh1
e

P>σ(di+1, ei+1
1 , ei+1

2 ) dV ∀ Bh1
e ∈ E1

r2(di+1, ei+1
1 , ei+1

2 ) = t2(ei+1
2 )− 1

meas(Bh2
e )

∫

Bh2
e

P>σ(di+1, ei+1
1 , ei+1

2 ) dV ∀ Bh2
e ∈ E2

(27a)

(27b)

(27c)

ow, we minimize the residuals at the iteration i+ 1 using the solution (di, ei1, ei2) at iteration i to obtain
e linearized system of the global and local equilibrium equations:





Ki
bbδdi+1 + Ki

bg1δe
i+1
1 + Ki

bg2δe
i+1
2 = Fext − Fiint

Ki
g1bδd

i+1 + Ki
g1g1δe

i+1
1 + Ki

g1g2δe
i+1
2 = (f1)iint ∀ Bh1

e ∈ E1

Ki
g2bδd

i+1 + Ki
g2g1δe

i+1
1 + Ki

g2g2δe
i+1
2 = (f2)iint ∀ Bh2

e ∈ E2

(28a)
(28b)
(28c)

4From here-forth, the dependency on the time step is skipped for the sake of conciseness when no confusion is possible. As
consequence, every quantity without the superscript n+ 1 has to be intended as referred to tn+1.
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Fiint =
nelem

A
e=1

∫

Be
B>σ(di, ei1, ei2) dV

Ki
bb =

nelem

A
e=1

∫

Bh1
e

B>CB dV,

Ki
bg• =

∫

Bh1
e

B>CGr dV,

Ki
g•b = − 1

meas(Bh•
e )

∫

Bh•
e

P>• CB dV,

Ki
g•g• = ∂t•

∂e•

∣∣∣∣
ei•
− 1

meas(Bh•
e )

∫

Bh•
e

P>• CGr dV,

Ki
g•g•• = − 1

meas(Bh•
e )

∫

Bh•
e

P>• CG•• dV

(f•)iint = tr
(
ei•
)
− 1

meas(Bh•
e )

∫

Bh•
e

P>• σ
(
εi
)
dV

(29)

(30)

(31)

(32)

(33)

(34)

(35)

he numerical experience showed that choosing the elastic tensor as the iteration operator led to a robust
onvergence. This explains why the elastic tensor C is used in the softening regime. Moreover, the stiffness
atrices Ki

g1g2 and Ki
g2g1 have non-zero stiffness terms only if both Bh1

e and Bh2
e belong to E1∩E2. In other

ords, for the elements in which the two cracks intersect, the coupled traction-separation laws are solved.
the elements that contain only the first crack, we solve the system of equations related to only a single

rack.

ere, the static condensation can be performed at the element level to eliminate DOFs corresponding to ei1
nd ei2 from the global DOFs. This allows obtaining the following modified system of equations:

K̃iδdi+1 = Fext − F̃iint (36)

here:
K̃i = Ki

bb −Ki
bg1

[
Ki
g1g1

]−1 Ki
g1b −Ki

bg2

[
Ki
g2g2

]−1 Ki
g2b

F̃iint = Fiint −Ki
bg1

[
Ki
g1g1

]−1 (f1)iint −Ki
bg2

[
Ki
g2g2

]−1 (f2)iint

(37)

(38)

.3.2. Staggered solution scheme: operator split method

he solution of the linearized system of equations Eqs. (28a) to (28c) is obtained in a staggered manner. In
ther words, the solution of the global equilibrium at the iteration i+ 1 is obtained first using the solution
f the local equilibrium at previous iteration i and second the residual of the local equilibrium is redefined
king into account the global solution at the iteration i + 1. This procedure is known as operator split
ethod which is described in detail here.

lobal equilibrium equation. The residual of the global equilibrium Eq. (26a) is redefined as, R(di+1, ei1, ei2) =
. Since ei1 and ei2 are known, the static condensation can be performed and the solution δdi+1 of Eq. (36)
obtained.
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oupled Local equilibrium equations. The residuals of the coupled traction continuity conditions Eqs. (26b)
nd (26c) is redefined using δdi+1. Since these equations are also non-linear, an iterative procedure is used
t the local level to compute δei+1

1 and δei+1
2 . At local iteration j + 1, one solves the following problem:

{
r1(di+1, ej+1

1 , ej+1
2 ) = r1(di, δdi+1, ej1, e

j
2) + Kj

g1g1δe
j+1
1 + Kj

g1g2δe
j+1
2 = 0

r2(di+1, ej+1
1 , ej+1

2 ) = r2(di, δdi+1, ej1, e
j
2) + Kj

g2g1δe
j+1
1 + Kj

g2g2δe
j+1
2 = 0

(39a)
(39b)

he discretized displacement jumps at j+ 1 are then obtained as, ej+1
1 = ej1 + δej+1

1 and ej+1
2 = ej2 + δej+1

2 .
ow, once the local convergence is achieved ei+1

1 , ei+1
2 are set equal to ej+1

1 , ej+1
2 . The residual at the

eration i+ 1 is then updated as R(di+1, ei+1
1 , ei+1

2 ), which is checked for a given tolerance (||R|| ≤ 10−6).
s an advantage of the operator split method, the terms fiint appearing in Eq. (36) are null during the
cal solving. Thus, the internal force vector is formed only by the global forces coming from the stresses
the bulk. The above methodology is implemented in CastLab [58], an in-house FE code in MATLAB ®

nvironment.

raction-separation law. Following [59], a constitutive law on the discontinuity can be defined within the
amework of thermodynamics of irreversible processes using an isotropic damage-like internal variable dcr.
he latter represents the degradation of the cohesive properties related to the discontinuity. The Helmholtz
ee energy is introduced as a surface energy density, ψS = ψS(JuK, dcr). It represents the available energy
ensity for the formation of crack is thus written as ψS = (1/2)(1 − dcr)JuK ·K · JuK, where, K stands for
e stiffness operator. The traction-separation law which is given in terms of t and JuK at Γd as:

t = ∂ψS
∂JuK = (1− dcr) K · JuK (40)

order to model both crack opening and sliding, a mixed mode traction-separation law is considered.
ollowing the proposal made by [59], the expression of dcr is given in terms of the fracture energy (Gf,S)
nd κcr, an internal (history) variable which is defined using the historical maxima of JuKn and JuKs:

dcr = 1− κ0
cr

κcr
exp

(
− ft
Gf,S

(
κcr − κ0

cr

))
with κcr = max〈JuKn〉+ + βcr max |JuKs| (41)

here, βcr ≤ 1 is a model parameter allowing to weight the mode-I with respect to the mode-II and κ0
cr

a non-zero value of the internal variable at the crack initiation. The stiffness tensor is then considered
s [59], K = ft/κ

0
crI, where, I is the second-order identity tensor. Here, κ0

cr ensures a smooth evolution
f dcr which ranges between 0 (no crack) and 1 (fully opened cohesive crack). Finally, the yield surface,
cr = fcr(JuKn, JuKs, κcr), and the loading-unloading (Kuhn-Tucker) conditions are given as:

fcr = 〈JuKn〉+ + βcr|JuKs| − κcr = 0 and κ̇cr ≥ 0, fcr ≤ 0, κ̇crfcr = 0 (42)

. Microplane microdamage model to strong discontinuity: transition approach

he transition models’ purpose is to describe the energy dissipation occurring at both the localized damage
one and the crack in a coupled manner. A transition framework is used such that the energy which is to be
issipated by the coupled model (sum of the volumetric and surface parts) is equivalent to the energy which
to be dissipated by the microplane model without transition. Following the energy equivalence approach

roposed in [34], the total energy dissipated by microplane and strong discontinuity models is equivalent.
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.1. Single crack formulation

rom a phenomenological point of view, the crack is formed inside a given localization zone. Hence, the
nergy dissipated during the strain localization process can be divided into two parts: (i) the volumetric part
at accounts for the formation and growth of a damaged/localization band (described though a continuum
odel, a microplane model in the present case); (ii) the surface part that accounts for the initiation and
ropagation of the crack (described through a strong discontinuity model, in the present case). In this section,
e present the formulation of microplane microdamage model to strong discontinuity model transition
pproach by considering that a single crack is initiated during the second phase of strain localization.

.1.1. Formulation

he transition approach is presented by enforcing the energy equivalence in a weak form [60], that is to say,
y considering the energy dissipation of the uncoupled and coupled models over entire pseudo-time domain
oading history)5. Within the context of the transition approach, before the transition pseudo-time (ttr),
ere is a part of total energy dissipated in the unit volume, and a part dissipated on the crack surface after
e transition. Therefore, in the case of the microplane model, we have:

∫

B

∫ ∞

0
φ̇V dt dV

︸ ︷︷ ︸
:=φV

=
∫

B

∫ ttr

0

1
π

∫

Ω
φ̇αV dS dt

︸ ︷︷ ︸
:=φ̂V

dV +
∫

Γd

∫ ∞

ttr

φ̇S dt

︸ ︷︷ ︸
:=φ̂S

dΓ (43)

ollowing Eq. (43), the energy available for the crack formation is obtained as the difference between the
nergy which is to be dissipated by the microplane microdamage model without transition and the energy
lready dissipated in the localization band before transition. Using Eq. (11) for the relation between the
ensity of energy dissipation in a unit volume and its microplane counterpart, one has:

φS =
∫

Γd
φ̂S dΓ =

∫

B

(
gf − φ̂V

)
dV = 1

π

∫

B

∫

Ω

(
gπf − φ̂αV

)
dS dV (44)

hus, the term (gπf − φ̂αV ) gives the residual energy on each microplane at the moment of transition. Due
the anisotropic nature of the microplane microdamage model, the residual energy is calculated as a

irectional dependent quantity.
the previous equations Eqs. (43) and (44), we assumed that the energy dissipation in the bulk material

ops once a crack is localized due to progressive unloading in the neighborhood of the crack. According to
is approach, before the transition, the rate of the surface energy dissipation is equal to zero (a crack does

ot exist), and the increment of the energy dissipation in the bulk material is equal to the increment of the
nergy dissipation of the microplane model. After the transition, the energy dissipation rate in the bulk is
qual to zero due to unloading in the band and the increment of the surface energy dissipation.
fter an assumed criterion is fulfilled, the cohesive crack is introduced as a strong discontinuity in the
aximum principal stress direction. Note that, in transition models [33, 62], the criterion for crack initiation
formulated based on the quantities at the unit volume or the internal variables. In the present work,

ansition criteria can be formulated based on quantities related to the microplanes (.g., ε̃α, ωα, and φ̂αV ),
exploit the anisotropic damage description provided by the microplane model.

ollowing the same approach as in [35, 63], the available energy computed from Eq. (44) is used to identify
e parameters of the cohesive law.The parameters of the exponential traction-separation law (Eq. (40)

nd Eq. (41)), are then taken proportional to the available energy (i.e., Gf,S ∝ φ̂S), and the value of the
aximum principal stress (σI) at the transition (i.e., ft = (σI)tr) respectively.

5On contrary, the energy equivalence can be imposed in a strong sense by imposing it at each pseudo-time step [61]. However,
is is less straight forward in the present case due to the complex integrals of the microplane model.
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.1.2. Algorithm

e focus on the formation of a single crack. This algorithm is presented for a given iteration i + 1 at the
resent time step tn+1. A Boolean variable flag, which is initiated with 0, is used to store the information
f the crack opening activation. As soon as the crack is activated, flag is set to 1.

he steps followed for the initiation and propagation of crack after transition are described below:

1. at a given Gauss point, compute the microplane quantities using the discretized fields di+1 and ei
(initiated with 0). So, εαm and εαl are computed by projecting the total strain (Bdi+1 + Gei) on the
microplanes (see Eq. (1)).

2. if the crack is not activated in the previous time step (i.e., flag = 0) then the transition criterion is
checked. Here, two cases can be distinguished:

(a) if the transition criterion is not fulfilled, the microdamage variable and the energy dissipation are
updated.

(b) if the transition criterion is fulfilled on at least one microplane, then the crack is activated. Using
the energy regularization technique (see Section 2.3), the energy available for the crack is obtained
as6:

Gf,S = φ̂S = 1
π

(∑

Ωα
(gπf − φ̂αV )Wα

)
lc (45)

The traction continuity condition is then solved according to E-FEM.

ote that, while solving the local equilibrium equation using the operator split method, the stress tensor
the bulk needs to be updated during the iterations. During the solution procedure of the local traction

ontinuity condition, the microdamage variables are frozen to avoid any instabilities at the local level, due
the concurrent correction of the microdamage distribution and crack-opening at the strong discontinuity

vel.

.2. Multiple crack formulation

this section, we extend the proposed transition framework for describing the formation of multiple in-
rsecting orthogonal and non-orthogonal cracks. In particular, we capture the anisotropic damage growth

ue to the rotation of the principal stress/strain axes during loading and benefit from information provided
y the microplane formulation to initiate multiple cracks. Please note that one can handle the principal
ress/strain axes rotation by considering a complex traction-separation law at a single discontinuity. How-

ver, we choose this path because our objective is to model multiple intersecting cracks, for example, in the
ase of a shear cyclic loading.

.2.1. Formulation

et us consider a unit volume submitted to complex loading conditions such that principal stress/strain
xes rotate during loading. As the transition criterion is fulfilled, the first crack is initiated, as discussed in
e previous section. Due to the evolution of the stress and strain state in the medium, a second crack can

e localized in another direction.

o account for this situation in a microplane microdamage-to-fracture transition approach, at each time,
e identify the microplane system Ω into two non-intersecting subsets Ω1 and Ω2, such that Ω1 contains

6Notice that similar expression is obtained in [60] using a continuum damage model.
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icroplanes that are in unloading condition and Ω2 is a subset that contains microplanes in loading condition
q. (10)):

Ω1 = {Ωα ∈ Ω : ω̇α = 0, fα < 0 } and Ω2 = {Ωα ∈ Ω : ω̇α > 0, fα = 0 } (46)
sing the analogy between microplanes and microcracks, one can assume that microplanes belonging to
1 correspond to the family of microcracks that coalesced to form the first crack; in contrast, microplanes
elonging to Ω2 represent still active (opening or dissipating) microcracks. If the transition criterion for the
cond crack is reached on at least one microplane in Ω2 then a second crack orthogonal/non-orthogonal to
e first one is initiated in the direction of the maximum principal stress at the transition. The available

nergy for the crack (φS2) is then obtained through Eq. (44), but the integration for the calculation of the
nergy dissipation is now performed over Ω2 only.
otice that the same transition criterion is adopted for the activation of both the cracks. This is justified
ecause the material is isotropic before the initiation of the microdamage. More studies are needed, however,
better define transition criteria for multiple cracks as well as the more realistic way for calibrating traction-

paration laws, in particular for the second crack.

.2.2. Algorithm
wo Boolean variables flag1 and flag2 are used to store the information about the first and second crack
spectively. Similar to the single crack case, these variables are initiated with 0 and set to 1 after the
spective cracks initiation. Again, the variables related to the discretized displacement jump at both

racks, ei1 and ei2 respectively, are initiated with 0. From now on, down-scripts S1 and S2 are used to denote
uantities referred to as the first and second crack, respectively.
ere, we assume that the cracks are initiated sequentially, i.e., the second crack is initiated only after the
itiation of the first crack. This allows us to obtain ei1 in the first step and then the evolution of ωα due to
e rotation of the principal stress/strain axes in the next step. In the below, we focus on the steps involved
the initiation of the second crack:

1. after solving the traction-separation law at the first crack (i.e., computing the enhanced displacement
corresponding to the first crack opening), project the updated strain (Bd + G1e1) on each microplane
to calculate εαm and εαl .

2. recalculate ωα and φ̂αV using the components of updated strain on each microplane.

3. check the transition criterion on the microplanes belonging to Ω2, on which microdamage growth
takes place after updating the strain and if the transition criterion is fulfilled then the second crack is
initiated. Now the coupled traction-continuity conditions are solved. Following the same approach for
the case of single crack (see Eq. (45)) and noting that the energy dissipation takes place only on the
microplanes belonging to Ω2, we obtain the energy available for the second crack as:

Gf,S2 = φ̂S2 = 1
π

(∑

Ω
(gπf − φ̂αV ) Wα

)
lc = φ̂S1 −

1
π

(∑

Ω2

φ̂αV Wα

)
lc (47)

. Representative numerical examples

this section, the proposed approach presented above is illustrated numerically through some simple exam-
les. First, the characteristic responses of the microplane microdamage model and the strong discontinuity
odel (after coupling) are studied using a uniaxial tensile loading test in which a single crack is initiated.
econd, the effect of continuous/discontinuous transition criteria in the context of the energy regularization
chnique is studied. Finally, a Willam-like loading numerical experiment is used to illustrate both the
itiation and propagation of two non-orthogonal cracks. Notice that, the present work aims to present the
roposed formulation and related algorithms. Further work is ongoing to study the structural test cases
volving multiple cracks propagating through the specimen.
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igure 4: FE discretization of the specimen (1 m × 1 m) under vertical loading (a) and the force-displacement
rve in vertical direction of microplane microdamage model (b)

.1. Numerical behavior of microplane microdamage model

roblem setting. We consider a unit quasi-brittle material specimen under plane strain condition, which is
iscretized using 2 CST elements (Fig. 4a) and apply the loading (vertical imposed displacements) on the
pper boundary whereas the bottom boundary is constrained. To illustrate the microplane microdamage
odel’s behavior, we consider the microdamage growth as the only dissipation mechanism (i.e., no cracks

re initiated). The material parameters of the microplane microdamage model are Young’s modulus, E = 36
Pa, Poisson’s ratio, ν = 0.2, ε̃π0 = 10−4, β = 1 and Gf = 1000 N/m. Here, we chose the value of the
arameter β as 1 to completely take into account the contribution of εαl for ε̃α. Also, Nα = 361, which
ives a microplane for each 0.5◦ is chosen to ensure high accuracy of the numerical integration. A detailed
nalysis of the response of the microplane microdamage model for other values of these parameters is shown
ter. Finally, the reference axis to compute the angle α of the normal mα of a given microplane is chosen
s the axis 1 aligned with the horizontal direction (Fig. 4a).

lobal response. The global response of the specimen is shown in Fig. 4b. As expected, the reaction force
rst increases linearly (elastic phase). Then, a softening phase, corresponding to the progressive evolution
f microdamage at microplanes level, is obtained.

istribution profiles of strain components. The evolution of the distribution profiles of εαm and εαl over the
icroplanes (at Gauss point level) computed at different points along the global curve (Fig. 4b) are given in
igs. 5a and 5b respectively. It can be easily noticed that the distribution of εαm is symmetric with respect
the direction of loading. Conversely, the distribution of εαl is anti-symmetric with respect to the direction

f loading. The maximum value of εαm occurs on the microplane corresponding to α = 90◦ (Fig. 5a), which
aligned with the direction of the loading. For εαl , the absolute maximum value occurs on the microplanes

orresponding to α = 45◦ and α = 135◦ (Fig. 5b), whose inclination with the direction of the loading is 45◦
clockwise and anti-clockwise sense respectively. It can also be verified numerically that the microplanes

hose normal (α = 0◦ and α = 180◦ in Fig. 5a) is orthogonal to the direction of loading have negative
alues of εαm due to the Poisson’s effect.
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igure 5: Distribution profiles of εαm (a) and εαl (b) over the microplane system at various stages of uniaxial loading
vertical direction

istribution profiles of microdamage and energy dissipation. The evolution of the microdamage distribution
rofiles over the microplane system is shown in Fig. 6a. Due to induced anisotropy, the evolution of the
icrodamage is maximum on the microplane whose normal is aligned with the loading direction (α = 90◦
Fig. 6a). Owing to the projection of the positive part of the strain tensor, the contribution of the

icroplanes for negative values of εαm is not taken into account for the computation of ε̃α. Hence, there is
o microdamage evolution on the microplanes aligned in the orthogonal direction of the loading (α = 0◦
nd α = 180◦ in Fig. 6a). The same trend is followed by the energy dissipation profile as shown in Fig. 6b.
he maximum energy dissipation occurs on the microplane on which the microdamage is maximum. In the
ase of microplanes on which there is no evolution of microdamage, the energy dissipation is null.

fluence of the number of microplanes. Here, we point out that it is less time consuming to perform a
umerical integration over a 1D domain in the case of the disk microplane system than over a 2D domain in
e case of the spherical microplane system. However, for the accuracy of the numerical integration scheme,

n optimum number of microplanes must be selected. To achieve that, we study here the influence of Nα

n the global response of the uniaxial tensile test. One can observe that at least Nα = 3 microplanes are
ecessary for recovering the elastic properties. Also, convergence in the global curve (Fig. 7a) is achieved
r Nα ≥ 21. In addition to this, relative errors in terms of the force at the peak of the curve (Fpeak) and
e dissipated energy can be defined as, ∆Fpeak = F ref

peak
−Fpeak

F ref
peak

and ∆φV = φref
V
−φV

φref
V

respectively. Here, the
ference values are considered to be the ones corresponding to a large number of microplanes (Nα = 10000).
he quantities, ∆Fpeak and ∆φV are shown in the semi-logarithmic (lin-log) plot (Fig. 7b) from which we
an observe that the relative error in terms of both the force at the peak and the energy dissipation is
egligible for Nα ≥ 21 (101.32). As a result of this analysis, we consider Nα = 217 for the rest of the
umerical studies in this work.

7Note that this result is fully consistent with results presented in the original work on disk microplane model [17], in which
e same number of microplanes (21) are considered for numerical integration.
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igure 6: Distribution profiles of ωα (a) and φαV (b) over the microplane system at various stages of uniaxial loading
vertical direction

.2. Numerical illustration of the transition approach in case of a single crack

roblem setting. The proposed transition approach is illustrated using the same uniaxial tensile loading
xperiment that is performed in the previous case. In the case of the microplane model, the same material
arameters as the ones used in the previous case-study are used; in the case case of the E-FEM, the
vailable fracture energy (Gf,S) is computed based on the proposed formulation. Besides, to consider a
omplete interaction between the normal and the tangential components of the displacement jump, we set
cr = 1. For the sake of illustration, we perform the transition when ε̃α on at least one microplane reaches
critical value of ε̃αtr = 1.5ε̃π0 = 1.5 × 10−4. However, similar results can be obtained considering different
ansition criteria and threshold values.

esults. The global force-displacement response in the vertical direction is shown in Fig. 8a. The curve
-A-B-C shows the elastic and the damage phases, while the curve C-D (Figs. 8a and 8b) represents the

rack opening phase. Upon unloading at D, the crack closes (Figs. 8a and 8b).
icroplane dissipation profiles at the different stages of the test are depicted in Fig. 9. Based on these ob-
rvations, the evolution of the volumetric and surface energy dissipation during the test can be summarized

s follows: (i) the energy dissipation in the bulk takes place during the microdamage growth phase before
e transition; (ii) as soon as the crack opening phase begins, there is no more energy dissipation in the

ulk and the residual energy (shaded area in Fig. 9) is dissipated at the crack. In this phase, microplanes
xperience unloading (strain is reduced), the corresponding internal variables no more evolve, and damage

naturally frozen.
the later example, we will show that when the rotation of principal stress/strain axes happens, the

icrodamage starts evolving again and energy dissipation takes place in the bulk before initiating a second
rack.
et us note that the smoothness of the global curve Fig. 8a obtained using the transition methodology is
n attribute of the exponential softening Eq. (7) and traction-separation laws (Eqs. (40) and (41)) of the
icroplane microdamage model and the E-FEM, respectively. Note that C0 continuity is not enforced at
e point of transition.
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nd φV (b)

.3. Mesh dependency studies - effect of different transition criteria

ransition criteria have to be formulated such that the crack initiation, as well as the global (force-
isplacement) and local (crack opening evolution) responses, are not mesh dependent. In this section,
e study the mesh dependency induced by various transition criteria.

roblem setting. A quasi-brittle material bar submitted to a uniaxial loading in the horizontal direction is
onsidered (Fig. 10). We allow the localization band of width w to form only in the central part of the bar
y considering the microplane model in this part. In the localization band, we initiate the crack when the
ansition criterion is fulfilled. The rest of the bar is assumed to behave elastically.

ow, we consider different mesh discretizations of the given specimen using CST elements and parameterizing
e width of the weakened element (or elements) in the central portion of the bar. We obtain mesh-1, mesh-
and mesh-3 by varying w = 0.2 m, 0.1 m and 0.05 m while h = 0.1 m is kept constant (Fig. 10). The
aracteristic length (i.e., mesh size) to be used for energetic regularization of the microplane model is chosen

s lc = w.

ransition criteria. Here, we consider 2 different formulations for the transition criterion based on: (i) the
aximum of the microdamage variables on all microplanes, maxα(ωα); (ii) the maximum energy dissipation

n the all microplanes, maxα(φαV ). The corresponding thresholds at the transition are denoted by, ωαtr and
α
V )tr respectively.

esults. Global responses obtained using different transition criteria are given in Figs. 11a and 12a. The
orresponding calibrated traction-separation laws are given in Figs. 11b and 12b. For the sake of illustration,
e choose the corresponding threshold values at transition of the different parameters as, ωαtr = 0.75 and
α
V )tr = 2gπf /3 ≈ 333 N/m2 .
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igure 8: Transition approach for a single crack: global force-displacement curve in vertical direction (a) and
action-separation law after transition (b) for uniaxial loading test

rom Fig. 11a, one can observe that when performing the transition based on maximum ωα, the global
sponse is mesh independent before transition due to energetic regularization of the microplane microdam-

ge model, but mesh sensitivity comes into the picture after the opening of the crack. The reason is that
e crack is activated at different traction levels (Fig. 11b) for the considered meshes since ωα is not a
gularized quantity.
s shown in Figs. 12a and 12b, mesh independent results can be achieved considering a transition based
n microplane dissipation. This is explained by the fact that we regularized the energy dissipation of the
icroplane microdamage model (see Section 2.3). According to these observations, we adopt a transition

riterion based on the regularized maximum energy dissipation for the rest of the numerical tests.

.4. Numerical illustration of the transition approach in the case of non-orthogonal cracks

this section, we show the capability of the proposed methodology to tackle the localization of non-
rthogonal cracks. Let us consider a Willam’s test like loading [64]. In this test, the loading is applied

a non-proportional manner in the horizontal and vertical directions that leads to a progressive rotation
f principal stress axes. This changes the behavior of the cracks from mode-I to mixed mode. The test
successful if the model is able to handle the mixed mode cracking and dissipate the available energy in
ultiple directions.

roblem setting. The considered geometry, loading and boundary conditions are given in Fig. 13. Loading is
pplied (imposed displacements) in two phases. In the first phase, a tensile loading in the vertical direction is
pplied along with the compression loading in the horizontal direction (to negate the Poisson’s effect). After
e opening of the first crack, the second phase of the loading starts. In this phase, a combined horizontal
nsile loading and shear loading along with the vertical tensile loading is applied in a non-proportional
anner.
he considered material parameters are Young’s modulus = 10 GPa, Poisson’s ratio, = 0.20, ε̃α = 10−4,
= 1, Nα = 21, Gf = 500 N/m and βcr = 1. In order to illustrate the role of the chosen transition
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Figure 10: Specimen for mesh dependency study: a quasi-brittle bar under tensile loading

reshold on obtained results (and in particular on the deviation angle between the two cracks), we first
erform the transition at a small energy dissipation level ((φαV )tr = 20% of gπf ). Later, higher transition
nergy thresholds are considered.

esults. The main results can be summarized as follows:

(i) In the first phase of the loading, a single crack is initiated. In Fig. 14a, the evolution of different
components of stress is shown. Here, the microdamage evolution starts at A and the crack opening
starts at B (transition point). From the microdamage profiles in Fig. 15a, we can observe that the
microplanes close to the orthogonal direction of the loading (α = 0◦) are still in the elastic regime. As
expected, all the microplanes unload after the crack opening and there is no more energy dissipation
on the microplanes (Fig. 15b). During this phase, the crack behaves in mode-I and only the normal
displacement of the first crack (JuKn1) evolves (Fig. 14b).

(ii) In the second phase, a combined vertical, shear and horizontal loading is applied leading to the
continuous rotation of principal strain axes. Consequently, the microdamage evolution first takes place
on the microplanes which remained elastic during the first phase of loading and then on the microplanes
that entered the unloading regime after the first crack is opened (Fig. 15a). The corresponding energy
dissipation profiles are shown in Fig. 15b.
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igure 11: Mesh objectivity of the transition criterion based on max (ε̃α) and max (ωα): comparisons of force-
isplacement curves in horizontal direction (a) and local traction-separation laws (b) for different meshes by consid-
ing lc = w

The second crack is initiated when the transition criterion is fulfilled on at least one of the microplanes
on which the microdamage growth takes place during the second phase of loading (Ω2). This crack is
opened at 78.81◦ to the first crack. The energy dissipation profiles at the opening of the second crack
are shown in Fig. 15b.
During the second phase, the first crack begins to slide due to the rotation of the principal stress axes
as soon as the non-proportional loading is applied. This leads to the evolution of (JuKs1) from B in
Fig. 14b. Furthermore, the constant rotation of the principal stress axes compel the cracks to behave
in mixed mode condition to satisfy the local equilibrium. This leads to the evolution of both JuKn2

and JuKs2 from the onset of second crack at C. Moreover, the angle between the two non-orthogonal
cracks also depends on the level of energy dissipation at which the transition is performed.

fluence of the threshold of transition criterion. To show the role of transition criterion threshold in the
btained response, we repeat the same test for different levels of energy dissipation at transition. For the
ke of illustration, we now perform the transition after the dissipation reaches 40% and 60% of gπf on at
ast one microplane.

is observed from the evolution of the components of stress tensor (Figs. 14a, 16a and 16b) that the peaks
f the stress components, σ11 and σ12 are reduced as the threshold of the transition criterion increases.
his is explained using the corresponding microdamage and energy dissipation profiles (Figs. 17a and 17b)
efore the activation of the first and second cracks (B and C in Figs. 16a and 16b) respectively. It can be
oncluded from Figs. 17a and 17b that, as the threshold of transition criterion increases, higher is the level
f microdamage before the activation of the second crack and also lower is the available energy. Moreover,
s the level of energy dissipation at transition increases, the second crack is rotated further from the first
rack. It is observed that the angle between the two cracks is 81◦ and 97◦ in the cases for which the level
f energy dissipation at transition is 40% and 60% of gπf respectively. In other words, higher the threshold
vel, higher the tendency to the localization of a second crack that is orthogonal to the first one.
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igure 12: Mesh objectivity of the transition criterion based on max(φαV ): comparisons of force-displacement curves
horizontal direction (a) and local traction-separation laws (b) for different meshes by considering lc = w

haracterization of anisotropy. Before the initiation of the crack, the principal stress and strain axes stay
arallel with each other as we assumed an isotropic elastic response prior to the microdamage growth.
owever, due to induced anisotropy, the principal stress and strain axes rotates at different rate with
spect to a fixed direction. Using Willam’s test, rate of anisotropy can be quantified by computing the

ifference between the asymptotic values of the rotation of the principal stress and strain axes during the
ading history.

et γσ and γε be the rotation of the maximum principal stress and strain axes respectively with respect
the vertical direction. Here, we consider two cases; the first one is the case in which we allow only

ne crack to initiate, whereas in the second case (which is the present case) two non-orthogonal cracks are
itiated. The evolution of γε remains the same in both cases as it is related to the applied loading while the

volution of γσ is compared for both the cases in Fig. 18. As shown in this figure γσ becomes non-zero at
e beginning of the second phase and, if the second crack is not initiated, then it keeps on increasing before
aching an asymptotic value of 90◦, i.e., the maximum principal direction is aligned with the horizontal

irection. However, as the second crack localizes, reduction takes place for all the stress components. Hence,
s asymptotic value (γasyσ ) is different from the one crack case which is obtained as, γasy

σ = 83.5◦, 81.51◦ and
9.7◦ for the threshold at 20%, 40% and 60% of gπf respectively. The asymptotic value of the rotation of the
aximum principal strain axis (γasy

ε ) is obtained as 41.67◦. Finally, the rate of anisotropy [65] is computed
ccording to, (γasy

σ − γasy
ε )/γasy

ε ×100, which gives 50%, 48.8% and 47.7% for the threshold at 20%, 40% and
0% of gπf respectively. These results can be compared to the ones obtained using an enhanced anisotropic
amage model [66] which is 46%.

. Conclusions

this paper, we exposed a novel approach for modeling strain localization process by coupling the mi-
roplane and strong discontinuity models. In this manner, the anisotropic nature of the damage growth is
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igure 13: FE discretization of the specimen (1 m × 1 m) and the expected crack orientations under Willam’s like
ading

ken into account before the formation of cracks. Also, a framework for modeling multiple localized cracks
presented.
the microplane model, a computationally effective disk microplane system is used under the plane strain

ssumption instead of a spherical one. Simple constitutive laws using a single microdamage variable are
ssumed and the quantities at a unit volume, especially stress tensor and energy dissipation, are obtained
om microplanes.
wo intersecting strong discontinuities are modeled in the extended E-FEM in which coupled traction
ontinuity conditions are formulated by assuming that two crack surfaces are superposed. In this way,
e local equilibrium at both the crack surfaces is satisfied. The discrete constitutive law that takes into

ccount the mixed-mode cracking is considered. However, we tackle here only the case of the formation
f two cracks. Such consideration is subjected to the experimental/industrial case, which is addressed by
e proposed formulation. Some guidelines have to be developed for limiting the number of cracks to be

onsidered in this framework.
fter coupling both the proposed models in a damage-to-fracture transition framework, the energy available
r the crack is calculated by taking into account the energy dissipated in the localization band. This is

chieved by computing (at the transition instant) the residual energy available at the microplanes level,
hich is then dissipated at the crack surface.
he main interest of using the microplane microdamage model for modeling the response of the bulk material
that damage-to-fracture transition criteria can be written in terms of the quantities that are available

n each microplane, thus taking into account the induced anisotropy. In this work, the selected transition
riterion for the multiple cracks initiation is based on the maximum energy dissipation on the microplane
stem. This proves to be an efficient one since it keeps mesh objectivity of the results.
s a first step toward the description of multicracking within the framework of E-FEM, including damage-
-cracking transition, the proposed model has limitations that have been identified. First, crack branching
not explicitly taken into account. However, given the model’s formulation, implementing it seems possible

ased upon related works in the literature [67, 68, 69]. Second, a limited number of local dissipative
echanisms are considered. Adding refined mechanisms, such as frictional sliding occurring between the

rack surfaces, seems straightforward given the vectorial nature of the constitutive laws considered in this
b. Last, the computational cost of the proposed model is significant due to the microplane framework.
owever, dedicated work could be done to reduce it by considering the numerical construction of off-line

ademecum according to the proposal made by [70].
inally, transition criteria could be improved by numerical experimentation techniques such as the virtual
sting tools [71] based on the discrete element method. The key question to address is, can an objective
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igure 14: Time evolution of the components of stress (a) and displacement jump (b) - Willam’s like loading test
sing transition approach for the threshold at 20% gπf
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igure 15: Distribution profiles of ωα (a) and φ̂αV (b) over the microplane system at various stages of Willam’s like
ading test using transition approach for the threshold at 20% of gπf
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igure 16: Time evolution of the components of stress - Willam’s like loading test using transition approach for
e threshold at 40% of gπf (a), 60% of gπf (b)
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ansition criterion be formulated? Also, another important point to clarify is how to separate the energy
issipation between initiated cracks? In this case, the possibility of the localization of the second crack is to
e investigated. In the proposed transition formulation, we initiate both the cracks in the direction of the
rincipal stress. These aspects, particularly the crack initiation direction and the orientation between the
racks, also need to be studied in detail.
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ppendix A. Regularized damage evolution model

iven the exponential damage evolution law Eq. (7), the energetic regularization problem comes into finding
e scalar parameter B = B(lc) such that:

Gf
2lc

=
t0∫

0

(Emεαmε̇αm + Elε
α
l ε̇
α
l ) dt+

∞∫

t0

ε̃π0
κα

exp(−B(κα−ε̃π0 )) (Emεαmε̇αm + Elε
α
l ε̇
α
l ) dt (A.1)

here t0 is the time instant at which the microplane equivalent strain reaches the strain level corresponding
damage activation.

his requires analytically integrating previous equation, which is possible only for the hypothetical case of
= 0 (i.e., Em = El = E) and β = 1. Consider a uniaxial tensile loading in the direction of axis 2 (or

quivalently 1), i.e., ε = ε22 x2 ⊗ x2. Since in this case εα+
m = εm = sin2 α ε22 and ε

α+
l = εl = sinα cosα ε22,

e first term of the previous equation reads:

E

∫ t0

0
(εαmε̇αm + εαl ε̇

α
t ) dt = E sin2 α

∫ t0

0
ε22 dε22 = E

∫ ε̃π0

0
ε̃α dε̃α = 1

2E (ε̃α)2 (A.2)
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here, we used the relationship ε̃α = ε22 sinα. Furthermore, during the damage phase, the history variable
nd its rate of variation reads:

κα = ε̃α and κ̇α = εαmε̇
α
m + εαl ε̇

α
l

ε̃α
. (A.3)

o, we can rewrite the second contribution figuring in Eq. (A.1) in terms of the sole variable κα. As a
onsequence, Eq. (A.1) can be rewritten as:

Gf − E (ε̃α)2
lc

2lc
= Eε̃π0

∞∫

ε̃π0

exp(−B(κα−ε̃π0 )) dκα (A.4)

r each microplane, except the microplane whose normal is orthogonal to the loading direction. Finally,
fter performing the analytical integration, the material parameter B is obtained in terms of lc as:

B = 2Eε̃π0 lc
Gf − E (ε̃π0 )2

lc
(A.5)

ppendix B. Elastic coefficients of the microplane microdamage model

et us consider the stress tensor obtained from the components on each microplane and focus on the elastic
sponse only:

σ = 1
π

∫

Ω
(EmεαmMα + Elε

α
l Lα) dS (B.1)

ow substituting the expressions for εαm and εαl , Eq. (1) in Eq. (B.1), we obtain the stress tensor in component
rm as:

σij = 1
π

∫

Ω

[
Em(cos2 αε11 + sin2 αε22 + 2 sinα cosαε12)Mα

ij

]
dS+

1
π

∫

Ω

[
El(− sinα cosαε11 + sinα cosαε22 + (cos2 α− sin2 α)ε12)Lαij

]
dS (B.2)

inally, the microplane constants can be computed by imposing the equality on the stiffness matrices of
e elastic constitutive model obtained from microplane model after performing analytical integration of
q. (B.2) and the Hooke’s law under plane strain conditions which is written using Lame’s constants (λ, µ)
s:





σ11

σ22

σ21





= 1
4




3Em + El Em − El 0
Em − El 3Em + El 0

0 0 2(Em + El)








ε11

ε22

ε21





=



λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ








ε11

ε22

ε21





(B.3)

nd from this we obtain:

Em = 4λ+ 2µ− 2λ = 2(λ+ µ), El = 2 (µ− λ) (B.4)
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Highlights 
 

 A mode to describe intersecting cracks is proposed 

 It is based on a transmission between microplane and E-FEM approaches 

 Numerical implementation is detailed thoroughly  

 Representative case studies are exposed and discussed 

 




