
HAL Id: hal-03162948
https://hal.science/hal-03162948

Submitted on 11 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ambitools: Tools For Sound Field Synthesis Using
Higher Order Ambisonics - V1.0

Pierre Lecomte

To cite this version:
Pierre Lecomte. Ambitools: Tools For Sound Field Synthesis Using Higher Order Ambisonics - V1.0.
1st International Faust Conference (IFC-18), Jul 2018, Mainz, Germany. �hal-03162948�

https://hal.science/hal-03162948
https://hal.archives-ouvertes.fr

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

AMBITOOLS : TOOLS FOR SOUND FIELD SYNTHESIS WITH HIGHER ORDER
AMBISONICS - V1.0

Pierre Lecomte

LVA - INSA de Lyon
25 Avenue Jean Capelle

69621 Villeurbanne cedex, France
pierre.lecomte@gadz.org

ABSTRACT

This paper presents the toolbox Ambitools: an implementation of
several Ambisonic tools with the FAUST language. The code is
designed to be scalable and flexible, offering tools working at var-
ious Ambisonic order and compiled for various architectures. The
implementation of the spherical harmonics for an efficient com-
putation is detailed. Also, the implementation procedure for ra-
dial filters encountered with Ambisonics is described. Finally, an
overview of all the tools available in the current version is given.

1. INTRODUCTION

Higher Order Ambisonics (HOA), simply called Ambisonics
throughout this paper, is a set of techniques to capture, manipu-
late and synthesize sound pressure fields [1]. The flexibility and
scalability of the approach makes it possible to synthesize sound
fields over a wide range of configurations, from loudspeaker ar-
rays to binaural synthesis with headphones. With the increasing
demand of spatial audio applications, especially for virtual reality,
several implementations of Ambisonics are nowadays available on
the market [2, 3, 4, 5, 6, 7, 8]. The implementation presented in this
paper, denoted “Ambitools”, is one of them. The core Digital Sig-
nal Processing (DSP) is described in FAUST language. Ambitools
development started during the author’s PhD thesis [9] and a first
presentation was made in 2015 on this topic [7]. Since then, the
code has been re-designed, and Ambitools won the FAUST award
2016. 1 2 The development of Ambitools tries to fulfill three main
objectives:

1. Real-time DSP. The first objective is to implement a real-
time synthesis and manipulation of the Ambisonic sound
scene in order to offer maximal interactivity. In this con-
text FAUST is of great help as its compiler provides efficient
C++ code. However, even if the FAUST compiler performs
several rounds of algebraic simplifications on the DSP al-
gorithm, one has to keep in mind that Ambisonics deals
with spherical coordinates, therefore involves trigonometry.
Trigonometric simplifications for the code is a non trivial
topic and special attention is needed to reduce the number
of operations in the DSP algorithm.

2. Scalable code. The second objective of Ambitools is to
provide scalable code. In fact, Ambisonics is a scalable
technique which can be described at different Ambisonic
orders. The spatial resolution of the sound field increases

1http://faust.grame.fr/news/2016/10/17/
Faust-Awards-2016.html

2All URLs in this paper were verified on March 27, 2018.

as the Ambisonic order increases (Sec. 3.2). Thus, the im-
plementation should provide a straightforward possibility
of compilation at arbitrary Ambisonic order.

3. Flexible code. The third objective of the code is to be
flexible. That is to say, the user should be able to cus-
tomize the Graphical User Interface (GUI) and DSP by set-
ting only a few parameters in the code at compilation time.
For instance, the choice of VU-Meters and/or Mute-toggle
is available by changing a variable value (Sec. 6.11) . More-
over, the code should produce plug-ins in various format
architecture, which is the essence of FAUST.

The paper is organized as follows: Definitions are introduced in
Sec. 2. A brief overview of Ambisonics principle is done in Sec. 3.
Then, a description of FAUST spherical harmonic implementation
is given in Sec. 4. In the same vein, the implementation of ra-
dial filters needed with Ambisonics is introduced in Sec. 5. An
overview of the FAUST tools available in the current version is
given in Sec. 6. Finally, some extras tools are presented in Sec. 7.

2. DEFINITIONS

2.1. Spherical Coordinate System

The spherical coordinate system used in Ambitools is given by:

x = r cos(θ) cos(δ), y = r sin(θ) cos(δ). z = r sin(δ), (1)

and shown in Fig. 1:

x

y

z

θ

δ
r

P

O

Figure 1: Spherical coordinate system. A point P (x, y, z) is de-
scribed by radius r, azimuth θ and elevation δ.

2.2. Spherical Harmonics

The real-valued spherical harmonics are used in Ambitools. They
are denoted Ym,n and are defined as follows:

Ym,n(θ, δ) = Nm,nPm,|n|(sin(δ))

{
cos(|n|θ) if n ≥ 0

sin(|n|θ) if n < 0
.

(2)

IFC-1

mailto:pierre.lecomte@gadz.org
http://faust.grame.fr/news/2016/10/17/Faust-Awards-2016.html
http://faust.grame.fr/news/2016/10/17/Faust-Awards-2016.html

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

In Eq. (2), (m,n) ∈ (N,Z) with |n| ≤ m, Pm,|n| are the asso-
ciated Legendre polynomials of degree m and order |n|. Nm,n

is a normalization factor. For each Ambisonic order m, there are
(2m + 1) spherical harmonics. Thus, a basis truncated at Am-
bisonic order M contains (M + 1)2 functions.

In Ambitools, the full 3D normalization factor (N3D), denoted
N N3D

m,n is used [1]:

N N3D
m,n =


√

2m+ 1 if n = 0√
2(2m+ 1)

(m− |n|)!
(m+ |n|)! if n 6= 0

. (3)

This normalization factors ensures that the family of spherical har-
monics constitutes an orthonormal basis in L2(S2): the vector
space of square-integrable functions on the unit sphere
S2 :

{
(x, y, z) ∈ R3, x2 + y2 + z2 = 1

}
. The orthonormality

property is often required for physical decoding [10] or accurate
sound field transformation [11]. A review of the different normal-
ization factors and their impacts in Ambisonics is provided in [12].

The spherical harmonics can be indexed using different con-
ventions. In Ambitools, the default spherical harmonics indexing
follows the Ambisonic Channel Number (ACN) convention [13]:

ACN = m2 +m+ n. (4)

From the ACN number, the subscripts m and n are given by:

m = b
√

ACNc
n = ACN−m2 −m

(5)

where b·c is the integer part of the argument.

3. AMBISONICS PRINCIPLES

This section briefly introduces the principles of Ambisonics. More
details can be found in [10] and references cited therein.

3.1. Fourier-Bessel Series

A sound pressure field in a spherical volume of radius rs, where
the acoustic sources are outside the domain, can be described with
the Fourier-Bessel series, given in the frequency domain by [1]:

p(r, θ, δ, f) =

∞∑
m=0

imjm(2πf/cr)

m∑
n=−m

Bmn(f)Ymn(θ, δ).

(6)
In Eq. (6), p is the acoustic pressure, c is the speed of sound,

f the frequency, i the imaginary unit (i =
√
−1), and jm are the

spherical Bessel functions of order m. Following this approach,
the sound pressure field is fully described in the spherical volume
if one knows the coefficients Bmn, called the Ambisonics compo-
nents.

3.2. Spatial Resolution

From Eq. (6) one observes that the sound pressure field is de-
scribed with an infinite sum over Ambisonic orders m. However,
for practical applications, the sum is truncated at a maximum Am-
bisonic order M . This truncation limits the spatial resolution of

the sound field. A rule-of-thumb for the sound pressure field ap-
proximation with finite order Ambisonics is given in a spherical
volume of radius r [14]:

r =
Mc

2πf
. (7)

From Eq. (7), one observes that this “sweet spot” size decreases
with increasing frequency when working at a fixed order M .

3.3. Ambisonics Workflow

The Ambisonic technique allows for the synthesis and manipula-
tion a sound pressure field by operating on the Ambisonics com-
ponents Bmn. A typical Ambisonic workflow is schematized in
Fig. 2:

Natural sound field

Spherical microphone

Virtual sound field

Encoding Decoding

Transformations

Binaural synthesis

"Sweet Spot"

Loudspeaker arrays

Monophonic sources

Spatialization

Figure 2: Ambisonic workflow: a natural sound pressure field is
captured with a spherical microphone array and encoded in the
Ambisonic domain. Alternatively, monophonic signals are en-
coded in space as simple acoustic sources. Once in the Ambisonic
domain, transformations can be applied to the sound scene. Fi-
nally, the sound scene is decoded on various loudspeakers arrays
or over headphones.

3.3.1. Encoding

Working with Ambisonic orderM , the Ambisonic components are
stored in a vector of signals b(z) ∈ R(M+1)2×1, which gives with
ACN indexing:

b(z) = [b0(z), b1(z), · · · b(M+1)2−1(z)]T , (8)

where T is the transpose operator.
For spatialization, analytical expressions are known for simple

acoustic sources, such as plane or spherical waves [1, 7]. This is
schematized in the bottom left branch of Fig. 2

Also, it is possible to estimate the Ambisonic components of
a natural sound pressure field by means of Spherical Microphone
Arrays (SMA) [15]. This is schematized in the top left branch of
Fig. 2

3.3.2. Ambisonic Sound Scene Manipulation

Once in the Ambisonic domain, the sound scene is manipulated by
doing matrix operations on the input vector b [16]:

b̃ = Tb. (9)

IFC-2

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

In Eq.(9) b̃(z) ∈ R(M̃+1)2×1 is the output Ambisonic sound scene
described up to order M̃ . The sound field transformation is de-
scribed in the matrix T ∈ R(M̃+1)2×(M+1)2 which is not neces-
sarily square. In fact, some transformation may require a descrip-
tion of the output Ambisonic sound scene at higher orders [17, 11].

3.3.3. Decoding

The decoding step aims to synthesize the sound pressure field cor-
responding to the Ambisonic sound scene with a loudspeaker ar-
ray or over headphone through binaural synthesis [18]. This is
schematized on the right side of Fig. 2. Various strategies are avail-
able to design a decoder adapted to the loudspeaker configuration.
A good review is provided in references [2, 19].

4. SPHERICAL HARMONICS IMPLEMENTATION

In Ambitools, the spherical harmonics are implemented in a FAUST
library file called ymn.lib. Several strategies can be used to im-
plement the spherical harmonics with FAUST. In the current im-
plementation, one assumes that evaluating the trigonometric func-
tions cos and sin in Eq. (2) is costly and should be done a minimum
amount of time. Moreover, a scalable implementation is desirable:
the computation of a spherical harmonics can be done at arbitrary
Ambisonic order m and degree n.

4.1. Hard-Coded Implementation

4.1.1. Straightforward implementation

A first approach for the implementation would be to pre-compute
closed-form of the spherical harmonics Ym,n up to a maximum or-
der M and hard-code the resulting expression with pattern match-
ing in the library. For instance, evaluation of Eq. (2), for (m =
3, n = 2), gives:

Y3,2(θ, δ) =
1

2

√
105 sin(δ)(1− sin(δ)2) cos(2θ) (10)

The corresponding FAUST code is:

ymn(3,2,t,d) = 0.5*sqrt(105)*sin(d)*(1 -
sin(d)^2)*cos(2*t);

where t and d stand for θ and δ variables respectively. In this case,
the sin and cos functions are called once each.

For arbitrary subscripts (m,n), the associated Legendre poly-
nomial Pm,|n|(sin(δ)) in Eq. (2) can be expressed as a polynomial
of the variable sin(δ). Consequently, the implementation requires
the evaluation of sin(δ) and cos(nθ) or sin(nδ), depending on
subscripts (m,n).

Note that further trigonometric simplifications could be oper-
ated, such as 1 − sin(δ)2 = cos(δ)2 in Eq. (10). However, by
doing so, a supplementary cos(δ) function should be evaluated,
which may be more costly than using only one evaluation of sin(δ)
and polynomial operations.

Furthermore, this approach can become costly when a vector
of spherical harmonics up to Ambisonic order M is required:

y(M+1)2×1(θ, δ) = [Y0,0(θ, δ) · · ·Ym,m(θ, δ)]T (11)

In fact, the FAUST compiler evaluates sin(δ), in a variable and uses
it for the different Pm|n|(sin(δ)) polynomial evaluation. But, 2M

additional variables are also required for cos(nθ), sin(nθ), with
n ∈ {−M,−M + 1 · · · − 1} ∪ {1, 2 · · ·M}. As an example,
if one requires y(θ, δ) at M = 3, the generated C++ code calls
1 + 2× 3 = 7 times the sin and cos functions.

4.1.2. Cartesian formulation

To reduce the number of trigonometric functions evaluations, an
implementation using Cartesian coordinates is possible. The prin-
ciple is to express the variables θ and δ in Cartesian coordinates,
using Eq. (1), and express the spherical harmonic as a polynomial
of x, y, z variables. In the case of Y3,2(θ, δ) the FAUST code would
be:

ymn(3,2,t,d) = 0.5*sqrt(105)*z*(x^2-y^2)
with

{
x = cos(t)*cos(d);
y = sin(t)*cos(d);
z = sin(d);
};

Following this approach, the trigonometric function cos and sin
are called four times: twice for θ and twice for δ. Then, a poly-
nomial expression of x, y, z variables is computed. In this case,
when a vector y((M+1)2×1)(θ, δ) is required, the compiler will
call 4 times the sin and cos functions and the resulting variables
x, y and z are shared for the evaluation of the different spherical
harmonics.

The main drawback of the aforementioned approach is that
preliminary simplifications are operated on the spherical harmon-
ics expression before implementation. These simplifications are
different depending on the subscript (m,n). As a consequence,
the implementation is hard-coded and limits the code scalability
up to a maximum order M , where the spherical harmonics are im-
plemented.

4.2. Scalable Implementation with Recurrence Formulas and
Trigonometric Expansion

In order to fulfill the scalability objective mentioned in Sec. 1, an
alternate approach is proposed in the current version of Ambitools.
The computation of a spherical harmonic at arbitrary Ambisonic
order m and degree n is done using recurrence formulas. Special
care is taken to limit the number of trigonometric functions and
numerical errors at higher orders. The different terms of Eq. (2)
are considered separately for the implementation.

4.2.1. Normalization factor implementation

The normalization factor of Eq. (3) are implemented in FAUST as
follows:

n3d(m,n) = sqrt((2*m+1)*factorial(m-abs(n)
)/factorial(m+abs(n)))*

case{
(0) => 1;
(n) => sqrt(2);
}(n);

where factorial is the factorial function, which implementa-
tion is described in Sec. 4.2.2.

IFC-3

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

4.2.2. Factorial function numerical issues

The factorial function, denoted !, is needed for the normalization
factor N N3D

m,n in Eq. (3), and for the double factorial function !! of
Eq. (16). A straightforward implementation of this function can be
done by recurrence as follows:

factorial = case {
(0) => 1;
(n) => n*factorial(n-1);
};

However, this implementation produces wrong results as n in-
creases. For instance FAUST compiler (v-2.5.21) output of:

process = factorial(13);

gives 1932053504, instead of 6227020800. This error may be due
to the finite precision arithmetic used in FAUST compiler. As an
example, the factor N N3D

7,6 has a wrong numerical value with this
implementation and so will be the corresponding spherical har-
monic.

To circumvent this issue and produce more accurate results at
higher orders, one uses an implementation with the Gamma func-
tion Γ available in the FAUST standard libraries. In fact, one has
the following formula:

Γ(n+ 1) = n!. (12)

Thus, the corresponding FAUST code is simply:

factorial(n) = ma.gamma(n+1)

4.2.3. Associated Legendre polynomial

Recalling Eq. (2), the associated Legendre polynomial Pm,n(x)
can be expressed with the following recurrence formula [20, Eq.
12.92, p. 775]:

Pm,n(x) =
1

m− n ((2m− 1)xPm−1,n(x)

−(m− 1 + n)Pm−2,n(x)) . (13)

In Eq. (13), two special situations should be considered. The first
one is when m = n, which produces a division by 0. The sec-
ond is when n = m − 1, in which case the term Pm−2,n(x) =
Pm−2,m−1(x) is not defined, as the condition |n| ≤ m is not ful-
filled. Thus, additional identities are used:

Pm,m(x) = (2m− 1)!!(1− x2)(m/2), (14)
Pm,m−1(x) = x(2m− 1)Pm−1,m−1(x), (15)

In Eq. (14), !! is the double factorial operator [20]. This latter can
be expressed in term of factorial operator ! as follows:

n!! =


2n/2

(n
2

)
! if n even, n ≥ 0

(n+ 1)!

2(n+1)/2
(
n+1
2

)
!

if n odd, n ≥ 1
. (16)

The corresponding FAUST implementation gives:

factorial2(0) = 1;
factorial2(1) = 1;
factorial2(n) = case{
(1) => 2^(n/2)*factorial(n/2);// n even
(0) => factorial(n+1)/(2^((n+1)/2)*

factorial((n+1)/2));// n odd
}(n%2==0);

Finally, the recurrence is initialized with P0,0(x) = 1. The FAUST
code for the associated Legendre function Pm,n(x) is given by:

alegendre(0,0,x) = 1;
alegendre(m,n,x) = case{
(1,0) => factorial2(2*m-1)*(1-x^2)^(m/2);
(0,1) => x*(2*m-1)*alegendre(m-1,m-1,x);
(0,0) => 1/(m-n)*((2*m-1)*x*alegendre(m-1,n

,x)-(m-1+n)*alegendre(m-2,n,x));
}(n==m,n==(m-1));

4.2.4. Trigonometric expansion with Chebyshev polynomial

As pointed out in Sec. 4.1.1, the terms cos(nθ) and sin(nθ) in
Eq. (2) produce with the FAUST compiler as many variables as
there are values of n to handle. In the case of a spherical har-
monics vector, y(M+1)2×1(θ, δ), there are 2M different value of
n. To reduce this number, Chebyshev polynomials are used for
trigonometric expansion. In fact, one has [20]:

cos(nθ) = Tn(cos(θ)), (17)
sin(nθ) = Un−1(cos(θ)) sin(θ), (18)

where Tn and Un are the Chebyshev ponylomials of the first and
second kind respectively. These polynomials can be implemented
in FAUST with recurrence formulas:

chebyshev1(n,x) = case{
(0) => 1;
(1) => x;
(n) => 2*x*chebyshev(n-1,x) - chebyshev(n

-2,x);
}(n);

chebyshev2(n,x) = case{
(0) => 1;
(1) => 2*x;
(n) => 2*x*chebyshev2(n-1,x) - chebyshev2(n

-2,x);
}(n);

where chevychev1(n,x) and chevychev2(n,x) stand for
Tn(x) and Un(x) respectively. These trigonometric expansions
produce polynomials of variables cos(θ) and sin(θ) respectively.

4.2.5. Spherical harmonics implementation

Finally, the spherical harmonics Ymn(θ, δ) is implemented in FAUST
as follows:

ymn(m,n,t,d) = n3d(m,n)*alegendre(m,abs(n),
sin(d))*

case{
(1) => chebyshev2(abs(n)-1,cos(t))*sin(t);

IFC-4

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

(0) => chebychev1(abs(n),cos(t));
}(n<0);

With this implementation, a vector of spherical harmonics
y((M+1)2×1)(θ, δ) now uses only three trigonometric function,
namely sin(δ), cos(θ) and sin(θ), which are shared for the dif-
ferent spherical harmonics evaluation.

The implementation with ACN indexing of Eq. (4) is done
with the following FAUST code:

yacn(i,t,d) = ymn(m,n,t,d) with
{
m = int(sqrt(i));
n = int(i - m^2 -m);
};

5. RADIAL FILTERS IMPLEMENTATION

In the current version of Ambitools, two types of radial filters
are encountered: near field filters and equalization filters for rigid
SMA.

5.1. Near Field Filters

The near field filters are used to encode the near-field of acous-
tic sources at radius r1 [21]. Those filters are denoted Fm,r1(z).
Their expression in the frequency domain is [10]:

Fm,r1(f) =
i−(m+1)

4π

2πf

c
h(2)
m (2πf/cr1), (19)

where c is the speed of sound and h(2)
m are the spherical Hankel

function of second kind.
For the decoding of a sound field with a spherical loudspeaker

array of radius r0, the near field of the loudspeakers is compen-
sated with the inverse of near field filters: 1/Fm,r0(z) [21].

5.2. SMA Equalization Filters

Rigid SMA are used to capture a 3D sound field and encode it
in the Ambisonic domain. To do so, the first step is to operate a
Discrete Spherical Fourier Transform (DSFT) from the different
capsule signals and equalize the output components with equaliza-
tion filters [10]. Those filters depend on the microphone radius
r2 and are denoted Em,r2(z). Their expression in the frequency
domain is:

Em,r2(f) = i−m+1

(
2πf

c
r2

)2

h′
(2)
m (2πf/cr2), (20)

where h′(2)m are the first derivative of the spherical Hankel function
of second kind.

5.3. Procedure of Implementation

The implementation of filters of Eqs. (19) and (20) is done in the
form of a recursive filter. To do so, they are first described as poly-
nomials of variable s in the analogue Laplace domain. This results
in the expressions Fm,r(s) and Em,r(s), respectively. Then, the
polynomials are factorized in First Order Sections (FOS) and Sec-
ond Order Sections (SOS). Finally, a s-to-z mapping is applied to
each section with the bilinear transform [21] or corrected impulse

invariance method [22]. Note that the near-field filters Fm,r(z)
and Em,r(z) are both unstable as they have a pole at z = 0. In
Ambitools, they are stabilized by the near-field compensated fil-
ters for a spherical loudspeaker array of radius r0: 1/Fm,r0(z).
Therefore, the implemented filters are:

Hm,r1,r0(z) =
Fm,r1 (z)

Fm,r0
(z)

(21)

Eqm,r1,r0
(z) =

Em,r1
(z)

Fm,r0
(z)

(22)

The detailed implementation of filters Hm,r1,r0(z) is described
in [7]. The implementation of filters Eqm,r1,r0

(z) is inspired by
the method described in [22].

The radial filters are available in a library called radial.
lib: The near-field filters are denoted nf(m,r1,r0) and cor-
respond to the filters Hm,r1,r2(z) of Eq. (22). The near field
compensation filters are denoted nfc(m,r0) and correspond to
the filters 1/Fm,r0(z). Finally the equalization filters for rigid
SMA are denoted eq(m,r2,r0) and correspond to the filters
Eqm,r2,r0

(z) of Eq. (22).
An additional Finite Impulse Response (FIR) implementation

of the rigid SMA equalization filters Em,r2(z) of Eq. (20) is also
available. The filters are stabilized with a Tikhonov regularization
as proposed in [15]. As the FIR filters have several thousands taps,
a fast convolution software is recommended (see Sec. 7.3).

5.4. Scalability Limitation

In the implementation procedure, factorization of the polynomials
Fm,r(s) andEm,r(s) into FOS and SOS requires to compute their
roots. This is not a trivial task and it is not available in FAUST. As
a consequence, the FOS and SOS coefficients are pre-computed
and stored manually in the library radial.lib. This limits the
scalability of the code up to a maximum order M , where the FOS
and SOS coefficients are available. In the current version of Am-
bitools the radials filters are available up to order Mmax = 10.
Note that at higher order, such as M ≥ 7, numerical instabilities
are observed in the current implementation. Moreover, unrealistic
excessive amplification at low frequencies arises [21].

6. OVERVIEW OF THE FAUST TOOLS

This section describes briefly the different tools available in Am-
bitools in the version 1.0. Most of the tools are scalable to arbitrary
orderM . However, some transformation requires pre-computation
of coefficients, which limits the scalability up to a maximum order
Mmax. As well, the decoders involving spherical grids are limited
to a maximum Ambisonic order Mmax.

6.1. hoa_encoder

• Inputs: N

• Outputs: (M + 1)2

This tool encodes N monophonic signals as N sources in space
with Ambisonics. The variable N is set in the code at compilation
time. The output sound scene is described up to Ambisonic order
M with (M + 1)2 components. Two types of acoustic sources
are proposed: plane wave or spherical wave. In the case of the
spherical wave, near field filters are involved [7] (Sec. 5). In this
case, it is required to set a spherical loudspeaker array radius r0
in the text-box Speaker radius. Finally, for each source, the

IFC-5

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

spatial coordinates and gain are set with sliders Gain, Radius,
Azimuth and Elevation.

6.2. hoa_decoder_*

• Inputs: (M + 1)2

• Outputs: L

Several decoders for spherical loudspeakers arrays are available in
the current version of Ambitools. They are based on different L-
node Lebedev grids [10]. The decoders can be near field compen-
sated at execution time (Sec. 5) with a check-box NFC. In this case,
the spherical loudspeaker array radius r0 is required in a text-box
Speaker Radius at execution time. The user can adjust the in-
puts and outputs global gain with the sliders Inputs Gain and
Output Gains.

6.3. hoa_panning_*

• Inputs: N
• Outputs: L

For some particular grids, equivalent panning law can be used to
compute the L loudspeaker signals, without the necessity of go-
ing into the Ambisonic domain [7]. In the current version, the
panning laws are proposed for various Lebedv grids [10]. Thus,
with these tools, the user can spatializeN sources on the proposed
grids. As for the hoa_encoder tool (Sec. 6.1), the parame-
ters NFC, Speakers radius, Gain, Radius, Azimuth and
Elevation are adjustable at execution time with sliders.

6.4. hoa_decoder_binaural_lebedev50

• Inputs: (M + 1)2

• Outputs: 2

Ambisonics allows for the decoding of a sound scene for bin-
aural synthesis with headphones. The principle is described in
[18]: The sound pressure field is firstly decoded on a virtual loud-
speaker grid. Then, each virtual loudspeaker signal is filtered with
the corresponding Head Related Impulse Response (HRIR) pair.
The resulting signals for left and right ears are finally summed to
obtain the headphone signals. Following this approach, Ambitools
proposes a binaural decoder using a 50-node virtual Lebedev grid,
which works up to Ambisonic order Mmax = 5 [10]. The HRIRs
used are from a Neumann c©KU-100 dummy head [23]. At exe-
cution time, the input and output gains are adjusted with sliders
Inputs Gain and Outputs Gain respectively.

Note that with this FAUST tool, the DSP involves massive lin-
ear convolutions, which are very costly for real-time synthesis.
Therefore, an alternate approach is available with several HRIRs
provided as FIR filters and a fast convolution software (Sec 7.3).

6.5. hoa_converter_*

• Inputs: (M + 1)2

• Outputs: (M + 1)2

As pointed in Sec. 4, various normalization conventions and
channel orderings are available with Ambisonics [13, 12]. For
compatibility with other Ambisonics software, Ambitools provides
various converters. Scaling factors and channel rearrangement are
described in the FAUST code. In the current version, the available
Ambisonics formats are : ACN-SN3D, ACN-N3D and FuMa.

6.6. hoa_mic_encoder_*

• Inputs: 6, 12, 26, 50 or 32

• Outputs: (M + 1)2

These tools operate the DSFT [7] for various SMA. In the current
version, the available grids are 6, 12, 26, 50-node Lebedev grids
and 32-node EigenMike grid [24]. The maximum Ambisonic or-
der Mmax where the DSFT operation is accurate up to Ambisonic
orders 1, 2, 3, 5 and 4 respectively. A global gain on the inputs is
set at execution time with a slider Gain.

Note that the equalization filters Eqm,r2
(z) of Eq. (22) are not

yet included in these tools. However, this equalization is manda-
tory to accurately estimate the Ambisonic components.

6.7. hoa_mirroring

• Inputs: (M + 1)2

• Outputs: (M + 1)2

This tool operates a mirroring transformation on the Ambisonic
sound scene. The front-back, left-right and top-down directions
can be inverted by changing the sign of several Ambisonic chan-
nels. This transformation exploits the symmetries of the spherical
harmonics [25]. At execution time, the user can activate/bypass
the direction inversion with check-boxes front-back, left-
right and up-down.

6.8. hoa_beamforming_*

In an Ambisonic sound scene, directions can be enhanced or at-
tenuated [16]. Directional filtering is implemented in Ambitools
for hypercardioid beampatterns and directionnal Dirac function,
as described in [11].

6.8.1. hoa_beamforming_hypercardioid_to_mono

• Inputs: (M + 1)2

• Ouputs: 1

This tool extracts a monophonic signal from the Ambisonic sound
scene as if it was recorded with a virtual microphone placed at the
origin. The virtual microphone has a hyper-cardioid beampattern
of order M ′ [26]. Currently, the hyper-cardioid beampatterns are
implemented up to order M ′max = 5. The first three are shown
in Fig. 3. At execution time, the user can set the steering angle
of the hyper-cardioid, denoted (θ0, δ0) with the sliders Azimuth,
Elevation respectively. Also the hyper-cardioid order is chosen
with the slider Order and the output gain with the slider Gain.

(a) M ′ = 1 (b) M ′ = 2 (c) M ′ = 3

Figure 3: Hyper-cardioids beampattern at various order with steer-
ing angle θ0 = 20◦, δ0 = 0◦.

IFC-6

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

6.8.2. hoa_beamforming_hypercardioid_to_hoa

• Inputs: (M + 1)2

• Outputs: (M +M ′ + 1)2

This tool applies a directional filtering on the Ambisonic sound
scene, according to a hyper-cardioid beampattern. It outputs a new
Ambisonic sound scene where the directions have been altered ac-
cordingly. As shown in [11], this transformation requires a higher
Ambisonic order for the outputs, depending on the order of the hy-
percardioid. The output scene Ambisonic order is denoted M̃ and
is such that:

M̃ = M +M ′, (23)

where M is the input Ambisonic sound scene order and M ′ is
the hypercardioid order. For instance, if one filters a 5-order Am-
bisonic sound scene with a 2-order hypercardioid, the output Am-
bisonic sound scene order is M̃ = 5 + 2 = 7. In the current
version, the maximum order for the output Ambisonic scene is
M̃max = 10. At execution time, the user can set the steering angle
of the hypercardioid, its order, and adjust the outputs gains with
sliders Azimuth, Elevation, Order and Gain respectively.

6.8.3. hoa_beamforming_dirac_to_hoa

• Inputs: (M + 1)2

• Outputs: (M + 1)2

This tool retains only one direction in the Ambisonic sound scene.
In fact, the beampattern used here is a truncated directional Dirac
[11]. That is to say, a function which is zero everywhere, except
in the steering angle direction. Thus, this tool allows listening to
only one direction in the sound field. At execution time, the user
can set the steering angle of the directional Dirac with the sliders
Azimuth and Elevation. Moreover, a crossfader to bypass
the effect is provided. The duration of the crossfader is set with
the text-box Crossfade duration.

6.9. hoa_azimuth_rotator

• Inputs: (M + 1)2

• Outputs: (M + 1)2

This tool applies a rotation of the Ambisonic sound scene around
the z-axis, corresponding to yaw angle. The rotation matrix is
described in the spherical harmonic domain [1]. At execution time,
the user can set the rotation angle with the Azimuth slider. This
tool can notably be used to compensate the head rotation around
z-axis for a head-tracked binaural synthesis (Sec. 7.2).

6.10. hoa_rotator

• Inputs: (M + 1)2

• Outputs: (M + 1)2

This tool allows to rotate the Ambisonic sound scene around x-,
y- and z-axes, corresponding to roll, pitch and yaw angles respec-
tively. The implementation is done with recurrence formulas as
described in [27]. At execution time, the user can set the rotation
angles with the sliders yaw, pitch and roll. This tools can no-
tably be used to compensate the head rotation for a head-tracked
binaural synthesis (Sec. 7.2).

6.11. VU-Meters Flexibility

For most tools, the GUI VU-Meters for the inputs and outputs
channels are respectively controlled by the variables
insvumeter and outsvumeter in the code. The user can set
one of the following value for these variables, at compilation time:

• 0: no VU-Meters are generated in the GUI.

• 1: VU-Meters are generated and grouped by Ambisonic
order

• 2: VU-Meters are generated and grouped by Ambisonic
order. Moreover a mute check-box is available for each
channel and for all the channels of an Ambisonic order.

7. EXTRAS TOOLS

On top of the DSP tools implemented in FAUST, Ambitools pro-
vides several side tools presented in the next sections.

7.1. 3D VU-Meters

A flexible 3D VU-Meter is implemented with the PROCESSING
language. An example of the meter for a 50-node Lebedev grid
is shown in Fig. 4. The loudspeakers are represented with balls in
space, whose size and color changes according to the RMS level in
dBFS. A human head is placed at the origin and is facing the front
direction. In the code, the number and position of the loudspeak-
ers are set in a .cvs file which can be easily adapted to the user
configuration. Moreover, in a spatialization context, the acoustic
sources are represented with little colored balls with fading tra-
jectories. The 3D VU-Meter is driven with Open Sound Control
(OSC) messages, generated by the FAUST tools hoa_encoder
and hoa_decoder_*.

Figure 4: Spherical VU-Meter using PROCESSING for a 50-node
Lebedev grid. Each loudspeaker is represented by a ball whose
size and color are proportional to the RMS level in dBFS. The
virtual source are represented with small balls with fading trajec-
tories. The instantaneous coordinate is displayed in Cartesian and
spherical coordinates.

7.2. Head-Tracking

For binaural synthesis, Ambisonics offers an elegant approach to
compensate the head movements of the listener, by rotating the

IFC-7

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

Ambisonic scene accordingly before decoding [18]. In this con-
text, an affordable head-tracker system is proposed by the Razor
AHRS project based on Arduino microchips. 3 The PROCESSING
code was adapted for Ambitools in order to genereate OSC mes-
sages containing the yaw pitch and roll angles values to be applied
for the tools hoa_azimuth_rotator or hoa_rotator. An
example of use is shown in Fig. 5. The blueprints of the 3D-printed
box for the head-tracker are also provided.

Figure 5: The Razor AHRS head-tracker project integration with
Ambitools. The Arduino microchip is fixed on top of the head-
phones in the 3D-printed box (left of the picture). Orientation an-
gles are transmitted to the PROCESSING interface (middle of the
picture). The latter generates OSC messages which drive the slid-
ers of hoa_rotator tool (right of the picture).

7.3. FIR Fast Convolution

As mentioned in Secs. 5 and 6.4, several filters involved in Am-
bisonics are proposed with FIR implementations, such as SMA
equalization filters and various HRIRs sets. Currently, the mul-
tichannel linear convolutions implementation with FAUST is very
costly and compromises the real-time synthesis. Thus, a fast con-
volution software such as Jconvolver is recommended instead. In
Ambitools, the coefficients of the provided filters are given in
.txt files stored in a FIR folder.

7.4. Automatic Online Compilation

For composers and Ambisonics enthusiasts who do not wish to
learn the FAUST language, an interactive form is available online
to compile the different FAUST tools introduced in the Sec. 6. 4

The corresponding PHP script queries the list of available tools
from Ambitools repository. The user is asked via a form to select
the tools he wishes and to provide some extra information such
as the choice of Ambisonic order M and GUI parameters (VU-
meters, Mute check boxes) needed at compilation time. He can
also choose the output format for the plug-in. Then, the .dsp files
are automatically edited according to the user requests. Finally, the
edited codes are sent with required dependencies to the GRAME

3https://github.com/Razor-AHRS/razor-9dof-ahrs
4http://www.sekisushai.net/ambitools/index.php/

download/

servers for compilation. 5 The output plug-ins are sent back to the
user for download.

8. CONCLUSIONS AND FUTURE WORKS

This paper introduced the toolbox “Ambitools” in its current ver-
sion (v-1.0). The code design was shown to be scalable and flexi-
ble, allowing the user to adapt it to its need. Details were given
for the scalable implementation of spherical harmonics. Then,
some insights were given for the Ambisonic radial filters imple-
mentation, and the tools available in the current version were in-
troduced. Thanks to FAUST, the DSP tools are compiled in var-
ious formats. This enables the possibility for sound engineers or
composers to have an efficient workflow with Ambisonics by inte-
grating the tools as plug-ins in their audio software. Future works
includes the implementation of modern Ambisonics effect, such as
Ambisonic spatial blur [28] or Ambisonic warping [17].

9. REFERENCES

[1] Jérôme Daniel, Représentation de champs acoustiques, ap-
plication à la transmission et à la reproduction de scènes
sonores complexes dans un contexte multimédia, Ph.D. the-
sis, Université Paris 6, Paris, 2000.

[2] Aaron J Heller, Eric M Benjamin, and Richard Lee, “A
toolkit for the design of ambisonic decoders,” in Linux Audio
Conference, Stanford, 2012, pp. 1–12, LAC.

[3] Matthias Geier and Sascha Spors, “Spatial Audio with the
SoundScape Renderer,” in 27th Tonmeistertagung–VDT In-
ternational Convention, 2012.

[4] Matthias Kronlachner, “Plug-in Suite for mastering the pro-
duction and playback in surround sound and ambisonics,” in
Linux Audio Conference, 2013.

[5] Julien Colafrancesco, Pierre Guillot, Eliott Paris, Anne
Sèdes, and Alain Bonardi, “La bibliothèque HOA, bilan et
perspectives,” in Journées d’Informatique Musicale, 2013,
pp. 189–197.

[6] Thibaut Carpentier, Markus Noisternig, and Olivier Warus-
fel, “Twenty years of Ircam Spat: looking back, looking
forward,” in 41st International Computer Music Conference
(ICMC), 2015, pp. 270–277.

[7] Pierre Lecomte and Philippe-Aubert Gauthier, “Real-Time
3D Ambisonics using Faust, Processing, Pure Data, And
OSC,” in 15th International Conference on Digital Audio
Effects (DAFx-15), Trondheim, 2015, DAFx.

[8] Thibaut Carpentier, “A versatile workstation for the diffu-
sion, mixing, and post-production of spatial audio,” in Linux
Audio Conference, 2017.

[9] Pierre Lecomte, Ambisonie d’ordre élevé en trois dimen-
sions : captation, transformations et décodage adaptatifs
de champs sonores, Ph.D. thesis, Université de Sherbrooke
- Conservatoire National des Arts et Métiers, Sherbrooke -
Paris, 2016.

[10] Pierre Lecomte, Philippe-aubert Gauthier, Christophe Lan-
grenne, Alain Berry, and Alexandre Garcia, “A Fifty-Node
Lededev Grid and Its Applications to Ambisonics,” Journal

5http://faustservice.grame.fr

IFC-8

https://github.com/Razor-AHRS/razor-9dof-ahrs
http://www.sekisushai.net/ambitools/index.php/download/
http://www.sekisushai.net/ambitools/index.php/download/
http://faustservice.grame.fr

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

of the Audio Engineering Society, vol. 64, no. 11, pp. 868–
881, 2016.

[11] Pierre Lecomte, Philippe-Aubert Gauthier, Alain Berry,
Alexandre Garcia, and Christophe Langrenne, “Directional
filtering of Ambisonic sound scenes,” in Audio Engineering
Society Conference: Spatial Reproduction, Tokyo, 2018, pp.
1–9, AES.

[12] Thibaut Carpentier, “Normalization schemes in Ambisonic:
does it matter?,” in Audio Engineering Society Convention
142. 2017, AES.

[13] Christian Nachbar, Franz Zotter, Etienne Deleflie, and Alois
Sontacchi, “Ambix - A suggested ambisonics format,” in
Ambisonics Symposium, Lexington, 2011, p. 11, IEM.

[14] Darren B Ward and Thushara D Abhayapala, “Reproduction
of a plane-wave sound field using an array of loudspeakers,”
IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 6, pp. 697–707, 2001.

[15] Sébastien Moreau, Jérôme Daniel, and Stéphanie Bertet, “3d
sound field recording with higher order ambisonics-objective
measurements and validation of spherical microphone,” in
Audio Engineering Society Convention 120, Paris, 2006, pp.
1–24, AES.

[16] Matthias Kronlachner, “Spatial Transformations for the Al-
teration of Ambisonic Recordings,” 2014.

[17] Franz Zotter and Hannes Pomberger, “Warping of the record-
ing angle in Ambisonics,” in 1st International Conference on
Spatial Audio, Detmold, 2011, pp. 1–3, ICSA.

[18] Markus Noisternig, Alois Sontacchi, Thomas Musil, and
Robert Holdrich, “A 3d ambisonic based binaural sound re-
production system,” in Audio Engineering Society Confer-
ence: 24th International Conference: Multichannel Audio,
The New Reality. 2003, pp. 1–5, AES.

[19] Aaron J Heller and Eric M Benjamin, “The Ambisonic
Decoder Toolbox: Extensions for Partial-Coverage Loud-

speaker Arrays,” in Linux Audio Conference, Karlsruhe,
2014.

[20] George B Arfken and Hans J Weber, Mathematical Methods
for Physicists, Elsevier, 6th edition, 2005.

[21] Jérôme Daniel, “Spatial sound encoding including near field
effect: Introducing distance coding filters and a viable, new
ambisonic format,” in Audio Engineering Society Confer-
ence: 23rd International Conference: Signal Processing in
Audio Recording and Reproduction, Helsingør, 2003, pp. 1–
15, AES.

[22] Hannes Pomberger, “Angular and radial directivity control
for spherical loudspeaker arrays,” M.S. thesis, University of
Music and Dramatic Arts, Graz, 2008.

[23] Benjamin Bernschütz, “A spherical far field hrir/hrtf com-
pilation of the neumann ku 100,” in 40th Italian Annual
Conference on Acoustics (AIA) and the 39th German Annual
Conference on Acoustics (DAGA) Conference on Acoustics,
Merano, 2013, pp. 1–4, DAGA.

[24] Gary Elko, Robert A Kubli, and Jens Meyer, “Audio system
based on at least second-order eigenbeams,” 2009.

[25] Michael Chapman, “Symmetries of Spherical Harmonics:
applications to ambisonics,” in Ambisonics Symposium,
Graz, 2009, pp. 1–14, IEM.

[26] Jens Meyer and Gary Elko, “A highly scalable spherical mi-
crophone array based on an orthonormal decomposition of
the soundfield,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing. 2002, vol. 2, pp. 1781–
1784, IEEE.

[27] Joseph Ivanic and Klaus Ruedenberg, “Rotation matrices
for real spherical harmonics. Direct determination by recur-
sion,” The Journal of Physical Chemistry, vol. 100, no. 15,
pp. 6342–6347, 1996.

[28] Thibaut Carpentier, “Ambisonic spatial blur,” in Audio Engi-
neering Society Convention 142, Berlin, 2017, pp. 1–7, AES.

IFC-9

	1 Introduction
	2 Definitions
	2.1 Spherical Coordinate System
	2.2 Spherical Harmonics

	3 Ambisonics Principles
	3.1 Fourier-Bessel Series
	3.2 Spatial Resolution
	3.3 Ambisonics Workflow
	3.3.1 Encoding
	3.3.2 Ambisonic Sound Scene Manipulation
	3.3.3 Decoding

	4 Spherical Harmonics Implementation
	4.1 Hard-Coded Implementation
	4.1.1 Straightforward implementation
	4.1.2 Cartesian formulation

	4.2 Scalable Implementation with Recurrence Formulas and Trigonometric Expansion
	4.2.1 Normalization factor implementation
	4.2.2 Factorial function numerical issues
	4.2.3 Associated Legendre polynomial
	4.2.4 Trigonometric expansion with Chebyshev polynomial
	4.2.5 Spherical harmonics implementation

	5 Radial Filters Implementation
	5.1 Near Field Filters
	5.2 SMA Equalization Filters
	5.3 Procedure of Implementation
	5.4 Scalability Limitation

	6 Overview Of The Faust Tools
	6.1 hoa_encoder
	6.2 hoa_decoder_*
	6.3 hoa_panning_*
	6.4 hoa_decoder_binaural_lebedev50
	6.5 hoa_converter_*
	6.6 hoa_mic_encoder_*
	6.7 hoa_mirroring
	6.8 hoa_beamforming_*
	6.8.1 hoa_beamforming_hypercardioid_to_mono
	6.8.2 hoa_beamforming_hypercardioid_to_hoa
	6.8.3 hoa_beamforming_dirac_to_hoa

	6.9 hoa_azimuth_rotator
	6.10 hoa_rotator
	6.11 VU-Meters Flexibility

	7 Extras Tools
	7.1 3D VU-Meters
	7.2 Head-Tracking
	7.3 FIR Fast Convolution
	7.4 Automatic Online Compilation

	8 Conclusions And Future Works
	9 References

