
HAL Id: hal-03162892
https://hal.archives-ouvertes.fr/hal-03162892

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MobileFaust: a Set of Tools to Make Musical Mobile
Applications with the Faust Programming Language

Romain Michon, Julius O Iii Smith, Yann Orlarey

To cite this version:
Romain Michon, Julius O Iii Smith, Yann Orlarey. MobileFaust: a Set of Tools to Make Musical Mobile
Applications with the Faust Programming Language. Proceedings of the International Conference on
New Interfaces and Musical Expression (NIME-15), May 2015, Baton Rouge, United States. �hal-
03162892�

https://hal.archives-ouvertes.fr/hal-03162892
https://hal.archives-ouvertes.fr


MobileFaust: a Set of Tools to Make Musical Mobile Applications
with the Faust Programming Language

Romain Michon
CCRMA

Stanford University
CA 94305-8180

USA
rmichon@ccrma.stanford.edu

Julius O. III. Smith
CCRMA

Stanford University
CA 94305-8180

USA
jos@ccrma.stanford.edu

Yann Orlarey
GRAME
Lyon
France

orlarey@grame.fr

Abstract

This work presents a series of tools to turn Faust
code into various elements ranging from fully func-
tional applications to multi-platform libraries for
real time audio signal processing on iOS and An-
droid. Technical details about their use and function
are provided along with audio latency and perfor-
mance comparisons, and examples of applications.

Keywords

Faust, iOS, Android, DSP

1 Introduction

Mobile platforms offer a great opportunity to
the world of open source audio to make sound
synthesis and processing accessible to a wider
audience [Yi and Lazzarini, 2012; Brinkmann et
al., 2011]. The use of smartphones and tablets
as musical instruments is now accepted by a
large number of musicians. Not only are mobile
devices widespread and owned by many, they of-
fer a higher level user interface paradigm than
computers, which often makes them more stable
and simpler to use. In particular, Android de-
vices, which are more open than iPhones and
iPads (§3) offer a good compromise between
open-source, stability, and ease of use.
Faust1 [Orlarey et al., 2002] is a functional

programming language for real-time digital sig-
nal processing (DSP) that generates highly effi-
cient DSP code in a variety of languages (C,
C++, LLVM, asmjs, and more) that can be
compiled into a variety of forms using a sys-
tem of wrappers. These wrappers, called ar-
chitecture files, describe how to adapt the DSP
computation to the external world [Fober et al.,
2011]. Therefore, it is easy to go from Faust
to standalone applications for different kinds of
platforms, Web applications, audio plug-ins, ex-
ternals for music programming languages, and
so on.

1http://faust.grame.fr

This paper presents a series of tools that can
turn Faust code into various elements rang-
ing from fully functional applications to multi-
platform libraries for real-time audio signal pro-
cessing on iOS and Android. Technical details
about their use and function are provided, along
with audio latency and performance compar-
isons, and examples of applications.

2 Faust2api

The main idea of faust2api is to provide iOS
and Android developers with a system that gen-
erates custom high-level APIs for real-time au-
dio signal processing. Even though the APIs
work quite differently “under the hood” on iOS
than on Android, they are accessed similarly on
the two platforms.

The faust2api script operates as a
command-line tool in a shell. A Faust
source file is provided as an argument, along
with the option -ios or -android specifying
the desired architecture, and one or more
source files are created as output (a single
C++ header file for iOS, and a directory
containing both Java and C++ source files for
Android). The library takes care of starting
the audio engine and instantiating the DSP
code, as well as connecting them together.
At the API level, this is all done by the
C++ method init(sr,bs) which takes the
desired sampling-rate and audio buffer-size as
arguments. Computing of the audio process is
launched by a start() method. Finally, the
audio engine can be closed and the memory
freed by simply calling stop().2

On both iOS and Android, the audio pro-
cess runs in its own high-priority thread. The
various parameters of the Faust object can be
accessed and written via getParam(path) and
setParam(path) where the parameter path is

2Detailed documentation of the API can be
found here: https://ccrma.stanford.edu/~rmichon/
mobileFaust/#ref



the parameter’s path in the user-interface tree
defined in the Faust code (as discussed further
below in §3.3 on OSC and MIDI support).

If the Faust object provided to faust2api
has no inputs, and has freq, gain, and gate
parameters defined, it is considered as an instru-
ment and automatically made polyphonic. The
different voices (eight by default, but this can
be changed) can be triggered using a keyOn()
method that takes a MIDI note number and
MIDI velocity as an argument. This method is
linked to the freq, gain, and gate parameters
(§3.1) and allocates a new voice every time it is
called. The keyOff() method sets the gate pa-
rameter of the voice to zero and waits until the
level of the voice falls below -60 dB to deallocate
it.

2.1 iOS

The command “faust2api -ios
faustCode.dsp” will generate a single
C++ header file that can be included in
any iOS app project. The API relies on the
AVAudioSession3 framework to connect to the
audio engine.

“Touch to sound” and “round-trip” latency
measurements for iOS audio applications gener-
ated by faust2api were carried out on an iPad2
and an iPhone5 (Fig. 1).

Device Touch to Sound Round-Trip

iPhone5 36 ms 13 ms
iPad2 45 ms 15 ms

Figure 1: Audio Latency for Different iOS De-
vices Using the Faust Library.

“Round-trip” latency was measured by creat-
ing a simple app that just plays back any sound
that comes to its audio input (in our case, the
audio input jack) and by comparing how long it
takes for the iOS device to play back an impulse
sent to this app.

“Touch to sound” latency was measured by
creating a simple test app where a button on
the screen is used to trigger an impulse. The
audio output jack of the iOS device was con-
nected to an ADC4 in order to be able to record
the impulse on a computer. A microphone con-
nected to the same ADC on a different channel

3https://developer.apple.com/library/ios/-
documentation/AVFoundation/Reference/-
AVAudioSession ClassReference/index.html#//-
apple ref/occ/cl/AVAudioSession

4Analog to Digital Converter

was placed at the top of the screen of the de-
vice. The latency measurements were carried
out by measuring the time difference between
the “acoustic” impulse detected by the micro-
phone and the synthesized one (Fig. 2).

iPad

ADC Time Difference

Audio Jack Out

Figure 2: Touch to Sound Audio Latency Mea-
surement Set-Up.

2.2 Android

faust2api is slightly more complex to use
on Android than iOS. Indeed, Android apps
are primarily programmed in Java. However,
this language is not very well suited for real
time DSP so most of the library generated by
faust2api is written in C++ with a Java in-
terface.

The audio engine is accessed, controlled and
connected to the DSP code generated by Faust
on the “native” side of the library where ev-
erything is computed in a high-priority thread.
This allows the signal processing part of the app
to be fully independent from the Java side.

The native portion of the library is compiled
as a shared library using the Android NDK5 and
can be controlled in Java using a JNI6 interface
generated by SWIG.7 More details about the
way this system works can be found in [Michon,
2013].

In practice, faust2api will generate the An-
droid API by using the -android option instead
of -ios (cf. previous section) and will provide
a set of Java and C++ files to be copied in the
Android app project.8

5Native Development Toolkit:
https://developer.android.com/tools/sdk/ndk/

6Java Native Interface
7Simplified Wrapper and Interface Generator:

http://www.swig.org/
8A tutorial on how to do this can be found

here: https://ccrma.stanford.edu/~rmichon/
mobileFaust/#f2apAndroid



Latency measurements using the same tech-
niques presented in the previous section were
carried out on a Samsung Galaxy S5, a Google
Nexus 5, and a Google Nexus 7 that were all
running on Android 5.0 (Lollipop). It is difficult
to make a complete comparison here in the same
way as for iOS because latency varies greatly
between devices and manufacturers. The main
observation that can be made though is that
audio latency is much larger on Android than
iOS.

Device Touch to Round-
Sound Trip

Samsung Galaxy S5 72 ms 78 ms
Google Nexus 5 90 ms 92 ms
Google Nexus 7 130 ms 130 ms

Figure 3: Audio Latency of Different Android
Devices Using the Faust Library.

Faust Program C++ DSP CodeFaust Compilation

OpenSL ES

Faust Poly

Custom Audio Library

Android Architecture 
(C++ Wrapper)

Core Audio

Faust Poly

Custom Audio Library

iOS Architecture 
(C++ Wrapper)

IOS C++ Library

Shared Library

Wrapping (iOS)

JAVA Interface to
The Shared Library

Wrapping (Android)

Figure 4: faust2api Overview.

3 Faust2android

While a preliminary version of faust2android
was presented in [Michon, 2013] it has been to-
tally rewritten since then and offers a large num-
ber of new functionalities.
faust2android is built on top of faust2api

(Fig. 9). Its user interface is constructed using
the JSON description provided by the shared
library generated by faust2api. All the stan-
dard Faust UI elements are available: horizon-
tal and vertical groups, horizontal and vertical
sliders, numerical entries, knobs, checkboxes,
buttons, drop-down menus, radio buttons, bar-
graphs, etc. Some examples are shown in figure
5. The values of the parameters of the audio
process running on the native side are changed
using the setParam() function of the API.

Figure 5: Example of interface generated
by faust2android containing groups, sliders,
knobs and checkboxes.

3.1 Keyboard and Multitouch Interface

faust2android allows assignment of more in-
teractive interfaces to the Faust process. For
that, three different metadata items can be
added to the top-level group of a Faust pro-
gram. In Faust, a metadata item consists
of a key:value pair, specified between square
brackets within a title string, i.e., "Some Title
[key:value]...".

The [style:keyboard] metadata item spec-
ifies that the freq, gain, and gate parameters
in the Faust code should be assigned to a pi-
ano keyboard that can be opened by touching
the “keyboard icon” in the top right corner of
the app. Also, these three parameters will be
automatically removed from the main interface
for controlling the other parameters.

The following example program illustrates a
simple usage:

import("music.lib");
s = button("gate");
g = hslider("gain",0.1,0,1,0.001);
f = hslider("freq",100,20,10000,1);
process = vgroup("[style:keyboard]",

s*g*osc(f));

This interface uses the polyphonic capabili-
ties of faust2api. Touching a key on the key-



board determines the reference pitch of the note
but sliding the finger across the X axis of the
screen allows the user to continuously control
it. The Y axis determines the gain of the note.
If a MIDI keyboard is plugged into the Android
device, it will be able to control the keyboard
interface (§3.3).

The [style:multi] metadata item will cre-
ate a simple interface in which parameters are
represented by moveable dots on the screen.
Each dot can have two parameters assigned to
it, corresponding to x and y screen coordinates.
This interface can also be opened by touching
the keyboard icon on the top right corner of the
screen. Parameters are linked to the interface
via [multi:x] metadata where x is the ID of
the parameter in the interface. For example,
the Faust program

import("music.lib");
freq = hslider("freq[multi:0]",

440,50,2000,0.1);
process = hgroup("[style:multi]",

osc(freq));

creates an app in which the frequency param-
eter of a sine oscillator is controlled by the X
axis of the dot in the multitouch interface. Pa-
rameters that have the accelerometer assigned
to them (cf. §3.2) will continue to be driven by
the accelerometer in the interface.

Finally, the [style:multikeyboard] meta-
data combines the keyboard and multitouch in-
terface into one (Fig. 6).

Figure 6: Example of “Multi-Keyboard”
Interface of an Application Generated by
faust2android.

3.2 Using the Built-In Accelerometer

The Accelerometer can be used to control some
elements of the user interface. Assignments are
made in the Accelerometer Parameters panel

that can be opened by holding the label of a
parameter for more than one second (Fig. 7).
From here, the mapping of an accelerometer to a
parameter can be configured precisely to create
complex linear and non-linear behaviors. For
instance, the user can choose which axis will
control the parameter (x, y, or z), its motion
orientation, and sensitivity.

Three different modes can be used to control
the orientation of the accelerometer, normal, in-
verted, and bell. In bell mode, the maximum
value of the accelerometer is output when it is
in center position and the minimum value when
it is fully inclined to the left or right.

Sensitivity can be configured with three dif-
ferent parameters, min, max, and center, that
are all expressed in m/s2 × 10−1. As an exam-
ple, setting min to -1, max to 1, and center to
0 will create a linear behavior where the mini-
mum value of the parameter being controlled is
given at position -90 degrees and the maximum
value at position +90 degrees. Any acceleration
beyond these limits will be clipped.

All these parameters can be configured from
the Faust code using metadata by specifying
[acc: a b c d e], where a is the axis (0 for
x, 1 for y, 2 for z), b the orientation (0 for nor-
mal, 1 for inverted, 2 for bell), c the minimum,
d the maximum and e the center.

Raw data from the accelerometers are passed
directly to the Faust audio process. Filtering
can be carried out in Faust which is better
suited for that kind of task than Java.

Finally, the accelerometer parameters win-
dow is only accessible if the app is unlocked by
touching the “lock” icon on the top right cor-
ner of the screen (Fig. 5). Apps can be locked
to prevent users from opening a configuration
window or rotating the screen during a perfor-
mance.

Figure 7: Accelerometer Configuration Panel of
an Application Generated by faust2android.



3.3 OSC and MIDI Support

OSC support is enabled by default for all
the parameters of applications generated by
faust2android. The OSC address of a parame-
ter corresponds to the path to this parameter in
the Faust code. For example, the OSC address
of the freq parameter of the Faust code

freq = hslider("freq",
440,50,2000,0.1);

process = hgroup("Main",osc(freq));

will be /Main/freq.
MIDI support is also enabled by default

in apps generated by faust2android. MIDI
Key Number is automatically mapped to the
freq parameter by converting it to frequency
in Hz, and similarly MIDI velocity → gain.
Note on/off events control the gate parame-
ter, just like the keyOn() and keyOff() func-
tions of faust2api. Synthesizer apps gener-
ated with faust2android all have eight voices
of polyphony.

MIDI control numbers can be assigned to spe-
cific parameters from the Faust code using the
[midictl:x] metadata where x is the MIDI
control number.

3.4 Audio IO Configuration

Android applications generated with
faust2android automatically choose the
best sampling rate and buffer size as a function
of the device that is running them (for Nexus9

devices only). Indeed, it was explained during
the Google I/O 2013 conference on High
Performance Audio10 that Android phones and
tablets achieve better audio latency perfor-
mance if they run with a specific buffer size and
sampling rate (see Fig. 8). Users may override
these default values in the settings menu of the
app.

Device Sampling Rate Buffer Size

Nexus S 44100 880
Galaxy Nexus 44100 144
Nexus 4 44100 240
Nexus 7 44100 512
Nexus 10 44100 256
Others 44100 512

Figure 8: Preferred Buffer Sizes and Sampling
Rates for Various Android Devices.

9http://www.google.com/nexus/
10http://youtu.be/d3kfEeMZ65c

Faust Program (.dsp file)

Shared Library JAVA Interface to
the Shared Library

User Interface

Sensors OSC/MIDI

Controller Interfaces

Faust Compilation (cf. faust2api diagram)

Native Thread

Audio Out Com through JNI

JAVA Thread

Figure 9: faust2android Overview.

3.5 Easy App Generation

While it is relatively simple to use
faust2android, it requires the programmer
to have an important number of dependencies
installed (Android SDK and NDK, etc.).
However, FaustLive [Denoux et al., 2014]
and the Faust Online Compiler [Michon and
Orlarey, 2012] make the process of turning
Faust code into an Android application very
simple. Indeed, when the user chooses to
compile a Faust program as an Android app, a
QR code pointing to the generated app package
is displayed that can be scanned by the device
where the user want the app to be installed.

4 Applications

The Faust distribution contains a collection of
libraries that implement a large number of com-
mon and less-common audio effects, filters, and
synthesizers. With faust2api, iOS and An-
droid programmers who don’t know signal pro-
cessing or who never worked with real-time au-
dio can easily integrate any of the pre-written
Faust modules into their project without hav-
ing to write a single line of DSP code. On
the other hand, this tool also gives the op-
portunity to Faust developers to have their
work used by more people. A concrete use of
this tool was made this year in the Music 256b
class11 “Mobile Music” offered at Stanford Uni-
versity’s Center for Computer Research in Mu-
sic and Acoustics (CCRMA)12 where students
were given the opportunity to use faust2api in
their final projects.

Another use of applications generated by
faust2android and faust2ios is the Smart-
Faust13 project led by Xavier Garcia and
Christophe Lebreton at GRAME. The idea was

11https://ccrma.stanford.edu/courses/
256b-winter-2015/

12http://ccrma.stanford.edu
13http://www.grame.fr/anything_slides/

concert-smartfaust



to make a series of concerts where the music is
made by the audience with their mobile phones.
Several applications were put on the Apple Store
and the Google Play Store that people could
download prior to the concert. This project led
to more metadata for controlling the user in-
terfaces; for example, it is possible to choose to
not integrate a UI element to the interface. This
enables the Faust programmer to control some
specific parameters with the accelerometer (us-
ing metadata too) without displaying them in
the interface. faust2android can also generate
“concert apps”, where the user can switch be-
tween different Faust objects within the same
application.

5 Conclusions

Several tools that use Faust to help design
or make ready-to-use Android and iOS appli-
cations were presented. We believe that they
make the development of musical applications
on mobile platforms easier and that they will
contribute to making the use of Faust objects
more accessible to musicians and performers.

While iOS real-time audio applications pro-
vide much better (smaller) audio latency than
Android, the various restrictions imposed by
Apple on their deployment makes them less ac-
cessible which is a big issue for the use that we
make of them with Faust. Therefore, we hope
that Google will resolve the audio latency issues
for Android applications in the near future.
FaustLive and the Online Compiler provide

easy ways to use the tools presented in this pa-
per. However, we think that enhancing them
with an online platform where Faust develop-
ers can easily share their work with others in
order to create a repository of Faust resources
would be a great addition.

6 Acknowledgments

Part of this work has been implemented un-
der the FEEVER project [ANR-13-BS02-0008]
supported by the Agence Nationale pour la
Recherche.

References

Peter Brinkmann, Peter Kirn, Richard
Lawler, Chris McCormick, Martin Roth, and
Hans-Christoph Steiner. 2011. Embedding
Pure Data with libpd. In Proceedings of the
Pure Data Convention. Bauhaus U., Weimar
(Germany).

Sarah Denoux, Stephane Letz, Yann Orlarey,
and Dominique Fober. 2014. FaustLive: just-
in-time Faust compiler and much more. In
Proceedings of the Linux Audio Conference
(LAC-14), pages 102–107. ZKM, Karlsruhe
(Germany), May.

Dominique Fober, Yann Orlarey, and
Stéphane Letz. 2011. Faust architecture
design and OSC support. In Proceedings
of the Conference on Digital Audio Effects
(DAFx-11), pages 213–216, IRCAM, Paris,
France.

Romain Michon and Yann Orlarey. 2012. The
Faust online compiler: a web-based IDE for
the Faust programming language. In Proceed-
ings of the Linux Audio Conference (LAC-
12), pages 111–116. CCRMA, Stanford Uni-
versity (USA).

Romain Michon. 2013. Faust2android: a
Faust architecture for Android. In Pro-
ceedings of the 16th International Confer-
ence on Digital Audio Effects (DAFx-2013),
pages 98–102. National University of Ireland
(Maynooth), September.

Yann Orlarey, Dominique Fober, and
Stephane Letz. 2002. An algebra for block
diagram languages. In Proceedings of the
International Computer Music Confer-
ence (ICMA), pages 542–547. Gothenburg,
Sweden.

Steven Yi and Victor Lazzarini. 2012. Csound
for Android. In Proceedings of the Linux
Audio Conference (LAC-12), pages 233–239.
CCRMA, Stanford University (USA).


