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We develop an analytical model to describe propagation of seven continuous (CW) waves (two strong
pumps, a degenerate signal and idler, two high-order idlers (HOIs) and two high-order pumps (HOPs))
through a nonlinear fiber. The model is developed considering the pumps to be much stronger than the
other waves. The 7-wave system is analyzed in terms of interactions between its 4-wave subsystems : (a)
pumps and degenerate signal and idler, (b) pumps and HOIs, and (c) pumps and HOPs. First we analyze
the three 4-wave subsystems, and then we move to the 7-wave system and compare the two analytical
models. The analytical 7-wave model reveals that a strong coupling (mediated through four wave mixing
processes), between the subsystem with the signal and the subsystem with the HOIs leads to an important
role of the HOIs in influencing the signal gain of a degenerate dual-pump fiber phase sensitive amplifier
(PSA). We find that the maximum PSA gain of the signal for such an amplifier can be significantly en-
hanced by launching the HOIs at the fiber input along with the signal. We compare the analytical results
with that of a numerical 7-wave model and for the anomalous dispersion regime we find a good agree-
ment between the two when the system nonlinearity is weak, i.e. total nonlinear phase less than 0.6 rad.
© 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Fiber-optic parametric amplifiers (FOPA) may play a vital role
in future communication systems. In particular, fiber phase
sensitive amplifiers (PSA) offer promising functionalities such
as high gain and ultra-low noise properties [1–5], which make
them a potential candidate for a variety of applications such as
microwave photonics [6–8], 5G technology [9], long-haul optical
communication systems [10, 11], etc. Such optical amplifiers rely
on the parametric amplification of a signal by a strong pump
mediated by the nonlinear optical interaction of the pump with
the signal, while propagating through a highly nonlinear fiber
(HNLF) [12].

A FOPA can be operated in different configurations. The most
common configurations are i) single pump with non-degenerate
signal and idler, and ii) two pumps with a degenerate signal
and idler. From an application point of view, the latter one is
often preferred [5, 13, 14]. This is because, on the one hand, the
degenerate signal and idler configuration eliminates the require-
ment of an extra idler wave in the single pump configuration
that needs to be phase-locked with the signal [15–17]. On the
other hand, the dual-pump configuration provides a flatter gain
spectrum compared to the single pump one. However, one dis-

advantage of the dual-pump configuration is that, due to the
presence of two strong pumps, when the wavelength separation
between the pumps becomes small, cascaded four-wave mixing
(FWM) processes lead to the generation of high-order sidebands
that often deplete the available gain of the FOPA. Therefore it is
imperative to understand the physics of the system that gives
rise to the parasitic waves in order to improve the amplifier
performance.

Initial theoretical investigations of this system started with
the investigation of the coupled differential equations that gov-
ern the power evolution of four waves (signal, idler and two
strong pumps) [18, 19]. Subsequently, Chen and Snyder solved
the power evolution of the 4-wave system incorporating pump
depletion [20]. Inclusion of the pump depletion effects compli-
cates the analysis significantly, and the solution is expressed
in terms of elliptic or hyperbolic Jacobian functions [19, 21].
Further, the nonlinear evolution of such systems were also in-
vestigated [22–24]. Numerical investigations of the 6-wave (two
pumps, signal, idler and two high-order idlers) model were per-
formed by Marhic et al. [25] and Vedadi et al. [26]. The 6-wave
model was solved by Marhic et al. neglecting fiber dispersion
[27, 28]. Tanemura et al. studied the 6-wave system in terms of
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its eigenmodes [29]. Pakarzadeh and Zakery investigated the
6-wave model numerically for optimization of the shape of the
gain spectra [30, 31]. Ignoring nonlinear effects of the fiber, a
dispersive 6-wave system was studied by Silva et al. [32]. In
the context of PSA noise figure calculations, McKinstrie et al.
analyzed the 6-wave model, however providing an analytical
solution under certain special cases only [33]. Such 6-wave sys-
tems were experimentally investigated by Albuquerque et al.
[34].

Recently, the degenerate signal-idler configuration was nu-
merically investigated by Xie et al. in the framework of the 7-wave
model [35]. Pushing the limit further, Qian et al. numerically
solved the coupled equations for a dual pump PSA for as much
as 27 waves [36]. Note that with the increase of the number
n of involved waves, the total number of FWM terms in the
coupled differential equations governing the wave evolution
increases as n3 [37], making the system more and more compli-
cated. Inoue developed a semi-analytical model to solve for the
two pumps and high-order pumps (HOPs) numerically while
incorporating their effects on the signal and high-order idlers
(HOIs) analytically [38]. However, Inoue’s approach does not
incorporate all the important FWM processes that influence the
signal propagation through a FOPA [39].

It thus appears that although the multiwave models have
been studied extensively both analytically and numerically, no
complete analytical solution is available beyond the 4-wave
model. Following Xie et al., who predicted the possibility of
a large signal PSA gain using the 7-wave model numerically, in
the present paper, we derive an analytical 7-wave model to in-
vestigate the physics of a PSA system in dual-pump degenerate
signal and idler configuration.

This paper is organized as follows. In Section 2 we introduce
the general formalism for multiple CW wave propagation in a
nonlinear fiber and define some important physical quantities to
be used later. Then in Section 3, we use the general formalism to
describe propagation of just four waves, i.e. two strong pumps,
a signal and an idler. The analytical 4-wave model is introduced
at this point, as later these results will be used in describing an
analytical 7-wave model. Then in Section 4, similar to Section
3, we extend the formalism to the case of seven waves, i.e. two
strong pumps, degenerate signal and idler, two HOIs and two
HOPs. We analyze the 7-wave system by deconstructing it into
its constituent 4-wave subsystems. Finally in Section 5 we out-
line the limitations of our model, project some perspectives for
future work, and summarize the important results obtained.

2. MODEL PROPERTIES

In our model we consider a system with 2k + 1 equally spaced
CW waves with two strong pumps and degenerate signal and
idler. In Fig. 1 we show such a configuration, where any wave is
indexed with respect to a dimensionless frequency parameter q,
given as :

q =
2(ω−ω0)

∆ωPP
, (1)

where ω is the frequency of the considered wave, ω0 is the
frequency of the signal, and ∆ωPP is the frequency separation of
the two pumps.

We write down the total scalar real electric field E(z, t) of the
2k + 1 CW waves as :

E(z, t) =
k

∑
j=−k

Aj(z)ei(β(ωj)z−ωjt) + c.c., (2)

q
-3 -2 -1 0 1 2 3 k−k

Pump1

Signal
+Idler

Pump2

Fig. 1. Configuration of a dual-pump FOPA with degenerate
signal and idler, consisting of 2k + 1 cw waves.

where Aj is the complex amplitude, β(ωj) is the propagation
constant and ωj is the frequency of the wave with index j. We
have considered that all the waves are co-polarized along the
length of the fiber and neglected the variation of the field in the
transverse (x-y) direction.

The coupled differential equations for the evolution of 2k + 1
slowly varying amplitudes, Aj’s with j = −k to k, along the
fiber, neglecting fiber attenuation, are given as [28] :

dAj

dz
=iγ

[
|Aj|2 Aj + 2

k

∑
l 6=j=−k

|Al |2 Aj

+
k

∑
m,n,p=−k,

ωm+ωn−ωp=ωj

Am An A∗pei∆βmnpjz
]
,

(3)

where ∆βmnpj = β(ωm) + β(ωn)− β(ωp)− β(ωj) is the linear
phase mismatch coefficient, and γ is the nonlinear coefficient of
the fiber. The three terms on the right-hand side of Eq. (3) respec-
tively correspond to: i) the interaction of one wave, Aj with itself,
which is called self-phase modulation (SPM); ii) the interaction
between two waves, Al and Aj, where l 6= j, which is called
cross-phase modulation (XPM); iii) the interaction between four
waves, Am, An, Ap and Aj, where the energy conservation con-
straint leads to ωm + ωn = ωp + ωj, which is called four wave
mixing (FWM). The SPM and XPM interactions between the
waves only account for a phase shift of the waves, while the
FWM interactions lead to an exchange of energy between the
different waves [12, 28]. The FWM interaction is the mechanism
that is central to the design of high-gain optical parametric am-
plifiers as it leads to energy exchanges between the four waves
it involves [5].

A. Linear Phase Mismatch Coefficient
As mentionned above, the linear phase mismatch coefficient
∆βmnpj between four interacting waves at frequencies ωm, ωn,
ωp and ωj is given by :

∆βmnpj = β(ωm) + β(ωn)− β(ωp)− β(ωj). (4)

We can rewrite β(ω) by performing a Taylor series expansion
around a central frequency ωc and truncating the series after
second order terms as :

β(ω) ≈ β(ωc) +

(
dβ

dω

)
ωc

(ω−ωc) +

(
d2β

dω2

)
ωc

(ω−ωc)2

2
.

(5)
Using Eq. (5) in Eq. (4), and using the energy conservation crite-
rion, i.e. ωm + ωn −ωp −ωj = 0, we calculate ∆βmnpj as :

∆βmnkj =
β(2)(ωc)

2
(ωm

2 + ωn
2 −ωk

2 −ωj
2), (6)
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where β(2)(ωc) =
(

d2 β
dω2

)
ωc

. Without loss of generality, we

choose ωc = ω0. Thus, in terms of the frequency parameters
qm, qn, qp and qj of the waves at frequencies ωm, ωn, ωp and ωj
respectively (see Eq. (1)), ∆βmnpj can be expressed as :

∆βmnpj = C(qm
2 + qn

2 − qp
2 − qj

2), (7)

where C is given by :

C =
β(2)(ω0)∆ωPP

2

8
. (8)

For a given fiber, β(2)(ω0) can be obtained from the following
relation [12] :

β(2)(λ0) = −
λ0

2D
′
(λ0 − λZDW)

2πc
, (9)

where λ0 = 2πc/ω0 is the signal wavelength and c is the speed
of light in vacuum. λZDW and D

′
are the zero-dispersion wave-

length and dispersion slope of the fiber, respectively.

B. Total Effective Phase Mismatch

It is evident from the above discussion, in particular from Eq. (3),
that the z−evolution of the system depends on the different
FWM processes that redistribute energy among the different
waves in the system. Therefore it is important to quantify the
efficiency of the different FWM processes in terms of the sys-
tem parameters. To this aim, first we define the effective phase
mismatch coefficient κmnpj as [35] :

κmnpj = ∆βmnpj − γPmnpj, (10)

where γPmnpj is the nonlinear phase mismatch coefficient and
Pmnpj is given by :

Pmnpj = Pm + Pn − Pp − Pj. (11)

Pi is the power of the wave with frequency parameter i, evalu-
ated at the end of the fiber. The total effective phase mismatch
κtot,mnpj of the FWM process occurring between the waves at
frequencies ωm, ωn, ωp and ωj (denoted as pmnpj) is the product
of the effective phase mismatch coefficient κmnpj and the fiber
length L :

κtot,mnpj = κmnpjL. (12)

κtot,mnpj provides an estimate of the efficiency of the process
pmnpj along the fiber [18]. An efficient FWM is possible only
when |κtot,mnpj| is close to 0. A value of |κtot,mnpj| near or larger
than π implies an inefficient occurrence of the process pmnpj
[12].

C. Strong Pump Approximation

In our model, the pumps are considered to be much more pow-
erful than the other waves along the entire length of the fiber.
We also consider the input powers of the two pumps to be the
same, i.e. |A1(0)|2 = |A−1(0)|2, and to remain undepleted
along the fiber. These undepleted pump powers are given by
|A±1(z)|2 = P. Notice that here we consider a re-scaled system
of units where the modulus square of the complex field ampli-
tude of a given wave gives its power in Watts. We stick to this
convention throughout this paper.

D. Pump Equations
Considering the strong pump approximation, the following
pump evolution equations are obtained from Eq. (3) :

dA±1
dz

= iγ3PA±1 , (13)

where the terms that are product of less than three pump ampli-
tudes (A±1 or A±1

∗) have been neglected. Therefore the evolu-
tion of the pump waves is given as :

A±1(z) =
√

Peiγ3Pz , (14)

where we have taken the initial phases of the pumps to be 0.
We note here that this specific input phase allocation of the
pumps does not influence our analysis. This is because, from
the literature, we know that the PSA mechanism depends on
the relative input phases of the two pumps and the signal [12].
The choice of the phases of the two pumps is thus completely
arbitrary.

E. System Parameters
Unless stated otherwise, in all the following discussion, we use
a set of system parameters similar to those used in Ref. [35]. The
main four-wave mixing process, involving the degenerate sig-
nal and idler and the two pumps, denoted p1−100, would be
perfectly phase matched when the signal wavelength lies in the
normal dispersion region of the fiber. However, we choose here
to focus instead on the anomalous dispersion regime. Indeed,
following Ref. [35], we expect this regime to lead to a strong
enhancement of the gain with respect to the 3-wave approach,
showing that many other FWM processes are involved beyond
the basic p1−100 process. By focusing on this anomalous disper-
sion region, we thus intend to compare our analytical approach
with the numerical approach of Ref. [35], in order to assess the
validity of the present theory. However, the present theory could
be equally well applied to the normal dispersion case.

We thus consider a standard highly nonlinear fiber (HNLF)
with γ = 11.3 W−1.km−1, λZDW = 1547.5 nm, D

′
=

0.017 ps.nm−2.km−1 and fiber length L = 500 m. We use a
pump power P = 20 dBm and a central wavelength ωc = 1557.5
nm.

3. ANALYTICAL 4-WAVE MODEL

Although our final goal is to develop an analytical 7-wave model
(as shown in Fig. 1 with |k| = 3), in this section, we take a
detour, and first describe an analytical 4-wave model with two
pumps, a signal, and an idler (see Fig. 2). The motivation for
analyzing such a 4-wave model is to understand the evolution of
a simpler 4-wave system compared to the more complex 7-wave
system. Thus, later in the 7-wave framework, we will be able to
describe the system dynamics with respect to its 4-wave simpler
subsystems, as we will discuss in Section 4.

The analytical solution for the 4-wave situation of Fig. 2 is
easy to find in the literature [12, 28], except in the situation where
the frequency separation between the signal and the pump is
equal to the frequency separation between the two pumps. In-
deed, in this situation, corresponding to |s| = 3 in Fig. 2, extra
FWM processes have to be taken into account, compared to the
ordinary situation |s| 6= 3. In the present section, we give a gen-
eral derivation that can apply to both cases. This will be needed
when we deal with the 7-wave model in Section 4, which will be
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q
−s −1 1 s

Signal

Pump1 Pump2

Idler

Fig. 2. Configuration of a 4-wave model with arbitrary allo-
cation of signal frequency. The signal frequency parameter is
q = −s.

shown to break into several 4-wave systems, some with |s| = 3,
and some with |s| 6= 3.

In the considered analytical 4-wave model, note that the signal
(q = −s) and the idler (q = s) are non-degenerate in general,
except when s = 0, which then corresponds to a 3-wave model
(two pumps and a degenerate signal and idler as in Fig. 1 with
|k| = 1).

To determine the evolution equations for As and A−s, first we
invoke the strong pump approximation, i.e. neglect all terms that
are product of less than two pump amplitudes (A±1 or A±1

∗)
in Eq. (3). Note that Eq. (3) is still valid for this configuration
however now, the index j takes the values j = −s,−1, 1, s. Next
we inject the pump solutions Eq. (14) into Eq. (3). We calculate
the relevant linear phase mismatch coefficients (∆βmnpj’s) using
Eq. (7). Finally we express the equations of evolution of the
amplitudes of the signal A−s and idler As in a matrix form as :

d
dz

[
As

A−s
∗

]
= iγP

[
4 2ei(6γP+2C(1−s2))z

−2e−i(6γP+2C(1−s2))z −4

] [
As

A−s
∗

]

+ σ(s)

[
iγP

3
2 ei(3γP+C(1−s2))z

−iγP
3
2 e−i(3γP+C(1−s2))z

]
,

(15)

where σ(s) is given by :

σ(s) =

{
0 when |s| 6= 3,
1 when |s| = 3.

(16)

Equation (15) leads to a few important observations. First,
when |s| = 3, the system of equations becomes inhomogeneous,
whereas remaining homogeneous for all other values of s. This is
because, when |s| = 3, the configuration attains an extra degree
of symmetry that leads to an extra FWM process involving three
pump amplitudes. This is illustrated in Fig. 3. The FWM process
p1−1s−s is present both for |s| 6= 3 and |s| = 3 (see red curved
arrows in Figs. 3 (a) and (b)). However, the processes p−1−11−s
and p11−1s are only possible when |s| = 3 (see blue and green
curved arrows in Fig. 3 (c)). The reason behind this is that this
extra FWM process, where two pump photons get converted to
a signal (or idler) and a pump photon, is possible only when
energy conservation is satisfied, i.e. h̄ω−1− h̄ω−s = h̄ω1− h̄ω−1
or h̄ω1 − h̄ωs = h̄ω−1 − h̄ω1.

Second, under the strong pump approximation, Eq. (3), which
is nonlinear in general, leads to a linear system of ODEs, i.e.
Eq. (15). Also, the homogeneous part of Eq. (15) has the same
form as is used to describe the dynamics of an oscillating pendu-
lum of time-varying length, or that of a child’s swing pumped by
the squatting and rising motion of the child [40]. Such paramet-
ric oscillations have been extensively studied in the context of
nonlinear optics, especially in studying the dynamics of optical
parametric amplifiers [5].

(a) |s| 6= 3
q

-1−s s1
•• ••

(b) |s| = 3
q

-1-3 31
•• ••

(c) |s| = 3
q

-3 3
•• ••

Fig. 3. Illustrations of different symmetry axes (dashed lines)
and corresponding FWM processes (curved arrows) for : (a)
4-wave model with |s| 6= 3, (b,c) 4-wave model with |s| = 3.
FWM processes corresponding to blue and green arrows are
only possible when |s| = 3.

Note that Eq. (15) is of the form dA/dz = M(z)A + N(z).
Also, in our case, the coefficient matrix M(z) is periodic in z.
From Floquet theory we know that such a non-autonomous (i.e.
coefficient matrix M is z−dependent) system can be transformed
into an autonomous (i.e. coefficient matrix is z−independent)
one with a suitable transformation of coordinates [41]. We thus
perform the following transformation of variables (see the Ap-
pendix) :

B±s = e−i(3γP+C(1−s2))z A±s. (17)

Then Eq. (15) can be rewritten as :

d
dz

[
Bs

B−s
∗

]
= iγP

[
1− Fs 2

−2 −(1− Fs)

] [
Bs

B−s
∗

]
+ σ(s)

[
iγP

3
2

−iγP
3
2

]
,

(18)
where Fs is given by :

Fs =
C(1− s2)

γP
. (19)

The coefficient Fs is basically the ratio between the dispersion
and nonlinearity of the fiber. The solution of the system relating
the input-output modes is given by :[

Bs(z)

B−s
∗(z)

]
=

[
cos(γPµsz)− ηs

µs i sin(γPµsz) 2
µs i sin(γPµsz)

− 2
µs i sin(γPµsz) cos(γPµsz) + ηs

µs i sin(γPµsz)

] [
Bs(0)

B−s
∗(0)

]
+ σ(s)

√
P
[

1
2−η3

cos(γPµ3z) + 1
η3−2 + i

µ3
sin(γPµ3z)

1
2−η3

cos(γPµ3z) + 1
η3−2 − i

µ3
sin(γPµ3z)

]
,

(20)

where ηs and µs are given by :

ηs = −1 + Fs , µs = (−3− 2Fs + F2
s )

1
2 . (21)

In order to discuss the physical meaning of these solutions,
we distinguish in the following the cases |s| = 3 and |s| = 0, 2.

A. Case 1 : |s| = 3
For the case of |s| = 3, the solution of Eq. (20) has two terms. The
first term depends on the initial conditions whereas the second
term does not. Under the strong pump approximation, the
second term dominates and the solution can be approximated
as :

B±3(z) ≈
√

P
(

1
2− η3

cos(γPµ3z) +
1

η3 − 2
+

i
µ3

sin(γPµ3z)
)

.

(22)
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The above solution implies that, for |s| = 3, due to the symmetry
of the configuration, efficient interaction with the pumps leads
to a large phase insensitive gain for the signal and the idler.

0 5 10 15 20 25

PP (nm)

-50

-40

-30

-20

-10

0

10

20

O
ut
pu
ts
ig
na
lp
ow
er
(d
B
m
)

-40

-30

-20

-10

0

10

20

P
3
L-
2n

3
2>0

n=1
n=2
n=3
n=4
n=5

Fig. 4. Red solid line: output signal power for |s| = 3 versus
∆λPP. Dotted lines: evolution of γPµ3L − 2nπ versus ∆λPP
when µ3

2 > 0 for n = 1 (red), 2 (blue), 3 (green), 4 (magenta)
and 5 (black). Grey dashed lines are guides for the eye. P = 20
dBm, B±3(0) = 0, λc = 1557.5 nm, γ = 11.3 W−1km−1,
λZDW = 1547.5 nm, D

′
= 0.017 ps/nm2/km, and L = 500 m.

Since Eq. (22) is a combination of cosines and sines, one can
wonder whether one can suppress the signal (and the idler) at
the fiber output when |s| = 3 ? This means that the real and
imaginary parts of B±3(L) should go to 0. Using Eq. (22) this
leads to:

sin(γPµ3L)
µ3

= 0, cos(γPµ3L) = 1, (23)

where we supposed that η3 6= 2. Note that these equations can
only be satisfied for real values of µ3. Thus the conditions in
Eq. (23) lead to :

γPµ3L = 2nπ, (24)

where n ∈ N. Note that here n = 0 is not allowed since that
would mean µ3 = 0, and limµ3→0

sin(γPµ3 L)
µ3

= γPL 6= 0. The
red solid line in Fig. 4 shows the evolution of the output power
of the signal (or idler) |B±3|2 in dBm (left vertical axis) as a
function of the pump-pump wavelength separation ∆λPP, as
obtained from Eq. (22). The input powers of the signal and idler
are taken to be 0, i.e. B±3(0) = 0. The dashed lines in Fig. 4
represent γPµ3L− 2nπ in natural scale (right vertical axis) for
n =1 (red), 2 (blue), 3 (green), 4 (magenta) and 5 (black) in the
region where µ3 is real. The zeroes of all these curves (in dashed
lines) correspond to different situations where B±3(L) = 0. This
phenomenon is also reflected in the dips in the plot of the output
power of the signal. Grey dashed lines are used to show the
concurrency of the dips of output signal power with the roots of
Eq. (24).

The above discussion suggests that by tailoring ∆λPP and/or
γPL, it is possible to achieve a PSA with suppressed output
signal power even when |s| = 3. Such an operation might be
useful due to the detrimental nature of the high-order pumps
(corresponding to |s| = 3) often observed in a FOPA [36].

B. Case 2 : |s| = 0, 2
In the cases where |s| = 0, 2 (or any values of |s| 6= 3), the signal
gain is phase sensitive, as can be seen from the first term in the

right-hand side of Eq. (20). Figure 5 shows the maximum (with
respect to the input signal phase) PSA signal gain (left vertical
axis) as a function of ∆λPP for s = 0 (blue solid line) and |s| = 2
(red dotted line), evaluated using Eq. (20). In the same figure,
we also plot the total effective phase mismatches (right vertical
axis) corresponding to the only relevant FWM process p1−1s−s
in the 4-wave model, for s = 0 (blue dashed line) and |s| = 2
(red dashed line).
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Fig. 5. Maximum PSA signal gain (left vertical axis) and to-
tal effective phase mismatch κtot,1−1s−sL (right vertical axis)
versus ∆λPP for s = 0 (blue solid lines) and |s| = 2 (red dot-
ted lines). Vertical grey dashed line: value of ∆λPP for which
γP + 3C = 0. The green dotted line separate the regions where
µs is real and imaginary. Same parameters as in Fig. 4, except
the non-zero input signal and idler powers.

Figure 5 shows that the gain spectrum is flatter for s = 0
compared to |s| = 2. This is due to the fact that for |s| = 2, near
∆λPP = 5 nm, the total effective phase mismatch κtot,1−12−2 =
−2(γP + 3C)L ≈ 0 (see Subsection 2.B) under the strong pump
approximation. It is indicated with a vertical grey dashed line in
Fig. 5. This effective phase matching leads to a highly efficient
amplification of the signal, and explains the maximum near
∆λPP = 5 nm in the gain spectrum. On the contrary, when
s = 0, the total effective phase mismatch is κtot,1−100 = −2(γP−
C)L. Since, in our case, C is always negative in the anomalous
dispersion region, κtot,1−100 can never be 0. In fact, κtot,1−1s−s =
2(C(1− s2)− γP)L can only be 0 for |s| > 1, i.e. when the signal
is outside the two pumps (see Fig. 2).

C. Stability of the Solution
An important aspect of the solution for a system of ODEs is
its stability. Since later we would like to analyze the solution
stability for the analytical 7-wave model, first we consider the
present case of the simpler 4-wave model.

We know that the stability of the system depends on the
eigenvalues of the coefficient matrix of the homogeneous part
of Eq. (18). The eigenvalues λ± are given by ±iγPµs. γPµs is
often referred to as the parametric gain coefficient of the sys-
tem. Note that µs can be either real or imaginary, depending on
Fs. Therefore, when µs is real, the solution is elliptic or stable,
however when µs is imaginary, the solution is hyperbolic or
unstable (see Eq. (20)). Note that this stability is neutral stability
and not asymptotic stability as our system does not incorporate
damping. This can also be seen from Fig. 5 where on the right of
the green dotted line µs

2 > 0, i.e. µs is real. Thus the maximum
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PSA gain is lower compared to the left side of the line where µs
is imaginary.

4. ANALYTICAL 7-WAVE MODEL

So far we have dealt with the well-established analytical 4-wave
model, as it can be found in Ref. [12]. However, the special
treatment of |s| = 3 case is often overlooked in the standard
literature. However, here, the introduction of the analytical 4-
wave model is motivated by the fact that we want to develop
an analytical 7-wave model in terms of interactions between
different 4-wave subsystems of the 7-wave system.

q
-3 -2 -1 0 1 2 3

HOP1

HOI1

Pump1

Signal+Idler

Pump2

HOI2

HOP2

Fig. 6. Configuration of a 7-wave model with two pumps, de-
generate signal and idler, high-order idlers (HOI1 and HOI2),
and high-order pumps (HOP1 and HOP2).

(a) Subsystem 1 (s = 0)

q
-3 -2 -1 0 1 2 3

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

(b) Subsystem 2 (|s| = 2)

q
-3 -2 -1 0 1 2 3

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

(c) Subsystem 3 (|s| = 3)

q
-3 -2 -1 0 1 2 3

HOP1

HOI1

Pump1

Signal

Pump2

HOI2

HOP2

Fig. 7. (a) Subsystem 1 (s = 0 in a 4-wave model) in red, (b)
subsystem 2 (|s| = 2 in a 4-wave model) in blue and (c) subsys-
tem 3 (|s| = 3 in a 4-wave model) in green, used for describing
a 7-wave model. Dashed arrows represent the waves that are
not in the subsystem.

Similarly to the approach adopted for the analytical 4-wave

model, in this section we apply the formalism developed in Sec-
tion 2 to the case of 7 waves. The considered seven waves are :
a degenerate signal and idler, two pumps, two HOIs and two
HOPs (see Fig. 6). It is natural to expect the dynamics of the
7-wave model to be much more complicated than the 4-wave
model simply because of the larger number of FWM terms in the
coupled differential equations governing the propagation of the
complex amplitudes Aj’s. However, as we will see, implement-
ing the strong pump approximation and analyzing the system
in terms of interactions between its subsystems considerably
simplifies the situation.

A. Subsystems
Although the general evolution equations of the seven waves,
obtained from Eq. (3), are quite complicated, the strong pump
approximation actually leads to a decoupling of the HOPs from
the signal and HOIs. This provides a natural choice for breaking
down the 7-wave system into three subsystems. These sub-
systems are three 4-wave systems with different values for the
signal frequency parameter s. These subsystems are: i) the signal
and the two pumps (subsystem 1, s = 0, see Fig. 7 (a)), ii) the two
HOIs and the two pumps (subsystem 2, |s| = 2, see Fig. 7 (b))
and iii) the two HOPs and the two pumps (subsystem 3, |s| = 3,
see Fig. 7 (c)). All the three subsystems share the two common
pumps.

B. HOP Evolution
Let us first focus on subsystem 3, i.e., the two pumps with the
HOPs. Similarly to the analytical 4-wave model (see Section
3), we write the equations for the complex amplitudes of the
HOPs, i.e. A±3, using Eq. (3) and invoking the strong pump
approximation, leading to:

d
dz

[
A3

A−3
∗

]
= iγP

 4 2ei(6γP−16C)z

−2e−i(6γP−16C)z −4

 A3

A−3
∗


+

 iγP
3
2 ei(3γP−8C)z

−iγP
3
2 e−i(3γP−8C)z

 .

(25)

The above equation is nothing but Eq. (15) with |s| = 3. Its
solution has already been discussed in Section 3 and given by
Eq. (20) with |s| = 3. Therefore, the strong pump approximation
leads to a complete decoupling of subsystem 3 from subsystems
1 and 2, meaning the HOPs evolve independently from the signal
and the HOIs.

C. Coupled Signal and HOI Evolution
Unlike subsystem 3, that can be solved using the 4-wave model,
the dynamics of subsystems 1 and 2 are more complex. Indeed,
the FWM processes involving the signal and HOIs, keep subsys-
tems 1 and 2 strongly coupled with each other. Proceeding as
before, with the strong pump approximation and using Eq. (3),
we write the coupled signal and HOIs equations of evolution as:

d
dz



A0

A0
∗

A2

A2
∗

A−2

A−2
∗


= iγP



4 2ei(6γP+2C)z 2ei4Cz ei(6γP−2C)z 2ei4Cz ei(6γP−2C)

−2e−i(6γP+2C)z −4 −e−i(6γP−2C)z −2e−i4Cz −e−i(6γP−2C)z −2e−i4Cz

2e−i4Cz ei(6γP−2C)z 4 0 0 2ei(6γP−6C)z

−e−i(6γP−2C)z −2ei4Cz 0 −4 −2e−i(6γP−6C)z 0

2e−i4Cz ei(6γP−2C)z 0 2ei(6γP−6C)z 4 0

−e−i(6γP−2C)z −2ei4Cz −2e−i(6γP−6C)z 0 0 −4





A0

A0
∗

A2

A2
∗

A−2

A−2
∗


. (26)
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Equation (26) is a system of linear non-autonomous coupled
ODEs. In particular, it takes into account several FWM frequency
conversion processes, such as process p1−2−10 involving waves
-2, -1, 0, and 1 and process p−1201 coupling waves labeled -1, 0,
1, and 2. These processes have to be taken into account here
because of the particular frequency allocation of the different
waves. These processes explain why A0 is coupled to A2 and
A−2.

A general approach to deal with such ODEs is to write the
solution in terms of a matrix exponential and evaluating the
exponential using the Magnus expansion method [42]. Other
examples of this kind of dynamics arise in Dyson series in scat-
tering theory [43] and Bloch equations used to describe elec-
tron spin resonances [44]. Nevertheless, a matrix exponential
approach can often be cumbersome to implement. To avoid
complication, here we use the simpler eigenvalue method to
solve this system. But the coefficient matrix in Eq. (26) has a
dimension 6× 6 and also depends on z. Even if we eliminate the
z-dependence, finding the eigenvalues of a 6× 6 matrix requires
finding the roots of a 6th degree polynomial. Unfortunately,
there is no closed form expression for the roots of a 6th degree
polynomial. Therefore it is necessary to reduce the dimension of
the coefficient matrix. It is worth noticing, by the way, that the
case of degenerate signal and idlers (two pumps, signal and two
HOIs) is more complicated to analyze than the non-degenerate
signal and idler case (two pumps, signal, idler and two HOIs),
for which the dimension of the coefficient matrix is 4× 4 [26].

To reduce the dimension of the problem, we define the side-
band imbalance δ2(z) as:

δ2(z) = A−2(z)− A2(z). (27)

The evolution equation for δ2 reads:

dδ2
dz

=
dA−2

dz
− dA2

dz
= iγP(4δ2 − 2ei(6γP−6C)zδ∗2 ). (28)

Note that δ2 does not depend on A0,which means that an explicit
solution of δ2 is obtainable. Therefore we can now express A2
and A2

∗ in terms of δ2 and reduce the dimension of the matrix
in Eq. (26) to 4× 4. After making a transformation of variables
as shown in Eq. (17) (with s = 0, 2,−2), we obtain the following

equation of evolution of the system:

d
dz


B0

B0
∗

B−2

B−2
∗

 = iγP


1− F0 2 4 2

−2 −(1− F0) −2 −4

2 1 1− F2 2

−1 −2 −2 −(1− F2)




B0

B0
∗

B−2

B−2
∗



+ iγP


−2δ̃2 − δ̃2

∗

2δ̃2
∗
+ δ̃2

−2δ̃2
∗

2δ̃2

 ,

(29)

where δ̃2 = B−2 − B2. The evolution of δ̃2 is obtained by solving
Eq. (28) and is given by:

δ̃2(z) =
(−iη2 sin(γPµ2z)

µ2
+ cos(γPµ2z)

)
δ̃2(0)

−
(

2i sin(γPµ2z)
µ2

)
δ̃2
∗
(0).

(30)

Equation (29) has the form dB/dz = MB + N(z). Consid-
ering the homogeneous part of the equation, the coupling of
subsystems 1 and 2 can be described by breaking M into four
2× 2 block matrices M11, M12, M21, and M22 given as :

M11 = iγP

1− F0 2

−2 −(1− F0)

 , M12 = iγP

 4 2

−2 −4

 = 2M21,

M21 = iγP

 2 1

−1 −2

 , M22 = iγP

1− F2 2

−2 −(1− F2)

 .

(31)

The diagonal blocks M11 and M22 are the coefficient matrices
for a 4-wave model with s = 0 and |s| = 2 respectively. On the
other hand, the off-diagonal blocks M12 and M21 describe how
the two subsystems interact with each other.

The solution of Eq. (29) can be expressed as :

B(z) = F(z)F(0)−1B(0) +
∫ z

0
F(z)F(s)−1N(s)ds, (32)

where F(z) is the fundamental matrix of M. With the aid of
Mathematica, we compute the analytical solution to be:

B0(z) = B0(0)
(

cos(γPν0z) +
i(ζ2 + ν0

2)

2ζν0
sin(γPν0z)− 3i

ζν2
sin(γPν2z)

)
+ B∗0 (0)

(
i(−ζ2 + ν0

2)

2ζν0
sin(γPν0z)− 3i

ζν2
sin(γPν2z)

)
+ B−2(0)

(
1

2ζ
cos(γPν0z)

− 1
2ζ

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)
+ B∗−2(0)

(
− 1

2ζ
cos(γPν0z) +

1
2ζ

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
+

B2(0)
(

1
2ζ

cos(γPν0z)− 1
2ζ

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)

+ B∗2 (0)
(
− 1

2ζ
cos(γPν0z) +

1
2ζ

cos(γPν2z)− i
2ν0

sin(γPν0z) +
3i

2ν2
sin(γPν2z)

)
,

(33)

B−2(z) = B0(0)
(

1
2ζ

cos(γPν0z)− 1
2ζ

cos(γPν2z) +
i

2ν0
sin(γPν0z) +

3i
2ν2

sin(γPν2z)
)
+ B∗0 (0)

(
1

2ζ
cos(γPν0z)− 1

2ζ
cos(γPν2z)− i

2ν0
sin(γPν0z)+

3i
2ν2

sin(γPν2z)
)
+ B−2(0)

(
1
2

cos(γPν2z) +
1
2

cos(γPµ2z) +
i

2ζν0
sin(γPν0z)− i(3ζ2 + 2ζ + 1)

2ζν2
sin(γPν2z)− i(2 + 3ζ)

2µ2
sin(γPµ2z)

)
+ B∗−2(0)

(
− i

2ζν0
sin(γPν0z) +

i(2ζ + 1)
2ζν2

sin(γPν2z)− i
µ2

sin(γPµ2z)
)
+ B2(0)

(
1
2

cos(γPν2z)− 1
2

cos(γPµ2z) +
i

2ζν0
sin(γPν0z)

− i(3ζ2 + 2ζ + 1)
2ζν2

sin(γPν2z) +
i(2 + 3ζ)

2µ2
sin(γPµ2z)

)
+ B∗2 (0)

(
− i

2ζν0
sin(γPν0z) +

i(2ζ + 1)
2ζν2

sin(γPν2z) +
i

µ2
sin(γPµ2z)

)
,

(34)
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where ζ and νs (with s = 0, 2) are given by :

ζ = −1− F0 , νs =

√
3− 2Fs + Fs

2 . (35)

For brevity here we have not provided the expression for B2 as
it can be easily computed using B2 = B−2 − δ̃2. Note that νs
(unlike µs), is always a real quantity. νs and µs are related by :

ν2
s = µ2

s + 6. (36)

One important consequence of the above signal solution is
that, while for the analytical 3-wave model, the modulation insta-
bility of the signal originates from the solution having hyperbolic
terms (when µ0 is imaginary), in contrast, for the analytical 7-
wave model, the signal modulation instability is a consequence
of the larger value of the parametric gain coefficient ν0 compared
to µ0, mediated through the coupling of the HOI modes to the
signal. We also point out the fact that, although the signal solu-
tion from the analytical 7-wave model only contains sinusoidal
terms, the HOIs can have both sinusoidal and hyperbolic terms
when µ2 is imaginary.

D. Maximum Signal Gain
In this subsection we consider the case where only the two
pumps and the signal are injected at the fiber input. This sit-
uation generalizes the one described in the 3-wave model by
taking the generated HOIs into account. In order to compare the
results of the analytical 3- and 7-wave models, Fig. 8 (a) shows
the evolution of the maximum PSA signal gain (with respect to
the input signal phase) as a function of ∆λPP obtained in both
cases. Figure 8 (b) shows the corresponding total effective phase
mismatches κtot,1−100L (blue solid), κtot,−1−1−20L (red dotted)
and κtot,1−2−10L (green dot-dashed), corresponding to the FWM
processes p1−100, p−1−1−20 and p1−2−10 respectively (see Fig. 9,
as a function of ∆λPP. The total effective phase mismatches
are calculated as discussed in Subsection 2.B with the strong
pump approximation. In the analytical 3-wave model only the
process p1−100 is considered, whereas in the analytical 7-wave
model all the three processes (p1−100, p−1−1−20, and p1−2−10)
are considered.

Figure 8(a) shows that for small values of ∆λPP (< 5 nm),
the two models show a large difference in maximum signal
gain. This is explained by the fact that when ∆λPP is small, the
FWM process p1−2−10 is highly phase matched (see green dot-
dashed curve in Fig. 8 (b)) and thus plays a significant role in
determining the maximum PSA signal gain. Since this process
is not considered in the analytical 3-wave model, we find a large
discrepancy between the two models.

Near ∆λPP = 8 nm, the process p−1−1−20 gets perfectly phase
matched (see red dotted curve in Fig. 8 (b)), which is also not
accounted for in the analytical 3-wave model. This process leads
to an efficient amplification of the signal and is responsible for
the large gain peak for the analytical 7-wave model in Fig. 8 (a)
(red dotted curve) around ∆λPP = 8 nm, which is absent for the
analytical 3-wave model (blue solid curve). The slight mismatch
between the gain peak and the perfect phase matching region
of process p−1−1−20 is due to the presence of the two other
processes p1−100 and p1−2−10, which are not very efficient but
not negligible.

As ∆λPP increases, all the FWM processes start becoming
phase mismatched and lose their efficiency. Thus, for ∆λPP >
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Fig. 8. (a) Maximum signal gain for analytical 3-wave (full
blue line) and 7-wave (dotted red line) models versus ∆λPP.
(b) Corresponding total effective phase mismatches κtot,1−100
(full blue line), κtot,−1−1−20 (dotted red line) and κtot,1−2−10
(dot-dashed green line) for FWM processes p1−100, p−1−1−20
and p1−2−10 respectively (see Fig. 9). Vertical grey dashed line:
value of ∆λPP where γP + C = 0. Same parameters as in Fig. 4.

30 nm, the HOIs remain negligibly weak. In such a case, the
analytical 3- and 7-wave models predict the same maximum
signal gain (see Fig. 8 (a)).

E. Comparison of the Analytical 3- and 7-Wave Models with
the Numerical 7-Wave Model

In our approach to develop the analytical 7-wave model, we only
considered the terms that contain at least two pump amplitudes
in Eq. (3), allowing us to obtain a linear system of coupled dif-
ferential equations. This limits the validity of our model. With
the increase of either the pump power, the length, or the non-
linear coefficient of the fiber, the FOPA starts behaving more
and more nonlinearly. Thus when the nonlinear phase γPL be-
comes strong, the generated sidebands, i.e., A±2 and A±3, play
an important role in the dynamics of the FOPA. In such cases
the developed analytical approach should become inapplicable.

In contrast to an analytical approach, using a numerical ap-
proach allows one to solve the set of seven coupled nonlinear
differential equations, without need of the strong pump approx-
imation [35]. The complete set of coupled equations in this case
can be found in Ref. [45].

Thus, in order to validate our approach, we compare the
dependence of the maximum PSA signal gain (obtained by op-
timizing the input signal phase) on ∆λPP, calculated using the
analytical 3- and 7-wave models and the numerical 7-wave model,
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(a) p1−100 (3wm, 7wm)

q
-2 -1 0 1 2

(b) p1−2−10 (7wm)

q
-2 -1 0 1 2

(c) p−1−1−20 (7wm)

q
-2 -1 0 1 2

Fig. 9. The different FWM processes considered in the ana-
lytical 3-wave model (only (a)) and analytical 7-wave model
((a), (b) and (c)). The process labelled pmnpj involves waves at
frequencies ωm, ωn, ωp, and ωj.
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Fig. 10. Maximum signal gain versus ∆λPP for the the 3-wave
model (green dot-dashed line), the analytical 7-wave model
(red dotted line), and numerical 7-wave model (blue solid
line). (a) γPL = 0.11, (b) γPL = 0.23, (c) γPL = 0.56, and (d)
γPL = 1.13. Same parameters as in Fig. 4.

for different values of γPL, when the signal is in the anomalous
(λ0 = 1557.5 nm, Fig. 10) and normal (λ0 = 1537.5 nm, Fig. 11)
dispersion regions. Note that here only the two pumps and the
signal are launched at the fiber input. For the numerical 7-wave
model, we neglected the fiber attenuation, considered a 4th or-
der approximation for the linear phase mismatch coefficients,
and took into account all the FWM terms obtained from Eq. (3).

From Fig. 10, we conclude that all the three models predict
approximately the same signal gain for large pump-pump wave-
length separations (∆λPP > 60 nm). This is due to the fact that,
when ∆λPP is large, all the FWM processes get highly phase
mismatched, and thus the high-order waves are not generated
efficiently. Therefore the only process that dominates is the main
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Fig. 11. Same as Fig. 10 for the normal dispersion region (λ0 =
1537.5 nm).

one considered in the 3-wave model involving the signal and
the two pumps.

One can also see that, for ∆λPP < 10 nm and γPL < 0.6 rad
(see Figs. 10(a,b,c)), the analytical 3-wave model deviates signifi-
cantly from the 7-wave numerical model, whereas the analytical
7-wave model approximately agrees with the numerical 7-wave
model. However, when γPL > 0.6 rad (see Fig. 10 (d)) the an-
alytical 7-wave model predicts a different maximum PSA gain
compared to the numerical 7-wave model even when ∆λPP < 10
nm. This is caused by the fact that for γPL > 0.6 rad, the HOPs
become strong enough to deplete the pump powers significantly,
and hence the strong pump approximation breaks down.

Similarly to the preceding discussion, Fig. 11 shows that
for ∆λPP < 40 nm, although the analytical 3-wave model al-
ways deviates significantly from the numerical 7-wave model,
the analytical and numerical 7-wave models agree satisfactorily
as long as γPL < 0.3 rad. However, as γPL increases, for
example for γPL = 0.56 rad (Fig. 11 (c)) and γPL = 1.13 rad
(Fig. 11 (d)), the analytical and numerical 7-wave models disagree
for ∆λPP < 20 nm. Nevertheless, the case of the signal being
in the normal dispersion region is of reduced interest, since the
maximum attainable signal gain in this region (in the considered
range of ∆λPP) is much smaller than that for the anomalous
dispersion region.

From the above comparison between the analytical and numer-
ical 7-wave models, one can conclude that the analytical 7-wave
model provides a satisfactorily accurate description of the sig-
nal wave evolution in the anomalous dispersion regime, when
∆λPP < 15 nm and γPL < 0.6, as under such conditions the
FWM processes p1−100, p−1−1−20 and p1−2−10 are the only dom-
inant processes determining the system dynamics.

F. Injection of the HOIs at the Fiber Input
Using the solution of the analytical 7-wave model, in Fig.12 we
plot the maximum PSA signal gain (optimizing the input phases
of the signal and the HOIs) as a function of ∆λPP for different
values of r−2 and r2, where r−2 and r2 are the ratios of powers
of the HOIs to the power of the signal at the input of the fiber.
These ratios r2 and r−2 are thus expressed as :

r−2 =
|B−2(0)|2
|B0(0)|2

, r2 =
|B2(0)|2
|B0(0)|2

. (37)
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Fig. 12. Maximum PSA signal gain versus ∆λPP using the
analytical 7-wave model for different values of r−2 and r2.
Input signal power P0(0) = −20 dBm; signal wavelength
λ0 = 1557.5 nm. Other parameters: same as in Fig. 4.

We see from Fig. 12 that injecting the HOIs at the input of
the fiber leads to a strong increase of the maximum signal gain
(about 5 dB increase with γPL = 0.5, and r−2 = r2 = 1) com-
pared to the situation when HOIs are not injected (r−2 = r2 = 0).
Also, injection of equal input powers for the HOIs is a more
effective strategy for the signal gain enhancement, compared
to unequal input HOI powers as can be seen by comparing the
green dotted curve (r−2 = 1 and r2 = 0) with the blue dashed
curve (r−2 = 0.5 and r2 = 0.5) in Fig. 12. This is also reminiscent
of the fact that a PSA redistributes the energy from the pumps in
a way to equalize the signal and the idler(s) [46]. Therefore when
the HOIs are unequal, a large part of the pump power is invested
in amplifying the weaker HOI. Such an effect is probably also
connected to the initial stage of the Fermi-Pasta-Ulam recurrence
phenomenon in a coupled oscillator system, where the energy
of one oscillating mode gets redistributed to other modes with
lower initial energies [47]. These results are also interesting in
the context of high-gain fiber PSA design. However, locking
the phases of the five waves (two pumps, signal and two HOIs)
might be a challenge in practice.

5. DISCUSSION AND CONCLUSION

In this section we first outline an important limitation of the de-
veloped analytical 7-wave model with respect to the calculation
of linear phase mismatch coefficients. Then we summarize the
important results of this investigation.

A. Validity of Second Order Approximation in Linear Phase
Mismatch Coefficient Calculation

In Subsection 2.A, the linear phase mismatch coefficients were
calculated considering a second order approximation, which
can be a source of error. In the literature, Liu considered a fifth
order approach to calculate the coefficients, for ∆λPP < 50 nm
[48]. However Marhic et al. in Ref. [49] considered a fourth
order approach for a similar situation. Therefore it is important
to investigate the validity of this second order approximation
to calculate the ∆βmnpj’s. To this aim, we plot in Fig. 13 the
evolution of ∆β1−100L (blue lines), ∆β1−2−10L (green lines), and
∆β−1−1−20L (red lines), considering second (thick lines) and
fourth (thin lines) order Taylor series expansion of β(ω), as a

function of ∆λPP. The parameters are those of our standard
HNLF of length L = 500 m.
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Fig. 13. Evolution of ∆βmnpjL versus ∆λPP for three processes
and comparing second-order (thick lines) and fourth-order
(thin lines) Taylor series expansion of β(ω). L = 500 m. Other
parameters: same as in Fig. 4.

Figure 13 shows that for small values of ∆λPP (< 10 nm),
the error accumulated by performing a second order expan-
sion is not significant (< π/4). However, for ∆β1−2−10L and
∆β−1−1−20L the error increases rapidly with ∆λPP. Since near
∆λPP = 10 nm, the only dominant process is p−1−1−20 (see
Fig. 8 (b)), we need not consider the error from p1−2−10. We also
note here that the deviation between the second and fourth order
approaches is 0 for ∆β1−100L, which corresponds to the FWM
process considered in the analytical 3-wave model, due to the
choice of ωc = ω0.

Figure 13 also shows that the 4th order calculation predicts
that the processes p−1−1−20 and p1−2−10 are supposed to be-
come perfectly phase matched around ∆λPP = 20 nm and
∆λPP = 40 nm, respectively. This implies that the PSA dynamics
in these regions will not be correctly captured by the developed
analytical 7-wave model. This explains the large dip in the gain
spectrum around ∆λPP = 40 nm seen in Figs. 10 (c) and (d) (blue
solid line). It is due to occurrence of the FWM process p1−210,
which converts a signal and a pump 1 photon into a HOI1 and
a pump 2 photon [35]. Also, the hump in the gain spectrum
around ∆λPP = 20 nm in Fig. 10 (d) (blue solid line) is due to the
efficiency of p−1−1−20, which pumps photons into the signal.

B. Conclusion
In conclusion, we derived a full analytical solution for the evo-
lution of the slowly varying complex amplitudes of seven CW
waves with two strong pumps propagating through a nonlinear
fiber. This analytical 7-wave model provides a more accurate
description of the dynamics of a degenerate dual-pump PSA
compared to the analytical 3-wave model. In particular, the cou-
pling of the signal with the generated HOIs plays an important
role in the signal amplification process. As opposed to the analyti-
cal 3-wave model, that explains the signal modulation instability
in terms of hyperbolic solutions, the analytical 7-wave model
provides an interpretation of the signal instability in terms of
the parametric gain coefficient that gets enhanced by the cou-
pling with the HOIs. We also found that such a coupling can
be utilized to enhance the PSA gain by launching the HOIs at
the fiber input with optimized phases. Such a knowledge is
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relevant for designing high-gain PSAs. The developed analytical
model agreed satisfactorily with its numerical counterpart for
∆λPP < 15 nm and γPL < 0.6 rads, while working in the anoma-
lous dispersion region. Apart from the strong pump approxima-
tion, the consideration of only the second order dispersion in
the calculations is an important limitation of this model.

The results derived here provide key insights into the physics
of propagation of multiple CW waves through a nonlinear opti-
cal medium. They also offer the possibility of analyzing FWM
based all-optical regenerative [50, 51] and phase sensitive fre-
quency converter [45] systems.

We envisage that this approach can be generalized to the case
of an arbitrary number of CW waves. Such attempts might face
the challenge of tackling pump depletion effects. Nevertheless,
the approach of Chen and Snyder to incorporate pump deple-
tion [20], together with the decoupling of the HOPs from the
signal and HOIs in our model, might provide some insights into
developing such generalized models.

Another perspective of this work deals with quantum noise.
Indeed, we have recently shown that, using a semi-classical
model, the quantum noise of a dual-pump degenerate PSA is
mainly influenced by the HOIs rather than the HOPs [39]. Thus
the derived expressions of the signal and HOI evolution can
be utilized for calculations of quantum noise using a full quan-
tum approach. Such investigations would reveal the role of
dispersion of the fiber in influencing the quantum noise of a
PSA.

Finally, we believe that this paper will stimulate further ex-
perimental work towards investigation of PSA systems with
superior gain properties and opens new avenues for further
research in nonlinear optics.

6. APPENDIX

This appendix provides an argument for the choice of vari-
able transformation as given in Eq. (17). This transformation
is primarily motivated by the perspective to get rid of the z-
dependence of the coefficient matrix M(z) in Eq. (15).

Let us consider a system of non-autonomous homogeneous
coupled system of ODEs as :

dxk
dz

=
n

∑
j=1

akje
ibkjzxj, (38)

where k ∈ {1, 2...n}. We start from the ansatz :

xk = eickzyk. (39)

Plugging it back into Eq. (38), we have :

ickeickzyk + eickz dyk
dz

=
n

∑
j=1

akje
i(bkj+cj)zyj. (40)

For the exponential terms to cancel out, we must satisfy :

ck − cj = bkj, (41)

for all k, j ∈ {1, 2...n}. We consider the coefficient matrix M(z)
in Eq. (15) given by :

M(z) = iγP

 4 2ei(6γP+2C(1−s2))z

−2e−i(6γP+2C(1−s2))z −4

 . (42)

Hence we get the only nontrivial equation for the ck’s as :

c1 − c2 = 6γP + 2C(1− s2). (43)

This equation has an infinite number of solutions. Without loss
of generality, we choose c2 = −c1. Thus we get :

c1 = 3γP + C(1− s2). (44)

Therefore the coordinate transformation to eliminate the z-
dependence of the coefficient matrix in Eq. (15), is given by:

As = ei(3γP+C(1−s2))zBs, A−s
∗ = e−i(3γP+C(1−s2))zB−s

∗. (45)
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