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Association of variants in HTRA1 and NOTCH3
with MRI-defined extremes of cerebral small
vessel disease in older subjects

Aniket Mishra,1 Ganesh Chauhan,1,2 Marie-Helene Violleau,1 Dina Vojinovic,3 Xueqiu Jian,4

Joshua C. Bis,5 Shuo Li,6 Yasaman Saba,7 Benjamin Grenier-Boley,8,9,10 Qiong Yang,6,11

Traci M. Bartz,12 Edith Hofer,13,14 Aı̈cha Soumaré,1 Fen Peng,4 Marie-Gabrielle Duperron,1

Mario Foglio,15 Thomas H. Mosley,16,17 Reinhold Schmidt,13 Bruce M. Psaty,18,19,20,21

Lenore J. Launer,22 Eric Boerwinkle,4 Yicheng Zhu,23 Bernard Mazoyer,24 Mark Lathrop,15

Celine Bellenguez,8,9,10 Cornelia M. Van Duijn,3,25 M. Arfan Ikram,3,26 Helena Schmidt,7

W. T. Longstreth Jr.,27 Myriam Fornage,4 Sudha Seshadri,28,29 Anne Joutel,30

Christophe Tzourio1,31 and Stephanie Debette1,29,32

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a

population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in

the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based asso-

ciation tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole

exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted

our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1,

COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single

variant association testing (Pdiscovery = 8.21 � 10�5, Preplication = 5.25 � 10�3, Pcombined = 4.72 � 10�5) and of NOTCH3 using gene-

based tests (Pdiscovery = 1.61 � 10�2, Preplication = 3.99 � 10�2, Pcombined = 5.31 � 10�3). Follow-up analysis identified significant

association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage

disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at

known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept

study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can

facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low

frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease

and those contributing to the common, multifactorial form of the disease.
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Introduction
Cerebral small vessel disease (SVD) encompasses a group of

pathological processes affecting small arteries, arterioles, capil-

laries and small veins in the brain. It is associated with cog-

nitive impairment, mood disorders, dysfunction of gait and

balance, and with increased risk of stroke, dementia and

death (Pantoni, 2010). Specific mechanistic treatments for

SVD are yet to be identified. Identifying genes underlying

SVD may provide important insight on pathways driving

this disease and accelerate the discovery of novel drug targets.

SVD is driven by a complex mix of environmental and genetic

risk factors (Longstreth, 2005) and both familial and sporadic

conditions of the disease have been reported. Mutations in the

NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1 genes

are known to cause rare familial forms of SVD (Joutel et al.,

1997; Richards et al., 2007; Vahedi et al., 2007; Hara et al.,

2009; Gunda et al., 2014) but endeavours to detect genetic

risk factors for the common multifactorial form of SVD are

still at a preliminary stage. Studies on multiple complex dis-

orders including a few reports on SVD have suggested that

genes harbouring mutations leading to the Mendelian form of

the disease may also harbour polymorphisms leading to the

sporadic condition (Schmidt et al., 2011; Rannikmae et al.,

2015; Stitziel et al., 2015; Fuchsberger et al., 2016).

MRI markers of vascular brain injury, including burden of

white matter hyperintensities (WMH) and small subcortical

infarcts, namely lacunes of presumed vascular origin (here-

after referred to as lacunes), have been shown to reflect pri-

marily SVD and are commonly used for its diagnosis and

assessment of severity (Wardlaw et al., 2013). These MRI

markers are heritable with reported heritability estimates

ranging between 49% and 80% for WMH burden, and

�29% for lacunes (Turner et al., 2004; DeStefano et al.,
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2009; Sachdev et al., 2013). To date, genome-wide associ-

ation studies (GWAS) reported five WMH burden risk loci

that explain only a small proportion of its heritable compo-

nent (Fornage et al., 2011; Verhaaren et al., 2015), whereas

no robust genetic association with lacunes has been

described. The extreme-phenotype design was shown to be

a more powerful strategy to identify rare risk alleles under-

lying complex traits (Peloso et al., 2016). Moreover, using a

composite extreme phenotype derived from two key MRI

markers of SVD may increase the phenotype specificity

and reduce misclassification bias that may arise when study-

ing individual MRI-markers, as a ‘control’ without lacunes

may for instance well have extensive WMH burden reflect-

ing underlying SVD (Traylor et al., 2015).

Whole exome sequencing (WES) allows a comprehensive

survey of both rare and common variants in coding regions

and has been helpful in deciphering the genetic architecture

of complex diseases (Cruchaga et al., 2014; Lange et al.,

2014). Here, we report the first WES study on MRI mar-

kers of SVD using a composite extreme phenotype study

design, and focus our exploration on genes harbouring mu-

tations causing Mendelian forms of SVD.

Materials and methods

Study population

The Three City Dijon (3C-Dijon) study is a population-based
cohort of 4931 French non-institutionalized individuals aged
65 years and older (3C Study Group, 2003). A total of 2763
individuals aged 480 years were invited to undergo a brain
MRI between June 1999 and September 2000. Participation
rate was high (83%, n = 2285) but because of financial restric-
tions, only 1924 MRI scans were performed. Among the 1924
participants with MRI data, 1683 had also undergone
genome-wide genotyping. After exclusion of individuals with
brain tumours (n = 8), stroke (n = 71), or dementia (n = 7) at
baseline, the remaining sample comprised 1497 participants
with automated WMH volume measurement.

The Ethical Committee of the University Hospital of
Kremlin-Bicêtre approved the study protocol. All participants
signed an informed consent to participate in the study.

Brain MRI

MRI acquisition was performed with a 1.5 T Magnetom scan-
ner (Siemens,) using T1-weighted, T2-weighted, and proton
density-weighted sequences, according to the same protocol
at both baseline and follow-up (Kaffashian et al., 2014).
Fully automated image processing software was developed to
detect and localize WMH and to measure WMH volume
(Maillard et al., 2008). Infarcts were rated on T1-, T2- and
proton density-weighted images by the same examiner
(Y.-C.Z.), using a standardized assessment grid, to visually
review all brain scans. Lacunes were defined as infarcts 3–
15 mm in diameter having the same signal characteristics as
cerebrospinal fluid on all sequences, located in basal ganglia,
brainstem or cerebral white matter. Characteristics of lesions

were visualized simultaneously in axial, coronal, and sagittal
planes to discriminate them from dilated perivascular spaces.
Lesions with a typical vascular shape and following the
orientation of perforating vessels were regarded as dilated
perivascular spaces (Zhu et al., 2010). The nomenclature of
MRI markers of SVD in our study is consistent with the re-
cently proposed neuroimaging standards for research into SVD
(STRIVE) (Wardlaw et al., 2013; Kaffashian et al., 2014).

Definition of extreme cerebral small
vessel disease

The composite extreme phenotype was defined based on the
distribution of WMH volume and presence or absence of
lacunes in the 3C-Dijon study using 1497 participants from
the 3C-Dijon study who had both MRI scan and GWAS
data. The objective was to define a group with extensive SVD
severity (individuals in the upper quartile of WMH distribution
and having one or more brain infarcts) and a group with min-
imal SVD severity (lower quartile of WMH distribution and
without any brain infarcts). We log-transformed WMH
volume (natural log of [WMH volume in cm3 + 1]) and ex-
tracted residuals adjusted for age, gender, and white matter
mask volume, hereafter referred to as WMH-burden residuals.
The first and fourth quartiles of these residuals were taken to
represent small and large WMH volume, respectively. The 261
participants with extensive SVD were defined from 374 partici-
pants within the fourth quartile of WMH-burden residuals dis-
tribution by including all participants who also had at least one
lacune (n = 58) and by selecting additionally 203 participants
with the highest WMH-burden residuals within the fourth quar-
tile. Similarly, the 253 participants with minimal SVD were
defined from 374 participants within the first quartile of
WMH-burden residuals distribution by the absence of MRI-
defined brain infarcts and having WMH burden residuals at
the bottom tail of the WMH burden residual distribution. The
design used for defining extreme SVD is summarized in Fig. 1.

Covariates and clinical events

At baseline, socio-demographics, medical history, and drug use
data were collected at home during an interview by trained
psychologists. Centralized measurements of fasting plasma glu-
cose, serum total cholesterol, high density lipoprotein choles-
terol, and triglycerides were performed using enzymatic
methods by the Biochemistry Laboratory of the University
Hospital of Dijon. Low density lipoprotein (LDL) cholesterol
was calculated with the Friedewald formula (Friedewald et al.,
1972). Body mass index (BMI) was defined as the ratio of
weight (kg) to the square of height (m). Smoking status was
categorized as never, former, and current. Diabetes mellitus
was defined as intake of antidiabetic drugs or fasting blood
glucose57 mmol/l. Hypertension was defined by systolic
blood pressure (BP) 5140 mm Hg, or diastolic BP 590 mm
Hg, or antihypertensive drug intake. History of cardiovascular
disease was defined by history of myocardial infarction, bypass
cardiac surgery, angioplasty, or peripheral vascular disease.
Hypercholesterolaemia was defined as fasting total cholesterol
56.2 mmol/l or use of any lipid-lowering drug. Information
concerning stroke occurrence over time was collected at each
follow-up. Incident stroke was defined as a new focal
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neurological deficit of sudden or rapid onset, of presumed vas-

cular origin, that persisted for 424 h, or leading to death. An

expert panel of neurologists adjudicated diagnosis of stroke
based on criteria of the WHO (1988). Dementia status was

evaluated prospectively by an expert panel using a three-step

procedure (Schilling et al., 2017): (i) participants underwent

neuropsychological evaluations carried out by trained psych-

ologists; (ii) an examination by a neurologist for those who
screened positive at step 1 based on the MMSE and the Isaacs’

Set Test; and (iii) an independent committee of neurologists

Figure 2 NOTCH3 protein modifying rare and low frequency variants in the 3C-Dijon extreme SVD cohort.

Figure 1 Schematic representation of the extreme SVD design in the 3C-Dijon study.
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and geriatricians reviewed all suspected prevalent and incident
dementia cases to reach consensus on the diagnosis and aeti-
ology according to the DSM-IV criteria, using all available
information (e.g. cognitive functioning, severity of cognitive
disorders, hospitalization records when possible, computed
tomography scans, MRI, functional assessments).

Exome sequencing and quality
control

The DNA samples of 514 participants (261 with extensive SVD
and 253 with minimal SVD) with the extremes of SVD severity
underwent high depth WES. The majority of samples (n = 508)
were sequenced at the McGill Genome Center, Montreal,
Canada, and remaining six participants were sequenced at the
Centre National de Génotypage, Paris, France. The Agilent
SureSelect Human All Exome V5 exome capture kit was used
for exome capture except for five samples for which the Agilent
SureSelect Human All Exome V4 or V5 + UTR exome capture
kits were used. The Illumina HiSeq2000 instrument was used to
perform paired-end sequencing (2 � 100 bp). The reads were
aligned to the GRCh37 human reference genome sequence
using the software Burrows-Wheeler Aligner and duplicate
reads were tagged with Picard MarkDuplicates (Li and Durbin,
2009). The Genome Analysis Toolkit (GATK) software was used
to perform realignment around InDels and base quality score
recalibration (BQSR) (McKenna et al., 2010). Single-sample call-
ing was performed using HaplotypeCaller from GATK 3.3 in
GVCF mode with base-pair resolution, except 15 samples,
whose calling was generated with default band definition as
part of the Alzheimer Disease Exome Sequencing-France
(ADSP-FR) project (Bellenguez et al., 2017). Calling was done
on the target intervals of each exome kit using a padding of
100 bp. Multi-sample calling was performed with the
GenotypeGVCFs tool implemented in GATK 3.4, together with
other samples from the ADES-FR project. Our whole exome
sequence data covered 17 649 RefSeq genes with an average
depth of coverage of �80� (Supplementary Fig. 1). We filtered
out samples with missingness 420%, and individuals with 46
standard deviations (SD) for number of singletons, heterozygote
to homozygote ratio, mean depth, and transition to transversion
(Ti/Tv) ratio. This protocol resulted in filtering out two partici-
pants with extensive SVD because of high number of singletons
and low mean depth coverage. We filtered out genotypes with
Phred-scaled confidence for genotype call 520 or average depth
of coverage 58� . In our study, we included only biallelic vari-
ants [(single nucleotide polymorphism (SNPs) and insertions/de-
letions (Indels)]. Additionally, we filtered out variants with mean
depth higher than 500-fold, missingness 420%, and Hardy
Weinberg equilibrium P-value5 5 � 10�6. Overall, we achieved
high quality WES data for 259 extensive SVD and 253 minimal
SVD participants (n = 512).

Description of the study sample

Baseline characteristics of participants with extensive SVD and
participants with minimal SVD were compared using analysis
of covariance for continuous variables and chi-square test for
categorical variables. After verifying the proportional hazard
assumption through Schoenfeld residuals, we examined the as-
sociation of extreme SVD and 12-year incident dementia using

Cox proportional regression with age as the time scale, ad-
justed for sex and education status. For incident stroke, we
used the Cox model with age as a timescale and adjusted for
sex, BMI, smoking status, diabetes mellitus, hypertension, his-
tory of cardiovascular disease, and hypercholesterolaemia.

Genetic association tests

We performed single-variant and gene-based tests using the R
package SeqMeta (https://cran.r-project.org/web/packages/
seqMeta/index.html). The primary association models were ad-
justed for age, sex and the first four principal components of
population stratification. In secondary analyses, we addition-
ally adjusted for hypertension status.

Single variant association tests

We performed single variant association tests considering
common and low frequency variants [minor allele frequency
(MAF) 40.01] located within 100 kb of the 50 and 30 UTR of
five candidate genes: NOTCH3, HTRA1, COL4A1, COL4A2
and TREX1. The 100 kb arbitrary boundary was considered
to capture cis regulatory variants that might be localized
within neighbouring genes. We used a permutation approach
to derive the significance threshold correcting for multiple as-
sociation tests for 389 common and low frequency variants
that might be in linkage disequilibrium (Supplementary mater-
ial, part A). Additionally we performed the top-SNP associ-
ation tests implemented in the VEGAS2 software (Mishra
and Macgregor, 2015) to account for number of variants
and linkage disequilibrium structure in the locus.

Gene-based analysis

To increase power for association testing of rare and low fre-
quency variants (MAF5 0.05), we also performed gene-based
association tests focusing on five candidate genes: NOTCH3,
HTRA1, COL4A1, COL4A2 and TREX1. We used the vari-
ant effect predictor (v90) software (McLaren et al., 2016) to
annotate functional consequences of genetic variants localized
within five candidate genes considering the default ‘GRCh37’
ensemble annotation database. We used ‘filter_vep’ module to
extract variants with the following functional consequences:
splice acceptor variant, splice donor variant, start lost, stop
lost, stop gained, frameshift variant, inframe insertion, inframe
deletion, and missense variant, to perform gene-based associ-
ation tests on protein-modifying variants only. We used the
SKAT-O approach (Lee et al., 2012) for gene-based analyses
of protein-modifying rare and low frequency variants. We con-
sidered genes with a cumulative MAF of rare or low frequency
protein-modifying variants higher than 1%. We performed
power calculations for SKAT-O test using the R package
SKAT (Wu et al., 2011).

Replication of significant associations

We sought replication of non-exonic significant findings in
genome-wide genotyped subsets imputed to the Haplotype
Reference Consortium (HRC) panel and of exonic variants
in WES subsets of the Atherosclerosis Risk in Communities
(ARIC) study, the Cardiovascular Health study (CHS), the
Framingham Heart study (FHS) and the Rotterdam study, all
participating in the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium. The ARIC
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study and the CHS analysed European and African ancestry
samples separately; the FHS and the Rotterdam study analysed
only European ancestry samples. The MRI measurements of
WMH burden and lacunes in these cohorts are described in
the Supplementary material, part B, which also provides details
on quality control of genotyped and WES datasets of these
studies. The extreme SVD phenotype in the replication cohorts
was defined using the same strategy as described above for the
3C-Dijon cohort. We defined one-third of the total sample
with phenotype and genotype information as having ex-
treme-SVD (extensive SVD for one-sixth of the sample, with
extensive WMH burden with or without lacunes, and minimal
SVD for another sixth of the sample with minimal WMH
burden and no brain infarcts). In the FHS and Rotterdam
study, WMH burden residuals were computed using auto-
mated quantitative WMH volume measures adjusting for
age, gender, and intracranial volume, whereas in the ARIC
study and CHS WMH burden residuals were derived from
visual semi-quantitative WMH burden measures adjusting for
age and gender, as intracranial volume was accounted for in
WMH burden assessment. In the FHS, WMH burden residuals
were additionally adjusted for family structure. We separately
defined extreme SVD in genotyped and WES subsets of indi-
vidual studies (see Supplementary Tables 2 and 3, respectively,
for population characteristics of extreme SVD cohorts of gen-
otyped and WES subsets of the ARIC, CHS, FHS and
Rotterdam studies). Of those participants with MRI SVD
phenotype data, the total sample size with genome-wide geno-
types was 9924 for European ancestry participants, of whom
3308 had extreme SVD (n = 1654 with extensive SVD and
n = 1654 with minimal SVD) and 1170 for African ancestry
participants, of whom 390 had extreme SVD (n = 195 with
extensive SVD and n = 195 with minimal SVD). The total
sample size with WES was 2877 for European ancestry par-
ticipants, of whom 956 had extreme SVD (n = 480 with exten-
sive SVD and n = 477 with minimal SVD) and 726 for African
ancestry participants, of whom 242 had extreme SVD (n = 121
with extensive SVD and n = 121 with minimal SVD).

In the ARIC, CHS and Rotterdam studies, the single variant
association tests were performed with an additive model in R
using logistic regression, whereas in the FHS, a generalized
estimation equation was used to account for family structure.
Analyses were adjusted for age, sex and the first four principal
components of population stratification. We used METAL
software (Willer et al., 2010) to perform an inverse variance
weighted meta-analysis of association statistics across replica-
tion cohorts, and with the discovery study.

We used seqMeta software to perform the SKAT-O gene-
based analysis across all replication cohorts. We then meta-
analysed the SKAT-O P-values from discovery and replication
cohorts using Stouffer’s method for sample size weighted com-
bination of p-values.

Association of extreme small vessel
disease risk variants with related
phenotypes

We also tested for association of extreme SVD associated
common variants with stroke and continuous measures of
WMH, in previously reported GWASs of small vessel ischae-
mic stroke [NINDS Stroke Genetics Network (SiGN) and

International Stroke Genetics Consortium (ISGC), 2016]
[defined using the Causative Classification of Stroke (CCS)
system] by the National Institute of Neurological Disorders
and Stroke and the Stroke Genetics Network (NINDS-SiGN)
and of WMH burden (Verhaaren et al., 2015). The GWAS
summary statistics on small vessel ischaemic stroke by the
NINDS-SiGN consortium were accessed using the
Cerebrovascular Disease Knowledge Portal (Crawford et al.,
2018).

We additionally performed SKAT-O gene-based analysis of
protein-modifying rare and low frequency variants observed
within a NOTCH3 targeted Sanger sequenced subsample of
the Austrian Stroke Prevention Study (ASPS) (n = 277) cohort.
Of these 24 participants were filtered out due to missing in-
formation on principal components of population stratifica-
tion, leaving 171 participants with either coalescent white
matter lesions or lacunes and 82 randomly selected partici-
pants with no focal changes on magnetic resonance images
(Schmidt et al., 2011) for the follow-up analysis. The SKAT-
O gene-based analysis was adjusted for age, sex and the first
four principal components of population stratification.

In silico functional exploration of
non-exonic variants

We used the HaploReg (Ward and Kellis, 2012) (version 4.1)
software to perform functional annotation of non-exonic vari-
ants that are in linkage disequilibrium (r240.6 in the 1000
Genomes European panel) with the lead SNP associated with
extreme SVD. We also manually explored expression quanti-
tative trait locus (eQTL) databases: the GTeX database (Mele
et al., 2015) and the blood eQTL resource (Westra et al.,
2013).

NOTCH3 glycosylation site
prediction

NOTCH3 functions are regulated by different types of O-gly-
cosylation of the EGF repeat (EGFr) domain including O-
fucose (Moloney et al., 2000), O-glucose (Moloney et al.,
2000), O-GlcNAc (N-acetylglucosamine) (Matsuura et al.,
2008), O-xylose (Takeuchi et al., 2011) and mucin-type O-
GalNAc (Boskovski et al., 2013). O-fucosylation is mediated
by proteins O-fucosyltransferase 1 and Fringe. Cerebral auto-
somal dominant arteriopathy with subcortical infarcts and leu-
koencephalopathy (CADASIL)-causing mutations were
reported to affect carbohydrate chain elongation of
NOTCH3 by Fringe proteins (Arboleda-Velasquez et al.,
2005). We investigated whether rare and low frequency mis-
sense variants in the NOTCH3 EGFr domain observed in the
3C-Dijon cohort localized at these computationally predicted
mucin-type O-GalNAc glycosylation sites, using the publicly
available software for mucin-type O-GalNAc sites prediction
(Steentoft et al., 2013).

Survey of pathogenic variants

We manually surveyed the ClinVar database (Landrum et al.,
2016) (accessed on 27 February 2017, Supplementary Table 7)
to identify participants in the 3C-Dijon cohort carrying a rare
allele at SVD causing pathogenic or likely pathogenic
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mutations in the following genes: NOTCH3 (Joutel et al.,
1997) [causing CADASIL (OMIM:125310)], HTRA1 (Hara
et al., 2009) [causing cerebral autosomal recessive arteriopathy
with subcortical infarcts and leukoencephalopathy (CARASIL,
OMIM:600142)], COL4A1 (Vahedi et al., 2007) [causing
COL4A1-related familial vascular leukoencephalopathy
(OMIM:607595); and pontine autosomal dominant microan-
giopathy with leukoencephalopathy (PADMAL), porence-
phaly-1 (OMIM:175780)], COL4A2 (Gunda et al., 2014)
[causing porencephaly-2 (OMIM: 614483)], and TREX1
(Richards et al., 2007) [causing retinal vasculopathy and cere-
bral leukodystrophy (RVCL, OMIM:192315)].

In addition to the pathogenic and likely pathogenic variants
classified in the ClinVar database, we systematically searched
for NOTCH3 EGFr domain cysteine-modifying missense vari-
ants, the typical type of mutation causing CADASIL (Rutten
et al., 2016b), and for variants recently reported to cause
HTRA1 autosomal dominant forms of SVD (Verdura et al.,
2015).

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request.

Results
The approach for defining the composite extreme pheno-

type of SVD (extreme SVD) is schematically presented in

Fig. 1. From a total sample of 1497 participants with MRI

and genome-wide genotype information within the 3C-

Dijon study, 514 participants (261 with extensive SVD

and 253 with minimal SVD) were identified.

Characteristics of 3C-Dijon participants with extreme

SVD are described in Table 1. Participants with extensive

and minimal SVD had similar age and gender distributions.

Participants with extensive SVD had more vascular risk

factors than those with minimal SVD, the most significant

association being observed for hypertension. Compared to

participants with minimal SVD, those with extensive SVD

were more often current smokers, and had more frequently

a history of cardiovascular disease, as well as higher fasting

plasma glucose, triglycerides, and BMI, but lower LDL-

cholesterol (Table 1). Over the mean follow-up period of

9.2 � 2.7 years, 40 participants were diagnosed with de-

mentia, and 20 with stroke. Compared to participants

with minimal SVD, those with extensive SVD showed a

significantly increased risk of developing incident dementia

[hazard ratio (HR) (95% confidence interval, CI) = 1.94

(1.01–3.73), P = 0.05] and a trend towards an increased

risk of incident stroke [HR (95%CI) = 2.54 (0.95–6.74),

P = 0.06]. Characteristics of replication studies with ex-

treme-SVD are described in Supplementary Tables 1 and 2.

Single variant association analyses identified a significant as-

sociation of an intronic variant in HTRA1 (rs2293871-T, fre-

quency = 0.19) with extreme SVD (Table 2). This association

was significant after correcting for multiple testing

Table 1 Baseline characteristics of 3C-Dijon participants with extreme cerebral SVD

Characteristics Extensive SVD Minimal SVD P-value*

Participants, n 259 253 NA

WMH volume, ml, mean � SD 13.18 � 7.07 2.05 � 0.63 50.0001

Presence of lacunes, n (%) 58 (22.4) 0 NA

Age at MRI, years, mean � SD 73.5 � 4.01 73.19 � 4.45 0.4

Female, n (%) 150 (58.1) 155 (61) 0.51

Hypertension, n (%)a 223 (86.4) 184 (72.4) 50.0001

Systolic BP, mmHg, mean � SD 152.05 � 22.51 147.07 � 21.85 0.011

Antihypertensive drug intake, n (%) 146 (56.6) 93 (36.6) 50.0001

Fasting plasma glucose, mmol/l, mean � SD 5.18 � 1.51 4.95 � 0.67 0.026

Diabetes mellitus, n (%)b 25 (9.7) 14 (5.5) 0.07

HDL cholesterol, mmol/l, mean � SD 1.64 � 0.39 1.68 � 0.41 0.23

LDL cholesterol, mmol/l, mean � SD 3.53 � 0.89 3.68 � 0.84 0.046

TG, mmol/l, mean � SD 1.26 � 0.56 1.15 � 0.52 0.031

Lipid lowering drug, n (%) 96 (37.2) 71 (28) 0.026

BMI, kg/m2, mean � SD 25.84 � 3.92 24.86 � 3.71 0.004

Current smoker, n (%) 22 (8.5) 8 (3.1) 0.012

History of CVD at MRI, n (%)c 15 (5.8) 5 (2) 0.025

Hypercholesterolaemia, n (%)d 142 (55) 140 (55.3) 0.95

*Significant differences across SVD status obtained from analysis of covariance (continuous variables) or chi-square tests (categorical variables). Models with WMH volume as the

dependent variable are adjusted for intracranial volume.
aSystolic blood pressure 5140 mmHg, or diastolic blood pressure 590 mmHg, or use of antihypertensive drugs.
bFasting blood glucose 57 mmol/l or antidiabetic drug intake.
cHistory of myocardial infarction, bypass cardiac surgery, angioplasty, or peripheral artery disease.
dHypercholesterolaemia was defined as fasting total cholesterol 56.2 mmol/l or use of any lipid-lowering drug (fibrates, statins or bile acid sequestrant).

BMI = body mass index; BP = blood pressure; CVD = cardiovascular diseases; HDL = high-density lipoprotein; LDL = low-density lipoprotein; TG = triglycerides.
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(permutation derived 95% empirical significance threshold

P5 2.89 � 10�4, Supplementary material, part A) and re-

mained significant after additionally adjusting for hypertension

status (Table 2). Moreover the top-SNP locus-based test imple-

mented in the VEGAS2 software (Mishra and Macgregor,

2015) confirmed that the association of rs2293871 with ex-

treme SVD is independent of the regional properties of the

HTRA1 locus: the linkage disequilibrium structure or number

of variants in the region (Table 2). The effect estimates of

rs2293871-T appeared larger when comparing the 58 extensive

SVD participants with lacunes to minimal SVD participants

[OR (95%CI) = 3.04 (1.67–5.50), P = 2.56 � 10�4] than

when comparing the 203 participants with extensive SVD with-

out lacunes to minimal SVD participants [OR (95%CI) = 1.80

(1.27–2.56), P = 9.60 � 10�4]. We replicated the association

of rs2293871 in independent cohorts of European ancestry (n

extreme SVD = 3308) using genome-wide genotype data for

this common intronic variant (Table 2). The association of

rs2293871 was not significant in the only African ancestry

sample (rs2293871-T frequency = 0.14, Supplementary

Table 3). The inverse variance weighted meta-analysis of dis-

covery and replication cohorts of European ancestry showed an

association of rs2293871-T with extensive SVD at an OR

(95%CI) of 1.29 (1.14–1.46), P = 4.72 � 10�5 (Table 2). The

same allele at rs2293871 was also associated with increased

risk of small vessel ischaemic stroke defined using the CCS

system in 16 851 cases and 31 259 controls in the NINDS-

SiGN study [NINDS Stroke Genetics Network (SiGN) and

International Stroke Genetics Consortium (ISGC), 2016]: OR

(95%CI) = 1.12 (1.03–1.22), P = 6.14 � 10�3 for causative

CCS and OR (95%CI) = 1.12 (1.04–1.22), P = 4.68 � 10�3

for phenotypic CCS. The rs2293871 variant showed nominal

association with continuous WMH burden (n = 17 936, P-

value = 0.03) in a previously reported GWAS meta-analysis

(Verhaaren et al., 2015). Functional explorations using

HaploReg (Ward and Kellis, 2012) suggest that rs2293871

lies in the H3K9ac promoter and H3K4me1, H3K4me3 and

H3K27ac enhancer histone marks (Supplementary Table 4).

Two proxies of rs2293871 (rs876790 and rs2736928,

r2 = 0.75 with rs2293871) are eQTL for HTRA1 in blood

(Westra et al., 2013), with C alleles at rs876790 and

rs2736928 (in phase with rs2293871-T) showing significant

association with lower HTRA1 transcript levels (false discovery

rate-corrected P-value = 0.03 and 0.04, respectively).

We analysed the association of protein-modifying (splice

acceptor variant, splice donor variant, start lost, stop lost,

stop gained, frameshift variant, inframe insertion, inframe

deletion, and missense variants only) rare and low fre-

quency variants (MAF50.05) in candidate genes using

the SKAT-O approach (Lee et al., 2012). Only three

genes NOTCH3, COL4A1, and COL4A2, satisfied the

criteria of cumulative MAF of protein-modifying rare or

low frequency variants of 41% (Supplementary Table 5),

thus qualifying for gene-based analyses. The SKAT-O gene-

based analysis identified a significant association of protein-

modifying rare and low frequency variants in the

NOTCH3 gene with extreme SVD (SKAT-OT
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P = 1.61 � 10�2, n extreme SVD = 512, Table 3), which

remain associated after additionally adjusting for hyperten-

sion status (SKAT-O P = 1.58 � 10�2, Table 3). We suc-

cessfully replicated the gene-based association of protein-

modifying rare and low-frequency variants in NOTCH3

with extreme SVD in four independent cohorts of

European ancestry (n extreme SVD = 956): SKAT-O

P = 3.99 � 10�2 for the replication set and SKAT-O

P = 5.31 � 10�3 for the combined discovery and replication

samples (Table 3). The NOTCH3 association was not sig-

nificant in the African ancestry sample of 242 extreme-SVD

participants (SKAT-O P = 0.78). Follow-up in a previously

described Sanger sequencing subset of the ASPS (Schmidt

et al., 2011) did not show any significant association in a

cohort of 171 participants with either coalescent white

matter lesions or lacunes compared with 82 randomly se-

lected participants with no focal changes on magnetic res-

onance images (SKAT-O P = 0.53), possibly due to limited

sample size.

Further exploratory protein-domain specific SKAT-O

analyses showed significant association of extreme SVD

with the EGFr domain determining region of the

NOTCH3 gene, which is known to preferentially harbour

mutations causing CADASIL (SKAT-O P = 2.14 � 10�2 for

3C-Dijon, SKAT-O P = 3.30 � 10�2 for the replication

samples, and SKAT-O P = 4.98 � 10�3 for the combined

discovery and replication). We also observed, in the 3C-

Dijon extreme SVD sample, that five of the missense vari-

ants in the EGFr determining region (T328I, S497L, S502F,

T759S, and S931G) were predicted mucin type GalNAc O-

glycosylation sites with predication scores ranging between

0.18 and 0.82 (Supplementary Table 6). The S502F, T759S

and S931G variants were observed exclusively in the 3C-

Dijon extensive-SVD sample (Fig. 2).

Screening of 3C-Dijon extreme SVD participants for rare

alleles at pathogenic or likely pathogenic variants in five

candidate genes harbouring mutations causing

monogenic SVD, identified two such alleles in the

NOTCH3 and HTRA1 genes. One extensive SVD partici-

pant carried a heterozygote genotype at a NOTCH3

EGFr domain cysteine altering variant: NM_000435.2

(NOTCH3):c.C2353T:p.R785C (Fig. 2) (participant level

depth coverage = 33� and Phred scaled genotype qual-

ity = 99, note: Phred score vary from 0 to 99 and 99 rep-

resents the highest Phred scaled confidence for genotype

quality). This variant leads to addition of a seventh cysteine

residue in EGF repeat 20 of the NOTCH3 N-terminus,

typical of CADASIL, and was previously described in

one Italian CADASIL family with an autosomal

dominant inheritance pattern (Mosca et al., 2014).

Another extensive SVD participant carried a heterozygote

genotype at the CARASIL-causing variant: NM_002775.4

(HTRA1):c.1108C4T (p.Arg370Ter), a nonsense variant

resulting in a stop codon at amino acid position 370 (par-

ticipant level depth coverage = 96� and Phred scaled geno-

type quality = 99). Only the homozygous TT genotype at

this variant has been reported to cause CARASIL in theT
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literature, in Asian populations (Hara et al., 2009). This

variant was not included in the list of variants reported

to cause a dominant HTRA1-related SVD phenotype in

Europeans (Verdura et al., 2015). Brain imaging character-

istics of both participants are shown in Fig. 3. Neither of

them had typical imaging features of CADASIL or

CARASIL at baseline, but the participant with a

NOTCH3 EGFr domain cysteine altering genotype de-

veloped WMH in the anterior temporal lobe, a location

typical for CADASIL, on a 4-year follow-up MRI scan.

Both participants were free of stroke and dementia.

We also observed two minimal-SVD participants carrying

a heterozygote genotype at one glycine residue altering mis-

sense variant in COL4A1 [NM_001845.4 (COL4A1):

c.3158G4A (p.Gly1053Asp), participant level depth

coverage = 125� and Phred scaled genotype quality = 99],

and one nonsense (stop gained) variant in COL4A2

[NM_001846.2 (COL4A2) c.3766C4T (p.Arg1256Ter),

participant level depth coverage = 77� and Phred scaled

genotype quality = 99]. Heterozygous glycine residue

changes and nonsense mutations in COL4A1 and

COL4A2 are typically described in SVD families with cere-

bral bleedings, although, to our knowledge, these specific

variants have not been described previously in any SVD

family. All protein-modifying variants observed in 3C-

Dijon participants with extreme-SVD within the five candi-

date genes are displayed in Fig. 2 (NOTCH3) and

Supplementary Fig. 2–5 (HTRA1, COL4A1, COL4A2

and TREX1).

Discussion
We report a novel gene-mapping strategy for SVD in popu-

lation-based cohorts of older person with MRI-defined ex-

tremes of SVD severity. We explored the association with

extreme SVD in the general population of common and

rare variants in five genes known to harbour mutations

causing Mendelian SVD, with a discovery sample of 512

participants and a follow-up sample of 3698 participants

for common variants and n = 1198 for rare and low fre-

quency variants. We report significant association of a

Figure 3 MRI images of participants carrying heterozygote genotypes at CADASIL and CARASIL causing mutations.

(A) Baseline (1) and 4-year follow-up (2) MRI scans of a 65-year old female participant with extensive SVD, in whom a NOTCH3 EGFr domain

cysteine-modifying mutation was found: NM_000435.2 (NOTCH3):c.C2353T:p.R785C. Images show lacunar infarcts and dilated perivascular

spaces in basal ganglia and white matter, and WMH in the periventricular region and deep white matter; on the follow-up MRI scan WMH and

dilated perivascular spaces burden had increased and WMH became visible in the anterior temporal lobes (yellow arrows), a typical location for

CADASIL. This participant remained free of stroke and dementia until the end of her follow-up at age 77. Her MMSE score was 28 at baseline and

26 at 12 years follow-up (secondary school education but no high school). (B) Baseline MRI scan of a 74-year-old female participant with extensive

SVD, in whom a heterozygous CARASIL causing mutation was found: NM_002775.4 (HTRA1):c.1108C4T (p.Arg370Ter). Images show WMH

and lacunes in the pons and extensive WMH in the deep white matter and periventricular region (magenta arrows). This participant was free of

stroke and dementia at baseline but was lost to follow-up. Her baseline MMSE score was 27 (primary school education).
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common intronic variant in the HTRA1 gene with extreme

SVD, with evidence suggesting that the risk allele is low-

ering HTRA1 expression. We also found a significant as-

sociation with extreme SVD of rare and low frequency

NOTCH3 protein-modifying variants using a gene-based

approach. Finally, in 512 participants from the 3C-Dijon

discovery population-based sample, we also screened for

pathogenic variants causing Mendelian SVD and identified

two participants with extensive SVD harbouring heterozy-

gote genotypes for such variants in NOTCH3 (CADASIL-

causing missense variant modifying a cysteine-residue of the

EGFR domain) and in HTRA1 (heterozygous carrier of a

CARASIL causing mutation).

Our novel approach complements the gene-mapping stra-

tegies traditionally being used to identify SVD risk loci in

population-based cohorts, consisting of studying each MRI-

marker of SVD individually: presence or absence of brain

infarct (Debette et al., 2010) and, quantitative measure of

WMH burden (Verhaaren et al., 2015), and of efforts to

reveal genetic determinants of the clinically defined small

vessel ischaemic stroke subtype [NINDS Stroke Genetics

Network (SiGN) and International Stroke Genetics

Consortium (ISGC), 2016]. The extreme composite pheno-

type of SVD presented here is likely to be more specific for

underlying SVD pathology and provides a better contrast

by excluding participants with either lacunes or moderate

to extensive WMH burden from the control group.

Extreme phenotype association studies have been reported

to be better powered for identifying rare risk variants asso-

ciated with disease by reducing the phenotypic heterogen-

eity (Peloso et al., 2016), which we demonstrate through

association of rare and low frequency NOTCH3 protein-

modifying variants with extreme-SVD. Notably, we also

demonstrate that our study design is more powerful to

identify some common SVD risk variants, as the common

intronic variant rs2293871 in HTRA1 has greater signifi-

cance in relation with extreme SVD compared to associ-

ations observed with small vessel ischaemic stroke

[NINDS Stroke Genetics Network (SiGN) and

International Stroke Genetics Consortium (ISGC), 2016]

and continuous WMH burden (Verhaaren et al., 2015),

which had comparatively more number of participants

than the former study. This observation is in line with

simulation studies demonstrating that extreme sample phe-

notyping might identify additional common risk variants

(MAF4 0.05) associated with complex diseases by redu-

cing the impact of phenotype misclassification on observed

genetic effect size estimates (van der Sluis et al., 2010;

Manchia et al., 2013).

We report and replicate an association of a common in-

tronic variant (rs2293871) in HTRA1 with extreme-SVD in

European ancestry cohorts. HTRA1 encodes a secretory

protein of the serine protease family, which regulates trans-

forming growth factor (TGF) signalling (Beaufort et al.,

2014). Disruption in HTRA1 activity causing cell death

by modulating TGF signalling has been suggested as a pos-

sible causal mechanism underlying CARASIL (Beaufort

et al., 2014). We identified two blood eQTLs in linkage

disequilibrium (r2 = 0.75) with rs2293871, suggesting that

the allele associated with increased risk of extensive SVD is

associated with lower HTRA1 expression in blood.

Although limited to blood, and based on proxies in mod-

erate linkage disequilibrium, this observation is in line with

suggested mechanisms of reduced HTRA1 activity in

CARASIL (Hara et al., 2009; Beaufort et al., 2014), and

also the recent description of heterozygote loss-of-function

variants in HTRA1 causing SVD phenotypes in European

populations (Verdura et al., 2015).

Using a gene-based approach we also demonstrate signifi-

cant association with extreme SVD of NOTCH3 protein-

modifying rare and low frequency variants, which were

replicated in independent cohorts. This association is pri-

marily driven by variants located in the EGFr domain,

known to preferentially harbour CADASIL causing muta-

tions. CADASIL, the most common of all known

Mendelian forms of SVD, is an autosomal dominant dis-

ease typically caused by cysteine residue altering variants in

NOTCH3 resulting in an uneven number of cysteines in

the EGFr domain of NOTCH3, disrupting disulphide

bridge formation, causing misfolding of EGFr, and increas-

ing NOTCH3 multimerization (Monet-Lepretre et al.,

2013). Some cysteine-modifying mutational hotspots

(R91C, R170C or C213S) were reported to cause aberrant

dimerization of NOTCH3 fragments by reducing Fringe-

mediated elongation of O-fucose glycosylation (Arboleda-

Velasquez et al., 2005). In rare instances, cysteine-sparing

variants were also reported to cause CADASIL in some

families, but their pathogenicity is still debated. Five mis-

sense variants in EGFr determining region observed in the

3C-Dijon extreme SVD sample are predicted mucin type

GalNAc O-glycosylation sites, of which three variants

were exclusively observed in participants with extensive

SVD. Because of the lack of publicly available resources

to computationally predict other types of O-glycosylation

than mucin (O-fucose, O-glucose, O-GlcNAc, and O-

xylose) we have only partially captured the impact of

observed NOTCH3 missense variants on glycosylation dis-

ruption in the EGFr domain. Further functional studies are

essential to understand the impact of glycosylation disrup-

tion in the EGFr domain of NOTCH3 by genetic variants

in complex SVD pathophysiology.

Interestingly, two participants with extensive SVD, repre-

senting 0.4% of our discovery population-based sample,

and 0.8% of participants with extensive SVD, carried het-

erozygous mutations in NOTCH3 or HTRA1 described

previously as pathogenic and causing CADASIL or

CARASIL, two Mendelian forms of SVD. Of note, this

observation is based on high quality WES data but lacks

technical validation using targeted Sanger sequencing. The

frequency of known pathogenic variants in our community

sample is higher than expected, but in line with a recent

analysis of NOTCH3 likely pathogenic variants described

in 0.3% of the 60,706 exomes of the publicly available

exome aggregation consortium (ExAC) database (Rutten
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et al., 2016a). The main shortcoming of the ExAC database

is the limited clinical information on participants included

in the database and the lack of data on covert, MRI-defined

SVD phenotypes. Our study provides further evidence that

pathogenic variants known to cause rare Mendelian forms

of SVD (CADASIL and CARASIL) are less exceptional

than previously suspected in the general population.

Although they were observed in persons with extensive

SVD on brain imaging, they appeared to have mild clinical

expression in this population-based setting. The CADASIL

causing variant reported in our cohort modifies the cysteine

residue of the EGF repeat 20 of the NOTCH3 N-terminus.

Interestingly, cysteine modifying mutations at EGF repeats

7–34 may have a milder CADASIL phenotype than those

affecting EGFr domain 1–6 at the C-terminal end, because

of lower likelihood of interaction of unpaired cysteine with

other proteins (Rutten et al., 2016a). Our results further

add to the debate around returning results on incidental

findings from next generation sequencing considering that

the penetrance of likely pathogenic variants may be highly

variable (Hehir-Kwa et al., 2015; Hofmann, 2016).

Intriguingly we observed two missense variants in

COL4A1 and COL4A2 in 3C-Dijon participants with min-

imal SVD, with typical characteristics of SVD causing mu-

tations, although they have not been described previously

in SVD families. This may reflect low penetrance. Indeed,

clinical studies have shown that a significant proportion of

mutation carriers do not develop intracerebral bleedings

(Meuwissen et al., 2015). This may also be explained by

the fact that our brain imaging protocol did not include

gradient echo images to detect previous microbleeds or

intracerebral haemorrhages, as the most common manifest-

ations of COL4A1/2 related SVD are brain haemorrhages

(Lanfranconi and Markus, 2010).

Our proof-of-concept gene-mapping study focused on

genetic variants within five candidate genes observed

using the WES technique. One notable limitation of this

work is that it did not report on association of some

common risk variants relevant to SVD pathology that

were identified using the GWAS approach, as these were

not captured by WES, particularly COL4A2 intronic vari-

ants, respectively, rs9515201, rs9521732, rs9521733, and

rs9515199, which were recently reported to be associated

with WMH volume (Traylor et al., 2016) and deep intra-

cerebral haemorrhage (Rannikmae et al., 2015).

Furthermore, as we focused only on SVD candidate

genes, our study did not explore the impact on extreme

SVD of rare and common variants in other candidate

loci, such as those previously associated with continuous

WMH burden (Verhaaren et al., 2015; Traylor et al.,

2016), stroke (Malik et al., 2018) or Alzheimer’s disease

(Lambert et al., 2013). These limitations will need to be

addressed through a large multi-cohort gene-mapping

study using GWAS and possibly whole genome sequencing

approaches.

In summary, our proof-of-concept study provides strong

evidence that using a novel composite MRI-derived

phenotype for extremes of SVD can facilitate the identifi-

cation of genetic variants underlying SVD, both common

variants and those with rare and low frequency. The find-

ings demonstrate shared mechanisms and a continuum be-

tween genes underlying Mendelian SVD and those

contributing to the common, multifactorial form of the dis-

ease. Future studies exploring rare and common genetic

variants associated with this composite extreme SVD

phenotype at a genome-wide or whole genome level are

warranted. Indeed, SVD is a major contributor to stroke

and dementia risk worldwide with no specific therapy avail-

able to date, and efforts to decipher underlying biological

pathways to accelerate the discovery of novel treatment

strategies represent a public health priority.
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