
Design Process for System of Systems Reconfigurations

Franck Petitdemange1, Isabelle Borne1, and Jérémy Buisson2

1IRISA, South Brittany University, Vannes, France
2IRISA, Écoles de Saint-Cyr Coëtquidan, Guer, France

DOI: https://doi.org/10.1002/sys.21567

Abstract

Systems of systems (SoSs) constitute a particular class of systems, whose constituents are them-
selves systems in their own right. Such systems present architectures that dynamically change in a
way that is not necessarily intended at the time of design. We target a kind of SoS that is subject
to evolutionary development and propose a reconfiguration design process that guides the architect
in charge of SoS engineering by indicating the tasks that must be accomplished to develop a recon-
figuration for evolutionary development. Finally, our process is applied to design a reconfiguration
in the context of a realistic case study inspired by the French emergency services.

1 Introduction
Among the systems that an engineer can conceive of, systems of systems (SoSs) constitute a particular
class, whose constituents are themselves systems in their own right. Such systems present architectures
that dynamically change in a way that is not necessarily planned at the time of initial design. Maier
[1998] and subsequent work argue that an SoS is operated and provides services even before being fully
deployed; that is, the development of an SoS is evolutionary. For an SoS, whose life cycle may span
decades, the capabilities are acquired and withdrawn, and the mission evolves during operation.

In the context of this paper, we focus on shorter-lived SoSs that are specifically targeted at one
operation: here, a rescue operation inspired by the French civil protection [Petitdemange et al., 2018].
Figure 1 overviews this SoS, whose mission is to protect property and people in case of a flooding situation.
The departmental operation center of fire and help (CODIS35 and CODIS56 – department numbers 35
and 56) oversees and coordinates the whole operation. Additional resources, such as all-purpose vehicles
(VTU), unmanned aerial vehicles (UAV), lightweight inflatable boats (ERS), helicopters and ambulances,
perform primitive field actions to fulfill the overall mission under the authority of a team leader. The
medical emergency service (SAMU) ensures regulation of emergency rooms, which in turn provide medical
assistance to victims.

The lines in figure 1 show interactions between these constituents, and the colored boxes denote the
organizations to which the constituents belong. These interactions are intended for the fulfillment of
the mission. This SoS highlights the managerial independence of the constituents, as each team leader,
VTU, ERS and UAV belongs to a departmental fire and rescue service (SDIS35 and SDIS56), which
is, in France, an autonomous agency funded by an administrative subdivision. When the situation is
too large for the SDIS that is geographically responsible, it may request additional resources from a
neighbor SDIS. For instance, in figure 1, the team leader is provided by SDIS35, while the VTU, UAV
and ERS are provided by SDIS56. Furthermore, ambulances, SAMU and emergency rooms belong to a
hospital, which is another independent organization. Helicopters belong to yet another organization, the
general directorate for civil security and crisis management, which is a state-level entity in the Ministry
of Interior dedicated to protecting citizens. Here, operational independence is illustrated by the fact that
the hospital and its resources have to respond to all other medical requests in addition to participation
in the SoS.

This SoS is subject to evolutionary development. Indeed, the field situation is not known when the
operation begins: the SoS must reorganize depending on the severity of the flood and its evolution. For
instance, at the time of the initial call to the emergency service, a small operation is deployed in response
to a localized flood. The neighbor SDIS ensures coordination through operational collaboration, that

1

https://doi.org/10.1002/sys.21567

Ambulance

ERS

Team leaderVTU

UAV

Helicopter

CODIS35

Emergency roomSAMU

CODIS56

SDIS56 SDIS35

Hospital

Civil Security

Figure 1: Overview of the French emergency services.

is, direct communication with respect to field actions. When the team leader realizes that the flood
is spreading and risks covering several departments, the SoS is reorganized to introduce, e.g., tactical
and strategic collaborations with a hierarchical command chain. At the tactical level, commanders give
orders to their subordinates and collect reports. At the strategic level, several SDISs ensure consistent
direction in addressing high-level objectives.

The question we address in this paper is: how does an architect1 design reconfiguration in the context
of the evolutionary development of an SoS?

Dynamic reconfiguration has been studied mainly in the context of distributed systems based on
components. Whereas in the case of distributed systems, the focus is on autonomous reaction to envi-
ronmental changes and automatic self-adaptation, the evolutionary development of an SoS turns recon-
figuration into an engineering activity. When a constituent system decides to quit, the SoS may react
and reconfigure itself automatically, but when a new constituent system must be recruited, the archi-
tect of the SoS may have to sign contracts for financial or legal reasons. Moreover, a new constituent
system may even have to be designed and manufactured. Moreover, the SoS is also reconfigured when
new requirements arise, resulting in the need for a new architecture. Therefore, in this paper, we view
reconfiguration as the design, implementation, and deployment of any change in the SoS architecture.
We extend our previous work [Petitdemange et al., 2018] by proposing a design process to guide the
architect in charge of designing a reconfiguration, noting the tasks that must be accomplished to develop
a reconfiguration for an evolutionary development. We apply our process to one of the configurations
obtained from the case study scenarios.

The reminder of this paper is structured as follows. We present the background and related work
in section 2 to introduce the concepts and modeling languages used. This section also reviews how the
SoS architecture is modeled in configurations according to our previous work [Petitdemange et al., 2018].
Section 3 describes the dedicated design process for reconfiguration. In section 4, we show how the
process is applied to design a reconfiguration in the context of our case study. Section 5 discusses threats
to validity of the contribution. Finally, section 6 concludes the paper.

2 Background and related work

2.1 System of systems
Several previous works identified distinctive characteristics of SoSs, among which Maier [1998] specifi-
cally insists on operational and managerial independence of the constituent systems. Identifying such
characteristics enables specific architectural principles and engineering practices to help SoS architects.

1In this paper, when we refer to “an architect” (singular form), we refer to the role, which may be played either by a
single person or by a team.

2

For example, Maier [1998] identified four architectural principles: “stable intermediate forms” and “policy
triage”, borrowed from Rechtin [1990], and “leverage the interface” and “ensuring cooperation” heuris-
tics, which altogether focus the architects’ attention on coping with the operational and managerial
independence of the constituents.

Among these principles, the “stable intermediate forms” principle advocates that, even before its
complete deployment, a SoS should be operable. In other words, evolutionary development means that a
SoS is deployed step by step and is operated during the evolution. In each step, the architect evolves the
architecture: she/he may have to respond to new requirements, seize new opportunities, and acquire new
capabilities. While an evolution is being deployed, the SoS is already operating and providing services.
Thus, the architect has to design the reconfiguration such that it does not harm the stakeholders that
operate or use the services provided by the SoS.

2.2 The systems modeling language
The systems modeling language, SysML [OMG, 2017a], is an extension of the unified modeling language,
UML [OMG, 2017b], targeted at providing a structured representation for the design of complex systems.
Like other OMG modeling languages, SysML defines the concepts involved in the design, as well as
graphical representations, in diagrams. At the core of SysML, a system is decomposed into a tree of
blocks, each of which indifferently models either a software, hardware, human or composite component.
To specify how blocks are assembled and interact within the system, each block contains ports. When a
connector binds two ports together, an item flow specifies what kind of data, material, energy, or item
is conveyed through the binding. Allocation is a dependency link that relates elements from different
representations of the system, such as logical and physical representations. SysML defines additional
concepts, which we omit because they are not considered in this paper.

Each SysML model of a system is represented by a collection of diagrams, where each kind of diagram
focuses on a specific concern. We focus on two kinds of diagrams: block definition diagrams (BDDs)
describe blocks, their relationships, and dependencies; internal block diagrams (IBDs) represent the
internal structure of a composite block, that is, connectors and item flows connecting blocks and ports
within the composite. We do not describe other kinds of diagrams.

2.3 The unified profile for DoDAF and MODAF
In conjunction with modeling languages such as SysML, the architecture frameworks of the US De-
partment of Defense (DoDAF), the UK Ministry of Defence (MODAF), and NATO (NAF) help system
architects to describe the design of a system using an extensive collection of views that cover the entire
life cycle. In this paper, we consider the Unified Profile for DoDAF and MODAF, UPDM [OMG, 2017c],
which is a merged metamodel for the two frameworks. The UPDM defines a collection of more than
40 views gathered into seven viewpoints. Each view in each viewpoint focuses on specific issues, and the
architect selects them according to the information she/he wants to convey.

Previous works, such as the DANSE2 and COMPASS3 projects, select only a few views as artifacts
in their respective design processes: we adopt the same approach in our work.

We consider operational views (OVs), which depict the logical architecture of the SoS, that is, tasks
and activities that are required to conduct the operation. OV-1, which belongs to the OV viewpoint,
is a use case diagram that enumerates functions and missions expected from the SoS to describe the
operational context. Stakeholders involved with the SoS are also elicited. Later in the design process,
OV-5 provides an operational activity model. By producing activity diagrams, the architect describes
the detailed activities constituting each use case.

In addition to OVs, we also consider systems views (SVs), which describe the constituent systems and
resources within the SoS. In this viewpoint, SV-1 describes the resource interaction specification; that is,
it enumerates and describes the constituent systems and their interactions. SV-5 provides traceability
between operational activities and system functions by allocating activities to constituent systems.

2.4 Modeling of SoS configurations
In this subsection, we describe how the architect produces a “configuration”. In other sections of the
paper, we refer to the “architecture”. The distinction follows SysML’s approach to configurations OMG

2http://danse-ip.eu/
3http://www.compass-research.eu

3

http://danse-ip.eu/
http://www.compass-research.eu

SDIS35.TeamLeader

SDIS56.CODIS

SDIS56.network

SDIS35.CODIS

SDIS35.network

Operational
coordination of the

workforce

VTU engagement

Communicate on the
operational channel

«include»

Operational collaboration SDIS56 /
SDIS35 for flooding situation

Figure 2: OV-1 view presented as a use case diagram.

[2017a]: the configuration denotes the actual constituents in the real SoS, as well as actual connections
between these constituents, whereas the architecture abstracts over the actual SoS. SysML proposes that
the configuration can be modeled as an IBD, in which the block properties identify instances. With
respect to the UPDM, the configuration matches SV-1, which is intended to describe constituents and
their interactions. We do not give the block properties in the IBD at the end of this subsection.

In previous work, we proposed a process targeted at modeling the current configuration of the SoS
at a time when reconfiguration is being considered [Petitdemange et al., 2018]. This process selects a
few UPDM [OMG, 2017c] views and reuses SysML diagrams [OMG, 2017a] to focus on elements that
constitute the source configuration of the reconfiguration. Figure 1 and the accompanying text elicit the
operational context of the SoS. The figure provides an overview of the operation that the SoS is intended
to support and its general context, according to the mission, that is, the objectives of the operation. The
process starts with bounding the SoS using UPDM view OV-1, given as a use case diagram, which for
our case is shown in figure 2. In classical systems, the boundary denotes what constituents belong to the
system and what constituents are outside the system, in the sense that the architect designs constituents
that belong to the system under consideration. Due to the operational and managerial independence
of the constituents, all the constituents are outside the SoS. Bounding the SoS, in this context, means
deciding to abstract details about some constituents. In the model of our example, figure 2 depicts what
actors interact with the functions of the SoS: for instance, SDIS35’s team leader and SDIS56’s CODIS
both interact with the “operational coordination of the workforce” use case, an interaction that appears
in figure 1. We use actors here to denote that we are not interested in further details about the team
leader and the two CODISs. Even if only SDIS56’s VTU are used in the operation depicted in figure 1,
the CODISs of both SDIS56 and SDIS35 interact with the “VTU engagement” use case because both
may provide VTU as needed. Likewise, the networks of the two SDISs interact with the “communicate
on the operational channel” use case, meaning that the operational channel for this SoS is constructed
from the interconnection of the two networks.

Then, by reusing UPDM view OV-5 (figure 3), given as a collection of activity diagrams, the architect
identifies detailed activities composing each use case. Figure 3 illustrates the view with an activity
diagram that describes the scenario when the team leader wants to report to his/her supervising CODIS.

Last, the architect uses UPDM view SV-1 (figure 6 in section 4) to enumerate constituent systems
and their interactions. At the end of this process, the architect has modeled the configuration of the
operating SoS, and this configuration can serve as the initial configuration for the reconfiguration.

In this paper, we provide only the most relevant and illustrative diagrams. Other diagrams can be
found in Petitdemange et al. [2018].

This process forces the architect to address the SoS boundary by adopting a top-down modeling
approach. The use case diagram of OV-1 (figure 2) contains the goals (modeled by use cases) of the
SoS and the constituents (modeled by actors) that interact to contribute to these goals. The activity
diagram of OV-5 (figure 3) helps to fully investigate the boundary of the SoS. It requires the architect
to indicate which constituents contribute to each goal of the SoS and what is the contribution of each
constituent, modeled by lanes in the activity diagram. This process provides an opportunity for the

4

Wait end of
on-going com-
munication

Identify and
ask

authorization

Authorize
communica-

tion

Report

Confirm
report

Finalize com-
munication

Confirm end
of communi-

cation

SD
IS
35
.

T
ea
m
L
ea
de

r
SD

IS
56
.

C
O
D
IS

Operational collaboration [send report by team leader]

Figure 3: One of the activity diagrams belonging to OV-5.

architect to discover possibly missing constituents and, therefore, to ensure the boundary of the SoS is
correctly defined. The BDD and IBD of SV-1 (figure 6) yield the configuration the architect intends
to model: the BDD details the type of constituents that fulfill the goals previously described in OV-1;
the IBD shows the dependencies between involved constituents, whose knowledge will later be useful to
ensure the safety and continuity of operation during reconfiguration.

2.5 Dynamic reconfiguration
Previous work on dynamic reconfiguration, such as the seminal definition of the “quiescent” state by
Kramer and Magee [1990] and subsequent work by, e.g., Vandewoude et al. [2007], Pissias and Coulson
[2008], proposed a generic approach. Constituents can be either in an “active” state, which is the
nominal state, or in a “passive” state when they service requests but do not issue requests. When the
correct constituents are brought to a passive state during reconfiguration, those constituents affected by
reconfiguration are not involved in any communication, thereby ensuring that no message is ever sent to
unconnected ports. Thus, message loss and deadlocks in communication protocols are avoided, such that
suspended constituents can recover activity after reconfiguration. Meanwhile, nonaffected constituents
continue to provide services.

Designing a reconfiguration for this generic approach is fairly simple. Indeed, any reconfiguration
begins with a down phase, during which the correct constituents are brought to a passive state, con-
nections are unbound, and some constituents are removed from the configuration as needed. Then, the
reconfiguration proceeds with an up phase, during which constituents are recruited in the configuration,
connections are bound, and all the constituents are brought back to an active state. Boyer et al. [2017],
Durán and Salaün [2016] defined reconfiguration in terms of such down and up phases, and Boyer et al.
[2017] proposed a formally verified algorithm that automatically generates such reconfigurations. Ar-
shad and Heimbigner [2005], André et al. [2010], da Silva and de Lemos [2011] proposed to automate
the generation of reconfiguration in the same setup using generic action planning algorithms. Because
reconfiguration via this generic approach is performed systematically or even automatically, no specific
work or design process, such as the work described in this paper, is needed in this context.

However, having the SoS authoritatively placing constituents in a passive state contradicts the man-
agerial independence of the constituents4. Thus, approaches based on a passive state may not be practical
in the context of a SoS. Moreover, bringing constituents to a passive state is not the only proposal to
proceed with dynamic reconfiguration. For instance, Ma et al. [2011], Ghafari et al. [2012], Wernli et al.
[2013] proposed that constituent substitution can be implemented by having both old and new variants
coexists during reconfiguration. Doing so mitigates service unavailability in the passive state but causes
additional difficulties in ensuring the synchronization of coexisting variants. Additionally, Zhang and
Cheng [2005] identified several alternative relevant behaviors during reconfiguration, and Buisson et al.
[2016] proposed a framework in which constituents can be arbitrarily mutated when required by the
reconfiguration.

The diversity of approaches to dynamic reconfiguration, each with its advantages and drawbacks, sug-
gests that some decisions must be made when a reconfiguration is built, that is, the reconfiguration must

4Though one may object that, while not bringing a constituent to a passive state, a similar effect might be obtained by
suspending communications at the boundary of the constituents, e.g., as done by Fractal’s component membrane [Bruneton
et al., 2006]. But doing so when the connection graph of the components contains cycles is known to be a challenging
problem, as shown by, e.g, Boyer et al. [2017].

5

be designed. The goal of reconfiguration design is not to identify a sequence of reconfiguration actions
(which we have seen can be automated according to previous work) but to identify what approaches to
use to best fulfill the SoS mission as it evolves.

Furthermore, the evolutionary development of an SoS may involve the acquisition of new constituents,
which in turn may include tasks, such as contract negotiation with providers, and manufacturing and
deploying of newly acquired constituents. Furthermore, some of the constituents may be human individ-
uals, not only technical systems. Therefore, automating the reconfiguration of an SoS is not as relevant
here as it is in the context of some self-adaptive distributed software systems.

2.6 Design of dynamic reconfiguration and SoS evolution
Following their previous work on the specification of behavior during reconfiguration, Zhang and Cheng
[2006] proposed a process for the design of self-adaptive systems. Because they consider self-adaptive
systems, Zhang and Cheng [2006] separate the definition of the source and target architectures into
a context-independent specification and a context-dependent specification. They consider the context-
independent specification to be the specification of the system during reconfiguration. However, doing
so prevents evolutionary development of the SoS, which may require a complete change of the SoS
specification. The work of Zhang and Cheng [2006] helps the architect, as it states that the reconfiguration
should begin with steps that restrict the source behavior to guide the system towards the context-
independent specification (and towards reaching a quiescent state). However, the architect is not aided
in decomposing the reconfiguration into simpler, easier-to-design tasks.

In the work of Buisson et al. [2016], the architect builds the reconfiguration and the proof of its
correctness simultaneously. When she/he fails to complete the proofs, the architect analyzes the reasons
why the proof is stuck, thereby providing hints to find missing properties that should have been previously
established by the preliminary reconfiguration steps. Beyond repeated trials, no specific help is provided
to the architect in designing the reconfiguration.

Gomaa et al. [2010], Petitdemange et al. [2016] proposed reconfiguration patterns to document design
decisions within reconfiguration. While reconfiguration patterns provide reusable solutions to recurrent
problems, these previous works do not provide any accompanying design processes.

The methodology from the DANSE project [Winokur et al., 2015] addresses the evolutionary devel-
opment of SoSs. On the one hand, the SoS architect can identify parameters within the model of the
SoS, as well as in the architecture patterns desired for the SoS. Then, a constraint solver is used to fit
these parameters such that the architecture metrics are optimized, resulting in a new architecture. On
the other hand, potential changes in the architecture are described by a graph grammar. Application of
the graph grammar rules, pruned by architecture validation, results in a path towards the desired target
architecture such that the architecture is validated against the SoS mission at each reconfiguration step.
The design of the graph grammar is left to the architect with no help.

3 Reconfiguration Design Process
In this section, we present a process for designing an SoS reconfiguration. Figure 4 presents the overall
life cycle of reconfiguration in four steps. The first step defines the initial and final architectures for the
reconfiguration, when the architect detects that reconfiguration is needed. Then, the second step com-
plements the reconfiguration specification with a description of the requirements that must be satisfied
during reconfiguration, as well as the requirements that can be relaxed. The third step is the elaboration
of the reconfiguration, which is followed by application in the fourth step.

We detail SoS-specific aspects of each of step in the subsequent subsections.

3.1 Trigger of the reconfiguration
The need for reconfiguration is the first step. In a SoS, two factors may lead to reconfiguration.

On the one hand, in step 1.A.1, some monitoring activity may detect that the configuration of the SoS
no longer satisfies the architecture anymore. Indeed, due to managerial independence, the SoS architect
cannot force the constituent systems to permanently contribute to the SoS as expected. Instead, systems
management can independently decide to remove their own systems from a given SoS, e.g., to perform
maintenance operations or to focus on their own operations or on another SoS. In such a situation, the
SoS configuration may no longer conform to the architecture. When this situation occurs, reconfiguration
must reestablish the SoS architecture, for instance, by recruiting other constituent systems. To do so,

6

Assess and monitor
configuration of the

SoS

Reconcile arch. with
current configuration

Define new
requirements

Design a new
architecture

Apply
reconfiguration

Design
reconfiguration

Design transition
architecture

1.A.1

1.A.2

1.B.1

1.B.2

2

3

4

tr
ig
ge
r

ob
je
ct
iv
es

adaptation to
environment

evolutionary
development

system of systems

Figure 4: Lifecycle of an SoS reconfiguration.

in step 1.A.2, the architecture must be reconciled with the actual configuration. From the observed
configuration, the architect recovers the actual SoS architecture, that is, the architecture to which the
observed configuration conforms. In subsequent steps, the architect uses this reconciled architecture as
the starting point for the reconfiguration. Steps 1.A.1 and 1.A.2 correspond to the case when the SoS
must be adapted to its environment, e.g., to the willingness of the constituents to contribute to the SoS.

On the other hand, in step 1.B.1, the need for reconfiguration comes from the SoS architect her-
self/himself when she/he changes the requirements of the SoS. In step 1.B.2, the SoS architect then
designs a new architecture to accommodate the newly defined requirements. In this context, reconfigu-
ration aims to reorganize the SoS to establish the new architecture. Steps 1.B.1 and 1.B.2 correspond to
evolutionary development.

Although the two scenarios (adaptation to the environment, evolutionary development) appear to
be separatin figure 4, they may be combined. For instance, the architect may decide to revise the
requirements to be able to adapt when some constituents decide to no longer contribute to the SoS. In
this case, instead of reestablishing the architecture, the architect decides that a new architecture must be
deployed to respond to the redefined requirements according to the constituent systems that are usable.

As shown by the highlights in figure 4, steps 1.A.1 and 1.B.1 trigger the reconfiguration, and
steps 1.A.2 and 1.B.2 ensure that the objectives of the reconfiguration, that is, the initial configura-
tion and target architecture, are known. Because branch 1.A aims to reestablish a broken architecture
(e.g., when some constituent system quits the SoS), the target architecture in this branch is already
known and need not be designed. By contrast, because branch 1.B aims to revise the deployed architec-
ture, the actual configuration of the SoS still conforms to the architecture. Thus, the initial architecture
is already known and need not be modeled again.

Regardless of the reason that triggers reconfiguration, the SoS is expected to be operable during
reconfiguration. While reconfiguration cannot performed without having an impact on the SoS, it will
not disturb the SoS beyond its architect’s acceptance. Therefore, the reconfiguration objectives, which
are the initial and target architectures, are not sufficient to specify the reconfiguration.

3.2 Transition architecture
The reconfiguration may not be feasible without breaking the requirements of the SoS. Even worse,
the requirements before and after reconfiguration may be incompatible. Therefore, in step 2, the SoS
architect defines a transition architecture that transiently enlarges the set of admissible configurations.
The idea behind the transition architecture is to identify less-important requirements that can be tem-

7

initial configuration
specify what is the initial
configuration of the SoS

target architecture
specify what properties
must be established

analyze

decide

transition architecture
specify what properties
must hold during reconfig-
uration

catalog of reconfigura-
tion patterns providing
well-known and well-
documented solutions to
recurrent problems

change phase
provide what
reconfiguration
actions must be
performed

not yet restored architecture
describe the configuration be-
fore preparation has been re-
verted

prepared architecture
describe the architecture af-
ter preconditions have been
established

fe
ed

th
e
pr
oc
es
s
to

de
si
gn

th
e

re
st
or
at
io
n
ph

as
e
as

re
co
nfi

gu
ra
ti
on

fe
ed

th
e
pr
oc
es
s
to

de
si
gn

th
e

pr
ep

ar
at
io
n
ph

as
e
as

re
co
nfi

gu
ra
ti
on

Figure 5: Design of an SoS reconfiguration.

porarily relaxed during reconfiguration and to express this relaxation in the architecture. This transition
architecture expresses the architect’s acceptance of the SoS during reconfiguration when reconfiguration
is unfeasible without loosening the requirements. When the reconfiguration is triggered due to an action
of constituent systems’ management, reconciliation in step 1.A.2 relaxes de facto constraints within the
architecture, thereby providing a basis for the transition architecture.

At the same time, by means of this transition architecture, the SoS architect specifies what constraints
must be enforced even during reconfiguration. The transition architecture may also require constraints or
services that do not appear in the SoS architecture, for instance, workarounds needed to balance service
degradation during the reconfiguration.

For example, the transition architecture may relax a direct connection between two constituents by
requiring only the existence of any communication path between these two constituents. However, for two
other constituents, the architect may require that the communication path always includes encryption
to ensure confidentiality, even during reconfiguration.

The architect can rely on previous work on requirement engineering, which proposed methodology
to analyze and produce relaxed requirements, to produce the transition architecture. For instance,
Whittle et al. [2010] proposed the RELAX requirement language that implements operators AS EARLY
(or LATE, CLOSE, MANY, or FEW) AS POSSIBLE based on fuzzy branching temporal logic [Moon
et al., 2004] to express requirements that can be relaxed. A requirement using these operators denotes
that some quantifiable property is required but that an approximate value is sufficient if no better value
can be implemented by the SoS, as specified by a fuzzy set. By defining such a requirement, the architect
accepts that the requirement can be relaxed to any degraded value in a fuzzy set. As an extension of
RELAX, Viana et al. [2016] proposed an extensive list of methods to resolve requirement conflicts. In
our case, these would be conflicts between SoS requirements and reconfiguration requirements. RELAX’s
operators BEFORE and AFTER can be used to specify the dynamics during the whole reconfiguration
such that the architect can express, for instance, that a sequence of degradations is acceptable, whereas
their simultaneous occurrence is not.

The transition architecture implements such relaxed and sequenced requirements. Rather than con-
nected instances, the constraint-based architecture description [Georgiadis et al., 2002, Waewsawang-
wong, 2004, Guessi et al., 2016] enables the architect to describe the space in which the SoS configura-
tion is allowed to evolve during reconfiguration. The space initially includes the initial architecture and
eventually includes the target architecture.

3.3 Design of the reconfiguration
Altogether, the transition architecture (resulting from step 2) and the initial and target architectures
(resulting from steps 1.A.2 and 1.B.2) form the specification of the reconfiguration. In step 3, the

8

architect designs a conforming reconfiguration; that is, she/he selects an overall approach to implement
the changes to the SoS while it is operable, ultimately yielding reconfiguration instructions.

According to previous work concerning dynamic reconfiguration, some preparation may be needed to
transiently bring the architecture into a suitable state during reconfiguration before changes can occur.
For instance, Kramer and Magee [1990] proposed placing some constituents in a passive state, that is,
switching these constituents to a mode of operation such that they do not issue any requests but continue
to service incoming requests. Placing some constituents in a passive state results in a subset of these
constituents reaching a quiescent state, in which they do not receive any incoming requests. Quiescent
constituents are not involved in any communication, so they can safely be disconnected and reconnected
in the architecture. Then, after the changes have been made, constituents are returned to an active state
in which they perform normally.

To account for such preparation, Durán and Salaün [2016], Boyer et al. [2017] decompose reconfigu-
rations into a down phase consisting of passivating, disconnecting and removing constituents and an up
phase consisting of adding, connecting and activating constituents. As a more general approach, Buisson
et al. [2016] proposed that constituents switch from one implementation to another when required by the
reconfiguration, where passive and active states are simply two specific implementations. Implementation
switching may affect ports, including the addition or removal of ports, and an implementation switch
may also alter the constraints, e.g., making a port disconnectable or mandating that it be connected.

As illustrated by cited works, any reconfiguration prepares the architecture to enable the changes;
then, after changes have been performed, the reconfiguration returns the architecture to normal oper-
ation. That is, a reconfiguration is composed of three phases: preparation, changes, and restoration.
Kramer and Magee [1990], Durán and Salaün [2016], Boyer et al. [2017] considered the preparation and
restoration phases to consist simply of switching between active and passive states. Buisson et al. [2016]
viewed the preparation phase as any arbitrary modification that establishes the preconditions of the
change phase. Thus, the preparation and restoration phases are also reconfigurations.

Accordingly, in step 3, we advocate the process described in figure 5. First, analysis of the specification
of the reconfiguration results in the set of constituent systems to be integrated within the SoS and those
constituent systems to be excluded. To do so, the architect compares the initial configuration of the SoS
to the target architecture she/he wants to establish in the SoS. Furthermore, changes to connections and
mediating entities are identified at the same time.

Depending on the identified changes and the constraints of the transition architecture, the architect
must develop an overall approach to the reconfiguration under consideration. For instance, the archi-
tect decides whether some constituent systems should be transitioned to a quiescent state and if some
constituent systems should be transiently used to ensure continuity of operation. The architect also
schedules atomic reconfiguration operations such that changes are performed in the correct order for the
transition architecture. To help in this task, a catalog of reconfiguration patterns [Petitdemange et al.,
2016] prescribes well-known solutions to recurrent reconfiguration problems. Reconfiguration patterns
provide documentation of these well-known solutions and notably concerning properties, such as service
availability or degradation, such that the architect can more easily compare with the constraints specified
in the transition architecture. Patterns also document assumptions made in the solution, such that the
architect can match against the actual capabilities of (independently engineered) constituent systems.

Once the design decision is made, the preconditions of the reconfiguration might be unsatisfied by
the source architecture, and it may be possible that the preconditions are established by preceding
reconfiguration actions. For instance, the decision to rely on quiescence requires that some constituent
systems are passive, while the coevolution pattern5 [Petitdemange et al., 2016] requires the presence of a
specific mediating entity that synchronizes the internal states of two constituent systems. In such cases,
a preparation phase is required to establish the precondition, and a restoration phase may be needed
to revert transient changes, e.g., to return constituent systems to an active state or to remove the state
synchronization machinery.

Preparation and restoration can be considered to be reconfigurations. In figure 5, prepared architecture
and not yet restored architecture, which denote the architecture after preparation and before restoration,
respectively, are used to feed and recursively reapply the design process to design the preparation and
restoration phases. The preparation phase is the reconfiguration that transitions the SoS from its initial
configuration to the prepared architecture, and the restoration phase is the reconfiguration that transitions

5The coevolution pattern [Petitdemange et al., 2016] advocates that when a constituent has to be replaced with another,
the two constituents coexist until the former becomes fully unused. Meanwhile, the two constituents mutually synchronize
their respective internal states. This pattern models and documents techniques of Ma et al. [2011], Ghafari et al. [2012],
Wernli et al. [2013].

9

CODIS

tactical channel

team leader operational

tactical

local collaboration

Figure 6: Initial configuration for the case study.

the SoS from the not yet restored architecture to the target architecture.
Recursive reapplication of the design process terminates when a reconfiguration is sufficiently simple

such that it does not require preparation or restoration.

3.4 Execution
When the design of the reconfiguration is completed in step 4, it is submitted to the SoS for application.
As this paper focuses on the design process, we do not discuss the execution of the reconfiguration.

4 Example
To illustrate how an SoS architect applies the process detailed in Section 3, we consider the reconfiguration
design for the rescue operation presented in the introduction. We assume that the initial configuration of
the SoS is the one shown in figure 6: the CODIS communicates directly through a tactical channel with
team leaders concerning field actions performed to fulfill the mission. This configuration is typically the
first deployed upon the occurrence of an incident when the severity is low or still unknown.

The following subsections follow the steps shown in figure 4.

4.1 Trigger and objectives
The scenario we consider to illustrate the process is evolutionary development; therefore, the architect
applies only step 1.B (see figure 4).

Step 1.B.1: Define new requirements When a crisis becomes more serious than initially antic-
ipated, the requirements assigned to the SoS must evolve to take into account the evolution of the
crisis. For instance, local rescue services may no longer be sufficient to handle the crisis. In such a
case, the architect requires an interdepartmental collaboration of rescue services from several neighbor
departments.

Step 1.B.2: Design a new architecture This new requirement leads the architect to design the
target architecture shown in figure 7. This evolved architecture introduces a group leader who is in
charge of tactical collaboration such that CODIS can focus solely on strategic collaboration.

The strategic collaboration ensures that several collaborating SDISs adopt consistent directions to
address the higher-level objectives defined by the mission. The group leader ensures tight coordination
of field resources.

Regardless of the exact configuration, the architect models the communication discipline of the hier-
archical command chain with the following constraints:

• Constraint 1: Each resource is a member of exactly one group. The strategic group contains
resources that determine the resource allocation; the tactical group contains control and command
resources; the operational group contains resources that operate directly in the field. We choose to
model groups using packages (on the right-hand side of figures 6 and 7), along with architectural
primitives of Zdun and Avgeriou [2008], which we omit to avoid overloading the diagrams.

10

CODIS

strategic channel

group leader

tactical channel

team leader operational

tactical

strategic

strategic collaboration

Figure 7: Target architecture for the case study.

• Constraint 2: A resource cannot be connected directly to another resource from another group; it
can only be connected to another resource via a proxy. In our use case, communication channels
play the role of proxies.

• Constraint 3: A resource can only access communication channels (or proxies) of groups at the
level immediately above or immediately below its group. A resource can also communicate with
other resources in the same group as itself. In the example, tactical resources can communicate
with both operational and strategic resources, but operational resources cannot communicate with
strategic resources.

4.2 Design transition architecture
Once the initial configuration and the target architecture are known, the architect collects constraints
on the SoS during reconfiguration; that is, she/he designs a transition architecture. In the example:

• Transition constraint 1: Supervision of the team leader cannot suffer any discontinuity: no report
from the team leader to her/his supervisor can be lost.

• Transition constraint 2: The direct supervisor (CODIS in the initial configuration, group leader in
the target architecture) must have correct situation awareness such that the orders she/he gives to
the team leader are always consistent with the real situation in the field.

• Transition constraint 3: At any time, to avoid any contradictory orders, exactly one supervising
authority can give orders to the team leader.

Even if the architect takes into account the constraints identified in the architecture, the above-
described communication discipline does not raise any specific issues: without relaxing the constraints,
it can be addressed by considering that CODIS switches from tactical to strategic as soon as the team
leader reports to the group leader.

4.3 Design reconfiguration
Figure 8 summarizes the complete reconfiguration and how it is designed. The reconfiguration transforms
the SoS from the configuration of figure 6 to the architecture of figure 7 (dotted arrow labeled reconf).

The design process of subsection 3.3 is applied to refine the reconfiguration via a preparation phase
(dashed arrow labeled reconf/prep) that transforms the SoS to the architecture of figure 9, followed by
a change phase (arrow labeled reconf/change) that transforms the SoS to the architecture of figure 12,

11

Figure 6 Figure 7

Figure 9 Figure 12

Figure 10 Figure 11
reconf/restor/...

(omitted in this paper)

reconf

reconf/prep reconf/change

reconf/prep/prep

reconf/prep/change

reconf/prep/restor

reconf/restor

Figure 8: Construction of the reconfiguration by the proposed design process at step 3.

CODISsynchronizergroup leader

strategic channel

buffering tactical channel

team leader operational

tactical

preparation towards strategic collaboration

Figure 9: Prepared architecture.

followed by a restoration phase (dashed arrow labeled reconf/restor) that completes the reconfiguration
and results in the architecture of figure 7. In this and the following figures, reconf denotes reconfiguration,
prep is a preparation phase, change is a change phase, and restor is a restoration phase. The / symbol
denotes a nesting of phases within a refined phase.

According to subsection 3.3, the preparation and restoration phases are reconfigurations and, there-
fore, might be further refined by applying the same design process. In figure 8, the preparation
phase is further refined in this way: the preparation phase of the preparation phase (arrow labeled
reconf/prep/prep) transforms the SoS to the architecture of figure 10, followed by a change phase (re-
conf/prep/change) that transforms the SoS to the architecture of figure 11 and a restoration phase (re-
conf/prep/restor) that yields the architecture of figure 9. The restoration phase reconf/restor is refined
similarly. We omit the details in the paper.

In the following discussion, we explain how the architect designs and constructs this reconfiguration.
We use a systematic nomenclature for the headings to provide a structured description. The step and
substep numbers are followed by headings that refer to the labels of the arrows in figure 8, followed by
the activity or artifact name in figure 5. For instance, “3 - 1: reconf: Analyze” means that step 3
substep 1 represents the Analyze activity in figure 5 in the context of the reconf arrow in figure 8, i.e.,
in the context of the global reconfiguration.

Step 3 - 1: reconf: Analyze Once the desired reconfiguration has been specified by the target
architecture and the transition architecture, the architect analyzes the specification. By comparing the
initial configuration and the target architecture, the architect finds that the reconfiguration must recruit
a group leader and instantiate a strategic channel. The reconfiguration must also disconnect the CODIS
from the tactical channel and establish new connections according to figure 7.

Step 3 - 2: reconf: Decide Consequently, according to the constraints described in the transition
architecture, the architect decides to consider the coevolution pattern of Petitdemange et al. [2016]. In

12

CODIS

tactical channeltranquility monitor

team leader operational

tactical

after preparation at the beginning of the preparation phase

Figure 10: Prepared architecture for the preparation phase.

the general context of a hierarchical command chain, the coevolution pattern addresses the case where
the command-and-control (C2) system must be replaced with a new C2 while avoiding any discontinuity
of supervision (transition constraint 2).

In the case of the reconfiguration under consideration, the old C2 is played by CODIS, and the new
C2 is played by the group leader. Team leaders play the role of operators under C2 supervision.

To avoid suspending services, the pattern proposes that operators under the supervision of the re-
placed C2 are migrated one by one to the supervision of the new C2. To allow reconnection of the
team leader without disruption, the tactical channel mediating element is mutated to include a buffering
facility. During reconfiguration, the two C2s, that is, both CODIS and the group leader, coexist in the
SoS configuration. At any time, each team leader is connected to either CODIS or the group leader but
never to both. In this way, the solution described in the pattern ensures that no team leader receives
contradictory orders (transition constraint 3). The solution of the pattern also requires that the two C2s
(here CODIS and group leader) exchange the reports they receive from operators (here team leaders) to
synchronize their respective view of the situation. The coevolution pattern requires a specific mediating
entity that is devoted to this task. Initially, this mediator migrates the internal state of the old C2
(CODIS) to the new C2 (group leader). Then, each time a C2 (CODIS or group leader) receives a report
from an operator (team leader), the mediator intercepts the message to detect the desynchronization.
The mediator propagates intercepted messages to the other C2 to resynchronize the states. By means of
this mediator behavior, the solution proposed by the pattern ensures that no report is ever lost (transition
constraint 1) and ensures situation awareness of the C2 (transition constraint 2).

Step 3 - 3: reconf/change According to the above-described decision made by the architect, the
change phase of the reconfiguration consists of individually reconnecting team leaders from the CODIS
to the group leader.

Step 3 - 4: reconf/prepared architecture The change phase assumes that the SoS has already
recruited the group leader and that a mediating element ensures the prescribed state synchronization
between CODIS and the group leader. Figure 9 shows the prepared architecture according to this precon-
dition. Dashed boxes represent transient mediating elements that are used only during reconfiguration.

The architect reapplies the process of figure 5 to design the preparation phase as a reconfiguration
that brings the SoS from its initial configuration depicted in Figure 6 to the architecture given in Figure 9.

Step 3 - 5: reconf/prep: Analyze A comparison of the initial configuration of figure 6 and the
prepared architecture of figure 7 enable the architect to observe that a synchronizer mediating element
must be inserted into the architecture and that the tactical channel must be replaced.

Step 3 - 6: reconf/prep: Decide On the one hand, addressing the synchronizer does not raise any
challenges: assuming that CODIS and the group leader have the required capabilities, the mediating
element can be instantiated and connected without any precaution.

On the other hand, enabling a buffering facility in the tactical channel requires in-place substitution.
To perform this reconfiguration with minimal disruption, the architect decides to use the tranquility

13

CODISsynchronizergroup leader

strategic channel

buffering tactical channeltranquility monitor

team leader operational

tactical

before restoration at the end of the preparation phase

Figure 11: Not-yet-restored architecture for the preparation phase.

approach of Vandewoude et al. [2007] such that mutation of the tactical channel occurs opportunistically
when neither CODIS nor the team leader have to communicate.

Step 3 - 7: reconf/prep/change When the reconfiguration detects that the tactical channel is
(temporarily) unused, the channel is disconnected and replaced with a buffering channel, which is, in
turn, connected to the architecture.

Step 3 - 8: reconf/prep/prepared architecture Assuming that the SoS does not provide the
necessary infrastructure to implement the tranquility approach, the preparation phase itself requires
preparation to transform the SoS to the architecture of figure 10.

Step 3 - 9: reconf/prep/prep: Analyze A comparison of the initial configuration of figure 6 and the
architecture of figure 10 shows that the only change is the instantiation and connection of the tranquility
monitor.

Step 3 - 10: reconf/prep/prep: Decide The architect can reasonably assume that CODIS and
the team leader can report to the tranquility monitor when they are not involved in any communication
through the tactical channel. Thus, the change in the preparation of the preparation of the reconfigura-
tion does not require any further preparation or restoration. This change is straightforward.

Step 3 - 11: reconf/prep/not yet restored architecture A restoration phase removes the tranquil-
ity monitor that was transiently inserted into the SoS. This restoration phase starts with the architecture
of figure 11 and transforms the SoS to the architecture of figure 9.

Step 3 - 12: reconf/not yet restored architecture Figure 12 shows the architecture obtained after
the change phase. Transient mediating elements (synchronizer and buffering facility) are still present
and have to be removed before the final architecture of figure 7 is effectively reached by the SoS.

Step 3 - 13: reconf/restor This restoration step is similar to “reconf/preparation”, as it reverts the
tactical channel to its nominal variant and removes the state-synchronizing mediating element between
CODIS and the group leader. We omit the details in this paper.

4.4 Apply reconfiguration
The overall reconfiguration obtained by combining these operations and following the above-described
design follows the solid-line arrows in figure 8. The process adapts the SoS through the sequence of
architectures starting with figure 6, applying reconf/prep/prep, followed by figure 10, reconf/prep/change,

14

CODIS

strategic channelsynchronizer

group leader

buffering tactical channel

team leader operational

tactical

strategic

to-be-restored towards strategic collaboration

Figure 12: Not yet restored architecture.

figure 11, reconf/prep/restor, figure 9, reconf/change, figure 12, and finally, reconf/restor, yielding to the
target architecture of figure 7.

The architect can be further refined as needed.

5 Threat to validity
To preemptively mitigate the threats to validity, we base our work on a realistic scenario. The organi-
zational structure we describe is the actual one in France. The reconfiguration scenario models crisis
management escalation, which is a typical scenario for crisis management in general, not only emergency
rescue.

In the following subsection, we discuss the internal and external validity of our work.

5.1 Threat to internal validity
One may object that, in the particular situation we describe (flood), high severity may be suspected even
before the first field actions. We also omit anticipation, noticeably the effect of weather alerts, which
would typically lead to predeployment of field resources, group leaders, and political-level coordination
(the next levels of escalation). We believe that this simplification does not harm the validity of our work
in the context of the case we studied.

Our approach appears to be difficult to test in the context of a real emergency operation. To mitigate
this inability, we use a scenario-based technique and simulation to validate our reconfiguration process.
We proceed step by step through the process of reconfiguration of one of the configurations. In comparison
to the real system, simulation can be used to verify that the reconfiguration actually conforms to the
constraints expressed by the transition architecture. Our ad hoc simulator monitors the architecture of
the simulated SoS in this respect, and the constraints are satisfied, even during reconfiguration.

To further improve our approach, two experiments could be conducted in future work. On the
one hand, the experience feedback of a rescue operation could be exploited to develop a scenario of a
real operation. Even without considering the real-time aspect, such experimentation would allow us to
compare our approach for the evolution of the SoS to the reality of the rescue operation. On the other
hand, setting up an experiment during a training exercise would allow us to test our approach with the
time constraints of an actual operation.

15

5.2 Threat to external validity
The main limitation regarding external validity is that we played the roles of both architect and re-
configuration engineer ourselves. Further experiments with several architects are needed to qualify and
quantify the actual assistance provided to the architect for the design of the reconfiguration.

Further experiments with other cases would also allow us to ensure that the design process is suffi-
ciently general to accommodate any (class of) SoS.

This threat is partly mitigated by the fact that some of our reconfiguration patterns are inspired by
existing techniques from related work on the reconfiguration of software systems.

6 Conclusion
The presented work is part of a project to address the question: How should the architect proceed to
evolve a SoS after deployment as part of evolutionary development? In our previous work, we proposed
an SoS architecture modeling framework to obtain different SoS configurations [Petitdemange et al.,
2018]. Configurations are useful to study how an architect could address reconfiguration in an SoS
environment. This leads us to define the concept of reconfiguration pattern [Petitdemange et al., 2016]
and reconfiguration process in section 3 of this paper. We explained that the design of a reconfiguration
requires the definition of constraints by the architect for reconfiguration. These constraints evolve during
the reconfiguration and are conceptualized by a transition architecture.

This view of reconfiguration led to the development of an iterative and recursive reconfiguration
process. The proposed process helps to guide the architect in the design of the reconfiguration scripts,
structuring the activities and controlling the effects of reconfiguration on the reconfigured SoS. These
activities consist of preparation, change and restoration phases. The preparation and restoration phases
can be considered as reconfiguration. This recursion forces the architect to explicitly document service
degradation of the SoS and to control the impact of the reconfiguration on SoS operation.

In the future, we envisage a second set of experiments that will make it possible to qualify and
quantify the assistance provided to the architect for the design of the reconfiguration.

The patterns we have defined are all at the same level of granularity. The coevolution pattern addresses
the global objective of the reconfiguration. By contrast, the quiescence pattern provides a solution to
a problem that is only a small reconfiguration step. Further investigation could provide information to
answer the question of the composition of reconfiguration patterns.

References
Françoise André, Erwan Daubert, Grégory Nain, Brice Morin, and Olivier Barais. F4plan: An ap-
proach to build efficient adaptation plans. In 7th International ICST Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services, pages 386–392, 2010. doi: 10.1007/
978-3-642-29154-8_47.

Naveed Arshad and Dennis Heimbigner. A comparison of planning based models for component recon-
figuration. Technical report, University of Colorado, 2005.

Fabienne Boyer, Olivier Gruber, and Damien Pous. A robust reconfiguration protocol for the dynamic
update of component-based software systems. Software: Practice and Experience, 47(11):1729–1753,
2017. doi: 10.1002/spe.2499.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. The
FRACTAL component model and its support in Java. Software: Practice and Experience, 36(11-12):
1257–1284, September 2006. ISSN 1097-024X. doi: 10.1002/spe.767.

Jérémy Buisson, Fabien Dagnat, Elena Leroux, and Sébastien Martinez. Safe reconfiguration of coqcots
and pycots components. Journal of Systems and Software, 122:430–444, 2016. doi: 10.1016/j.jss.2015.
11.039.

Carlos Eduardo da Silva and Rogério de Lemos. A framework for automatic generation of processes for
self-adaptive software systems. Informatica, 35(1):3–13, 2011.

Francisco Durán and Gwen Salaün. Robust and reliable reconfiguration of cloud applications. Journal
of Systems and Software, 122:524–537, 2016. doi: 10.1016/j.jss.2015.09.020.

16

Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising Software Architectures for Distributed
Systems. In Proceedings of the First Workshop on Self-healing Systems, pages 33–38, 2002. ISBN
978-1-58113-609-8. doi: 10.1145/582128.582135.

Mohammad Ghafari, Pooyan Jamshidi, Saeed Shahbazi, and Hassan Haghighi. An architectural approach
to ensure globally consistent dynamic reconfiguration of component-based systems. In Proceedings of
the 15th ACM SIGSOFT Symposium on Component Based Software Engineering, pages 177–182, 2012.
doi: 10.1145/2304736.2304765.

Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek, and Daniel A. Menascé. Software adap-
tation patterns for service-oriented architectures. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 462–469, 2010. doi: 10.1145/1774088.1774185.

M. Guessi, F. Oquendo, and E. Y. Nakagawa. Checking the architectural feasibility of Systems-of-Systems
using formal descriptions. In 2016 11th System of Systems Engineering Conference, pages 1–6, June
2016. doi: 10.1109/SYSOSE.2016.7542939.

Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change management. IEEE
Transactions on Software Engineering, 16(11):1293–1306, 1990. doi: 10.1109/32.60317.

Xiaoxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna, and Jian Lu. Version-consistent
dynamic reconfiguration of component-based distributed systems. In 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering and 13th European Software Engineering Conference,
pages 245–255, 2011. doi: 10.1145/2025113.2025148.

Mark W. Maier. Architecting principles for systems-of-systems. Systems Engineering, 1(4):267–284,
1998. doi: 10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.

Seong-ick Moon, K. H. Lee, and Doheon Lee. Fuzzy Branching Temporal Logic. IEEE Transactions on
Systems, Man, and Cybernetics Part B, 34(2):1045–1055, April 2004. ISSN 1083-4419. doi: 10.1109/
TSMCB.2003.819485.

OMG. Systems Modeling Language version 1.5. Technical Report formal/2017-05-01, OMG, May 2017a.

OMG. Unified Modeling Language version 2.5.1. Technical Report formal/2017-12-05, OMG, December
2017b.

OMG. Unified Profile for DoDAF and MODAF version 2.1.1. Technical Report formal/2019-05-04,
OMG, May 2017c.

Franck Petitdemange, Isabelle Borne, and Jérémy Buisson. Assisting the evolutionary development of sos
with reconfiguration patterns. In Proccedings of the 10th European Conference on Software Architecture
Workshops, page 9, 2016.

Franck Petitdemange, Isabelle Borne, and Jérémy Buisson. Modeling system of systems configurations.
In 13th Annual Conference on System of Systems Engineering, pages 392–399. IEEE, June 2018. ISBN
978-1-5386-4876-6. doi: 10.1109/SYSOSE.2018.8428737.

Petros Pissias and Geoff Coulson. Framework for quiescence management in support of reconfigurable
multi-threaded component-based systems. IET Software, 2(4):348–361, 2008. doi: 10.1049/iet-sen:
20070046.

Eberhardt Rechtin. Systems Architecting: Creating and Building Complex Systems. Prentice Hall, 1990.
ISBN 978-0-13-880345-2.

Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tranquility: A low disrup-
tive alternative to quiescence for ensuring safe dynamic updates. IEEE Transactions on Software
Engineering, 33(12):856–868, 2007. doi: 10.1109/TSE.2007.70733.

Thiago Viana, Andrea Zisman, and Arosha K. Bandara. Towards a Framework for Managing Inconsis-
tencies in Systems of Systems. In Proceedings of the International Colloquium on Software-intensive
Systems-of-Systems at 10th European Conference on Software Architecture, pages 8:1–8:7, 2016. ISBN
978-1-4503-6399-0. doi: 10.1145/3175731.3176177.

17

P. Waewsawangwong. A constraint architectural description approach to self-organising component-
based software systems. In Proceedings. 26th International Conference on Software Engineering, pages
81–83, May 2004. doi: 10.1109/ICSE.2004.1317430.

Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental dynamic updates with first-class
contexts. Journal of Object Technology, 12(3):1: 1–27, 2013. doi: 10.5381/jot.2013.12.3.a1.

Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel Bruel. RELAX: a
language to address uncertainty in self-adaptive systems requirement. Requirements Engineering, 15
(2):177–196, 2010. doi: 10.1007/s00766-010-0101-0.

Michael Winokur, Revital Goldberg, Nir Ben Dov, Leonardo Mangeruca, Roberto Passerone, Valerio
Senni, Christoph Etzien, Tayfun Gezgin, Thomas Peikenkamp, Martin Jung, Arnold Alexandre, René
Bullinga, Sanduka Imad, Eric Honour, Stéphane Paul, Sebastian Klaas, Benoît Boyer, and Stephanie
Kemper. DANSE Methodology V03. Technical Report D4.4, February 2015.

Uwe Zdun and Paris Avgeriou. A catalog of architectural primitives for modeling architectural patterns.
Information & Software Technology, 50(9-10):1003–1034, 2008. doi: 10.1016/j.infsof.2007.09.003.

Ji Zhang and Betty H. C. Cheng. Specifying adaptation semantics. ACM SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005. doi: 10.1145/1082983.1083220.

Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive software. In
28th International Conference on Software Engineering, pages 371–380, 2006. doi: 10.1145/1134285.
1134337.

18

	Introduction
	Background and related work
	System of systems
	The systems modeling language
	The unified profile for DoDAF and MODAF
	Modeling of SoS configurations
	Dynamic reconfiguration
	Design of dynamic reconfiguration and SoS evolution

	Reconfiguration Design Process
	Trigger of the reconfiguration
	Transition architecture
	Design of the reconfiguration
	Execution

	Example
	Trigger and objectives
	Design transition architecture
	Design reconfiguration
	Apply reconfiguration

	Threat to validity
	Threat to internal validity
	Threat to external validity

	Conclusion

