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Abstract In this paper, we will focus on adaptive meshing and re–meshing.
We present an original approach, based on Quadtree and Octree, to construct
the initial mesh and refine it using mixed–elements. We propose a fast algo-
rithm using a determined set of Patterns to handle transitions between fine and
coarse regions, and to closely approximate surface boundaries. An optimized
structure for storing edges permits to efficiently manage neighbor informa-
tion, dramatically reducing the balancing time. Results, both in 2D and 3D,
exhibit the multiple possibilities for local refinements. Comparisons in terms
of accuracy, number of elements in the resulting mesh, and computation time,
clearly position our method as a competitive alternative to generate a conform
adapted mesh, which can be used with standard numerical methods.

Keywords Mesh reconstruction · Adaptive refinement · Mixed–element
mesh · Balanced Quadtree/Octree · Edge data structure

Article Highlights

– A fast meshing/re–meshing algorithm using deterministic patterns, suited
for numerical simulation

– Mixed–elements are used to produce conform transitions and manage do-
main boundaries

– An optimized edge data structure for neighbor search is proposed to accel-
erate balancing of Quadtree and Octree meshes
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1 Introduction and context

Numerical simulation unquestionably brings answers in problems in physics,
geology, engineering, medicine, and many other application fields. In many
cases, the physical behavior of objects is complex, and far to be regular. Thus,
the overall accuracy of the numerical solution if often lowered by the presence
of singularities, interface between layers or heterogeneous materials, as well
as the complexity of the interactions that may appear between objects like
in hard or soft collisions, sliding, breaking or even cutting of objects. Once
those regions have been identified, a current response is to locally adapt the
numerical model: in changing the topology, refining the geometry, using high
order elements, etc. Probably the most obvious and most popular technique
is mesh adaptation. These considerations clearly show the need for fast mesh
generation and further adaptive re–meshing, that underlies most of numerical
approximation procedures that may be as follows:

1. Reconstruction of the geometrical input boundary of the considered struc-
ture(s).

2. Generation of the initial (coarse) discrete models, surface or volume.
3. Integration of the mechanical laws that govern the objects behavior; and

simulation of the displacements and deformations.
4. Computation of error estimates, and identification of the discrete elements

which have to be refined.
5. Adaptive mesh refinement, and back to step 3, until a global error criterion

is satisfied.

Thus, in this article, we will focus on the meshing aspects of the simula-
tion procedure, in an attempt to respect the trade-off between accuracy and
computation time! As previously said, one key feature is adaptation of the
underlying mesh. It allows concentrating the nodes in some regions regarding
some criteria, which are most of the time based on geometrical approximation
errors (eg. aspect ratio, scaled Jacobian) or simulation errors (like physically-
based a priori or a posteriori error estimate [24]). High resolution elements
will be constructed locally, in regions of interest (RoI) or where the numer-
ical approximation is not regular; and coarser elements are generated in the
rest of the domain. Mesh adaptation varies depending on the element type,
which can be typically triangles or quadrilaterals in 2D, tetrahedra or hexa-
hedra in 3D, or a combination of element types. These latter models, so called
mixed–elements, will be particularly studied in this work.

The Quadtree [6] and the Octree [25] meshing techniques are an excellent
starting point, since they are meant for mesh adaptation. We have noticed that
some steps of those algorithms can be optimized to accelerate mesh generation.
But most important, we are focusing on being able to consider an already
generated mesh, refine it regarding simulation results, all this in an efficient
way.

There exist many other meshing techniques or software, like Triangle [22]
or TetGen [23], capable of refining previously generated simplex meshes; as
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well as some modified standard numerical methods that are suited to non–
conform Quadtree and Octree meshes. However the focus of the present work
is to count with an efficient meshing algorithm capable of re–meshing, with
mesh adaptation in RoI, and with a small set of mixed–elements (not general
polygons or polyhedrons like possibly required by other methods) to be used
with standard previously cited numerical methods.

2 State of the Art

In computer graphics, working with an arbitrary domain D requires a tessella-
tion. This is commonly known as a mesh. Mesh cells, or elements, are discrete
representations of the input domain, and are composed of vertices, edges and
faces. Among many mesh generation methods, one well known algorithm was
proposed in [6], where the data structure of Quadtree was introduced. The
idea is to start with one or a small number of quadrants (typically squares)
that encompasses the input domain D. Then recursively split the quadrants
into four new ones. If a new quadrant is completely outside D, remove it from
the mesh. If it is completely inside D, stop refining it (split). Repeat these
operations until a certain goal is achieved, eg. the error in approximating the
boundary is acceptable. Fig. 1 shows an example to illustrate this algorithm
(Pie and A .poly files from [3]).

This meshing technique was extended to 3D with the Octree [25]. Start-
ing with some octants (typically cubes) that completely cover D, refinement
is achieved by splitting them into 8 new octants, and the remaining of the
algorithm is merely identical to the 2D case.

(a) (b) (c) (d) (e)

Fig. 1 The Quadtree algorithm. Note that from (a) to (b) some steps were skipped. (a)–(e)
show how increasing the RL improves the approximation of the input domain described by
a polyline (in red). Grey quadrants become darker as they get larger w.r.t. their neighbors

It is important to note that, at this stage, the mesh can barely be used by
standard numerical methods, since the output is not conform. Concretely, if
we want to use the mesh shown in Fig. 1(b), the two grey quadrilaterals would
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have to be replaced by 7–node polygons to obtain a conform mesh. Only
recently, some methods like [9] adapted numerical methods to work directly
with hanging nodes. The above algorithm was extended to 3D in [20], however,
this time, the Octree mesh must be balanced. This property (also sometimes
referred as to 1–irregular) means that the difference in the Refinement Level
(RL) according to its neighbors cannot be greater than one. To be clear, the
RL of an octant O is the number of times the original octant was recursively
split into 8 new octants to get to O. For instance in Fig. 1, (a) and (b) are
balanced meshes, while all the other meshes are unbalanced. However, if the
two darkest quadrants in Fig. 1(c) were refined once, this mesh would be
balanced.

The first step in the balancing process consists in finding the neighbors of
each quadrant. Then we check whether they are balanced w.r.t. the current
quadrant. Two of the neighbors are easy to find following the Quadtree struc-
ture as they are direct siblings (ie. sharing the same parent root of the current
quadrant), but finding the other two can be an expensive task since it should
be performed using recursion over the Quadtree structure.

In the computer vision and image analysis field, this is a well studied
problem. Starting with the work of [18, 19] where, following some rules over
the data structure, the neighbors could be retrieved easily. Then, more recent
works like [1] started to add more information to the quadrants, like its RL,
so following a rule for numbering the quadrants and performing several bit
computations, the neighbors could be retrieved in linear time. Further more,
even faster results are achieved thanks to calculations performed at split time.
Note that both Quadtree and Octree are considered in this last work [15].

It is important to highlight that all these last works solve the problem of
finding the neighbors of each octant by considering the final state of a non
balanced Quadtree/Octree mesh. By itself, this does not consider the prob-
lem of producing a balanced mesh. This latter problem is more complex due
to possible propagation. If an unbalanced quadrant is refined, its neighbors
should now be checked for balance, and if they are not, the refinement should
propagate to them. Of course this procedure is very expensive and it should
continue until the entire mesh is balanced. In this article, we will show that
balancing can be performed much faster if we relay on updated neighbor in-
formation using an edge data structure and also if we change the paradigm of
balancing at the end of the refining process. The main idea will be to regain
balance immediately after its loss during the split operation.

Once the mesh is balanced, all the quadrants can be triangulated like in [25,
7] if standard numerical methods are meant to be used. The main drawback
for this strategy is that the number of triangles in the final mesh will be much
larger than the number of quadrants. For instance a quadrant that must cover
a transition (between fine and coarse regions) may be replaced with up to 6
triangles.

An alternative to triangles is to produce an all–quadrilateral mesh [5]. Here
two main issues must be tackled. The first one is how to manage the transitions.
For example in 2D, if only one of the 4 quadrant edges is split (meaning it has
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a hanging node), there is no template (or pattern) to manage this situation
using only quadrilaterals. The only way to do this is to split the quadrant into
4 new ones and therefore continue with undesired refinement propagation. An
alternative to this is to always split a quadrant into 9 new ones instead of 4.
This will avoid unnecessary refinement propagation, however it will drastically
increase the number of nodes in the mesh. Just for the case of one refined edge
in the quadrant, the pattern that performs this transition without splitting
other edges adds two nodes inside the quadrant. Therefore, it is clear that
both alternatives, 4 and 9–refinement, will add internal nodes in order to
maintain only quadrilaterals in the mesh. This may be avoided by using a
combination of quadrilaterals and triangles to manage the transitions, leading
to mixed–element meshes. The second issue of pure quadrilateral meshes is
the representation of the boundary. Typically all the quadrants intersecting
the boundary of D are removed from the mesh and then the void left behind
is filled with new quadrilaterals that sometimes might have poor quality. Once
more, several problematic configurations can be avoided using mixed–element
meshes.

When it comes to 3D, there are several Octree based techniques that pro-
duce pure hexahedral meshes, however this necessitates to split an octant in
27 new ones [21, 26, 27, 12]. Moreover, it is important to mention that these
works use a small, but incomplete, set of configurations to perform transitions
between fine and coarse regions.

As an alternative, mixed–element meshes have been more developed, count-
ing with a larger set of patterns to handle transitions [4, 16, 17]. Moreover, in
a previous work [14], we were able to implement all mixed–element transition
cases, avoiding any unnecessary refinement propagation (see [8] for implemen-
tation details).

Nowadays it is common to simulate a process, estimate the error and then
re–mesh regarding this error, so the simulation can be more accurate at the
next iteration. Triangle [22] and TetGen [23] are capable of re–meshing a
pure triangular or tetrahedral mesh, however, to our knowledge, there are no
Quadtree/Octree based re–meshing techniques for producing conform meshes.
There are some works like [10, 11] that use balanced Quadtree and Octree
meshes, but in the end, they need to modify the standard FEM so the simu-
lation is performed over general polygons and polyhedrons, respectively.

Summarizing, the contributions of this article will be of various kinds:

– An efficient method based on Quadtree/Octree techniques for meshing a
given domain D. The use of mixed–elements will help to reduce the num-
ber of cells, with a good connectivity ratio between nodes, providing with
a conform quadrilateral– or hexahedral–dominant mesh suitable to most
numerical simulation methods.

– The possibility to define various Regions of Interest for adaptive mesh-
ing depending of the expected final result. Moreover, our method is also
naturally well-suited for local re–meshing.
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– The deterministic process leads to coherency and generality in the meshing
process, while insuring to cover every configuration. The use of a limited
number of Transitions in coarse to fine regions, and Surface Patterns guar-
anties to produce a quality mesh, handling boundaries and sharp features
with accuracy.

– The proposition for an adapted structure to store neighbors information
during the meshing allows to dramatically improve the efficiency in the
search of neighbors in Quadtree/Octree. This could be of interest in other
fields, like path planning, for example.

3 A Quadtree-based approach

Our first motivation to work with Quadtree was how easy it was to do mesh
adaptation. You can rapidly increase the number of nodes and elements in a
particular Region of Interest (RoI). In our method, we can combine them in
many ways, depending on the final purpose of the mesh (see results in section 6
for some concrete examples). When a quadrant is affected by several RoIs, the
greater RL among them is applied to it. They are as follows:

– Refine the quadrants intersecting the boundary of D (this is referred to as
Surface refinement).

– Define a global RL for D (this is referred to as All refinement)
– Refine a particular region of D (this is referred to as Region refinement).

The target will be a mixed–element mesh for a given D, which is described
by a set P of closed input Polylines. Each Polyline is a collection of segments
that must fulfill two constraints: it must be unfolded (no self–intersection),
and the normal of the edges must be pointing outward. Thus D may contain
holes or disconnected parts (Fig. 1(a)).

The algorithm will use P for two purposes: to find out if a point is inside
or outside D, and to project a point onto P.

3.1 Splitting and balancing

In this section, we will describe our refinement algorithm. The main loop will
iterate until the max RL (among defined RoIs) is reached. At each iteration,
we maintain a list of candidates quadrants for refinement, and a list with the
already processed quadrants. When generating a mesh from scratch, all the
quadrants are candidates and none is processed.

On the one hand, if a candidate needs to be refined regarding at least one
RoI, it will be split into four new quadrants, and each one will be a candidate
for the next refinement iteration. On the other hand, it will be tagged as
a processed quadrant. An already processed quadrant may only be further
refined for balancing reasons.
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Each time a quadrant is split, neighbors are checked for balancing using
the edge data structure defined in section 3.2. If not balanced, they are added
to a list. This list will be treated only when all candidates have been analyzed.

Now we will loop until the list of to balance quadrants is empty. Each time
a quadrant of this list is split it may add unbalanced neighbors to the list.

Finally, when balance is achieved throughout the mesh, we will be ready
to proceed with another iteration of candidates until the max RL is reached.

Algorithm 1: Generate a balanced Quadtree mesh
Result: A balanced mesh
List candidates: all quadrants;
List processed : void, to balance: void;

1 while Refinement Level is not reached do
foreach Refinement Region (RR) do

foreach Quadrant (q) in candidates do
if q do not need refinement by RR then

candidates.remove(q);
processed.add(q);

end

end

end
2 foreach q in candidates do

Refine q;
foreach son (s) of q do

candidates.add(s);
end
foreach neighbor (n) of q do

if n is not balanced with q then
to balance.add(n);

end

end

end
3 while to balance not empty do

q = to balance.pop();
if q is not balanced then

Refine q;
end
foreach neighbor (n) of q do

if n is not balanced with q then
to balance.add(n);

end

end

end

end

In Algorithm 1 step 3, it is important to check if a quadrant to balance
was not already balanced. For instance, while balancing, a neighbor could
need refinement. However it could have been already inserted in the list and
processed previously in the same iteration. If not taken into consideration, this
could lead to duplicate instances of the same split quadrant.
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3.2 Edge data structure for balancing quadrants

The basic operation of a quadrant is to split itself into four new ones. When
doing so, it might cause unbalance with respect to its neighbors. There are
two strategies to re–gain balance: solve all the problems at the very end of the
refinement process; or solve them while refining. As we will show later, this
last strategy is much more efficient.

The main key is to store neighbor information at the edge data structure.
First of all, each quadrant will have a unique id. The information allocated
in each edge will be an array (info) of 3 integers: the middle node index (if
any) and the index of the two quadrants that share it. By default, the mid–
node is set to 0. The first node of a mesh will always be a corner, therefore, if
the mid–node is 0 it means it has not been split yet into two sub–edges. The
index of the two neighbor quadrants is set to the maximum value an integer
can hold. This means it has no neighbors. When updating the information, we
follow a simple rule to identify where to store it. For a quadrant Q, we will
store its index in position 1 of the info array for its bottom and right edge
and in position 2 for its top and left edge.

2 310

7654

Q0 Q2Q1

(a)

8 2 310

7654
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Q0
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11 Q2
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Fig. 2 Balancing a mesh while refining. The quadrant to be modified in next iteration is
shown in grey. (a) initial state, (b) refining quadrant Q1, (c) refining quadrant Q4 produces
a non balanced mesh and (d) quadrant Q2 is refined due to balancing

Let us consider the example of Fig. 2(a) with 3 quadrants and also consider
a finer mesh is wanted next to node 2. The information of edge (2,6) is the
following: [0, Q1, Q2] because it is not split yet (the first 0) and the index
of neighbors are Q1 and Q2 following the order for the edge data structure
mentioned previously. In the case on Fig. 2(b), the quadrant Q1 at the middle
was split and replaced by four new ones, namely Q3, Q4, Q5 and Q6. In the
process, the edge (2,6) has been split by inserting a midpoint (9), and now we
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update its information with [9, Q1, Q2], despite Q1 no longer exists. In fact,
there is no need to update neighbor information for split edges, as this data
is now carried out by the new edges. Thus, the important point is that all
edges of the most refined quadrants are embedding updated information. The
information of edge (2,9) is [0, Q4, Q2], and for edge (6,9) it is [0, Q5, Q2]. At
this point, we check whether neighbor quadrants are balanced. The Refinement
Level (RL) for original quadrants is 0, and 1 for Q3 to Q6. If the RL difference
between two neighbors is greater than one, then the less refined quadrant is
added to a list for subsequent balance. The same updating process is of course
repeated for all edges of the initial quadrant Q1, respectively (5,6), (1,5) and
(1,2).

In Fig. 2(c), Q4 is now refined producing quadrants Q7 to Q10. At this
point we are done with some edges like (8,16) with [0, Q3, Q7] or (9,15) with
[0, Q5, Q9]; however edges (2,14) with [0, Q8, Q2] and (9,14) with [0, Q9, Q2]
present unbalance. For this reason Q2 is added to a list for later refinement.

It is important to highlight how edges are updated. In Fig. 2(d) quadrant
Q2 was finally refined due to balancing and now edge (6,9) holds [0, Q5, Q14]
and edge (2,9) holds [14, Q4, Q11]. Q4 is no longer existing, but sub-edges
(2,14) with [0, Q8, Q11] and (9,14) with [0, Q9, Q11] are adequately updated,
remembering that only the most refined edges need to support up-to-date
information on neighbors.

4 Complete mesh generation

In the previous section, we showed how to generate a balanced set of quadrants,
with optimized data structure. We will detail the rest of the process to provide
a quality mixed–element mesh, fully partitioning the input domain D while
respecting its boundaries.

4.1 Meshing algorithm

The main flow is shown in Algorithm 2, where step 1 corresponds to Algo-
rithm 1 presented in section 3.1. As an illustration of the process, we will now
detail the remaining steps through a complete example. Target D will be a
trapezium with its respective polyline P. Fig. 3 illustrates the refinement and
balancing process for D. The balance is lost in Fig. 3(e) and immediately re-
covered by our algorithm in 3(f). The process could continue by refining all the
quadrants intersecting P and balancing them, until the desired RL is reached.
This RL is application dependent, and is let to the appreciation of the user.

Transition Patterns. The second step consists in applying what we call Tran-
sition Patterns to all of the quadrants having at least a mid–node in an edge,
so we can finally obtain a congruent mesh. These patterns cover all possi-
ble combinations (Fig. 4). Following with the trapezium example, their use is
shown in Fig. 5(a), with grey triangles and white quadrilaterals.
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Algorithm 2: Generation process
Result: A balanced, conform, mixed–element mesh respecting boundaries

1 Create a balanced Quadtree;
2 Apply Transition Patterns;
3 Detect Features Quadrants;

Project Close to Boundary;
Remove on Surface;

4 Shrink to Boundary;
5 Apply Surface Patterns;

(a) (b) (c) (d) (e) (f)

Fig. 3 Algorithm example for balancing: (a) A trapezium as input P and the original
quadrant at RL = 0, (b)-(d) the quadrants intersecting the border are refined once and they
are balanced, (e) boundary quadrants are refined and the balance is lost, and (f) balance is
recovered for the internal quadrant at the middle-right position of the mesh.

Fig. 4 Transition patterns for quadrants regarding the number of mid–nodes in their edges.
Note that the last case is only useful for face subdivision in 3D.

Managing boundaries. At step 3, we start to move nodes lying on the surface
of P. First, we manage all the quadrants that “contain” a feature of P. When
the angle of two consecutive segments is not too “flat”, then the common
node is considered as a feature. In all our examples, we have set the interval to
]175◦, 185◦[. Once a quadrant is detected as holding a feature, its closest node
must match this feature. Secondly, internal nodes that are “close” to P are
moved onto it. In our experience we obtain better results when the maximum
displacement distance for a node is 30% of the shortest quadrant diagonal
sharing the node. To illustrate this, Fig. 6(a) shows an example of 4 octants
A,B,C,D and P, in red. 2 features (red nodes) are covered by nodes 0 and
1 when analyzing octants A and B, respectively. Node 4 is projected onto P
when analyzing octant C. The main goal for this is to decrease the chances of
having flat elements at this stage.

Following with our trapezium example, the displacement to features is per-
formed at its corners. This can be seen in Fig. 5(b) as well as the displacement
of “close to the boundary” nodes at the trapezium top border. At the end of
step 3, we remove the elements that now are completely outside D. This can
be observed for some quadrants at the diagonal in Fig. 5(c).
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(a) (b) (c)

Fig. 5 Algorithm example for: (a) applying transition patterns: darker elements are trian-
gles, (b) node displacement by proximity to the input boundary and (c) completely outside
elements are removed.
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Fig. 6 Surface representation: P is the dashed line and red nodes are identified features.
6(a) before projection state. 6(b) nodes 0 and 1 are projected to features, while node 4 is
an inside node “close to the boundary”, thus it is projected. 6(c) outside nodes 2 and 3 are
projected onto P and then by the use of surface patterns, node 3 is removed.

Shrink to boundary. Step 4 will force all the remaining nodes that are still
outside P to project onto it. To illustrate this, Fig. 6(c) shows the projection
of nodes 2 and 3 when analyzing octants A and C. The result can be seen in
Fig. 7(a) for the trapezium. Even if this mesh is an accurate representation of
D, it presents poor quality quadrilaterals at the trapezium top border. For this
reason, we use what we call Surface Patterns that will replace poor quality or
invalid quadrilaterals by triangles as it can be seen in Fig. 7(b).

Surface Patterns. To determine if a quadrant must be removed, replaced by a
triangle or just stay as it is, the Surface Pattern process (step 5) first considers
the configuration of inside nodes and, secondly, the angles of outside nodes.
Fig. 8 shows the six possible configurations of inside nodes (marked in black).
Here it is important to note that nodes lying exactly on P (even if they were
forced to be projected onto it) are considered as outside nodes.
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(a) (b)

Fig. 7 Algorithm example for: (a) shrink outside nodes onto the boundary and (b) the use
of Surface Patterns to replace some quadrilaterals with triangles to enhance quality.

(a) (b) (c) (d) (e) (f)

Fig. 8 Surface patterns. Black nodes are considered inside D.

Once the pattern is figured out regarding inside nodes, we analyze the
angles at the rest of the nodes. An angle < 150◦ will make the node to be
considered as an inside node. An angle ∈]175◦, 185◦[ would make the quadri-
lateral of poor quality or even tangled (inverted quadrilateral). For this reason
the quadrilateral is replaced by a triangle without considering this node. For
instance, in Fig. 6(c) we see that for quadrant C there is a bad angle at node
3, therefore pattern 8(b) is used causing to replace the flatted quadrilateral
by a triangle. Now, for quadrant A, we do not obtain the same result because
the angle for nodes 0 and 1 is less than 150◦, meaning they are labeled as
inside nodes. Assuming the angle at node 2 is also < 150◦ this will remain as a
quadrilateral, otherwise node 2 will be considered outside and pattern of Fig.
8(e) will split quadrant A into two triangles. The same will occur for quadrant
B regarding the angle at node 1. However for quadrant D, as the angle at
node 4 is < 150◦, it will remain as a quadrilateral.

It is possible to find even more complex situation. Let us consider the top
left corner of the trapezium shown in Fig. 7(a). This quadrant has all its nodes
marked as outside nodes. Moreover, the top right node of this quadrant will
have an angle of 180◦ when projected, thus, the underlying quadrilateral is
replaced by a triangle as shown in Fig. 7(b). As for the rest of quadrilaterals
replaced with triangles at trapezium top border, we see that they have ex-
actly one node inside and the two nodes directly connected to it have a good
angle. However the opposite node has an angle of 180◦, meaning that these
quadrilaterals will be replaced by triangles as in Fig. 8(b).
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4.2 Re–meshing an existing mesh

One of the main goals of this work was to count with a meshing technique
well adapted for re–meshing regarding simulation errors. In other words, gen-
erate a mesh, simulate and loop until the error goes below a given threshold.
Classically, the simulation is performed using a Finite Element or Finite Vol-
ume Method, but alternatives as Mass–Spring or even Mass–Tensor techniques
could be used, as soon as they are able to provide with an error estimate for
each element. This information will be used by the re–meshing process to add
details where the solution of the simulation is not satisfying, for example where
the deformation of the objects is not realistic. Locality of the mesh refinement
is one of the most important properties. The goal is to avoid unnecessary
refinement propagation in areas where the desired quality of the numerical
solution is already reached.

When we generate a mesh for a given domain D, given a Polyline P, and
refine it following provided Regions of Interest (RoIs), two outputs are pro-
duced: the mesh itself in any standard format, eg. VTK, and also an ad hoc file
containing all the information to re–start the process from a balanced mesh.
An example of such a file can be found at Appendix A. For the trapezium
example, this would be to start from Fig. 3(f). When re–meshing, one typical
input is an element index list (depending on errors issued from a simulation,
for example), and not a quadrant index list. Thanks to the coupled informa-
tion, we are able to associate each quadrant to its corresponding sub–elements.
Before refining a quadrant, its previous sub–elements are erased. Also, thanks
to the edge data structure (section 3.2), it will be easy to refine the neighbors
as well if balance is lost. This is presented in Algorithm 3.

Once the list is processed and the mesh is balanced, we continue with
the refinement required by other RoIs following the steps in Algorithm 2. An
example of this can be seen in Fig. 9, where two refinements were employed: a
list of elements and a region, which is defined by another polyline intersecting
D. Only element 0 was provided in the list, located in the quadrant at bottom
left corner of the trapezium. Each quadrant associated to the elements in the
list will be refined only once. The region of refinement can be seen in Fig. 9(a)
as a dashed line. In this case, the RL is set to 4 in the region, equal to the
original RL of boundary elements. The final output where both refinement
types are achieved is shown in Fig. 9(b). It is important to note that this new
mesh will also automatically save its information for further re–meshing, so
if we continue needing refinement after a new step of simulation we can start
from this point.

Once this refining step is done, a balanced Quadtree mesh is obtained. Steps
2 to 5 of Algorithm 2 are now processed as for the initial mesh generation.



14 Fabrice JAILLET, Claudio LOBOS

Algorithm 3: List refinement
Result: A balanced refined quadrant mesh
List to balance: void;
List list : provided quadrants to be refined;
/* Refine listed quadrants */

foreach Quadrant (q) in the list do
Refine q;
foreach neighbor (n) of q do

if n is not balanced with q then
to balance.add(n);

end

end

end
/* Refine unbalanced neighbors */

while to balance not empty do
q = to balance.pop();
if q is not balanced then

Refine q;
end
foreach neighbor (n) of q do

if n is not balanced with q then
to balance.add(n);

end

end

end

(a) (b)

Fig. 9 Algorithm example for re–meshing: (a) starting mesh with a region for refinement
(segmented line) as well as refinement of an element at the bottom left corner; and (b) the
output mesh after refinement.

5 Extension to 3D

In previous section, we presented our optimized algorithm based on Quadtree
subdivision to generate a 2D quality mesh. Same ideas could be extended to
Octree and octants. In the following, we will emphasize the main adaptation
that are required for the extension to 3D.
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5.1 Meshing algorithm in 3D

The meshing algorithm in 3D is the same as Algorithm 2 in Section 3.1, how-
ever, two main considerations must be explained. First, the number of tran-
sitions patterns is much larger. Each of the 6 square faces of an octant can
take one of the 7 configurations shown in Fig. 4, meaning that each one of
the 12 edges can be subdivided, or not. Thus, all possible combinations have
been automatically computed, and after removing equivalent cases due to ro-
tations, there remains 325 different patterns. Each pattern was individually
filled by using our 4 basic element types (tetrahedron, hexahedron, prism and
pyramid), and the complete tessellation list that can be found in [8]. Fig. 10(a)
shows the face patterns over an octant where the left face was split due to re-
finement, leading to a tessellate using 5 pyramids and 4 tetrahedra. However,
there is no solution for the pattern shown in Fig. 10(b). In this case, after
inserting the octant center node, we can build 6 pyramids using octant faces
and this node as apex. From there it is easy to build the remaining tessellation,
leading to 14 pyramids and 4 tetrahedra. There are 65 patterns needing the
octant center node insertion.

(a) Pattern #217 (b) Pattern #296

Fig. 10 Examples of 3D transition patterns (as in [8]): (a) pattern where the tessellation
can be made without inserting any additional node and (b) pattern where octant center
node is needed.

The second main consideration is regarding what we call Surface patterns,
as it was shown in Fig. 8 and explained at the end of section 3.1 for 2D.
This is not yet resolved in our 3D algorithm. The original version of the 3D
meshing technique was introduced in [14] without the main edge structure
optimization introduced in this article. It was mainly conceived for meshing
anatomical structures, where sharp features are rare. Some efforts have been
made as in [2] to improve the boundary handling. As in 2D, inner nodes close
to the boundary are projected onto it to prevent flat elements. Despite of this,
some particular sharp features in the input domain will be poorly preserved
by our 3D version algorithm, which was not the case in 2D.
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5.2 Edge data structure for balancing octants

The edge data structure for 3D is conceptually the same as the 2D version
introduced in section 3.2. The main difference is that a 3D edge might be
shared by up to 4 octants, therefore our info array now holds 5 integers: the
mid–node index (if any) and the four eventual neighbors. Using the position in
the info array we are able to identify where the octant is located with respect
to this particular edge. Fig. 11(a) shows an octant with its node indexes. Over
each of its edges appears the position at which this octant will be stored in
the info array of the respective edge. For instance, if we take the edge formed
by nodes (2,3), the index of this octant will be stored at position 2 of the info

array. This can be seen in Fig. 11(b), where for the red edge, its info array
holds index 12 in position 2.

1 0 3

4 7

1 2

5 6

2

3
4

1

2

3
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1
2 3

4

(a)

27

8

109

12

(b)

Fig. 11 Octree edge structure: (a) relative position storing for this octant regarding each
of its edges and (b) an example of how octant indexes are stored for the red edge info =
[0,8,12,109,27].

As in the 2D case, this data structure allows to quickly access neighbors
for balance checking. In a eventual balance loss, neighboring octants will be
added to a list for refinement at the end of the current refinement iteration.

6 Results

In this section, we will present some representative results, first in 2D, and
then in 3D. We will exhibit the capabilities of our method, as well as showing
its efficiency in terms of computation time and number of generated elements.
Some comparisons will also be performed with popular other techniques.

6.1 2D mesh generation

In Fig. 12(a), a polyline P representing the letter A is meshed using our al-
gorithm at RL 5 on the whole domain D. Result is a quadrilateral–dominant
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mesh (in green–blue), where the different features and boundaries have been
respected with use of Surface Patterns including a reduced number of trian-
gular elements (purple). Fig. 12(b) presents a closer look, this time at RL 10.

(a) RL 5, all quadrants (b) zoom: RL 10, all quad-
rants

(c) RL 12, on surface

Fig. 12 Meshing of the A shape: (a) uniform refinement and boundary handling, with
green–blue quadrilaterals and purple triangles, (b) zoom on the top part of the inner hole
for a more refined mesh, and (c) refining only the surface.

In Fig. 13, we compare our results with the ones obtained using Trian-
gle [22]. As expected, for an equivalent precision, both methods produce a
similar number of vertices, but mixed–meshes are containing less elements,
what could be of great importance at the moment to use this kind of mesh
for numerical simulation. Note that for computation on the GPU, reducing
the vertex connectivity is also a great advantage. Though, this gain in size of
the geometry is counter-balanced by the fact that Triangle is faster than our
method, even if the optimized version tends to be quite competitive (Fig. 14).
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Fig. 13 Number of nodes and elements
while increasing a uniform RL from 1 to 12
for the A example. Comparison between our
method and Triangle
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Fig. 14 Comparison times, between
original and optimized versions of our
algorithm and Triangle, for the A
shape, with uniform refinement.

The next example exhibit even better the improvement in time brought by
the optimized version. RL are varying in a [1-12] range, but are constrained
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only at the boundary. This kind of tool is very useful to reduce the number of
elements in inner parts. This is illustrated by Fig. 15, when inside element are
refined at a level just sufficient to provide a balanced, conform mesh, keeping
high resolution at the interface. For example, at RL 12 (Fig. 12(c)), the mesh
contains 88102 vertices for almost 500000 cells, instead of 4 millions of vertices
and 20 millions of cells for a uniform partition of D. In Fig. 16, and Fig. 17 for a
detailed view, we extracted times for each step of the algorithm. We considered
the same mesh as in Fig 12(c). For both algorithms, times are similar, except
for the balancing step that is dramatically decreased thanks to the optimized
edge data structure, leading to a cut off time of 80%, reducing the whole
process by more than 25%. Notice how the complete optimized process can
be decomposed more or less equally in 4 parts: 1) the mesh refinement, 2) the
creation of the balanced conform mesh, 3) the creation and saving of the ad
hoc structure used for refinement (can be skipped if no forward refinement is
required) and 4) the boundary processing.
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Fig. 15 Number of nodes and elements
while increasing a RL from 1 to 12 for the A
example. Comparison between uniform re-
finement, or restricted to the surface ele-
ments.
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Fig. 16 Comparison times, between
original and optimized versions of our
algorithm, for the A shape. Refinement
restricted to the surface elements.

6.2 Mesh refinement

The refinement operation could be observed on box with hole example (Fig 18),
which original mesh is composed of 60 quadrants. The bottom left element has
been subdivided to provide a new mesh, that will be subdivided in turn. It is
worth to note how the refinement process (section 4.2) naturally preserves the
balancing and quality of the elements by adding transition patterns. After 20
iterations, the final mesh contains 324 elements for 280 vertices. The refine-
ment remains localized in the lower left area, in accordance with the desired
behavior.
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Fig. 17 Detailed times, comparison between original version of our algorithm, and new one
using optimized structure for neighborhood handling, for the A example.

(a) iter. 01, 67 elements (b) iter. 02, 74 elements (c) iter. 04, 83 elements

(d) iter. 06, 135 elements (e) iter. 21, 324 elements (f) iter. 21 (zoom)

Fig. 18 Recursive refinement of the bottom left element, at different RLs (with green–blue
quadrilaterals and purple triangles)

6.3 Additional features

Another interesting feature that can easily be handled by our algorithm is the
ability to define local areas that require more details. They can be described as
closed boundaries to define Regions of Interest, as seen previously, or by adding
constraints on the meshing process. This can be any user-specific functions or
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list of inner polylines, as in Fig 19. Note that in this case, the line segments
will not be integrated as boundaries, but will serve as condition to subdivide
a quadrant when it intersects a given curve or segment (Fig. 19(b)). These
features are very easily integrated into the whole generation process, thanks
to the Visitor design pattern. Note how inner structure are not considered as
other boundaries, thus they will not be represented by cell edges.

(a) (b)

Fig. 19 Refining around internal structures, here represented by the “MESH” red letters,
with zoom on the upper part of the M letter, showing RLs in a color scale

6.4 3D mesh generation

In order to illustrate our 3D results, a domain representing a brain will be
meshed with 3 techniques: the Octree with and without the edge data structure
introduced in this article, and also TetGen [23]. Fig. 20(a) shows the input
surface mesh employed in these examples. It has 3152 nodes and 6300 triangles.
Fig. 20(b) shows the output mesh with a surface Refinement Level (RL) 5,
meaning that all the octants intersecting the surface (input boundary) were
recursively split 5 times into 8 new octants. The rest of the intern octants were
left as coarse as possible. Fig. 20(c) shows a RL 7. It is important to highlight
that the Octree with and without using the new edge data structure produce
the same output. Also, to understand the impact of increasing the refinement
at the surface, Fig. 21 shows a log–log plot regarding the number of nodes and
elements in the output mesh while increasing the refinement level from 4 to 9.

Fig. 22 shows a plot where the number of nodes at each RL (from 4 to 9)
are related to the time to produce the mesh whether using or not the improving
edge data structure. It is easy to see how the greater the RL is, the greater
the gain in time. For RL 9, the mesh contains more than 3.5 millions of nodes,
the edge optimization will save almost 30% of time, from 23.8 to 15.1 minutes,
to generate this fine quality mesh.
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(a) (b) (c)

Fig. 20 (a) The input mesh and (b)-(c) output meshes for RL 5 and 7 at the surface.
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Fig. 22 Time comparison of the Orig-
inal and Optimized version for Octree.

Now let us compare our meshing algorithm using the new edge data struc-
ture with TetGen (version 1.5.1). The surface mesh shown in Fig. 20(a) is used
as input. We set the switches -pqk: a quality piecewise linear complex mesh,
to generate the coarsest mesh as possible. We also asked to write the output
to VTK format, which purpose was to compare similar tasks (including file
writing). Fig. 23(a) shows a sagittal cut for the output mesh using TetGen.

For our algorithm, we set RL to 5 to produce a similar output, at least in
representing the domain with an equivalent node quantity. Indeed, the surface
of this output mesh counts with 3372 nodes, close to the 3152 nodes of the
input mesh used by TetGen.

Now, starting from these outputs we intended to refine a given Region of
Interest (RoI) that is defined by an hexahedron intersecting the input domain
(Fig. 23(c)). We extracted the list of all elements having at least one node
inside the RoI, and sent this list to both algorithms for refinement.

Fig. 24(a) shows the TetGen output, starting from the mesh shown in 23(a)
and Fig. 24(b) the output for our algorithm, starting from the mesh shown
in 23(b).

Table 1 resumes the statistics for both methods. In particular, it allows to
compare the behavior of the algorithms when a list of elements is selected for
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(a) (b) (c)

Fig. 23 (a) The coarsest mesh for TetGen, (b) an equivalent mesh at the surface using our
technique and (c) the input mesh with a region for refinement using.

(a) (b)

Fig. 24 Output meshes after refining a given RoI (a) by TetGen and (b) our algorithm.

refinement. First of all, TetGen is much faster than our algorithm. However,
when re–meshing, TetGen takes more than 4 times the original meshing time
while we take less than the original time.

Mesh
Nodes Elements

Time [ms]
All in RoI % All in RoI %

TetGen
Initial 3888 3.13% 13370 5.94% 296.14
Final 16519 39.11% 91766 48.99% 1232.66

Ours
Initial 10941 3.76% 26209 5.52% 4322.02
Final 27220 42.63% 48199 29.54% 4167.14

Table 1 Comparison table between TetGen and our algorithm. Initial meshes are shown
in Fig. 23; while final meshes are shown in Fig. 24. Columns % in RoI refers to the number
of nodes or elements inside the Region of Interest.
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When looking at the final meshes, we get 1.6 times the number of nodes
of TetGen, but with 0.52 times the number of elements. However, if we look
at the ratio of nodes inside the RoI over the total number of nodes the results
seem similar.

There is one important point related to mesh quality that has not been
tackled before. It is difficult to use only one metric to measure the quality
of all the different element types in this work. In the case of tetrahedra and
hexahedra, the problem has been long studied. However this is not true for the
prism (wedge) and the pyramid. In a previous work [13], we already introduced
a metric based on the Jacobian to detect invalid or bad–shaped linear elements.
This is an extension of the Scaled Jacobian (JS) defined for hexahedra to the
4 element types used in this work. It is called Element Normalized Scaled
Jacobian (JENS).

The JENS ranges in [-1,1]. When negative, the element is invalid, meaning
that it has a “volume inversion” somewhere. In the case of a negative value for
a linear tetrahedron, it means that this tetrahedron will eventually penetrate
a neighbor element. Let us say that a valid tetrahedron is the one with node
a at the right of the triangle formed by nodes b, c, d. If we now move node a
to the left of plane formed by b, c, d then its JENS value will be negative.

A positive JENS means the element is valid. It will be of poor quality
(bad–shaped) when it is close to 0, and good as it approaches to the value 1.
More details and validations can be found in [13].

In Table 2, we measured the JENS over the meshes of Table 1. If we look
at our initial mesh, it presents good quality results with respect to TetGen.
This is because the use of “surface patterns” prevents to produce invalid and
poor quality elements. However, “transition patterns” are meant to manage
transitions between fine and coarse regions and sometimes they fail when used
at surface. It is for this reason that our Final mesh has negative and poor
quality elements.

n◦ of elements
JENS < 0 < 0.05 < 0.1 < 0.2 ≥ 0.2

TetGen
Initial 0 1 58 1493 11818
Final 0 7 182 3227 88350

Ours
Initial 0 0 0 17 26192
Final 5 9 6 170 48009

Repaired 0 3 6 173 48084

Table 2 Quality statistics with JENS . Initial meshes are shown in Fig. 23, while final
meshes are shown in Fig. 24. Repaired mesh slightly differs from Final mesh.

Knowing that one invalid element makes the entire mesh not suitable for
simulation, we decided to use our algorithm to refine once all the invalid el-
ements. This “repaired” mesh is presented in the last row of Table 2 where
we can see just a few poor quality elements remaining in the mesh. We could
continue to perform this task for improving the quality, but our intention was
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to add as few elements as possible to count with a valid mesh. Note that the
repaired mesh has much better quality distribution than the one from TetGen
and this was achieved with only one extra refinement iteration of those invalid
elements.

7 Conclusion and perspectives

The main goals of this work were to study how to accelerate mesh generation
and enable re–meshing for the Quadtree and Octree strategies when using
mixed–elements. To these purposes, an edge data structure keeping neighbor
information has been introduced. This, plus modifying the algorithms to re-
cover balance immediately after refining, were the key factors for accelerating
mesh generation.

Besides, the use of a well identified and limited list of Patterns at all steps,
makes our process determinist, and insure to cover all cases. Thus the method
is self-coherent and easy to understand; and its modular implementation makes
it versatile, one can choose which steps to be run, and easy to maintain and
evolving.

In the 2D case, we implemented a whole new Quadtree algorithm capa-
ble of achieving acceptable boundary representation and managing transitions
between fine a coarse regions of the mesh by using mixed–elements: triangles
and quadrilaterals. In the course, we noticed that a lot of time was being
used to balancing the resulting mesh. The incriminated step was the neighbor
search in the Quadtree structure to determine the difference of RL between
2 adjacent quadrants. So we proposed an efficient structure and adapted al-
gorithm to optimize this search. Then we extended this data structure to 3D
for a previously implemented Octree algorithm. In both cases, we were able
to demonstrate that the data structure accelerates the meshing procedure, es-
pecially when the refinement level is high, or when non uniform refinement
is needed. However, generation algorithms like Triangle and TetGen are still
faster, but our reconstruction times remain in the same order of magnitude,
while producing less elements.

When combining the data structure with the capability of re–meshing, we
obtained promising results. This task involves saving ad hoc information in
addition to the mesh itself, as explained in section 4.2. However, thanks to
this, it is possible to recover a balanced mesh with its quadrants/octants and
linked elements, therefore, enabling local refinement of specific regions. This
process allows for a substantial gain in time. When starting from a previously
generated mesh, TetGen spent up to 4 times the original generation time for
producing a denser mesh in a particular region, while our method needed less
than the original generation time for producing an equivalent result. This was
shown in Table 1 for the examples of Fig. 24. We would like to highlight that
the process of re–meshing can even be used to repair poor quality or invalid
elements in the mesh as it was shown in section 6.
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Another interesting point is that the initially constructed Quadtree/Octree
structure can be kept in memory for further refinement. This is particularly
interesting in a successive a posteriori adaptation scheme, and will avoid the
need to reconstruct the previous structure before to refine it. This will save
both the construction and writing time. Moreover, one can consider to ex-
change the mesh only once between the meshing and simulation modules at
the beginning, and only sent updated elements in the subsequent iterations,
thus limit the amount of transferred data. Besides, with the rapid expansion
of interactive applications, eg. in medical simulators, embedding the numerical
simulation and error estimation with the refinement module in a dynamic way
would clearly be a response to be promoted.

As future work, we would like to improve the Feature representation in
the 3D version. Unlike the 2D version that is known to cover properly all
the cases, some particular configurations are still requiring work in 3D. Also,
our next effort will be to avoid producing invalid elements at the surface. This
may arise when performing Transitions and Surface patterns on the same cell.
And, even this can be fixed by using our re–meshing strategy, we intend to
automatically treat this case in order to always produce a valid mesh.

In addition, mesh simplification could be an interesting point to investigate.
Note that this has not been implemented yet, but by construction, our method
is well prepared for this operation, as we are keeping track of every cell split via
their edges subdivision, as well as an up-to-date neighbor list, this latter being
the key-point for applying the reverse operation while preserving balance and
mesh conformity.

Acknowledgements Both authors have been partially supported by the Franco-Chilean
ECOS–Sud Conicyt C16E05 project, and second author has been partially funded by Chilean
Fondecyt-1181505 project.

A Re–meshing File Format

Whenever a mesh is generated, some additional data is stored. This file does not replace
the mesh file, however it contains all the required information to re–build the balanced
Quadtree or Octree state associated with that mesh. Combination of quadrants and octants
is not allowed in a same file. Here is an example for the 3D case (.oct):

# Header

5005 19791 2241

# Vertex coordinates

+2.85692000E-01 +2.21920000E-02 +1.91885460E+01

+1.34949800E+02 +2.21920000E-02 +1.91885460E+01

...

# Edge indexes

0 22 0

1 2 39

...

# Octant & surface intersection data
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8 1315 1317 1314 1306 1310 1316 1309 86 4

9 4380 4497 4499 4622 4624 4738 4740 4854 4966

8 1550 1546 1541 1547 1549 1543 442 1544 4

0

...

# Geometric Transform

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

# Octant sub-elements

0 0 0 1 0 2 ...

Header. It always has 3 integers representing the number of nodes, edges and octants.
Next comes 3 doubles corresponding to the coordinates of each node. They are implicitly to
an index, starting from 0.

List of edges. Each edge is defined by the indexes of its two nodes. The third integer
represents the index of the mid–point of the edge. If 0, this edge was not split into 2 new
sub-edges. For instance in the file example the second edge (1,2) was split by index 39.
Therefore, sub-edges (1,39,0) and (2,39,0) should be present later in the list.

For each quadrant or octant cell, 2 lines will be used in the file. The first line contains:
the number of nodes of this cell (4 or 8), the list of indexes defining this cell, and its
refinement level. For instance the first octant in the file is composed of 8 nodes, where the
first node index is 1315, the last one is 86, and its RL is 4. The second line corresponds to
the number of input faces of P this octant intersects, followed by their indexes. An octant
with 0 intersections completely remains inside the domain.

Geometric Transform (optional). Can be applied to all the nodes. This transform in-
volves rotations and translations. These values will depend on the first generated mesh. If
a Region of Interest (RoI) was provided (a second surface mesh), the output mesh will be
aligned with this RoI.

Numbers of sub–elements that decompose each octant. If this integer value is a 0, it means
that this octant was barely intersecting the surface at the refinement stage, and therefore
it was later removed when projecting inside nodes that were close to the boundary. This
information is still necessary to correctly reconstruct the mesh. Of course, octants without
any node inside the domain are not stored. In the example, the first 3 octants were finally
removed from the mesh; the fourth octant has 1 element, therefore if element index 0 must
be refined, octant 0 will be refined. The fifth octant was also removed and the next one has
element indexes 1 and 2. If any of these elements were to be refined, this octant will be
refined. If both element indexes are asked to be refined, the octant will be refined only once.
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