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1 Introduction

Efficient and reliable evaluation of solutions to differential equations is a ma-
jor challenge for a wide range of applications in critical engineering as well as
computer-assisted proofs involving dynamical systems. Most of the time, one
lacks closed form solution, and validated numerics [7] aims at providing numer-
ical algorithms, yet with guaranteed bounds encompassing all sources of errors.

Among the vast literature dedicated to the design of such methods – even in
the simpler case of ordinary differential equations (ODE) – a posteriori Newton-
Galerkin methods have proven to efficiently compute afterwards tight error
bounds ε for a candidate approximation, e.g. a polynomial p (see e.g. [8, 6]).
The pair (p, ε) is called a rigorous polynomial approximation (RPA) and denotes
an ε-ball containing the solution, in a suitable function space. In [3], we provided
a thorough algorithmic analysis of such methods for linear ODEs in Chebyshev
basis. This notably enhances the symbolic machinery of D-finite functions with
efficient symbolic-numeric representations, namely RPAs in Chebyshev basis.

Problem 1. Given a polynomial y◦ approximating the exact solution y∗ of the
Initial Value Problem (IVP):

y(r)(x) + ar−1(x)y(r−1)(x) + · · ·+ a0(x)y(x) = h(x), x ∈ [xl, xr],

y(x0) = v0, . . . , y
(r−1)(x0) = vr−1, a0, . . . , ar−1, h ∈ R[x], x0 ∈ [xl, xr],

(1)

compute a bound ε > ‖y◦ − y∗‖ := supx∈[xl,xr] |y
◦(x)− y∗(x)|.

The motivation of the present work is to overcome the limitations of Newton-
Galerkin methods by designing a new family of a posteriori validation algorithms
called Newton-Picard. As pointed out in [3], Newton-Galerkin methods suffer
from an exponential complexity, making intractable the validation of harder in-
stances, e.g. rapidly growing or oscillating functions. By contrast, the complexity
of Newton-Picard validation algorithm remains polynomial with the magnitude
of the input equation. Moreover, this new algorithm is mostly independent from
the working basis (it is even possible to validate piecewise constant approxima-
tions, for example). This in particular makes it suitable to be implemented in
a formal proof assistant, which we plan to do in the future, using a previously
developed framework [4] for RPAs and a posteriori validation in Coq [2].
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2 A Posteriori Validation and Newton-Galerkin Method

Let y◦ be a polynomial approximating the exact solution y∗. To validate it, we
first automatically restate the IVP (1) as a Volterra integral equation:

F{y} := y + K{y} − g = 0, where K{y}(x) :=

∫ x

x0

K(x, t)y(t)dt, (2)

with a bivariate polynomial kernel K(x, t) =
∑r−1
k=0 βk(x)αk(t). The main steps

of a posteriori Newton validation are:

1. Transform Equation (2) into an equivalent fixed-point equation:

T{y} = y, where T{y} := y −A{F{y}} = y −A{y + K{y} − g),

with A a linear operator approximating (1 + K)−1.
2. Prove that T is contracting by computing λ < 1 s.t.:

λ > ‖E‖, where E := I−A(I + K).

3. Apply the Banach fixed-point theorem to provide an error enclosure:

‖y◦ −T{y◦}‖
1 + λ

6 ‖y◦ − y∗‖ 6 ‖y
◦ −T{y◦}‖

1− λ
.

The main challenge to make Newton validation effective is to find sufficiently
accurate, yet explicitly computable operator A for the infinite-dimensional in-
verse of 1 + K. In Newton-Galerkin validation methods, this is achieved by pro-
jecting the integral operator K onto a finite subspace of a well-chosen coefficient
space, yielding the truncated Galerkin operator K[NG ]. Estimating an appro-
priate value for the truncation index NG and rigorously bounding the operator
norm of E are performed by the algorithms detailed in [3].

3 An Efficient Newton-Picard Validation Algorithm

3.1 Principle of the Method

The motivation of this new work is that (1 + K)−1 is poorly approximated by

inverse truncated operators (1 + K[NG ])−1, in O(1/NG) only, leading to expo-
nential worst-case bounds for NG (see [3, Sec. 5.2.2]). Instead, we make use of
the following convergent series, historically known as Picard iterations [5]:

(1+K)−1 = 1−K+K2−· · · = 1+R, with R{y}(x) =

∫ x

x0

R(x, t)y(t)dt, (3)

with analytic R(x, t) called the resolvent kernel. This simply comes from the
property that the composition KL of two integral operators K and L of respec-
tive kernels K and L is again an integral operator:

K{L{y}}(x) =

∫ x

x0

(K∗L)(x, t)y(t)dt, with (K∗L)(x, t) :=

∫ x

t

K(x, s)L(s, t)ds.
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Our new method consists in defining the linear operator A for step 1 of a
posteriori Newton validation as 1 + R◦, by approximating the resolvent kernel
R with a polynomial kernel R◦, rather than projecting onto a finite-dimensional
subspace – whence the name Newton-Picard. An efficient approximation method
for it is described in the next section. In the following, we assume that R◦ is
given and we implement steps 2 and 3 listed above.

2. The linear part E of T is again an integral operator:

E = I−A(I + K) = I− (I + R◦)(I + K) = −R◦ −K−R◦K,

with a polynomial kernel E := −R◦ − K−R◦ ∗ K, explicitly computable as
a finite sum

∑
i µi(x)νi(t). Compute an upper bound λ > ‖E‖.

3. If λ < 1, then compute and return ε := ‖y◦ −T{y◦}‖/(1− λ).

3.2 Approximating the Resolvent Kernel

Approximating the resolvent kernel R with a polynomial kernel R◦ can be
achieved by truncating the series (3) and computing the iterated kernels K∗n.
This is equivalent in disguise to the validation algorithm of [1]. For practical ef-
ficiency however, we propose an alternative way, based on the transition matrix
Φ(x) associated to the homogeneous linear ODE.

Definition 1. Φ(x) ∈ Rr×r is the unique solution of:

Φ′(x) = A(x)Φ(x), with A(x) :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
-a0(x) -a1(x) -a2(x) · · · -ar−1(x)

 and Φ(x0) = Ir.

We proceed as follows, using this key formula.

Proposition 1.

R(x, t) = (−1)r
(

1 0 · · · 0
)
Φ(x)

(
Φ(t)−1

)(r)0
...
1

 =:

r−1∑
k=0

ϕk(x)ψk(t).

– We compute a degree NR polynomial approximation Φ◦(x) of the transition
matrix Φ(x) by numerically solving IVP (1) r times with corresponding initial
conditions.

– Ψ(t) :=
(
Φ(t)−1

)T
satisfies Ψ(x0) = Ir and Ψ ′(t) = A(t)TΨ(t). Hence, we

compute a degree NR polynomial approximation Ψ◦(t) and differentiate it r
times.

– This gives a polynomial approximation of the resolvent kernel of the form:

R◦(x, t) :=

r−1∑
k=0

ϕ◦k(x)ψ◦k(t) ≈
r−1∑
k=0

ϕk(x)ψk(t) = R(x, t).
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3.3 Complexity Analysis

While spectral-Galerkin methods compute Chebyshev polynomial approxima-
tions that converge exponentially fast to the solution of the IVP problem, the
Lipschitz constant of the Newton-Galerkin fixed-point operator converges to 0
in O(1/NG) only, where NG is the truncation degree, yielding an exponential
complexity for the validation method. This phenomenon is illustrated in [3, Sec.
7.1] with the Airy function over intervals [0, a] for a > 0, for which the minimum
value of n resulting in a contracting operator grows exponentially fast with a.

On the contrary, Theorem 1 below shows that the Lipschitz constant of the
Newton-Picard validation operator converges exponentially fast w.r.t. the de-
gree NR used in the inverse kernel approximation method described above. To
simplify the picture, suppose we can compute exact degree NR truncated Cheby-
shev series ϕ◦k, ψ◦k for ϕk, ψk, so that ‖ϕ◦k − ϕk‖Eρ 6 2‖ϕk‖Eρρ−NR/(ρ− 1) and
‖ψ◦k − ψk‖Eρ 6 2‖ψk‖Eρρ−NR/(ρ− 1), where ‖ · ‖Eρ is the supremum norm over
an ellipse Eρ (for ρ > 1) of foci xl and xr and eccentricity 2/(ρ+ ρ−1).

Theorem 1. The operator norm of the linear part E of T is bounded by:

‖E‖ 6 4T

(
ρ−NR

ρ− 1
+

ρ−2NR

(ρ− 1)2

)(r−1∑
k=0

‖ϕk‖Eρ‖ψk‖Eρ

)(
1 + T

r−1∑
k=0

‖αk‖‖βk‖

)
,

where T = max(xr − x0, x0 − xl) is the maximum elapsed time. The ‖ϕk‖Eρ ,
‖ψk‖Eρ being exponentially bounded by the ‖αk‖Eρ , ‖βk‖Eρ , the minimum NR for
which ‖E‖ < 1 depends linearly on the ‖αk‖Eρ , ‖βk‖Eρ .
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